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Measuring Nonlinear Granger Causality in Mean

ABSTRACT

We propose model-free measures for Granger causality in mean between random variables. Unlike the

existing measures, ours are able to detect and quantify nonlinear causal effects. The new measures are based

on nonparametric regressions and defined as logarithmic functions of restricted and unrestricted mean square

forecast errors. They are easily and consistently estimated by replacing the unknown mean square forecast

errors by their nonparametric kernel estimates. We derive the asymptotic normality of nonparametric

estimator of causality measures, which we use to build tests for their statistical significance. We establish

the validity of smoothed local bootstrap that one can use in finite sample settings to perform statistical tests.

Monte Carlo simulations reveal that the proposed test has good finite sample size and power properties for

a variety of data-generating processes and different sample sizes.

Finally, the empirical importance of measuring nonlinear causality in mean is also illustrated. We

quantify the degree of nonlinear predictability of equity risk premium using variance risk premium. Our

empirical results show that the variance risk premium is a very good predictor of risk premium at horizons

less than six months. We also find that there is a high degree of predictability at horizon one-month which

can be attributed to a nonlinear causal effect.

Keywords: Granger causality measures; nonlinear causality in mean; nonparametric estimation; time series;

bootstrap; volatility index; realized volatility; variance risk premium; risk premium.
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1 Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) constitutes a basic notion for

analyzing dynamic relationships between time series. In studying Wiener-Granger causality, predictability is

the central issue which is of great importance to economists, policymakers and investors. Much research has

been devoted to building tests of non-causality in mean. However, once we have concluded that a “causal

relation” is present, it is usually important to assess the strength of this relationship. Only a few papers

have been proposed to measure the causality in mean between the variables of interest; see Geweke (1982,

1984) and Dufour and Taamouti (2010). Those papers consider parametric linear models for the conditional

mean function. Thus, the proposed measures ignore nonlinear causal effects, which might lead to invalid

causal analysis. Hence, we simply cannot use the existing measures to quantify the strength of nonlinear

causality in mean. The present paper aims to propose model-free measures to quantify nonlinear causality

in mean.

Wiener-Granger analysis distinguishes between three basic types of causality: from Y to X, from X to Y ,

and an instantaneous causality, where X and Y are the variables of interest. In practice, it is possible that

all three causality relations coexist simultaneously. Hence the importance of providing tools that quantify

and compare the degree of these causalities. Unfortunately, causality tests fail to accomplish this task,

because they only provide evidence on the presence of causality. A large effect may not be statistically

significant (at a given level), and a statistically significant effect may not be “large” from an economic

viewpoint (or more generally from the viewpoint of the subject at hand) or relevant for decision making.

As emphasized by McCloskey and Ziliak (1996), it is crucial to distinguish between the numerical value of

the measure and its statistical significance. Hence, beyond accepting or rejecting non-causality hypotheses –

which state that certain variables do not help forecasting other variables – we wish to assess the magnitude

of the forecast improvement, where the latter is defined in terms of some loss function (mean square forecast

errors). Even if the hypothesis of no improvement (non-causality) cannot be rejected from looking at the

available data (for example, because the sample size or the structure of the process does allow for high test

power), sizeable improvements may remain consistent with the same data. Or, by contrast, a statistically

significant improvement – which may easily be produced by a large data set - may not be relevant from a

practical viewpoint.

The topic of measuring Granger causality has attracted much less attention. Furthermore, most of the

existing measures focus on linear causality in mean, thus, those measures can not be applied in the presence

of nonlinear causality in mean. Geweke (1982, 1984) introduce measures of causality in mean based on

linear parametric autoregressive models. Dufour and Taamouti (2010) extend Geweke’s (1982, 1984) work

to propose measures for short and long run causality in mean using parametric ARMA models. Gouriéroux
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et al. (1987) build measures of causality based on Kullback information criterion and use a parametric

approach for the estimation of their measures. Polasek (1994, 2002) show how causality measures can be

computed using Akaike Information Criterion (AIC) and a Bayesian approach. Taamouti et al. (2014) have

recently proposed a nonparametric estimator and test for Granger causality measures that quantify Granger

causality in distribution. However, the main issue of Taamouti et al.’s (2014) measures is that they are not

informative about the level(s) (mean, variance, other high-order moments, quantiles) of distribution where

the causality exists.

We introduce new model-free measures to quantify nonlinear Granger causality in mean. The new

measures are defined in the context of nonparametric regressions as logarithmic functions of restricted and

unrestricted mean square forecast errors. A consistent nonparametric estimator of these measures is defined

in terms of Nadaraya-Watson kernel estimators of mean square forecast errors. We establish the asymptotic

normality of this estimator that we use to build tests for statistical significance of measures. We also show

the validity of smoothed local bootstrap that we apply to perform statistical tests in finite sample settings.

Furthermore, a Monte Carlo simulation study is performed to investigate the finite sample properties (size

and power) of the proposed nonparametric test and the results reveal that the latter behaves well for a

variety of typical data generating processes.

Moreover, since testing that the value of measure is equal to zero is equivalent to testing for non-causality

in mean, we consider an additional simulation exercise to compare the empirical size and power of our test

with those of nonparametric test of Granger non-causality in mean introduced by Nishiyama et al. (2011).

Simulation results indicate that our test has comparable size, but better power than Nishiyama et al.’s

(2011) test.

Finally, we apply our nonparametric causality measures to quantify the degree of nonlinear predictability

of equity risk premium using what is known as variance risk premium; see Bollerslev et al. (2009). The

latter is defined as the difference between risk-neutral and objective expectations of realized variance. Our

results indicate that the variance risk premium is a good predictor of risk premium at horizons less than six

months. Contrary to Bollerslev et al. (2009), we find that there is a high degree of predictability at horizon

one-month which can be attributed to a nonlinear causal effect.

The plan of the paper is as follows. Section 2 provides the motivation for considering measures for

nonlinear Granger causality in mean. Section 3 presents the general theoretical framework which underlies

the definition of causality in mean. In Section 4 and 5, we define the theoretical nonparametric measures

of Granger causality in mean. In Section 6 we introduce a consistent nonparametric estimator of causality

measures based on kernel estimation of mean-square forecast errors of restricted and unrestricted nonpara-

metric regressions. We also establish the asymptotic distribution of nonparametric estimator of causality in

mean measures and discuss the asymptotic validity of a smoothed local bootstrap assisted test. In Section
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7 we extend our results to the case where the random variables of interest are multivariate. In Section 8 we

provide a simulation exercise to investigate the finite sample properties of our test of causality measures.

Section 9 is devoted to an empirical application and the conclusion relating to the results is given in Section

10. Additional data generating processes for simulations and proofs of main results appear in the Appendices

A and B, respectively.

2 Motivation

The causality measures that we consider here constitute a generalization of those developed by Geweke

(1982, 1984) and others. The existing measures quantify the effect of one variable Y on another variable

X assuming that the regression function linking the two variables of interest is known and linear. The

significance of such measures is limited in the presence of unknown regression functions and in the presence

of nonlinear causality in mean.

We propose measures of causality between random variables based on nonparametric regression functions.

Such measures detect and quantify nonlinear causality in mean. To see the importance of these causality

measures, consider the following example.

Example 1 [Brock (1991)] Consider the following nonlinear regression model

Xt+1 = β Yt ·Xt + εt+1, (1)

where {Yt} and {Xt} are mutually independent and individually i.i.d. N(0, 1), and β denotes a parameter.

Equation (1) shows that Y nonlinearly causes the conditional mean of X, since Xt+1 depends nonlinearly

on the past value of Yt. However, since all autocorrelations and cross correlations between X and Y are

zero, Y does not linearly cause the conditional mean of X. Thus, this example illustrates the case where the

causality in mean does not exist linearly, but it does nonlinearly. But, how can we measure the degree of this

nonlinear causality in mean? Existing measures do not answer this question.

Generally speaking, the existing measures of linear Granger causality in mean might have low power in

detecting certain kinds of nonlinear causal effects. Formally, let us assume that the true conditional mean

of random variable X is a nonlinear function of random variable Y

Xt+1 = µ+ β f (Yt) + αXt + ut+1, (2)

where ut+1 is an i.i.d. process with mean zero and variance σ2. Let us now approximate the nonlinear

relationship in (2) by a linear one, using a Taylor expansion around zero:

Xt+1 ≃ µ+ β
[

f (0) + Ytf
′ (0)

]

+ αXt + ut+1 = η + λYt + αXt + ut+1, (3)
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where the new constant η is equal to µ+βf (0) and the new slope λ is equal to βf ′ (0) . Equation (3) shows

that the impact of Y on conditional mean of X depends on the first derivative of f evaluated at zero. Thus,

if f ′ (0) is zero or close to zero, then the above linear approximation has no power or low power in detecting

nonlinear relationship between X and Y . Broadly speaking, a Taylor expansion of f (Yt) around any value

a such that f ′ (a) is zero or close to zero will lead to low power in detecting nonlinear relationship between

X and Y. Hence the importance of using nonparametric regression to build measures of nonlinear Granger

causality in mean.

3 Framework

The notion of non-causality studied here is defined in terms of orthogonality conditions between subspaces

of a Hilbert space of random variables with finite second moments. We denote L2 ≡ L2(Ω,A, Q) a Hilbert

space of real random variables with finite second moments, defined on a common probability space (Ω,A, Q).

If E and F are two Hilbert subspaces of L2, we denote E + F the smallest subspace of L2 which contains

both E and F.

