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We study the necking of a filament of complex fluid or soft solid subject to uniaxial tensile
stretching, separately under conditions of constant imposed tensile stress and constant imposed
tensile force, by means of linear stability analysis and nonlinear simulations at the level of a slender
filament approximation. We demonstrate necking to be a flow instability that arises as an un-
avoidable consequence of the viscoelastic constitutive behaviour of essentially any material (with a
possible rare exception). We derive criteria for the onset of necking that can be reported in terms
of characteristic signatures in the shapes of the experimentally measured material functions, and
that should therefore apply universally to all viscoelastic materials. To confirm their generality, we
show them to hold numerically in six constitutive models: the Oldroyd B, Giesekus, non-stretch
Rolie-Poly, finite-stretch Rolie-Poly and Pom-pom models, and a simplified toy model of coil-stretch
hysteresis, which has a non-monotonic underlying extensional constitutive curve. Under conditions
of constant imposed tensile stress, we find two distinct dynamical regimes as a function of the time
since the inception of the flow. In the first regime the strain rate quickly attains a value prescribed
by the fluid’s underlying stationary homogeneous extensional constitutive curve, at the given im-
posed stress. During this first regime, no appreciable (or only minimal) necking arises. A second
regime then ensues in which the initially homogeneous flow destabilises to form a neck. This necking
instability can occur via two distinct possible modes. The first mode is relatively gentle and arises in
any regime where the slope of the extensional constitutive curve is positive. It has a rate of necking
per accumulated strain unit set by the inverse of the slope of the constitutive curve on a log-log plot.
The second mode sets in when a carefully defined ‘elastic derivative’ of the tensile force first slopes
down as a function of the time since the inception of the flow. We discuss the way in which these
modes of instability manifest themselves in entangled polymeric fluids, demonstrating four distinct
regimes of necking behaviour as a function of imposed stress. Under conditions of constant imposed
tensile force, typically the flow sweeps up the underlying constitutive curve of the fluid in question,
again with instability to necking in any regime where that curve is positively sloping.

I. INTRODUCTION

In developing a constitutive theory for the rheology of a
complex fluid or soft solid, key aims are to predict the ma-
terial’s stress response as a function of the applied strain
history (or vice versa), in both shear and extension. In
comparison with shear, extensional flows typically sub-
ject the underlying fluid microstructure (polymer chains,
wormlike micelles, etc.) to more severe reorganisation.
As a consequence, many nonlinear flow features manifest
themselves only in extension. In this way, extensional
flows prove crucial in discriminating between alternative
possible constitutive theories.

To characterise a material’s extensional rheology ex-
perimentally, a common procedure consists of progres-
sively stretching out in length an initially undeformed
cylindrical sample. For a review, see [1]. In stretch-
ing at constant imposed Hencky strain rate ε̇, the most
commonly reported rheological response function is the
tensile stress σ+

E (t) as a function of the time t since the
inception of the flow. If this can be measured to steady
state, the steady tensile stress σ+

E (t → ∞) plotted as a
function of applied strain rate ε̇, obtained in a series of fil-
ament stretching runs performed at different strain rates,
then gives the material’s extensional constitutive curve,
or flow curve, σE(ε̇). Another common protocol consists

of stretching a filament under conditions of a constant
imposed tensile stress σE [2–10]. This typically allows a
fluid to attain a stationary flow prescribed by its consti-
tutive curve more readily than stretching at a constant
strain rate, making it a preferable protocol for measuring
that constitutive curve experimentally [11]. Stretching at
constant tensile force F is also commonly performed [12–
16].

In these filament stretching procedures, an important
aspiration is to ensure that the flow remains as homoge-
neous as possible, in some part of the sample at least, to
allow the measurement of the steady state homogeneous
constitutive properties just described. Almost ubiqui-
tously observed during filament stretching, however, is
the onset of heterogeneous deformation along the length
of the filament. Typically the central region, furthest
from the sample ends, develops a higher strain rate than
the globally averaged one and thins more quickly than the
sample as a whole, hindering attempts to characterise the
fluid’s homogeneous constitutive properties.

In a typical filament stretching rheometer, the sources
of this flow heterogeneity are (at least) twofold. The
first is essentially imposed on the fluid externally by the
flow geometry, by the no-slip boundary condition that
pertains where the fluid makes contact with the rheome-
ter plates. This prevents those parts of the sample that
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are nearest the plates from being properly stretched. In
consequence, the central regions of the filament, furthest
from the plates, thin more quickly than the sample as a
whole.

The second source of heterogeneity, in contrast, is in-
trinsic to the constitutive behaviour of the fluid. It takes
the form of a hydrodynamic necking instability, which
can be described in simple terms as follows [17, 18]. Con-
sider a filament that is initially stretching in a purely
uniform way. Then imagine a local upward fluctuation
in strain rate at some location along the filament. Con-
servation of mass means that the filament must then thin
faster in that location. To maintain force balance along
the filament a counterbalancing larger stress must then
develop in this location. To achieve this larger stress, the
fluid must flow faster at that location. This enhances the
original fluctuation, giving a positive feedback loop and
a runaway instability in which that part of the filament
thins more quickly than the filament as a whole, forming
a neck.

In practice, of course, these two sources of heterogene-
ity interact with each other. In particular, the extrinsic
geometrical heterogeneity imposed by the no-slip condi-
tion at the end-plates provides an initial ‘seed’ that is
then picked up and amplified by the intrinsic hydrody-
namic necking instability just described. The necking in-
stability described eventually causes the filament to fail
altogether, aborting the experimental run. It has been
seen in linear polymers [19], branched polymers [20, 21],
associative polymers [22], wormlike micelles [23], bubble
rafts [24], and dense colloidal suspensions [25]. It arises
in all common stretching protocols, including at constant
tensile stress [26], constant tensile force [16], constant im-
posed Hencky strain rate [21, 27], and following a finite
Hencky strain ramp [28].

In a separate manuscript, we studied theoretically the
instability to necking of a filament of complex fluid or soft
solid subject to stretching under conditions of constant
imposed Hencky strain rate [18]. We considered several
different constitutive models, with the aim of modelling
several different classes of soft material, including: poly-
mer solutions, polymer melts of both linear and branched
chain architectures, worm-like micelles and soft glassy
materials. Universally across these materials, we found
there to be two distinct possible modes of necking insta-
bility. The first mode, which has a modest associated
growth rate, first becomes unstable in a filament stretch-
ing experiment when the extensional stress signal first
attains a negative curvature as a function of time since
the inception of the flow (or, equivalently, as a function
of the accumulated Hencky strain). The second mode,
which leads to much more rapid necking, first becomes
unstable when a carefully defined ‘elastic’ derivative of
the tensile force with respect to Hencky strain first be-
comes negative. In the limit of infinite imposed strain
rate, we showed that this second mode coincides with the
well known Considère criterion for necking in solids [29],
which predicts instability when the conventionally de-

fined derivative of the tensile force with respect to Hencky
strain first becomes negative. Importantly, however, we
also showed that this original Considère criterion fails to
correctly predict the onset of necking at finite imposed
strain rates.