“Information” is represented here by nondecreasing sequences of Hilbert subspaces of L2. In particular,

we consider a sequence I of “reference information sets” I(t),

I = {I(t) : t ∈ Z , t > ω} with t < t′ ⇒ I(t) ⊆ I(t′) for all t > ω , (4)

where I(t) is a Hilbert subspace of L2, ω ∈ Z ∪ {−∞} represents a “starting point”, and Z is the set of the

integers. The “starting point” ω is typically equal to a finite initial date (such as ω = −1, 0 or 1) or to −∞;

in the latter case I(t) is defined for all t ∈ Z. We also consider two stochastic processes

X = {Xt : t ∈ Z, t > ω} , Y = {Yt : t ∈ Z, t > ω} ,

where

Xt = (x1,t, . . . , xd1,t)
′

, xi,t ∈ L2, i = 1, . . . , d1 , d1 ≥ 1,

Yt = (y1,t, . . . , yd2,t)
′

, yi,t ∈ L2, i = 1, . . . , d2 , d2 ≥ 1,

and a (possibly empty) Hilbert subspaceH of L2, whose elements represent information available at any time,

such as time independent variables (e.g., the constant in a regression model) and deterministic processes (e.g.,

deterministic trends). We denote X(ω, t] the Hilbert space spanned by the components xi,τ , i = 1, . . . , d1,

of Xτ , ω < τ ≤ t, and similarly for Y (ω, t] : X(ω, t] and Y (ω, t] represent the information contained in

the history of the variables X and Y respectively up to time t. Finally, the information sets obtained by

“adding” X(ω, t] to I(t) and Y (ω, t] to IX(t) are defined as

IX(t) = I(t) +X(ω, t] , IXY (t) = IX(t) + Y (ω, t]. (5)
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For any information set Bt [some Hilbert subspace of L2], we denote P [xi,t+1|Bt] the best (nonlinear)

forecast of xi,t+1 based on the information set Bt,

u[xi,t+1|Bt] = xi,t+1 − P [xi,t+1|Bt]

the corresponding prediction error, and σ2[xi,t+1 |Bt] = E
{

u[xi,t+1|Bt]
2
}

. Then, the best forecast of Xt+1 is

P [Xt+1|Bt] =
(

P [x1,t+1 |Bt], . . . , P [xd1,t+1 |Bt]
)′
,

the corresponding vector of prediction errors is

U [Xt+1 |Bt] =
(

u[x1,t+1 |Bt], . . . , u[xd1,t+1 |Bt]
)′

, (6)

and the corresponding matrix of second moments is

Σ[Xt+1 |Bt] = E
{

U [Xt+1 |Bt]U [Xt+1 |Bt]
′}

. (7)

ProvidedBt contains a constant, Σ[Xt+1 |Bt] is covariance matrix of U [Xt+1 |Bt]. Each component P [xi,t+1 |Bt]

of P [Xt+1 |Bt] is the orthogonal projection of xi,t+1 on the subspace Bt.

Following the definitions in Dufour and Taamouti (2010), characterization of non-causality between X

and Y can be expressed in terms of the variance of the forecast errors.

Definition 1 (Covariance Characterization of Non-causality). Y does not cause X given I iff

detΣ[Xt+1 | IX(t)] = detΣ[Xt+1 | IXY (t)] , ∀t > ω,

where Σ[Xt+1 | · ] is defined in (7). Similarly, X does not cause Y given I iff

detΣ[Yt+1 | IY (t)] = detΣ[Yt+1 | IXY (t)] , ∀t > ω,

where Σ[Yt+1 | · ] = E
{

U [Yt+1 | ·]U [Yt+1 | ·]′
}

.

This definition means that Y causes X (resp. X causes Y ) if the past of Y (resp. X) improves the

forecast of Xt+1 (resp. Yt+1) based on the information in I(t) and X(ω, t] (resp. Y (ω, t]).

4 Causality measures

The causality measures that we propose here are defined using similar measure functions as in Geweke

(1982, 1984) and Dufour and Taamouti (2010). Important properties of these measures include: (i) they

are non-negative, and (ii) they cancel only when there is no causality. Specifically, we propose the following

causality measures where by convention ln(0/0) = 0 and ln(x/0) = +∞ for x > 0.
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Definition 2 (Mean-Square Causality Measures). The function

C(Y → X | I) = ln

[

detΣ[Xt+1 | IX(t)]

detΣ[Xt+1 | IXY (t)]

]

(8)

defines the mean-square causality measure from Y to X, given I. Similarly, the function

C(X → Y | I) = ln

[

detΣ[Yt+1 | IY (t)]
det Σ[Yt+1 | IXY (t)]

]

defines the mean-square causality measure from X to Y, given I.

Since we only consider mean-square measures, the term “mean square causality measure” will be ab-

breviated to “causality measure”. Clearly, C(Y → X | I) = 0 (resp. C(X → Y | I) = 0) if Y (ω, t] ⊆ IX(t)

(resp. X(ω, t] ⊆ IY (t)), so C(Y → X | I) (resp. C(X → Y | I)) provides useful information mainly when

Y (ω, t] * IX(t) (resp. X(ω, t] * IY (t)). For d1 = d2 = 1, Definition 2 reduces to

C(Y → X | I) = ln

[

σ2[Xt+1 |IX(t)]

σ2[Xt+1 | IXY (t)]

]

, C(X → Y | I) = ln

[

σ2[Yt+1 |IY (t)]
σ2[Yt+1 | IXY (t)]

]

.

C(Y → X | I) (resp. C(X → Y | I)) measures the degree of causal effect from Y to X (resp. X to Y ) given

I and the past of Y (resp. X). In terms of predictability, this can be viewed as the amount of information

brought by the past of Y (resp. X) which can improve the forecast of Xt+1 (resp. Yt+1). We now define an

instantaneous causality measure between X and Y as follows.

Definition 3 (Mean-Square Instantaneous Causality Measure). The function

C(X − Y | I) = ln

[

detΣ[Xt+1 | IXY (t)] detΣ[Yt+1 | IXY (t)]

detΣ[
(

Xt+1, Yt+1

)

| IXY (t)]

]

,

where Σ[(Xt+1, Yt+1) | IXY (t)] = E
{

U [Zt+1 | IXY (t)]U [Zt+1 | IXY (t)]
′}

and Zt =
(

X ′
t, Y

′
t

)′
, defines the

mean-square instantaneous causality measure between X and Y.

For d1 = d2 = 1 and provided I(t) includes a constant variable, we have:

det Σ[
(

Xt+1, Yt+1

)

| IXY (t)] = σ2[Xt+1 | IXY (t)]σ
2[Yt+1 | IXY (t)]

−
(

cov[Xt+1, Yt+1 | IXY (t)]
)2
,

so that

C(X − Y | I) = ln

[

1

1− ρ[Xt+1, Yt+1 | IXY (t)]2

]

, (9)

where

ρ[Xt+1, Yt+1 | IXY (t)] =
cov[Xt+1, Yt+1 | IXY (t)]

σ[Xt+1 | IXY (t)]σ[Yt+1 | IXY (t)]
.

is the conditional correlation coefficient between Xt+1 and Yt+1 given the information set IXY (t). Thus,

instantaneous causality increases with the absolute value of the conditional correlation coefficient.

We also define a measure of dependence between X and Y . This will enable one to check whether the

processes X and Y must be considered together or whether they can be treated separately.
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Definition 4 (Measure of Dependence). The function

C(X, Y | I) = C(X → Y | I) + C(Y → X | I) + C(X−Y | I) (10)

defines the intensity of the dependence between X and Y, given I.

It is easy to see that the intensity of the dependence between X and Y can be written in the alternative

form:

C(X, Y | I) = ln

[

detΣ[Xt+1 | IX(t)] detΣ[Yt+1 | IY (t)]
detΣ[

(

Xt+1, Yt+1

)

| IXY (t)]

]

,

where IY (t) represents the Hilbert subspace spanned by the components of Yt and similarly for IX(t).

5 Causality measures for nonparametric regression models

Let
{

(Xt, Yt) ∈ R× R ≡ R2, t = 0, ..., T
}

be a sample of stationary stochastic process in R2. For simplicity

of exposition, we consider univariate Markov processes of order one. Later, see Section 7, we will extend the

results to the case where the variables X and Y can be multivariate Markov processes of any order p, for

p ≥ 1.

We now focus on the following bivariate nonparametric regression

Zt+1 = Φ(Zt) + ut+1, (11)

where Zt+1 =
(

Xt+1, Yt+1

)′
, Φ (Zt) is an unknown function of Zt such that Φ (Zt) = E [Zt+1|Zt] , and

ut+1 =
(

uXt+1, u
Y
t+1

)′
is an error term with E [ut+1|Zt] = 0. From the bivariate nonparametric regression in

(11), we obtain the following marginal regressions for Xt+1 andYt+1 :

Xt+1 = Φ1 (Zt) + uXt+1 (12)

and

Yt+1 = Φ2 (Zt) + uYt+1,

where Φ1 (Zt) = E [Xt+1|Xt, Yt] and Φ2 (Zt) = E [Yt+1|Xt, Yt] . In addition, we have

σ2[Xt+1 |Xt, Yt] = V ar
[

uXt+1

]

= V ar [(Xt+1 − Φ1 (Zt))] .

Similarly, we have

σ2[Yt+1 |Xt, Yt] = V ar
[

uYt+1

]

= V ar [(Yt+1 − Φ2 (Zt))] .

To quantify the degree of causality from Y to X and from X to Y we also need to consider the following

constrained nonparametric regressions of X and Y , respectively,

Xt+1 = Φ̄1 (Xt) + ūXt+1 (13)

7



and

Yt+1 = Φ̄2 (Yt) + ūYt+1,

where Φ̄1 (Xt) and Φ̄2 (Yt) are unknown functions of Xt and Yt such that Φ̄1 (Xt) = E [Xt+1|Xt] and

Φ̄2 (Yt) = E [Yt+1|Yt] , respectively, and ūXt+1and ūYt+1 are error terms such that E
[

ūXt+1

∣

∣Xt

]

= 0 and

E
[

ūYt+1

∣

∣Yt
]

= 0, respectively. We have

σ̄2[Xt+1 |Xt] = V ar
[

ūXt+1

]

= V ar
[(

Xt+1 − Φ̄1 (Xt)
)]

.

Similarly, we have

σ̄2[Yt+1 |Yt] = V ar
[

ūYt+1

]

= V ar
[(

Yt+1 − Φ̄2 (Yt)
)]

.

We can now immediately deduce the following result by using the definitions of causality measures from

Y to X and from X to Y [Definition 2].

Proposition 1 (Measures of Nonlinear Granger Causality in Mean). Under assumption (11), the measure

of Granger causality in mean from Y to X is given by:

C(Y → X| I ) = ln

[

V ar
[(

Xt+1 − Φ̄1 (Xt)
)]

V ar [(Xt+1 −Φ1 (Zt))]

]

, (14)

where Φ̄1 (Xt) and Φ1 (Zt) are the restricted and unrestricted nonparametric regression functions of Xt,

respectively. Similarly, the measure of Granger causality in mean from X to Y is given by:

C(X→ Y | I) = ln

[

V ar
[(

Yt+1 − Φ̄2 (Yt)
)]

V ar [(Yt+1 − Φ2 (Zt))]

]

,

where Φ̄2 (Yt) and Φ2 (Zt) are the restricted and unrestricted nonparametric regression functions of Yt, re-

spectively.

Using Equation (9), a nonparametric regression-based measure of the instantaneous causality between

X and Y is given by the following proposition.

Proposition 2 (Measure of Instantaneous Granger Causality in Mean). Under assumption (11), the mea-

sure of the instantaneous Granger causality in mean between X and Y is given by:

C(X−Y | I)=ln

[

1

1− ρ[(Xt+1 − Φ1 (Zt)) , (Yt+1 − Φ2 (Zt)) ]2

]

, (15)

where Φ1 (Zt) and Φ2 (Zt) are the unrestricted nonparametric regression functions of Xt+1 and Yt+1, respec-

tively.

Finally, the nonparametric regression-based measure of dependence between X and Y can be deduced

from its decomposition in (10).
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In the next section, we propose nonparametric kernel estimators for the previous Granger causality

measures, and we derive their asymptotic distributions. The basic idea is to consider a nonparametric

estimation for the restricted and unrestricted forecast errors: Xt+1−Φ̄1 (Xt) , Yt+1−Φ̄2 (Yt) , Xt+1−Φ1 (Zt) ,

and Yt+1 − Φ2 (Zt). The causality measures can be simply and consistently estimated by replacing the

unknown mean square forecast errors by their nonparametric kernel estimates.

6 Estimation and inference

6.1 Estimation

We have shown, see Section 5, that Granger causality measures can be written in terms of variances of the

restricted and unrestricted forecast errors. Thus, these measures can be estimated by replacing the unknown

variances by their nonparametric estimates from a finite sample. Hereafter, we focus on the estimation of

Granger causality measures from Y to X, C(Y → X| I), which is defined in (14). We can similarly propose

estimators for the measures of Granger causality from X to Y and of the instantaneous causality between X

and Y . For simplicity of exposition, we will omit the conditioning set I in the Granger causality measures

defined in the previous sections.

To consistently estimate C(Y → X), we need to provide consistent estimates of the restricted and

unrestricted mean square forecast errors σ̄2 [Xt+1 |Xt] and σ
2[Xt+1 |Xt, Yt], respectively. The latter depend

on the restricted and unrestricted conditional regression functions Φ̄1(Xt) and Φ1(Zt). Thus, σ̄
2 [Xt+1 |Xt]

and σ2[Xt+1 |Xt, Yt], consequently C(Y → X), can be consistently estimated using nonparametric estimators

of the functions Φ̄1(Xt) and Φ1(Zt). The well studied nonparametric estimators for the regression functions

are given by the Nadaraya-Watson kernel estimators; see Nadaraya (1964) and Watson (1964). To this end,

we define the weights

W1,t+1(x, h̄) =
K
(

x−Xt

h̄

)

∑T−1
s=0 K

(

x−Xs

h̄

) (16)

that we use to estimate the restricted conditional regression function Φ̄1(·) = E(Xt+1|Xt = ·), where

h̄ = h̄T ∈ R+ is a sequence of smoothing parameters (i.e. bandwidths) and K is a univariate kernel function.

We obtain the following Nadaraya-Watson estimator of Φ̄1(·)

ˆ̄Φ1(x) =

T−1
∑

t=0

W1,t+1(x, h̄)Xt+1,

from which we can obtain the nonparametric residual-based estimator of the restricted mean square forecast

error

ˆ̄σ2 [Xt+1 |Xt] :=
1

T

T−1
∑

t=0

(ˆ̄uXt+1)
2 =

1

T

T−1
∑

t=0

(Xt+1 − ˆ̄Φ1(Xt))
2. (17)
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Similarly, for z = (x, y)′ and a vector of smoothing parameters h = (h1, h2)
′, we define

W2,t+1(z, h) =
K2

(

z−Zt

h

)

∑T−1
s=0 K2

(

z−Zs

h

) (18)

as the Nadaraya-Watson weights that we will use to estimate the unrestricted conditional regression function

Φ1(·) = E(Xt+1|Zt = ·), where K2

(

z−Zt

h

)

= K
(

x−Xt

h1

)

K
(

y−Yt

h2

)

is a two-product kernel function and K is

a univariate kernel function. Likewise, we have

Φ̂1(z) =

T−1
∑

t=0

W2,t+1(z, h)Xt+1

and

σ̂2 [Xt+1 |Xt, Yt] :=
1

T

T−1
∑

t=0

(ûXt+1)
2 =

1

T

T−1
∑

t=0

(Xt+1 − Φ̂1(Zt))
2 (19)

as the Nadaraya-Watson estimator of Φ1(·) and nonparametric residual-based estimator of σ2[Xt+1 |Xt, Yt],

respectively.

Notice that we have adopted three different bandwidths h̄, h1 and h2 to take into account the pos-

sible data heterogeneity among Xt and Yt in the nonparametric estimation of restricted and unrestricted

conditional regression functions and mean square forecast errors. Furthermore, as is well known in the non-

parametric estimation literature, the choices of kernel functions are not important compared to the choices

of bandwidths. Therefore, broadly speaking, we could consider the same univariate kernel function K(·)
in the above kernel estimators (Assumption A.2.1). To further simplify the notation and our asymptotic

analysis, in the unrestricted estimation outlined above, we let h1 = h2 = h. However, different bandwidths

could be considered and, with little more complexity, the asymptotic theory developed in this paper will

still be valid when h1 6= h2.

Using the previous nonparametric estimators ˆ̄σ2 [Xt+1 |Xt] and σ̂
2 [Xt+1 |Xt, Yt], an estimator of measure

of Granger causality in mean C(Y → X) is given by

Ĉ(Y → X) := ln

(

ˆ̄σ2(Xt+1 |Xt)

σ̂2(Xt+1 |Xt, Yt)

)

= ln

(

1
T

∑T−1
t=0 (Xt+1 −

∑T−1
s=0 W1,s+1(Xt, h̄)Xs+1)

2

1
T

∑T−1
t=0 (Xt+1 −

∑T−1
s=0 W2,s+1(Zt, h)Xs+1)2

)

, (20)

where the weights W̄t+1(x, h̄) andWt+1(z, h) are defined in (16) and (18), respectively. The most basic prop-

erty that the above estimator should have is consistency. To prove consistency, some regularity assumptions

are needed. We consider a set of standard assumptions on the stochastic processes, bandwidth parameters,

and kernel choices in the Nadaraya-Watson estimators.

Assumption A.1 on the stochastic process

(A.1.1) {Zt = (Xt, Yt)
′ ∈ R× R ≡ R2, t ≥ 0} is a strictly stationary and ergodic bivariate Markov process

of order 1. Furthermore, E|Xt| <∞ and E|Yt| <∞.
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(A.1.2) The marginal density fX(x) of Xt and the joint density fZ(z) of Zt are bounded away from zero

and bounded above.

Assumption A.2 on the bandwidth parameters and kernel function

(A.2.1) The kernel functions K(u) and K2(u, v) = K(u)K(v) are univariate and two-product kernel func-

tions, respectively. Specifically, the univariate kernel K(u) satisfies K(−u) = K(u),
∫

K(u) du = 1,
∫

uK(u) du = 0 and
∫

u2K(u) du <∞.

(A.2.2) The univariate bandwidth parameter h̄ and the bivariate bandwidth parameter h satisfy h̄ → 0,

h→ 0 and h2 = o(h̄) as T → ∞. Further, T h̄→ ∞ and Th2 → ∞, as T → ∞.

Assumption (A.1.1) is standard in asymptotic theory on nonparametric regression for dependent data. It

is satisfied by many processes such as ARMA and ARCH processes. This assumption implies that ūXt and

uXt are strictly stationary and ergodic. Observe that Assumption (A.1.2), which requires that the densities

fX(x) and fZ(z) have to be bounded away from zero, is for convenient purposes only. This assumption eases

greatly the derivation of the asymptotic theory. It can be weakened by employing, for example, indicator

function as a trimming function like in Robinson (1988) to trim out near zero densities in the nonparametric

estimation procedure. We can also use a general weighting function (like densities) to circumvent the

problem of random denominator often encountered in the nonparametric estimation and testing literature.

We need Assumptions (A.2.1) and (A.2.2) to show the asymptotic normality of nonparametric estimators.

In particular, Assumption (A.2.1) is needed to alleviate the bias terms in the nonparametric estimators of

variances constructed from the restricted and unrestricted nonparametric residuals. Assumption (A.2.2) is

a common and minimal assumption in the nonparametric regression literature.

We now state the consistency of the nonparametric estimator Ĉ(Y → X) in (20).

Proposition 3 Under Assumptions (A.1.1)-(A.2.2), the estimator Ĉ(Y → X) in (20) converges in prob-

ability to the true Granger causality measure C(Y → X).

The proof of Proposition 3 can be found in Appendix B. In the next section we establish the asymptotic

normality of Ĉ(Y → X) in (20). This will enable us to build tests and confidence intervals for the proposed

Granger causality measures.

6.2 Inference

6.2.1 Asymptotic distribution

The causality measures defined in the previous sections can also be used to test for Granger non-causality

in mean between X and Y . If there is no causality from Y to X, then the restricted and unrestricted mean
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square forecast errors of X will be equal: σ̄2 [Xt+1 |Xt] = σ2[Xt+1 |Xt, Yt] = σ2. Hereafter, we wish to test

the null hypothesis

H0 : C(Y → X) = 0. (21)

Again, we focus on Granger causality from Y to X, but similar results can be obtained for Granger causality

from X to Y and instantaneous causality between X and Y . We now derive the asymptotic normality

of nonparametric estimator defined in Equation (20), and we establish the consistency of the test statistic

(hereafter Γ̂T ) which will be used to test H0.

The following theorem provides the asymptotic normality of nonparametric estimator of our Granger

causality measure [see the proof of Theorem 1 in Appendix B].