In this work, we perform the counterpart analysis for
filament stretching at a constant imposed tensile stress
and (separately) a constant imposed tensile force. (Al-
though this manuscript is intended to be self-contained in
its own right, it would most effectively be read alongside
its counterpart in [18]. Inevitably, in some places, par-
ticularly the introductory sections, the discussion in the
present manuscript mirrors that of the controlled strain
one.)

Our aims are fourfold. First, we seek to demonstrate
that necking is a flow instability that arises as an in-
evitable consequence of the constitutive behaviour of es-
sentially any complex fluid or soft solid. However we also
identify a possible rare exception in which a fluid may be
stable against necking, and discuss it carefully.

Second, we shall derive criteria for the onset of neck-
ing that are universal to all complex fluids and soft solids,
and are reportable simply in terms of characteristic signa-
tures in the shapes of the experimentally measured rheo-
logical material response functions. We shall first derive
these criteria analytically by means of linear stability cal-
culations performed in a constitutive model of a highly
simplified and generalised form. We shall then confirm
their generality by performing numerical simulations in
six concrete choices of constitutive model: the Oldroyd B,
Giesekus [30], non-stretch Rolie-Poly [31], finite-stretch
Rolie-Poly [31] and Pom-Pom models [32, 33], and a
simplified model of coil-stretch hysteresis [34–36], which
has a non-monotonic underlying extensional constitutive
curve.

Third, we seek to elucidate the way in which these
criteria manifest themselves in entangled polymeric flu-
ids. In particular, in filament stretching experiments per-
formed at constant imposed tensile stress, we predict four
distinct regimes of necking as a function of the imposed
stress. Fourth, we shall show that the Considère crite-
rion for necking in solids entirely fails to predict necking
in complex fluids, and must instead be replaced by the
criteria offered here.

Throughout we shall restrict ourselves to the case of a
highly a viscoelastic filament of sufficiently large (initial)
radius that bulk viscoelastic stresses dominate surface
effects in determining the onset of necking. Accordingly,
we set the surface tension to zero in our calculations. We
therefore do not address capillary breakup as studied in
CaBeR rheometers [13, 37–42].

All our calculations assume a slender filament approx-
imation in which the wavelengths of any heterogeneities
along the filament’s length are long compared to the fil-
ament radius. Our calculation therefore cannot capture
the final pinch-off of any neck (which would surely in any
case be affected by surface tension), nor can it address
a more dramatic fracture mode in which the filament
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sharply rips across its cross section.
The manuscript is structured as follows. We start in

Sec. II with a discussion of our theoretical framework.
In particular we introduce the constitutive models and
flow geometry under consideration, as well as the slen-
der filament approximation and an exact transformation
to the frame that co-extends and co-thins with the fila-
ment as it is stretched out. We also outline our linear
stability analysis, and the numerical method of our non-
linear slender filament simulations. In Secs. III and IV
we present results for the protocols of constant imposed
tensile stress and constant imposed tensile force respec-
tively. In Sec. V we offer a summary and perspectives for
future work.

II. THEORETICAL FRAMEWORK

A. Mass balance and force balance

We assume the total stress T (r, t) at time t in a fluid
element at position vector r to comprise the sum of a
viscoelastic contribution Σ(r, t) from the internal fluid
microstructure (polymer chains, wormlike micelles, etc.),
a Newtonian contribution of viscosity η arising from the
solvent or other fast degrees of freedom, and an isotropic
contribution with a pressure p(r, t):

T = Σ + 2ηD − pI. (II.1)

The symmetric strain rate tensor D = 1
2 (K + KT )

where Kαβ = ∂βvα and v(r, t) is the fluid velocity field.
Throughout we shall work in the limit of zero Reynolds
number, assuming conditions of creeping flow in which
force balance requires:

∇ · T = 0. (II.2)

We also assume incompressible flow, with the pressure
field p(r, t) determined by enforcing

∇ · v = 0. (II.3)

B. Constitutive models

The dynamics of the viscoelastic stress Σ contributed
by the internal fluid microstructure (polymer chains,
etc.) is specified by a constitutive model for the fluid
in question. In this work we shall consider several differ-
ent constitutive models, most of which are fully tensorial
and widely used throughout the rheological literature.
We also invoke a simplified scalar constitutive model to
allow analytical progress in deriving criteria for the on-
set of necking. We shall then check that the predictions
obtained in that model also hold numerically in the ten-
sorial models. We summarise the models now in turn.

1. Oldroyd B model

The Oldroyd B model provides a phenomenological de-
scription of the rheology of dilute polymer solutions. It
represents each polymer chain as a dumbbell comprising
two beads connected by a Hookean spring. A conforma-
tion tensor W = 〈RR〉 is defined as the ensemble average
〈〉 of the outer dyad of the dumbbell end-to-end vector
R, which is taken to have unit length in the absence of
flow. The viscoelastic stress is assumed to depend on the
conformation tensor according to

Σ = G (W − I) , (II.4)

with a constant modulus G. The dynamics of the con-
formation tensor obeys

∇
W = −1

τ
(W − I) , (II.5)

with a characteristic relaxation time τ . The upper con-
vected derivative

∇
W =

DW

Dt
−W ·K−KT ·W , (II.6)

with a velocity gradient tensor Kαβ = ∂αvβ . This in turn
contains the Lagrangian derivative

DW

Dt
=
∂W

∂t
+ v · ∇W . (II.7)

For an imposed uniaxial extensional flow along the
Cartesian z−axis we have

K = ε̇

− 1
2 0 0

0 − 1
2 0

0 0 1

 . (II.8)

For any sustained imposed strain rate ε̇ > 1/2τ the Ol-
droyd B model predicts a dynamical catastrophe in which
the dumbbells stretch out indefinitely and the exten-
sional stress diverges. Its extensional constitutive curve,
which gives the relationship between the tensile stress
σE = G(Wzz − Wxx) + 3ηε̇ and strain rate ε̇ in a sta-
tionary flow, is therefore undefined for ε̇ > 1/2τ . See
Fig. 2a).