Theorem 1 Suppose Assumptions (A.1.1)-(A.2.2) are satisfied. Then under H0, we have

ThĈ(Y → X)
d−→ N (0,Ω),

where

Ω =
2

σ4
E
σ4(Zt)

fZ(Zt)

∫

(2K(u)−K(u))2 du,

with K(u) =
∫

K(v)K(u+ v) dv is the convolution of kernels.

The variance Ω in Theorem 1 can be consistently estimated as follows:

Ω̂ =
2

( 1
T

∑T−1
t=0

ˆ̄uX2
t+1)

2

1

T (T − 1)

T−1
∑

t=0

T−1
∑

s=0,s 6=t

K2

(

Zt − Zs

h

)

ˆ̄uX2
t+1

ˆ̄uX2
s+1

h2f̂2Z(Zt)

∫

(2K(u)−K(u))2 du, (22)

where ˆ̄uXt+1 = Xt+1− ˆ̄Φ1(Xt) denotes the nonparametric residuals obtained from the restricted nonparametric

regression and f̂Z(Zt) = 1
(T−1)h2

∑T−1
s=0,s 6=tK2

(

Zt−Zs

h

)

is the leave-one-out Nadaraya-Watson estimator of

density fZ(Zt).

We now define the following test statistic

Γ̂T =
ThĈ(Y → X)

√

Ω̂
.

Theorem 1 implies that under H0, the test statistic Γ̂T is asymptotically distributed as N(0, 1). This forms

the basis for the following one-sided asymptotic test for H0: for a given significance level α, we reject H0 if

Γ̂T > zα, where zα is the upper α-percentile of the standard normal distribution.

The following proposition establishes the consistency of the above test [see the proof of Proposition 4 in

Appendix B].

Proposition 4 Under Assumptions (A.1.1)-(A.2.2), the test defined by the statistic Γ̂T and Theorem 1

is consistent for any loss functions σ̄2 [Xt+1 |Xt] and σ
2[Xt+1 |Xt, Yt] such that:

σ̄2 [Xt+1 |Xt]− σ2[Xt+1 |Xt, Yt] > 0,
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where σ2[Xt+1 |Xt, Yt] and σ̄
2 [Xt+1 |Xt] are the mean square forecast errors from the unrestricted and re-

stricted nonparametric regressions in (12) and (13), respectively.

We now examine the asymptotic local power property of the above test. Define the sequence of local

alternatives

H1T : C(Y → X) =
1

Th
µ, (23)

where µ is a finite positive constant, indicating the deviation of C(Y → X) (degree of causality in mean

from Y to X) from zero. The following proposition states that our test has non-trivial asymptotic power

against local alternatives converging to the null H0 at the rate of (Th)−1.

Proposition 5 Under Assumptions (A.1.1)-(A.2.2) and H1T , we have

Γ̂T
d−→ N (µ, 1).

We do not provide the proof of Proposition 5 since it is obvious from the proof of Proposition 4. We can

immediately conclude that the limiting distribution of nonparametric estimator Ĉ(Y → X) is non-trivially

shifted whenever µ > 0, and therefore the proposed test is able to detect local alternatives that converge to

the null H0 at the rate of (Th)
−1. The local power of the test increases with the deviation of µ, and thus our

test has non-trivial power against the local alternatives in (23), which are arbitrarily close to the parametric

rate T−1/2 by taking a large bandwidth h.

6.2.2 Smoothed local bootstrap

The result in Theorem 1 is valid only asymptotically, and the asymptotic normal distribution might not work

well in the finite samples. Particularly, for high dimensional random variables the asymptotic test is subject

to size distortion because of possible finite sample bias in the nonparametric estimation due to curse of

dimensionality. One way to improve the size performance of the asymptotic test is to use the smoothed local

bootstrap introduced in Paparoditis and Politis (2000). One major advantage of smoothed local bootstrap

procedure is it can preserve the unknown dependence structure in the data, thus it can “mimic” the finite

sample distribution of our test statistic.

In the sequel, X ∼ fX means that the random variable X is generated from a density function fX .

Let L1(·), L2(·) L3(·) be three univariate kernels that satisfy Assumption (A.2.1) and h∗ be a smoothing

parameter satisfying Assumption A.3 below. Hereafter, we discuss the implementation of local smoothed

bootstrap. The method is easy to implement in the following four steps:

(1) We draw a bootstrap sample {(X∗
t , Y

∗
t )}Tt=1. We first draw X∗

t−1 using the nonparametric kernel density

of X

X∗
t−1 ∼ 1

Th∗

T
∑

s=1

L1

(

Xs−1 − x

h∗

)

;
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then conditional on X∗
t−1, we draw X∗

t and Y ∗
t−1 independently from the following nonparametric conditional

densities

X∗
t ∼ 1

h∗

T
∑

s=1

L1

(

Xs−1 −X∗
t−1

h∗

)

L2

(

Xs − y

h∗

)

/

T
∑

s=1

L1

(

Xs−1 −X∗
t−1

h∗

)

and

Y ∗
t−1 ∼

1

h∗

T
∑

s=1

L1

(

Xs−1 −X∗
t−1

h∗

)

L3

(

Ys−1 − z

h∗

)

/
T
∑

s=1

L1

(

Xs−1 −X∗
t−1

h∗

)

;

(2) Based on the bootstrap sample, we compute the bootstrapped version of the test statistic: Γ̂∗
T =

ThĈ∗(Y → X)/
√

Ω̂∗;

(3) Repeat the steps (1)-(2) B times so that we get Γ̂∗
j,T , for j = 1, . . . , B;

(4) We compute the bootstrapped p-value using p∗ = B−1
∑B

j=1 1(Γ̂
∗
j,T > Γ̂T ), where Γ̂T = ThĈ(Y →

X)/
√

Ω̂ is the test statistic based on the original sample, and for a given significance level α, we reject the

null hypothesis if p∗ < α.

Notice that in the above bootstrap procedure, we have taken the same bandwidth h∗ in the nonparametric

kernel estimators of the marginal density of Xt−1 and the conditional densities of Xt and Yt−1. However,

using different bandwidth parameters will not invalidate the local bootstrap. In order to validate the above

smoothed local bootstrap, we need to impose an additional assumption concerning the bandwidth parameter

h∗.

Assumption A.3 on the bootstrap bandwidth parameter: The bootstrap bandwidth parameter h∗

satisfies h∗ → 0 and Th∗5/(ln T )γ → C, for some γ > 0 and 0 < C <∞, as T → ∞.

Theorem 2 Suppose Assumptions (A.1.1)-(A.2.2) and A.3 are satisfied. Then under H0, we have

Γ̂∗
T :=

Th∗Ĉ∗(Y → X)√
Ω

d−→ N (0, 1),

where Ω is defined in Theorem 1.

7 Measuring causality between high dimensional variables

Due to the prevalent curse of dimensionality, it has been well established that the convergence rate of

nonparametric estimator of regression function is slow and decreasing with the dimension of the covariates.

This result is also generally true for the estimation of the variance in the context of nonparametric regression.

More details on the estimation of variance in the presence of high-dimensional covariates can be found in

Spokoiny (2002). In this section, we extend our previous analysis to high dimensional variables.

We consider the following set of standard assumptions. They are only mild modification of Assumptions

(A.1.1)-(A.2.2).

Assumption A.1′ on the stochastic process
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(A.1.1′) {Zt = (X ′
t, Y

′
t )

′ ∈ Rd1p × Rd2p ≡ Rd, t ≥ 0} is a strictly stationary, ergodic vector Markov process

of order p.

(A.1.2′) The marginal density fX(x) of Xt and joint density fZ(z) of Zt are bounded away from zero and

bounded above. We also assume that both fX(x) and fZ(z) are r+1-times continuously differentiable

on their supports X and Z, respectively.

Assumption A.2′ on the bandwidth parameters and kernel function

(A.2.1′) The kernel functions Kd1p(·) and Kdp(·) are d1p-product and dp-product kernel functions, respec-
tively and they are symmetric and bounded. That is, Kd1p(u) =

d1p

Π
j=1

K(uj) and Kdp(u) =
dp

Π
j=1

K(uj),

where K(u) is a univariate kernel that satisfies
∫

K(u) du = 1 and
∫

uiK(u) du = 0 for 1 ≤ i ≤ r − 1

and
∫

urK(u) du <∞ with r ≥ 2.

(A.2.2′) The bandwidth parameters h̄ and h satisfy h̄→ 0, h→ 0 and hd1+d2 = o(h̄d1) as T → ∞. Further,

T h̄d1p → ∞, Th(d1+d2)p → ∞, as T → ∞.

As we saw in the previous sections, for univariate and first order Markov (i.e. d1 = d2 = 1 and p = 1)

processes, a standard Gaussian kernel function (r = 2) suffices. However, for high dimensional and high

order Markov processes, a higher order kernel is needed. In the following proposition we state the consistency

of nonparametric estimator of Granger causality measure C (Y → X) .

Proposition 6 Under Assumptions (A.1.1′)-(A.2.2′), the nonparametric estimator Ĉ(Y → X) of mea-

sure of Granger causality from Y to X converges in probability to the true Granger causality measure

C(Y → X).

We now derive the asymptotic normality of Ĉ(Y → X) under the null H0 in (21).

Theorem 3 Under Assumptions (A.1.1′)-(A.2.2′) and H0, we have

Th
(d1+d2)p

2 Ĉ(Y → X)
d−→ N (0,Ω),

where

Ω =
2

σ4
E
σ4(Zt)

fZ(Zt)

∫

(2Kd1p(u)−K(u))2 du,

with K(u) =
∫

Kd1p(v)Kd1p(u+ v) dv is the convolution of kernels.

A consistent estimator of the variance Ω in Theorem 3 can be obtained using a similar formula as the one

in Equation (22). Furthermore, note that the proofs of Proposition 6 and Theorem 3 are similar to those of

Proposition 3 and Theorem 1, respectively, hence we omit them. However, it is important to mention that
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because of the curse of dimensionality that affects the nonparametric estimation of conditional regression

functions, for small samples we suggest to use the bootstrap-assisted test, see Section 6.2.2, to alleviate or

eliminate the bias term in the test statistic.

8 Monte Carlo simulations

In this section, we conduct a Monte Carlo simulation study to investigate the performance of the bootstrap-

based test that we proposed previously. Our primary interest is to evaluate the empirical size and power of

the test in Theorem 2. We will also compare with size and power of Nishiyama et al.’s (2011) nonparametric

test for testing the Granger non-causality in mean.

Throughout this section, we consider two univariate time series processes Xt and Yt. The null hypothesis

of interest corresponds to Granger non-causality in mean from Y to X, i.e. H0 : C(Y → X) = 0. In the

sequel, ηt and εt are two independent sequences of independently and identically distributed (i.i.d.) standard

normal random variables.

8.1 Bootstrap-based test

Though the asymptotic-based test is not time consuming and easy to implement, in small samples the size

of the test statistic Γ̂T may differ significantly from the significance level. The size distortion is almost

unavoidable for small samples. However, it is also known that some types of bootstrap such as smoothed

local bootstrap or moving block bootstrap can help to eliminate or mitigate the asymptotically negligible

higher order terms that may have substantial adverse effect on the size of Γ̂T . Additional benefits of using

smoothed local bootstrap-based test are: (i) it can handle an unknown form of dependence in the data and

(ii) it is not very sensitive to changes in the bandwidth parameter δ.

In this section, we investigate the performance of nonparametric test statistic Γ̂∗
T in Theorem 2 using

the local smoothed bootstrap of Paparoditis and Politis (2000). In particular, we examine its size and

power properties using the data generating processes (DGPs) presented in Table 1. Last column of Table 1

summarizes different directions of causality and non-causality in those DGPs. The first four DGPs (DGP S1

to DGP S4) of Y and X are used to investigate the size property, since in those DGPs the null hypothesis

is satisfied. However, in DGP P1 to DGP P5 of X the null hypothesis is not satisfied, and therefore those

GDPs serve to illustrate the power of our test. Furthermore, notice that DGP S1 and DGP P1 correspond

to linear processes, while the other DGPs are highly nonlinear. All DGPs under consideration are strictly

stationary and ergodic.

The local bootstrap-based test depends on the bandwidth parameters h̄, h, and h∗. In our simulations,

we adopt two different bandwidths. For the restricted regression model we use a univariate bandwidth
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Table 1: Data-generating processes

DGPs Variables of Interest Direction of Causality

Yt Xt

DGP S1 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + ηt X 9 Y, Y 9 X

DGP S2 Yt = 0.5Yt−1 + εt Xt = |Xt−1|0.8 + ηt X 9 Y, Y 9 X

DGP S3 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 exp{−0.5X2
t−1}+ ηt X 9 Y, Y 9 X

DGP S4 Yt = 0.5Yt−1 + εt Xt = sin(Xt−1) + ηt X 9 Y, Y 9 X

DGP P1 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + 0.5Yt−1 + ηt X 9 Y, Y → X

DGP P2 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + 0.5Yt−1 + 0.5 sin(−2Yt−1) + ηt X 9 Y, Y → X

DGP P3 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + 0.5Y 2
t−1 + ηt X 9 Y, Y → X

DGP P4 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1Yt−1 + ηt X 9 Y, Y → X

DGP P5 Yt = 0.5Yt−1 + εt Xt = sin(2(Xt−1 + Yt−1)) + ηt X 9 Y, Y → X

Note: This table summarizes the data generating processes that we consider in the simulation study to investigate the

properties (size and power) of nonparametric test of Granger causality measures. We simulate (Yt, Xt), for t = 1, . . . , T,

under the assumption that (εt, ηt)
′ are i.i.d. from N(0, I2). The last column of the table summarizes the directions of

causality and non-causality in each DGP. “→” and “9” refer to Granger causality and non-causality, respectively.

h̄ = T−1/(2+δ), and for the unrestricted regression model we use a bivariate bandwidth (h1, h2)
′, with

h1 = h2 = h = T−1/5. To meet the Assumption (A.2.2), δ > 0.5 suffices. We have experimented various

δ’s ranging from 0.6 to 1 and the choice of δ = 0.6 or 0.8 seems to produce the best overall results. For

simplicity, the bandwidth h∗ takes the same values as the above univariate bandwidth h̄. How to optimally

choose the bandwidths h̄ and h in order to maximize our test’s performance is not yet investigated and calls

for more attention in the future work. At least three different ways can be used to choose the bandwidth

in practice. The first one is the cross-validation bandwidth proposed by Li et al. (2013). However, strictly

speaking, since the cross-validated bandwidth is random, the asymptotic theory can be justified only through

certain stochastic equicontinuity argument. The cross-validation technique is used in Li et al. (2009) for

testing the equality of two unconditional and conditional functions in the context of mixed categorical and

continuous data. This approach, which is optimal for the estimation, loses the optimality for nonparametric

kernel testing. The second way is given by an adaptive-rate-optimal rule proposed by Horowitz and Spokoiny

(2001) for testing a parametric model for conditional mean function against a nonparametric alternative. The

third way for selecting a practical bandwidth is introduced by Gao and Gijbels (2008). The latter propose,

using the Edgeworth expansion of the asymptotic distribution of the test, to choose the bandwidth such

that the power function of the test is maximized while the size function is controlled. Finally, to estimate

the conditional restricted and unrestricted regression functions, we take the univariate kernel function K(·)
equal to the standard normal density.
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Table 2: Empirical size of local bootstrap-based test

Bandwidth Parameter DGPs

h̄ = T−1/(2+δ), h = T−1/5 DGP S1 DGP S2 DGP S3 DGP S4

T = 50

δ = 0.6 0.046 0.048 0.064 0.048

δ = 0.8 0.048 0.052 0.062 0.050

T = 75

δ = 0.6 0.048 0.052 0.060 0.038

δ = 0.8 0.052 0.053 0.064 0.032

T = 200

δ = 0.6 0.052 0.048 0.055 0.045

δ = 0.8 0.050 0.046 0.054 0.046

Note: This table reports the empirical size of local bootrsap-based test in Theorem 2 for testing the non-causality

in mean from Y to X at α = 5% significance level. The number of simulations is equal to 1000 and the number of

bootstrap resamples is B = 199.

Three sample sizes T = 50, 75 and 200 are considered. For each DGP, we first generate T + 200

observations and then discard the first 200 observations to minimize the effect of the initial values. Other

sample sizes (T = 100, 300, 400, 500, and 1000) for different DGPs are considered in Section 8.2. We use

1000 simulations to compute the empirical size and power. For each simulation we use B = 199 bootstrap

replications. Finally, we focus on the nominal size 5%.

Tables 2 and 3 report the empirical size and power of the test statistic Γ∗
T in Theorem 2, respectively. As

expected, the local bootstrap-based test performs well, in terms of size, in small samples as small as T = 50.

This test also has reasonable power against various alternatives. Thus, given the small and moderate samples

under consideration, the performance of local bootstrap-based test is satisfactory.

8.2 Comparison with Nishiyama et al.’s (2011) test

In Section 6.2 we saw that testing that the causality measure is equal to zero is equivalent to testing for

Granger non-causality in mean. Thus, the tests in Theorems 1 and 2 can be viewed as tests of Granger

non-causality in mean. Nishiyama et al. (2011) have recently proposed a nonparametric test for testing

nonlinear Granger causality in mean. Under the null hypothesis of non-causality in mean, the asymptotic

distribution of Nishiyama et al.’s (2011) test statistic is not normal, but its critical regions can be computed

using simulation.

In this section, we consider an additional simulation exercise to compare the empirical size and power

of our bootstrap-based test with those of Nishiyama et al.’s (2011) nonparametric test. We use the same
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Table 3: Empirical power of local bootstrap-based test

Bandwidth Parameter DGPs

h̄ = T−1/(2+δ), h = T−1/5 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 50

δ = 0.6 0.232 0.210 0.398 0.254 0.284

δ = 0.8 0.234 0.212 0.390 0.242 0.292

T = 75

δ = 0.6 0.394 0.326 0.700 0.494 0.488

δ = 0.8 0.406 0.400 0.624 0.504 0.494

T = 200

δ = 0.6 0.630 0.752 0.982 0.870 0.852

δ = 0.8 0.664 0.776 0.950 0.882 0.844

Note: This table reports the empirical power of local bootrsap-based test in Theorem 2 for testing the non-causality

in mean from Y to X at α = 5% significance level. The number of simulations is equal to 1000 and the number of

bootstrap resamples is B = 199.

simulation settings as in Nishiyama et al. (2011) and consider their DGPs that we report in Table 6 of

Appendix A. Since δ = 0.6 and δ = 0.8 lead to quite similar results in terms of size and power, see Section

8.1, in this section we focus on δ = 0.8. We also use the following bandwidths: univariate bandwidth

h̄ = T−1/(2.8) and bivariate bandwidth h1 = h2 = h = T−1/5. To facilitate the comparison between the two

tests, sample sizes T = 100, 200, 300, 400, 500, and 1000 are considered.

Table 4 compares the empirical size and power of our bootstrap-based test in Theorem 2 with those of

Nishiyama et al.’s (2011) test for testing the non-causality in mean from Y to X at α = 5% significance

level. From this, we see that the empirical size and power of the two tests are quite reasonable. Both

tests control the size and have non trivial power. We see that our test, particularly for DGP3, has better

power for relatively small samples. This might be relevant when data scarcity happens, like in our empirical

application. For example, for T = 100 and for DGP 1 to DGP3, the power of Nishiyama et al.’s (2011)

test is 0.092, 0.115 and 0.109, respectively, while the power of our test is equal to 0.158, 0.341 and 0.343,

respectively. However, for large sample sizes, the empirical power catches up to one quickly for both tests

so that there is in fact no distinguishable differences for the power performance of the two tests.