2. Giesekus model

The Giesekus model describes more concentrated poly-
mer solutions, by generalising the Oldroyd B model to
postulate an anisotropic drag such that the relaxation
time of a dumbbell is altered when the surrounding
dumbbells are oriented [30]. The dependence of the stress
on the conformation tensor remains as in Eqn. II.4, but
the conformation tensor now obeys modified dynamics:

∇
W = −1

τ
(W − I)− α

τ
(W − I)

2
. (II.9)



B Constitutive models 4

The parameter α lies in the range 0 ≤ α ≤ 1, with Ol-
droyd B dynamics recovered when α = 0. For α > 0 the
extensional catastrophe of Oldroyd B is averted by the
anisotropic drag: the Giesekus model has a well defined
constitutive curve at all extension rates. See Fig. 2b).

3. Rolie-Poly model of entangled linear polymers

As a description of more concentrated solutions or
melts of entangled linear polymers, we used the Rolie-
Poly model [31]. This starts from microscopic consid-
erations based on the tube theory of polymer dynam-

ics [43], whereby any polymer chain is assumed to be
dynamically restricted by a tube of entanglements with
nearby chains. If then refreshes its configuration by a
process of 1D curvilinear diffusion (“reptation”) along
the tube contour. Also included are the additional dy-
namical processes of chain stretch relaxation and convec-
tive constraint release [44–46], in which the relaxation of
the stretch of any chain acts also to relax entanglement
points with other chains, and so facilitate the relaxation
of orientation. These processes are modelled via a differ-
ential constitutive equation for the the dynamics of the
conformation tensor W = 〈RR〉, with R the end-to-end
vector of a polymer chain:

∇
W = − 1

τd
(W − I)− 2

τs (1− fT/3)

(
1−

√
3

T

)[
W + β

(
T

3

)δ
(W − I)

]
, (II.10)

where the trace T =
∑
iWii. In this equation, τd and τs

are the characteristic timescales of reptation and chain-
stretch relaxation respectively. These are assumed to be
in the ratio

τd
τs

= 3Z, (II.11)

where Z is the number of entanglements per chain. The
parameter β in Eqn. II B 3 sets the degree of convective
constraint release, while the factor (1 − fT/3) accounts
for finite chain extensibility. (For f = 0 the model pre-
dicts an Oldroyd B-like stretch catastrophe for a sus-
tained strain rate ε̇ > 1/τs.)

For a highly entangled sample, with a large entangle-
ment number Z, the chain-stretch relaxes very quickly
on the timescale of reptation, τs � τd. For imposed flow
rates ε̇� 1/τs we can then take the limit τs → 0 upfront
and use the simpler, non-stretching form of the model:

∇
W = − 1

τd
(W − I)− 2

3
K : W (W + β(W − I)). (II.12)

For a value β = 0 of the convective constraint release pa-
rameter, this also recovers the reptation-reaction model
of entangled wormlike micelles [47].

4. Pom-pom model of entangled branched polymers

As a description of the rheology of entangled long-chain
branched polymers, we use the Pom-pom model [32, 33].
Each molecule is taken to comprise a linear backbone
with an equal number of arms q attached to each end.
The relaxation of the arms is assumed to be fast com-
pared to that of the backbone, acting only to provide an
additional drag on the backbone dynamics.

The viscoelastic stress is then taken to depend on a
conformation tensor W that specifies the orientation of

the backbone, and the degree of backbone stretch λ:

Σ = 3Gλ2
(

W − 1

3
I

)
. (II.13)

The dynamics of the backbone orientation is modeled
by writing

W =
A

tr(A)
, (II.14)

with the dynamics of A then assumed to obey the
Maxwell model, Eqn. II.5, with relaxation time τb. The
backbone stretch has dynamics

Dλ

Dt
= λK : W− 1

τs
(λ− 1) eν

∗(λ−1) for λ ≤ q, (II.15)

where ν∗ = 2/(q − 1), subject to an initial condition
λ(0) = 1. A hard upper cutoff is imposed at λ = q: the
extent of backbone stretch is assumed to be entropically
bounded by the number of arms attached to each end
of the backbone. This hard cutoff leads to catastrophi-
cally fast necking in this version of the Pom-pom model,
both in the constant imposed Hencky strain rate protocol
studied in Ref. [18], and in the constant imposed tensile
stress protocol considered below.

The timescales of the backbone orientation and stretch
dynamics are assumed to be in the ratio

τb
τs

= Zbφb. (II.16)

Here Zb is the number of entanglements along the back-
bone and

φb =
Zb

Zb + 2qZa
, (II.17)

which is the fraction of material in the backbone com-
pared with that in the molecule as a whole, with Za the
number of entanglements along each arm.
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Model Parameters

Oldroyd-B -

Giesekus α = 0.001

Non-stretch Rolie-Poly β = 0.0

Finite-stretch Rolie-Poly β = 0.0, δ = −0.5, τR = 0.00833 and f = 0.000625 (Z = 40)

Pom-pom τs = 0.1 and q = 40

Hysteresis c = 0.001

TABLE I. Parameter values used in our numerical studies. The solvent viscosity is taken to obey 3η = 0.01 in all models.

5. Generalised scalar constitutive model

So far, we have outlined the tensorial constitutive mod-
els to be studied numerically in the rest of the paper. To
allow analytical progress in deriving criteria for the onset
of necking we also consider a simplified scalar model [18],
which assumes the dominant component of microstruc-
tural deformation that develops in a filament stretching
experiment to be Wzz, where z is the coordinate along
the length of the filament. We denote Wzz = Z for nota-
tional simplicity. (This should not be confused with our
use of Z to denote entanglement number in the polymer
models above.)

We then consider highly generalised constitutive dy-
namics for Z, following

DZ

Dt
= ε̇f(Z)− 1

τ
g(Z), (II.18)

with separate loading and relaxation terms characterised
by the functions f and g respectively. We intentionally
write the model in this highly generalised way, without
specifying particular functional forms for the loading and
relaxation dynamics f(Z) and g(Z). Our aim in so doing
will be to derive criteria for the onset of necking that are
reportable simply in terms of characteristic signatures
in the shapes of the material’s bulk rheological response
functions.

The tensile stress then comprises the usual sum of this
viscoelastic component and a Newtonian (solvent) con-
tribution:

σE = GZ + ηε̇, (II.19)

in which for simplicity, in this scalar model, we have ab-
sorbed a factor 3 into the Newtonian viscosity η.

6. Toy scalar hysteresis model

As a simple model of coil-stretch hysteresis [34–36],
which has been observed in polymer solutions, and which
is associated with a non-monoonic constitutive curve, we
use the scalar model introduced in the previous section,
with particular functional choices for f and g:

f = 3 + 2Z (II.20)

and

g =
Z

1 + Z3/2
+ cZ2. (II.21)

C. Units and parameter values.

We use units of length in which the initial length of
the filament L(0) = 1, and of stress in which the vis-
coelastic modulus G = 1. In any given model, units
of time are adopted in which the viscoelastic relaxation
timescale is equal to unity. Accordingly for the Oldroyd
B and Giesekus models we set τ = 1, the Rolie-Poly
model τd = 1, and for Pom-pom model τb = 1. Values
for the other model parameters, in these units, are listed
in table I.

D. Initial conditions, flow geometry and protocol.

We consider a filament that at some initial time t = 0 is
in the form of an undeformed uniform cylinder of length
L(0) in the direction z along the length of the cylinder,
and cross sectional area A(0) in the xy plane. The vis-
coelastic stresses in the material are assumed to be well
relaxed in this initial state, such that the molecular con-
formation tensor W (0) = I. At time t = 0 the filament
is then subject to the switch-on of either a tensile stress
or a tensile force, which is held constant thereafter.

As a result of this imposed load, the filament will pro-
gressively stretch out in length according to some creep
curve in the Hencky strain signal ε̄(t), with the filament
length accordingly increasing as L(t) = L(0) exp(ε̄(t)).
The overbar signifies that ε̄ is the nominal Hencky strain
experienced by the sample as a whole: i.e., the Hencky
strain averaged along the length of the filament. Once
necking arises, the strain and strain rate will locally vary
along the filament’s length z. For example the Hencky
strain rate ε̇ = ε̇(z, t), with a z−averaged ε̇ equal to ¯̇ε.

E. Slender filament approximation

We adopt a slender filament approximation [48–50],
in which the characteristic wavelengths of any variations
in cross sectional area that develop along the filament’s
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length during necking are taken to be large compared
to the filament’s radius. This allows us to average the
flow variables over the filament’s cross section at any lo-
cation z along it. The relevant dynamical variables are
then the cross sectional area A(z, t), the area-averaged
fluid velocity in the z direction V (z, t), the extension
rate ε̇(z, t) = ∂zV , and any relevant viscoelastic variables
contained in the constitutive equations discussed in the
previous section.

Within this approximation, the mass balance condition
(II.3) is written

∂tA+ V ∂zA = −ε̇A, (II.22)

and the force balance condition (II.2)

0 = ∂zF, (II.23)

in which the tensile force

F (t) = A(z, t)σE(z, t), (II.24)

and the total tensile stress

σE = G (Wzz −Wxx) + 3ηε̇. (II.25)

The Lagrangian derivative on the left hand side of any
constitutive equation is now written:

D

Dt
=

∂

∂t
+ V

∂

∂z
. (II.26)

Without sacrificing generality we set the initial cylin-
der area A(0) = a0 = 1. Although this is in addition
to having set the initial cylinder length L(0) = 1 (recall
Sec. II C above) we emphasize that we are not, in fact,
restricting ourselves to scenarios in which the initial area
and length are constrained relative to each other in any
particular way. Any information about their relative val-
ues has simply been lost in making the slender filament
approximation.

F. Transformation to co-extending frame

As the filament stretches out under the imposed ten-
sile stress (or force) its length increases in time as L(t) =
L(0) exp(ε̄(t)), and the length-averaged area decreases
as A(t) = A(0) exp(−ε̄(t)), where ε̄(t) is the nominal
(length-averaged) Hencky strain. To allow for this overall
exponential change in the filament’s shape as a function
of the accumulating strain, it is convenient to make a co-
ordinate transformation to the coextending, cothinning
frame by defining new variables of length u, velocity v
and area a as follows:

u = z exp(−ε̄(t)),
v(u, t) = V (z, t) exp(−ε̄(t)),
a(u, t) = A(z, t) exp(ε̄(t)). (II.27)

The differential operators transform as

∂z −→ exp(−ε̄(t))∂u, (II.28)

∂t −→ ∂t − ¯̇εu∂u. (II.29)

We then have transformed equations of mass balance

∂ta+ (v − ¯̇εu)∂ua = −(ε̇− ¯̇ε)a, (II.30)

and force balance

0 = ∂uF̃ , (II.31)

where the transformed tensile force

F̃ (t) = F (t) exp(ε̄(t)) = a(u, t)σE(u, t). (II.32)

The tensile stress σE is given as in II.25 above. The
Lagrangian derivative on the left hand side of any vis-
coelastic constitutive equation then becomes

D

Dt
=

∂

∂t
+ (v − ¯̇εu)

∂

∂u
. (II.33)

The other (local) terms of the constitutive equations are
unaffected by the transformation.

G. Linear stability analysis

We now discuss our linear stability analysis to deter-
mine the onset of necking. This starts by considering
a homogeneous “base state” corresponding to a filament
that remains a uniform cylinder as it is stretched out,
with the flow variables remaining uniform along it. We
then add to this base state small amplitude perturbations
describing any slight initial heterogeneities along the fil-
ament’s length, which are the precursor of a neck. (We
return below to discuss possible sources for these het-
erogeneities, in particular in the no-slip condition where
the sample meets the rheometer endplates.) Expanding
the governing equations to first order in the amplitude
of these perturbations then allows us to arrive at a set
of linearised equations for the dynamics of the perturba-
tions. Our interest is then in determining whether, and
at what time during filament stretching, the perturba-
tions grow into a necked state, or whether they decay to
leave a uniform filament.

To allow analytical progress, we shall flesh out the de-
tails of the procedure just described in the context of
the scalar constitutive model of Sec. II B 5. The entirely
analogous (but more cumbersome) calculation for the
fully tensorial models is described in detail in Sec. IV
of Ref. [18]. It is that calculation which underpins our
numerical results in Secs. III and IV below.

Consider first, then, a uniform base state correspond-
ing to a filament that remains a perfect cylinder as it is
stretched out, with all flow variables homogeneous along
it. In the laboratory frame this obeys the homogeneous
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form of Eqns. II.22 to II.25 above, together with the ho-
mogeneous form of the scalar constitutive equation. Ac-
cordingly the condition of mass balance gives

Ȧ0(t) = −ε̇0A0. (II.34)

(In the cothinning frame, the base state area a0 is obvi-
ously constant in time by definition.) The tensile force

F0(t) = A0σ0, (II.35)

with tensile stress

σ0(t) = GZ0 + ηε̇0. (II.36)

The viscoelastic variable evolves according to

Ż0(t) = ε̇0f(Z0)− 1

τ
g(Z0). (II.37)

To distinguish this uniform base state from the heteroge-
neous perturbations to it that we shall go on to consider,
we have labelled its flow variables with a subscript 0.