9 Nonlinear predictability of risk premium

This section aims to join the recent vast literature and study the predictive power of variance risk premium

for the expected stock excess returns. The variance risk premium is defined as the difference between the
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Table 4: Empirical size and power of our local bootstrap-based test and Nishiyama et al. (2011)’s test

Bandwidth Parameters: h̄ = T−1/(2.8), h = T−1/5

Sample size DGPs

DGP 0 DGP 1 DGP 2 DGP 3

ST test NHKJ test ST test NHKJ test ST test NHKJ test ST test NHKJ test

T = 100 0.058 0.049 0.158 0.092 0.341 0.115 0.343 0.109

T = 200 0.051 0.047 0.237 0.236 0.415 0.335 0.503 0.286

T = 300 0.050 0.049 0.356 0.455 0.588 0.614 0.635 0.565

T = 400 0.053 0.053 0.605 0.614 0.763 0.778 0.822 0.781

T = 500 0.048 0.054 0.757 0.760 0.902 0.911 0.905 0.899

T = 1000 0.051 0.049 0.995 0.989 1.000 1.000 1.000 0.998

Note: This table reports and compares the empirical size and power of our local bootstrap-based test (ST test)

and Nishiyama et al.’s (2011) test (NHKJ test) for testing Granger non-causality in mean from Y to X at α = 5%

significance level based on 1000 replications. The data generating processes used in the simulation study are reported

in Table 6. We simulate (Yt, Xt), for t = 1, . . . , T, under the assumption that (εt, ηt)
′

are i.i.d. from N(0, I2).

risk-neutral and objective expectations of realized variance, where the risk-neutral expectation of variance is

measured as the end-of-month Volatility Index-squared de-annualized, and the realized variance is the sum

of squared 5-minute log returns of the S&P 500 index over the month.

Recently, many papers have shown the importance of using variance risk premium for predicting expected

stock and bond returns and exchange rates; see Bollerslev et al. (2009), Wang et al. (2013), Bollerslev et

al. (2014), and Della Corte et al. (2014). For the post-1990 period, Bollerslev et al. (2009) find that the

variance risk premium is able to explain a non-trivial fraction of the time series variation in aggregate stock

market returns, with high (low) premia predicting high (low) future returns.

Most existing works, however, focus on linear predictability. The econometric methodology used in this

context is an ordinary least squares regression of returns onto the past of variance risk premium. In this

section, we examine nonlinear predictability of expected stock excess returns (risk premium) using variance

risk premium. Nonparametric Granger causality measures proposed in the previous sections do not impose

any restriction on the model linking the dependent variable (stock excess return) to the independent variable

(variance risk premium).

9.1 Variance risk premium

In this subsection, we define the variance risk premium (VRP) that we use as a predictor of risk premium.

To do so, we need to define the model-free realized and implied variances.
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Let us first set some notations. We denote by pt the logarithmic price of risky asset at time t, and by

rt+1 = pt+1 − pt the continuously compounded return from time t to t+ 1 . We implicitly assume that the

price process could belong to the class of continuous-time jump diffusion processes,

dpt = µtdt+ σtdWt + κtdqt, 0 ≤ t ≤ T, (24)

where µt is a continuous and locally bounded variation process, σt is the stochastic volatility process, Wt

denotes a standard Brownian motion, dqt is a counting process such that dqt = 1 represents a jump at time

t (and dqt = 0 no jump) with jump intensity λt. The parameter κt refers to the size of the jumps. Further,

we normalize the time-interval to unity and we divide it into h periods. Each period has length ∆ = 1/h.

Let the discretely sampled ∆-period returns be denoted by r(t,∆) = pt − pt−∆. The realized variance over

the discrete t to t+ 1 time interval is defined as the summation of the h high-frequency intradaily squared

returns:

RVt,t+1 ≡
h
∑

j=1

r2(t+j∆,∆)

and it satisfies

lim
∆→0

RVt,t+1 = V art,t+1, (25)

where V art,t+1 is the variance of stock excess return between time t and t+1. Equation (25) indicates that

the realized variance is a consistent estimator of the true variance of stock excess return; see Andersen and

Bollerslev (1998), Andersen et al. (2001, 2010), Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen

and Shephard (2002b), and Comte and Renault (1998).

We now define the model-free implied variance. Let Ct(T,K) denote the price of a European call option

with time to maturity T and strike price K, and B(t, T ) denotes the price of a time t zero-coupon bond

maturing at time T . Carr and Madan (1998), Demeterfi et al. (1999) and Britten-Jones and Neuberger

(2000), have shown that implied variance between time t and t + 1, say IVt,t+1, can be replicated by a

portfolio of European calls as follows:

IVt,t+1 ≡ EQ
t (V art,t+1) = 2

∫ ∞

0

1

K2

[

Ct(t+ 1,
K

B(t, t+ 1)
)− Ct(t,K)

]

dK, (26)

where “EQ
t ” denotes the conditional expectation with respect to risk-neutral probability, see also Bakshi

and Madan (2000). Equation (26) depends on an increasing number of calls with strikes spanning zero to

infinity. In practice IVt,t+1 must be constructed on the basis of a finite number of strikes. Several recent

works have argued that even with relatively few different option strikes this tends to provide a fairly accurate

approximation to the true risk-neutral expectation of the future market variance; for review see Jiang and

Tian (2005), Carr and Wu (2009), and Bollerslev et al. (2011).

We now use the above model-free realized and implied variances to define the variance risk premium,

which is theoretically equal to the difference between the ex-ante risk neutral expectation of the future stock
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return variance and the expectation of stock return variance between time t and t+ 1:

V RPt ≡ EQ
t (V art,t+1)− EP

t (V art,t+1) , (27)

where “EP
t ” denotes the conditional expectation with respect to physical probability. V RPt in Equation (27)

is unobservable, since the quantities EQ
t (V art,t+1) and EP

t (V art,t+1) are unobservable. Estimating V RPt

depends on the estimation of risk neutral and physical expectations:

V̂ RP t ≡ ÊQ
t (V art,t+1)− ÊP

t (V art,t+1) .

In practice, ÊQ
t (V art,t+1) and Ê

P
t (V art,t+1) are commonly replaced by the squared-Volatility Index (VIX)

and the realized variance RVt,t+1, respectively. VIX is provided by the Chicago Board Options Exchange

(CBOE) in the US, and is calculated using the near term S&P 500 options markets. It is based on the highly

liquid S&P500 index options along with the “model-free” approach.

In the literature there is no unique approach for constructing the physical expectation ÊP
t (.). Bollerslev

et al. (2009) and Zhou (2010) have estimated a reduced-form multi-frequency autoregression with potentially

multiple lags for ÊP
t (V art,t+1). Following Bollerslev et al. (2009) and Zhou (2010), we use time-t realized

variance RVt,t−1, which ensures that the variance risk premium proxy for predicting various risk premia is

in the time t information set and would be a correct choice if the realized variance process were unit-root.

9.2 Empirical results

We use monthly aggregate S&P 500 composite index over the period January 1996 to September 2008. Our

empirical analysis is based on the logarithmic return on the S&P 500 in excess of 3-month T-bill rate. We also

consider monthly realized variance, implied variance, and variance risk premium which can be downloaded

from Hao Zhou’s website.

Table 5 presents the results of estimating the measures of Granger causality from variance risk premium

to risk premium at horizons one month to 9 months. It also reports the information about the statistical

significance of the estimates of the measures using the bootstrap-based test proposed in Section 6.2.2, as well

as the NHKJ’s nonparametric test for testing the null hypothesis of Granger non-causality in mean. From

this, we see that the degree of predictability (causality) starts out fairly high at the monthly horizon with an

estimate around 1.30 and it is significant at 1% level. This result is not in line with what have been found in

Bollerslev et al. (2009), who, using linear regression models, find that there is a very weak predictability from

VRP to risk premium at one month horizon. Thus, our result can be interpreted as nonlinear predictability

of risk premium. On the other hand, NHKJ’s test indicates that there is non-causality from VRP to risk

premium at all horizons. This might be due to the relatively large sample sizes needed for the NHKJ test

to have power.
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Table 5: Measures of causality (predictability) from variance risk premium to risk premium

Direction of Causality Bandwidth n−1/(2+δ) Estimate of Causality Measure NHKJ Test

Horizon: One Month

VRP→RP

δ = 0.6 1.298***

δ = 0.8 1.307*** 1.41

δ = 1.0 1.316***

Horizon: Three Months

VRP→RP

δ = 0.6 0.436***

δ = 0.8 0.468*** 0.85

δ = 1.0 0.500***

Horizon: Six Months

VRP→RP

δ = 0.6 0.170

δ = 0.8 0.239 1.82

δ = 1.0 0.309*

Horizon: Nine Months

VRP→RP

δ = 0.6 0.000

δ = 0.8 0.016 0.33

δ = 1.0 0.128

Note: This table reports the results of the estimation and inference for measures of Granger causality (predictability)

from variance risk premium (VRP) to risk premium (RP), at different horizons. “***” and “*” mean the statistical

significance at 1% and 10% significance levels, respectively. The 5% critical value for Nishiyama et al.’s (2011) (NHKJ)

test is 14.38.
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Figure 1: This figure plots the estimates of Granger causality measures from variance risk premium (VRP)

to risk premium at horizons that go from one to 9 months, and using different bandwidth parameter δ (in

the figure delta). The data on the S&P 500 market index goes from January 1996 to September 2008.

The degree of predictability is still higher (measure around 0.468) and statistically significant at three-

month horizon, which is in line with the findings of Bollerslev et al. (2009). However, the degree of

predictability decreases and becomes statistically insignificant after three-month horizon. Figure 1 shows

that the predictive power of VRP is a decreasing function of time horizon. In contrast, Bollerslev et al. (2009)

find that the degree of predictability starts out fairly low at the monthly horizon, rising to its maximum

around a quarter, gradually tapering off thereafter for longer return horizons. Hence, unlike Bollerslev et al.

(2009), we find a high degree of predictability at one-month horizon which can be attributed to a nonlinear

causal effect from VRP to risk premium.

10 Conclusion

In this paper, we extended the existing parametric measures of Granger causality in mean [see Geweke (1982,

1984) and Dufour and Taamouti (2010)] by proposing nonparametric measures that are able to detect and

quantify nonlinear Granger causality in mean between univariate and multivariate random variables. The

new measures are model-free, therefore they do not require the specification of model that links the variables

of interest.

The proposed causality measures are defined as a logarithmic function of restricted and unrestricted
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mean square forecast errors. To consistently estimate these measures, it suffices to find consistent estimates

of the above mean square forecast errors. The latter are defined using Nadaraya-Watson kernel estimators.

Since testing for the statistical significance of measures is also indispensable in time series analysis, we

derived the asymptotic normality of nonparametric estimator of measures that we used to build valid tests.

We also established the validity of smoothed local bootstrap that one can use in finite sample settings to

perform statistical tests. Monte Carlo simulation study has been performed to investigate the finite sample

properties (size and power) of the proposed test and the results reveal that the latter behaves well for a

variety of typical data generating processes.