To allow for the possibility of necking, we must now
account for spatial variations along the filament’s length.
Accordingly we return to the spatially aware form of
the model equations, expressed for convenience in the
co-thinning, co-extending frame: Eqns. II.30 to II.32, to-
gether with the scalar constitutive model, Eqn. II.18. We
collect these again here for convenience.

The condition of mass balance gives

∂ta+ (v − ¯̇εu)∂ua = −(ε̇− ¯̇ε)a, (II.38)

while force balance gives

0 = ∂uF̃ , (II.39)

with the transformed tensile force

F̃ (t) = F (t) exp(ε̄(t)) = a(u, t)σE(u, t). (II.40)

The tensile stress is given by

σE(u, t) = GZ(u, t) + ηε̇(u, t), (II.41)

and the viscoelastic variable evolves according to

∂Z

∂t
+ (v − ¯̇εu)

∂Z

∂u
= ε̇f(Z)− 1

τ
g(Z). (II.42)

We now add to the homogeneous base state small am-
plitude heterogeneous perturbations, which are the pre-
cursor of any neck. For convenience we decompose these
into Fourier modes with wavevectors q reciprocal to the
space variable u along the transformed filament length: ε̇(u, t)

a(u, t)

Z(u, t)

 =

 ¯̇ε0(t)

a0
Z0(t)

+
∑
q

 δε̇(t)

δa(t)

δZ(t)


q

exp(iqu).

(II.43)

The area perturbations δa(t) obey δa(t)/a0 =
δA(t)/A0(t) and accordingly measure the fractional vari-
ations in cross sectional area along the filament’s length,
compared to the length-averaged area, at any time t. In
this way, they measure the degree of necking.

Expression (II.43) is then substituted into equations
(II.38) to (II.42). Expanding in successive powers of the
perturbation amplitude, and retaining only terms of first
order, then gives a set of linearised equations governing
the dynamics of the perturbations.

The linearised mass balance equation is

∂tδaq = −δε̇q. (II.44)

The linearised force balance equation is

0 = σEδaq +GδZq + ηδε̇q, (II.45)

and the linearised viscoelastic constitutive dynamics

∂tδZq = δε̇qf(Z0) + CδZq. (II.46)

In this equation the term

C = ε̇f ′(Z0)− 1

τ
g′(Z0), (II.47)

in which a prime denotes differentiation with respect to
a function’s own argument.

The strain rate perturbations δε̇q are instantaneously
enslaved to the other variables by the condition of force
balance in creeping flow, Eqn. II.45. Accordingly we can
eliminate these to arrive at the two-dimensional linear
dynamical system:

∂t

δa(t)

δZ(t)


q

= M(t) ·

δa(t)

δZ(t)


q

, (II.48)

which is governed by the stability matrix

M(t) =



σE0

η

G

η

−f(Z0)σE0

η
−f(Z0)G

η
+ C

 . (II.49)

We note that this matrix has inherited the (in general)
time-dependence of the base state (¯̇ε0(t), a0, Z0(t)), upon
which it depends.

The stability matrix M(t) does not however depend
on the wavevector q, and all Fourier modes exp(iqu) are
predicted to have the same dynamics. We therefore ex-
pect the dominant mode in practice to be determined
by which is seeded most strongly initially. We return to
discuss this issue at the end of Sec. II I below.
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FIG. 1. Finite-stretch Rolie-Poly model: (a) homogeneous stationary constitutive curve for extensional flow,
(b) evolution of the strain-rate (of a homogeneous base state flow) to its value prescribed by the constitutive
curve, following the switch-on of a constant stress in a previously undeformed sample. Arrows in (a) denote
the imposed stress values, each colour-matched to its corresponding transient curve in (b), and with the initial
strain rate values in (b) monotonic in the decreasing arrow locations in (a).

H. Nonlinear slender filament simulations

To study the dynamics of necking outwith the linear
regime, once the amplitude of the necking perturbations
is no longer small, we evolve the fully nonlinear slender
filament equations II.30 to II.33 numerically. The fact
that the length of the filament remains fixed in the co-
extending frame in which those equations are expressed,
even as the sample stretches out in the laboratory frame,
obviates any need for re-meshing the numerical grid over
time. Accordingly, we discretize the equations on a fixed
mesh and step the equations forward in time by means of
an explicit Euler algorithm for the spatially local terms
and first order upwinding for the convective ones [51].
Details can be found in Ref. [18], along with a discussion
of our approach to ensuring convergence on the space and
time-steps, which we also adopt here.

I. Boundary conditions

In our linear stability calculations we assume periodic
boundary conditions between the two ends of the fila-
ment (implicitly taking the filament to correspond to a
torus being stretched). In our nonlinear slender filament
simulations we use an approximate mimic of the no-slip
boundary condition between the fluid and the endplates,
by adopting an artificially divergent viscosity near each
plate according to Eqn. VII.1 of Ref. [18]. As discussed

in that reference, and at the end of Sec. II G above, this
automatically provides some heterogeneity that seeds the
formation of a neck mid-filament. This in turn is likely to
be set by the no-slip condition at the rheometer plates,
which constrains the area to remain constant at each
plate even as the sample is stretched out overall. The
overall effect of this will be to initiate a single neck in
the middle of the filament.

III. CONSTANT STRESS PROTOCOL

In this section we consider a filament of viscoelastic
material that is initially cylindrical and undeformed, with
all internal stresses well relaxed. It is then subject at
some time t = 0 to the switch-on of a tensile stress σE0,
which is held constant thereafter. In response to this
imposed stress, the most commonly measured bulk rheo-
logical signal is the accumulated nominal Hencky strain
ε̄(t) as a function of the time t since the stress was ap-
plied. This defines the material’s extensional creep curve,
at the given stress. Sometimes reported instead is its
time-differential ¯̇ε(t).

Our basic observation in this constant-stress protocol,
which our numerical results below will show, is that the
sample’s response comprises two successive dynamical
regimes that are (usually) quite well separated. The first
regime is one of fast dynamics at early times after the
imposition of the stress, during which the strain rate ¯̇ε(t)
quickly proceeds to the value prescribed by the material’s
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stationary homogeneous constitutive curve at the given
imposed stress. After this the flow remains steady for the
remainder of this first regime. During this first regime,
the sample has little or no time in which to develop a
neck, and the dynamics can accordingly be motivated by
a simple calculation that considers only the homogeneous
(base state) dynamics. We outline this in Sec. III A.

After that first fast regime, a second regime then en-
sues in which the homogeneous flow state destabilises and
the sample necks. We shall derive analytical expressions
for the rate at which the neck develops in Sec. III B, and
give numerical results supporting these in Sec. III C.

A. Base state: fast evolution to constitutive curve

As just noted, the dynamics at early times after the
imposition of the stress can be motivated by a calcula-
tion in which the flow is assumed to remain homogeneous,
to a good approximation, without necking. (The nominal
Hencky strain ε̄ therefore corresponds with the true strain
ε everyone along the filament, so we drop the overbar for
the rest of this subsection.) We now sketch the over-
all features of this early-time response, first analytically
in the context of our simplified scalar toy model, then
with our numerical results for the full tensorial Rolie-
Poly model.

The condition of force balance at constant imposed
stress σE gives

σE = GZ + ηε̇. (III.1)

Within our scalar toy model, the viscoelastic variable Z
evolves according to

Ż = ε̇f(Z)− 1

τ
g(Z). (III.2)

Instantaneously after the imposition of the stress the vis-
coelastic contribution GZ to the stress is zero and the
load is all carried by the solvent: a strain rate ε̇ = σE0/η
therefore immediately develops uniformly along the fila-
ment. After this instantaneous initial response, the strain
rate then quickly evolves to its value on the constitutive
curve at the given stress. This can be motivated by dif-
ferentiating Eqn. III.1 at constant σE = σE0 to get

˙̇ε = −G
η
Ż

= −G
η

[
ε̇f(Z)− 1

τ
g(Z)

]
, (III.3)

where we have substituted Ż from Eqn. III.2 in moving
from the first to the second line. In the second line, the
argument Z of f and g is given by Z = 1

G (σE − ηε̇) with
constant σE = σE0. In this way, Eqn. III.3 prescribes
the evolution of the strain rate ε̇ on a fast timescale η/G
to its value on the stationary homogeneous constitutive
curve at the given imposed stress σE0.

We have motivated this early-time evolution here in the
context of our simple scalar model. However the same
scenario arises in the full tensorial constitutive models
used throughout the rest of the paper. Numerical results
for the (homogeneous flow response of the) fully tensorial
Rolie-Poly model are shown as an example in Fig. 1b).
For each imposed stress value, the instantaneous appear-
ance of a strain rate ε̇ = σE0/η at time t = 0 is clear,
followed by fast evolution over a time interval that scales
as the short timescale η/G to the strain rate prescribed
by the corresponding constitutive curve in Fig. 1a), for
the given imposed stress.

B. Linear instability: rate of necking

Following the fast evolution to a homogeneous flow
state prescribed by the stationary constitutive curve,
as just described, a second dynamical regime ensues in
which that homogeneous flow state destabilises and the
sample starts to neck. We now perform a linear stabil-
ity analysis to determine the dynamics of the onset of
this necking process. To allow analytical progress, we do
this within our simplified scalar model. We intentionally
leave the form of the loading and relaxation functions
f(Z) and g(Z) unspecified. Our aim in so doing is to
motivate formulae for the rate of necking that can be ex-
pressed in terms of characteristic features in the shape
of the underlying homogeneous constitutive curve, inde-
pendently of any specific constitutive choices for f and g
(or their counterparts in any fully tensorial model).

With the possibility of heterogeneous flow reinstated,
the flow is now governed by Eqns. II.38 to II.42. Within
these equations we consider a uniform time-independent
base flow state ε̇0, a0, Z0, as pertaining at the end of the
early-time regime described in Sec. III A, with the strain
rate ε̇0 prescribed by the underlying homogeneous con-
stitutive for the given imposed stress. To this initially
homogeneous state we then add small amplitude hetero-
geneous perturbations, as set out in Eqn. II.43, which
are the precursor of a developing neck. (Note that, al-
though for the sake of pedagogy in this analytical section
we describe the development of heterogeneity as starting
only after the early fast evolution of Sec. III A above, in
practice these two regimes are only separated to good
approximation. To account for any slight mixing of the
two regimes, our numerics in Sec. III C allow for hetero-
geneity right from the inception of the flow.)

Substituting Eqn. II.43 into Eqns. II.38 to II.42, ex-
panding in powers of the amplitude of the perturbations,
and discarding any terms higher than those of first or-
der, gives the set of linearised equations II.44 to II.47,
which govern the time evolution of the perturbations.
These can finally be expressed in matrix format as in
Eqns. II.48 and II.49. Because the base state variables
upon which the stability matrix M depends have already
attained stationary values on the underlying constitutive
curve by the end of the first fast regime, the matrix M
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that we need to consider for this protocol is in fact time-
independent. Instability to necking will obtain in any
regime where M has at least one eigenvalue that is pos-
itive, in the sense of having positive real part, with the
associated rate of necking being governing by the am-
plitude of that real part. Our aim now, therefore, is to
understand when any eigenvalue of M is positive, and
the way in which the rate of necking that it prescribes
relates to any quantities that could be measured experi-
mentally.

The two eigenvalues of M follow as solutions of

ω2 − Tω + ∆ = 0, (III.4)

where T is the trace of M and ∆ its determinant.
The trace T of M is given by

T =
1

η
(σE0 − fG) = − 1

A(0)η
∂εFelastic. (III.5)

(We shall return below to explain the meaning of the
derivative ∂εFelastic in this expression.) The determinant
∆ of M is given by

∆ =
σE0C

η
= −f

η

[
d log σE0

dε̇

]−1
. (III.6)

(Note that the solvent viscosity η is small compared to
the viscoelastic viscosities, and we have ignored terms
O(1) compared to those O(G/η) in these expressions.) In
each of Eqns. III.5 and III.6, the second equality follows
from the first by a few lines of algebra, which we do not
write down.

The first mode of necking instability arises in any
regime where the determinant ∆ < 0, with a rate of
necking per unit time that scales as the inverse logarith-
mic derivative of the material’s underlying homogeneous
constitutive curve:

ω ∼
[
d log σE0

dε̇

]−1
“Constitutive curve mode”.

(III.7)
This is a key result. It predicts that any material with a
positively sloping homogeneous extensional constitutive
curve will be unstable to necking [17, 18]. Because the
vast majority of complex fluids and soft solids have such
a curve, we predict that essentially all materials will neck
when subject to extensional stretching. This prediction
is indeed consistent with ubiquitous reports of necking in
the experimental literature.