Using the above nonparametric test for testing the null hypothesis that the true value of measure is equal

to zero is equivalent to testing for non-causality in mean. Thus, our test can be viewed as a competitor

of the exiting nonparametric tests of Granger causality in mean. There is only one nonparametric test of

Granger causality in mean which is proposed by Nishiyama et al. (2011). We considered an additional

simulation exercise to compare the empirical size and power of our test with those of Nishiyama et al.’s

(2011) test. Simulation results indicate that our test has comparable size, but better power than Nishiyama

et al.’s (2011) test.

Finally, we applied our nonparametric measures to quantify the degree of nonlinear predictability of risk

premium using variance risk premium. The latter is defined as difference between risk-neutral and objective

expectations of realized variance, where the risk-neutral expectation of variance is measured as the end-of-

month volatility index-squared de-annualized and the realized variance is the sum of squared 5-minute log

returns of the S&P 500 index over the month. Our results showed that the variance risk premium is a good

predictor of risk premium at horizons less than six months. Unlike Bollerslev et al. (2009), we found that

there is a high degree of predictability at horizon one-month which can be attributed to a nonlinear causal

effect.
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Table 6: Nishiyama et al. (2011)’s data-generating processes

DGPs Variables of Interest Direction of Causality
Yt Xt

DGP 0 Yt = −0.3Yt−1 + εt Xt = 0.65Xt−1 + ηt X 9 Y, Y 9 X
DGP 1 Yt = −0.3Yt−1 + εt Xt = 0.65Xt−1 + 0.2Yt−1 + ηt X 9 Y, Y → X
DGP 2 Yt = −0.3Yt−1 + εt Xt = 0.65Xt−1 + 0.2Yt−1 + 0.4 sin(−2Yt−1) + ηt X 9 Y, Y → X
DGP 3 Yt = −0.3Yt−1 + εt Xt = 0.65Xt−1 + 0.2Y 2

t−1 + ηt X 9 Y, Y → X

Note: This table summarizes the data generating processes that we use in the simulation study to compare the
empirical size and power of our local bootstrap-based test in Theorem 2 with those of Nishiyama et al.’s (2011) test.
We simulate (Yt, Xt), for t = 1, . . . , T, under the assumption that (εt, ηt)

′ are i.i.d. from N(0, I2). The last column
of the table summarizes the directions of Granger causality and non-causality in each DGP. “→” and “9” refer to
Granger causality and Granger non-causality, respectively.

A Appendix: Additional DGPs
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B Appendix: Proofs

This appendix provides the proofs of the main theoretical results developed in Sections 6 and 7.

Proof of Proposition 3. First, observe that

ˆ̄σ2[Xt+1 |Xt] =
1

T

T−1
∑

t=0

(ˆ̄uXt+1)
2 =

1

T

T−1
∑

t=0

(ūXt+1 + (Φ̄1(Xt)− ˆ̄Φ1(Xt)))
2

=
1

T

T−1
∑

t=0

(ūXt+1)
2 + 2

1

T

T−1
∑

t=0

ūXt+1

(

Φ̄1(Xt)− ˆ̄Φ1(Xt)
)

+
1

T

T−1
∑

t=0

(

Φ̄1(Xt)− ˆ̄Φ1(Xt)
)2
.

Thus, we have

∣

∣ˆ̄σ2[Xt+1 |Xt]− σ̄2[Xt+1 |Xt]
∣

∣ ≤
∣

∣

∣

∣

∣

1

T

T−1
∑

t=0

(ūXt+1)
2 − σ̄2[Xt+1 |Xt]

∣

∣

∣

∣

∣

+ 2 sup
x∈SX

∣

∣

∣
Φ̄1(x)− ˆ̄Φ1(x)

∣

∣

∣

∣

∣

∣

∣

∣

1

T

T−1
∑

t=0

∣

∣ūXt+1

∣

∣

∣

∣

∣

∣

∣

+
1

T

T−1
∑

t=0

(

Φ̄1(Xt)− ˆ̄Φ1(Xt)
)2

= op(1),

where the first term is an op(1) by the strict stationarity, ergodicity, and (weak) law of large numbers.

The second term is an op(1) by utilizing the fact that supx∈SX

∣

∣

∣Φ̄1(x)− ˆ̄Φ1(x)
∣

∣

∣ = op(1) and E|ūXt+1| is
bounded according to Assumption (A.1.1). The last term is also an op(1) by noticing that it converges

to E
(

Φ̄1(Xt)− ˆ̄Φ1(Xt)
)2

; the mean squared errors (MSE) of Nadaraya-Watson kernel estimator ˆ̄Φ1(·),
which is asymptotically negligible, see Härdle (1992). Consequently, we have shown that ˆ̄σ2[Xt+1 |Xt] =

σ̄2[Xt+1 |Xt] + op(1). Similarly, we can show that σ̂2[Xt+1 |Xt, Yt] = σ2[Xt+1 |Xt, Yt] + op(1). More-

over, under some appropriate assumptions, we could even show stronger results, that is; ˆ̄σ2[Xt+1 |Xt] =
∑T−1

t=0 (ū
X
t+1)

2/T + op(T
−1/2) and σ̂2[Xt+1 |Xt, Yt] =

∑T−1
t=0 (u

X
t+1)

2/T + op(T
−1/2). For more details, see for

instance, Spokoiny (2002) and Müller et al. (2003).

Finally, by the first order Taylor expansion of lnx = lnx0+(x−x0)/x0+higher order terms, and because

ˆ̄σ2[Xt+1 |Xt] = σ̄2[Xt+1 |Xt] + op(1) and σ̂
2[Xt+1 |Xt, Yt] = σ2[Xt+1 |Xt, Yt] + op(1), we get

ln
(

ˆ̄σ2[Xt+1 |Xt]
)

= ln
(

σ̄2[Xt+1 |Xt]
)

+ op(1),

ln
(

σ̂2[Xt+1 |Xt, Yt]
)

= ln
(

σ2[Xt+1 |Xt, Yt]
)

+ op(1).

Therefore,

Ĉ(Y → X) := ln

(

ˆ̄σ2[Xt+1 |Xt]

σ̂2[Xt+1 |Xt, Yt]

)

= ln

(

σ̄2[Xt+1 |Xt]

σ2[Xt+1 |Xt, Yt]

)

+ op(1).

Hence, Ĉ(Y → X) converges in probability to C(Y → X).

Proof of Theorem 1. Let Zt = (Xt, Yt)
′. First of all, recall that

ˆ̄σ2[Xt+1 |Xt] =
1

T

T−1
∑

t=0

(Xt+1 − ˆ̄Φ1(Xt))
2, σ̂2[Xt+1 |Zt] =

1

T

T−1
∑

t=0

(Xt+1 − Φ̂1(Zt))
2,
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and

|ˆ̄σ2[Xt+1 |Xt]− σ̄2[Xt+1 |Xt]| = op(1), |σ̂2[Xt+1 |Zt]− σ2[Xt+1 |Zt]| = op(1).

Now, since lnx ≈ (x− 1), by the first order Taylor expansion around x = 1, we obtain

Ĉ(Y → X) = ln

(

ˆ̄σ2[Xt+1 |Xt]

σ̂2[Xt+1 |Zt]

)

≈
(

ˆ̄σ2[Xt+1 |Xt]

σ̂2[Xt+1 |Zt]
− 1

)

:= AT .

We shall show that under the null hypothesis of Granger non-causality in mean (i.e. σ̄2[Xt+1 |Xt] =

σ2[Xt+1 |Zt] = σ2), and under assumptions of Theorem 1, we have ThAT
d−→ N (0,Ω), where the asymptotic

variance Ω is specified as in Theorem 1.

Notice that ūXt+1 = uXt+1 a.s. under the null (for simplicity, we will omit the superscript X from now on),

we have that

AT =
ˆ̄σ2[Xt+1 |Xt]− σ̂2[Xt+1 |Zt]

σ̂2[Xt+1 |Zt]
=

ˆ̄σ2[Xt+1 |Xt]− σ̂2[Xt+1 |Zt]

σ2
[1 + op(1)]

=
1
T

∑T−1
t=0 (Φ̄1(Xt)− ˆ̄Φ1(Xt) + ut+1)

2 − 1
T

∑T−1
t=0 (Φ̄1(Zt)− ˆ̄Φ1(Zt) + ut+1)

2

σ2
[1 + op(1)]

=
1

σ2

[

2

T

T−1
∑

t=0

(Φ̄1(Xt)− ˆ̄Φ1(Xt))ut+1 −
2

T

T−1
∑

t=0

(Φ1(Zt)− Φ̂1(Xt))ut+1

]

[1 + op(1)]

+
1

σ2

[

1

T

T−1
∑

t=0

(Φ̄1(Xt)− ˆ̄Φ1(Xt))
2 − 1

T

T−1
∑

t=0

(Φ1(Zt)− Φ̂1(Zt))
2

]

[1 + op(1)]

=
1

σ2
(A1T −A2T +A3T )[1 + op(1)],

where

A1T :=
2

T

T−1
∑

t=0

(Φ̄1(Xt)− ˆ̄Φ1(Xt))ut+1, A2T :=
2

T

T−1
∑

t=0

(Φ1(Zt)− Φ̂1(Xt))ut+1,

A3T :=
1

T

T−1
∑

t=0

(Φ̄1(Xt)− ˆ̄Φ1(Xt))
2 − 1

T

T−1
∑

t=0

(Φ1(Zt)− Φ̂1(Zt))
2.

We can show that Th(A1T −A2T ) and ThA3T are both asymptotically normal and they are asymptotically

independent.

Since supx∈X |f̂X(x)− fX(x)| = op(1), we can write

A1T =
2

T (T − 1)

∑

t6=s

1

h̄fX(Xt)
K

(

Xt −Xs

h̄

)

(Φ̄1(Xt)− Φ̄1(Xs))ut+1[1 + op(1)]

− 2

T (T − 1)

∑

t6=s

1

h̄fX(Xt)
K

(

Xt −Xs

h̄

)

ut+1us+1[1 + op(1)].