The result in (III.7) also tells us that a material will
neck relatively more quickly in any regime in which its
homogeneous constitutive curve of stress as a function
of strain rate is relatively flatter. This is intuitively un-
derstood as follows. Consider an initially homogeneous
filament. Then suppose that the strain rate fluctuates
upward slightly (compared to the averaged imposed one)
in some local region of the filament. As a result of this,
the filament will thin a bit faster in that locality com-
pared to the filament as a whole. In order to maintain a

uniform force along the length of the filament, as required
by the force balance condition, a counterbalancing stress
must be provided in the developing neck to compensate
for the thinned area. To generate this, an even faster
flow must develop in that slightly necked region. This
enhances the original fluctuation, giving positive feed-
back and instability to necking. The extent to which the
material must indeed flow faster to provide a counterbal-
ancing stress in the developing neck is determined by the
inverse slope of its constitutive curve at the relevant im-
posed stress, which therefore controls the rate of necking
according to Eqn. III.7.

In additional to the “constitutive-curve” mode just dis-
cussed, a second mode predicts necking in any regime
where the matrix M has trace T > 0, and so where

∂εFelastic < 0 “Elastic Considère mode”. (III.8)

The associated eigenvalue, which determines the rate
of necking per unit time associated with this mode, is
O(G/η), which is large for the highly viscoelastic materi-
als considered here. This second mode was also predicted
in Ref. [18] as a route to necking in the protocol of im-
posed Hencky strain rate. As discussed in Ref. [18], the
derivative ∂εFelastic of the base state’s tensile force with
respect to strain ε needs careful explanation. It is defined
by evolving the system’s state up to some strain ε with
the full model dynamics, including loading by flow as en-
coded by f and relaxation as encoded by g. In the next
increment of strain ε→ ε+δε over which the derivative is
taken the relaxation term g(Z) is then suppressed, with
only the elastic loading dynamics implemented.

Whether any means can be found of measuring this
derivative experimentally is an open question, which we
do not address here. However we do emphasise that the
condition ∂εFelastic < 0 just discussed is not the same as
the condition ∂εF < 0. The “elastic” Considère criterion
proposed here is therefore not the same as the original
Considère criterion for necking. Indeed, in any experi-
ment performed at constant tensile stress σE0 the force
F = AσE0 decreases with increasing strain for all times
after the imposition of the load, because the stress is con-
stant (by definition) and the filament’s area always thins
with strain as A ∼ exp(−ε̄(t)). Therefore, the original
Considère criterion entirely fails to predict necking in a
constant stress protocol: it must be replaced by the two
new criteria offered here.

C. Numerical results

1. Linear regime

In the previous subsection we derived criteria for two
different modes of necking instability under conditions
of constant imposed tensile stress. To allow analyti-
cal progress, we did this in the context of our simpli-
fied and highly generalised scalar constitutive model. In
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this section, we shall present numerical results confirm-
ing the validity of these criteria in six concrete choices of
constitutive model, and discuss in more detail the way
in which the two modes of necking manifest themselves
in the various flow regimes of these models. The first
five models (Oldroyd B, Giesekus, non-stretch Rolie-Poly,
finite-stretch Rolie-Poly and Pom-Pom) are fully tenso-
rial and popularly studied in the rheological literature.
The sixth is a toy model of coil-stretch hysteresis, which
we constructed so as to have a non-monotonic constitu-
tive curve, in order to demonstrate stability against neck-
ing in the regime of negative constitutive slope σ′E(ε̇) < 0.

We start in Fig. 2 by showing the underlying homoge-
neous constitutive curve for each of the six models. As
discussed above, following the imposition of a constant
stress σE0, the strain rate first evolves rapidly to its value
as prescribed by this underlying constitutive curve, with
the sample remaining (almost) uniform while that hap-
pens. The constitutive curve mode discussed above then
predicts instability to necking in any regime where that
curve has positive slope. (As we shall find below, the elas-
tic Considère mode will also arise in two of the models
studied, although in relatively restricted regimes of flow
rate.) Its onset rate per unit time is given by Eqn. III.7.
Correspondingly, its onset rate per unit strain is given by

ω

ε̇
∼
[
d log σE0

d log ε̇

]−1
“Constitutive curve mode”,

(III.9)
that is, by the inverse of the derivative of the constitutive
curve as shown in a log-log representation.

This rate is indicated by the colourscale in each of the
constitutive curves in Fig. 2: faster necking (as a func-
tion of accumulated strain) is seen in regimes of flatter
positive constitutive slope. In the regime of negative con-
stitutive slope of the hysteresis model (panel f), stability
against necking is predicted.

With these general remarks in mind, we now explore
in detail the necking dynamics of these six models under
conditions of constant imposed tensile stress. Each panel
(a)-(f) of Fig. 3 corresponds to its counterpart constitu-
tive curve panel in Fig. 2, and comprises two separate
subgraphs. The lower subgraph in each case essentially
reproduces the corresponding constitutive curve of Fig. 2,
but with the axes inverted so as to have the stress on the
abscissa, as the imposed quantity in this protocol. At any
imposed stress, the expected rate of necking as a function
of accumulated strain is again shown by the colourscale
according to Eqn. III.9.

The upper subgraph in each panel of Fig. 3 shows the
necking dynamics in detail. The data are presented in the
plane (ε̄, σE) of accumulated strain and imposed stress,
and should be interpreted as follows. Any vertical cut
up this plane corresponds to single experiment in which
the imposed tensile stress σE is held fixed and the accu-
mulated strain ε̄ increases up the plane as the filament
stretches out under the influence of this applied load. At
any imposed stress value σE, the magenta dashed line

shows the strain at which the strain rate attains its value
on the stationary underlying constitutive curve, to within
1%, following the fast early-time dynamics described in
Sec. III A.

The solid black lines show contours of constant area
perturbation δa(t), with each successive contour crossing
corresponding to an increase by a factor 101/4 in the de-
gree of necking δa(t). The nth contour thus represents
a degree of necking δa/δa0 = 10n/4, where δa0 is the
small initial seeding at the start of the run. The more
densely clustered the contour lines vertically at any fixed
σE, therefore, the faster necking occurs in an experiment
at that imposed stress. In each panel of Fig. 3 we have
shown only the first 20 contour lines, assuming that the
sample will have failed altogether by this time. An in-
dication of the dependence of the strain at which the
sample will finally fail on the imposed stress is given by
focusing on one representative contour.

Consistent with the claim made in Sec. III A above,
only a small amount of necking occurs (few contour lines
are crossed) during the fast early-time regime in which
the strain rate rapidly evolves to the stationary under-
lying constitutive curve. Beyond that early regime, the
neck indeed develops (contour lines are crossed) at a rate
consistent with the scaling prediction of (III.9), set by the
inverse of the slope of the underlying constitutive curve
in its log-log representation. We now discuss in more de-
tail the way this basic observation manifests itself in the
different flow regimes of each model.