Similarly, we have

A2T =
2

T (T − 1)

∑

t6=s

1

h2fZ(Zt)
K2

(

Zt − Zs

h

)

(Φ1(Zt)− Φ1(Zs))ut+1[1 + op(1)]

− 2

T (T − 1)

∑

t6=s

1

h2fZ(Zt)
K2

(

Zt − Zs

h

)

ut+1us+1[1 + op(1)].
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We can show later that both first terms of A1T and A2T are op((Th)
−1) under the conditions assumed

in Theorem 1. Thus,

Th(A1T −A2T ) =Th
2

T (T − 1)

∑

t6=s

(

1

h2fZ(Zt)
K2

(

Zt − Zs

h

)

ut+1us+1

− 1

h̄fX(Xt)
K

(

Xt −Xs

h̄

)

ut+1us+1

)

+ op(1)

=
2

T − 1

∑

t6=s

h

(

1

h2fZ(Zt)
K2

(

Zt − Zs

h

)

− 1

h̄fX(Xt)
K

(

Xt −Xs

h̄

))

ut+1us+1 + op(1).

Let Wt = (Z ′
t, ut+1)

′ and

uT (Wt,Ws) =

(

1

h2fZ(Zt)
K2

(

Zt − Zs

h

)

− 1

h̄fX(Xt)
K

(

Xt −Xs

h̄

))

ut+1us+1,

so that we can rewrite

Th(A1T −A2T ) =
1

T − 1

∑

t6=s

h(uT (Wt,Ws) + uT (Ws,Wt)) + op(1)

=2
1

T − 1

∑

t<s

HT (Wt,Ws) + op(1) := 2T11 + op(1),

where HT (Wt,Ws) = h(uT (Wt,Ws) + uT (Ws,Wt)). Notice that E[HT (Wt,Ws)] = 0. Therefore, T11 is a

degenerate second order U-statistic. We shall show that T11
d−→ N (0,Ω1) with properly defined asymptotic

variance Ω1. To achieve so, we shall verify the conditions of Theorem 1 in Tenreiro (1997). Let W̃0 be an

independent copy of W0. So, E[HT (W0, W̃0)]
2 = 2Ω1 + o(1).

Notice that

HT (Wt,Ws) = h

[

1

h2

(

1

fZ(Zt)
+

1

fZ(Zs)

)

K2

(

Zt − Zs

h

)

− 1

h̄

(

1

fX(Xt)
+

1

fX(Xs)

)

K

(

Xt −Xs

h̄

)]

ut+1us+1.

In what follows, the conditional variance of ut+1, conditional on Zt, will be denoted by σ2(Zt), i.e. σ
2(Zt) =

E(u2t+1|Zt). The dominant term of E[HT (W0, W̃0)]
2 is

E

[

h2

(

1

h4

(

1

fZ(Z0)
+

1

fZ(Z̃0)

)2

K2
2

(

Z0 − Z̃0

h

)

u21ũ
2
1

)]

=
1

h2

∫

z0,z̃0

(

1

fZ(z0)
+

1

fZ(z̃0)

)2

K2
2

(

z0 − z̃0
h

)

σ2(z0)σ
2(z̃0)fZ(z0)fZ(z̃0) dz0 dz̃0

=

∫

a

∫

z0

(

1

fZ(z0)
+

1

fZ(z0 + ha)

)2

K2(a)σ2(z0)σ
2(z0 + ha)fZ(z0)fZ(z0 + ha) dz0 da

=

∫

z0

4

f2Z(z0)
σ4(z0)f

2
Z(z0) dz0

∫

K2(a) da + o(1)

=4

∫

z0

σ4(z0) dz0

∫

K2(a) da + o(1)

=4E

(

σ4(Zt)

fZ(Zt)

)
∫

K2(a) da+ o(1) := 2Ω1 + o(1).

32



Thus, Th(A1T −A2T )
d−→ N (0, 4Ω1).

To show that the first term of A1T is op((Th)
−1), we follow the similar proof as above. Since

Th
2

T (T − 1)

∑

t6=s

1

h̄fX(Xt)
K

(

Xt −Xs

h̄

)

(Φ̄1(Xt)− Φ̄1(Xs))ut+1

=
h

h̄1/2
2

(T − 1)

∑

t<s

1

h̄1/2

(

ut+1

fX(Xt)
− us+1

fX(Xs)

)

K

(

Xt −Xs

h̄

)

(Φ̄1(Xt)− Φ̄1(Xs))

=
h

h̄1/2
2

(T − 1)

∑

t<s

H1T (Wt,Ws).

Following the same arguments as for T11, one can show that 2
(T−1)

∑

t<sH1T (Wt,Ws) is asymptotically

negligible because by straightforward calculation E[H1T (W0, W̃0)]
2 = O(h̄2). By h2 = o(h̄), we conclude

that the above term is op(1). The first term of ThA2T is also op(1) and can be proved analogously as that

of ThA1T and hence is omitted.

We now proceed to show that ThA3T is asymptotically normal. Because

A3T =
1

T

∑

t

(Φ̂1(Zt)− ˆ̄Φ1(Xt))(Φ̄1(Xt)− ˆ̄Φ1(Xt)) +
1

T

∑

t

(Φ̂1(Zt)− ˆ̄Φ1(Xt))(Φ1(Zt)− Φ̂1(Zt))

=A1
3T +A2

3T ,

we shall prove A1
3T and A2

3T converge in distribution to normal random variables, respectively. Concerning

the first term A1
3T , using Xt+1 = Φ̄(Xt) + ut+1, we have

A1
3T =

1

T

∑

t





((T − 1)h2)−1
∑

s 6=tK2

(

Zt−Zs

h

)

Xs+1

fZ(Zt)
−

((T − 1)h̄)−1
∑

s 6=tK
(

Xt−Xs

h̄

)

Xs+1

fX(Xt)





×





((T − 1)h̄)−1
∑

j 6=tK
(

Xt−Xj

h̄

)

(Φ̄(Xt)−Xj+1)

fX(Xt)



 [1 + op(1)]

=− 1

T (T − 1)2

∑

s 6=t,j 6=t

1

h2h̄
K2

(

Zt − Zs

h

)

K

(

Xt −Xj

h̄

)

us+1uj+1

fZ(Zt)fX(Xt)

+
1

T (T − 1)2

∑

s 6=t,j 6=t

1

h̄2
K

(

Xt −Xs

h̄

)

K

(

Xt −Xj

h̄

)

us+1uj+1

f2X(Xt)
+ higher order terms

=A11
3T +A12

3T + higher order terms.

For the the first term, define

ψT (Wt,Ws,Wj) =
1

h2h̄
K2

(

Zt − Zs

h

)

K

(

Xt −Xj

h̄

)

us+1uj+1

fZ(Zt)fX(Xt)
,

and φT (Wt,Ws,Wj) = ψT (Wt,Ws,Wj) + ψT (Ws,Wt,Wj) + ψT (Wj ,Ws,Wt). We have

−A11
3T =

6

T (T − 1)(T − 2)

∑

t<s<j

φT (Wt,Ws,Wj),
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a third order U-statistic. We use Hoeffding decomposition to study A11
3T . Notice that E[φT (Wt,Ws,Wj)] = 0,

E[φT (Wt,Ws,Wj)|Wt] = 0, and

E[φT (Wt,Ws,Wj)|Wt,Ws] =
ut+1us+1

h2h̄
E

[

1

fZ(Zj)fX(Xj)
K2

(

Zt − Zj

h

)

K

(

Xs −Xj

h̄

)

|Wt,Ws

]

= φ2T (Wt,Ws).

Thus, we have

−A11
3T ≈ 6

T (T − 1)

∑

t<s

φ2T (Wt,Ws).

One can further establish that A12
3T = op((Th)

−1) by first decomposing A12
3T (also a third order U-statistic)

into a second order U-statistic and using h2 = o(h̄).

Now, regarding the term A2
3T , we follow the same arguments as above to obtain A2

3T ≈ A21
3T +A22

3T , where

A21
3T ≈ 6

T (T − 1)

∑

t<s

φ′2T (Wt,Ws), A22
3T ≈ 6

T (T − 1)

∑

t<s

φ′′2T (Wt,Ws),

with

φ′2T (Wt,Ws) =
ut+1us+1

h2h̄
E

[

1

fZ(Zj)fX(Xj)
K2

(

Zs − Zj

h

)

K

(

Xt −Xj

h̄

)

|Wt,Ws

]

,

and

φ′′2T (Wt,Ws) =
ut+1us+1

h4
E

[

1

f2Z(Zj)
K2

(

Zt − Zj

h

)

K2

(

Zs −Xj

h

)

|Wt,Ws

]

.

After some tedious calculation, we finally show that the term ThA3T converges to a normal distribution with

variance 2E
(

σ4(Zt)
fZ(Zt)

)

(
∫

K
2
(u) da − 4

∫

K(u)K(u) du), where K(u) =
∫

K(v)K(u+ v) dv is the convolution

of kernels. Hence we have proved Theorem 1.

Proof of Proposition 4. To prove the consistency of our test, we only have to follow the same steps as

in the proof of Theorem 1. Notice that, under the global alternative hypothesis σ̄2[Xt+1 |Xt]−σ2[Xt+1 |Zt] >

0, we have

ThAT =Th
1
T

∑T−1
t=0 {(ˆ̄u2t+1 − σ̄2[Xt+1 |Xt])− (û2t+1 − σ2[Xt+1 |Zt])}

σ2[Xt+1 |Zt]
[1 + op(1)]

+
Th(σ̄2[Xt+1 |Xt]− σ2[Xt+1 |Zt])

σ2[Xt+1 |Zt]
[1 + op(1)]

=Op(1) +
Th(σ̄2[Xt+1 |Xt]− σ2[Xt+1 |Zt])

σ2[Xt+1 |Zt]
.

The second equality follows because the first term converges in distribution to a normal random variable

following the same arguments as in proof of Theorem 1. Therefore, the statistic ThĈ(Y → X) diverges to

infinity. Hence, we have shown that the proposed test is consistent.

Proof of Theorem 2. Theorem 2 can be proved using similar arguments to the ones we used in the

proof of Theorem 1, with the term AT replaced by its bootstrapped versions A∗
T using the bootstrap data

{X∗
t , Y

∗
t , }Tt=1. Conditionally on {Xt, Yt, }Tt=1 and using Theorem 1 of Hall (1984), we obtain the result in

Theorem 2.
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