In the Oldroyd B model, the constitutive curve has a
constant initial slope σ′E(ε̇) = 3 in the Newtonian regime
at low strain rates. See Fig. 2a. The associated rate of
necking per unit strain is likewise modest and constant
as a function of strain rate, as seen in Fig. 3a). For
higher imposed stresses the constitutive curve is a much
steeper function of strain rate, due to the well-known
extensional catastrophe of this model, which we recall
predicts a divergent stress for strain rates ε̇ > 1/2τ . This
greatly stabilises the filament against necking, as seen
by the near vertical contour lines in Fig. 3a for larger
imposed stresses.

In the Giesekus model the divergent constitutive curve
of the Oldroyd B model is avoided and the stress re-
mains finite at all strain rates. Nonetheless, a vestige of
the Oldroyd B catastrophe is seen in the steeply sloping
section at strain rates ε̇ ≈ 1/2 in Fig. 2b. Accordingly,
the model predicts a regime of relatively slow necking for
imposed stresses 101 < σE < 103 in that regime of steep
constitutive slope, and so of relatively flat strain rate
versus stress. This is indeed seen in that stress range
101 < σE < 103 in the contour map of Fig. 3b). Faster
necking is seen for imposed stresses on either side of this
window, where the constitutive curve of Fig. 2b is New-
tonian at low flow rates, or quasi-Newtonian at high flow
rates.

The constitutive curve of the non-stretch Rolie-Poly
model (Fig. 2c) has a Newtonian regime at low strain
rates, in which chain orientation progressively increases
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FIG. 2. Constitutive curves of the models to be studied. The colourscale in each case shows the value of
[d log σE/d log ε̇]−1, which sets the rate of necking per unit strain according to Eq. III.9. Any regime in which
this quantity is less then or equal to zero, indicating stability against necking, is shown in black.

with increasing applied strain rate. Once the strain rate
ε̇ = O(1/τd), however, the orientation saturates and the
stress becomes a much flatter function of strain rate, ris-
ing again only at much higher strain rates when the sol-

vent contribution 3ηε̇ becomes important. For imposed
stresses σE ≈ 3.0 corresponding to the flat region where
ε̇ = O(1/τd), therefore, we expect very rapid necking
via the constitutive curve mode. This is confirmed in
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FIG. 3. Numerical results for the linearised necking dynamics at constant imposed tensile stress within the
six constitutive models. In each panel the lower subfigure shows the inverted constitutive curve, with the
rate of necking (per unit strain) according to the constitutive curve mode shown on the same colourscale as
in Fig. 2. The upper subfigure in each panel explores the necking dynamics in more detail. Here the thin
black lines show contours of constant area perturbations δa/δa0 = 10n/4, with n = 1 · · · 20 in curves from bottom
to top, representing the growing degree of necking at increasing strain ε upwards in any filament stretching
experiment at fixed imposed stress σE0. The magenta dashed lines show the strain at which the underlying
base state attains a state of stationary flow on the underlying homogeneous constitutive curve, to within 1%.
The purple dot-dashed line shows the strain at which the elastic Considère mode becomes unstable. The
colours denote the rate of necking, with the same colourscale as in 2. Regions of stability against necking are
shown in white.



C Numerical results 14

Fig. 3c).

In fact for imposed stresses σE & 2.0 the elastic Con-
sidère mode is also active, as indicated by the purple
dot-dashed line. According to Eqn. III.8, this predicts a
rate of necking O(G/η) per unit time, which is very fast.
(Recall that the solvent viscosity η is small compared to
the zero shear viscosity of the viscoelastic components.)
However it is important to note that the corresponding
rate of necking per unit strain is O(G/ηε̇). Now the
constitutive curve of this model, in this regime where
chain orientation has saturated, is dominated by the sol-
vent contribution. Accordingly the associated strain rate
ε̇ = σE/η. Combining these gives a rate of necking
O(G/σE) = O(1) per unit strain, which remains rela-
tively gentle. This is indeed confirmed by our numerical
results to the right of Fig. 3c): because both the rate of
necking and the rate of straining are fast, O(G/η), the
rate of necking per unit strain remains O(1).

The Rolie-Poly model with chain-stretch now included
is explored in Figs. 2d) and 3d). For strain rates
ε̇ < 1/τR, its dynamics essentially match that of its
non-stretch counterpart discussed in the previous para-
graph, consistent with the fact that negligible chain
stretch develops for imposed flow rates lower than the
rate of chain stretch relaxation. Once the strain rate
ε̇ = O(1/τR), however, significant chain stretch develops
and the constitutive curve stress rises rapidly as a func-
tion of strain rate. For imposed stresses corresponding
to this regime, much slower necking is predicted: note
the blue colourscale in Fig. 2c). This is indeed observed,
via the widely spaced contour lines for imposed stresses
in the range 101 − 103 in Fig. 3d). At higher stresses
still the chain stretch saturates, the constitutive curve is
much flatter, and the necking is much faster.

The dynamics of the finite-stretch Rolie-Poly model
can therefore be categorised into four distinct regimes,
as follows. For low imposed stresses, corresponding to
strain rates in the regime ε̇ < 1/τd in Fig. 2d), the model
shows essentially Newtonian response: the constitutive
curve has a constant slope σ′E(ε̇) = 3, and the rate of
necking is likewise modest and independent of stress. For
imposed stresses σE ≈ 3.0 the chain orientation has satu-
rated and the constitutive curve is a relatively flat func-
tion of strain rate, giving very fast necking. For imposed
stresses in the range 101− 103 the constitutive curve has
large slope due to the development of chain stretch in
that regime, and the rate of necking is accordingly much
lower. Finally at high stresses the chain stretch satu-
rates, the constitutive curve is much flatter, and necking
occurs very quickly. We note that the elastic Considère
mode, which was present in the non-stretch Rolie-Poly
model, is absent in the stretching version of the model.

The Pom-Pom model is explored in Figs. 2e) and 3e).
Comparing Figs. 2d) and 2e), we see that the consti-
tutive curve of the Pom-Pom model also shows four
regimes, which resemble those of the finite-stretch Rolie-
Poly model. Indeed in close analogy with the dynamics of
the Rolie-Poly model, these regimes are associated with

a progressive increase then saturation in backbone orien-
tation, for strain rates ε̇ = O(1/τb) and their counterpart
imposed stresses, followed by an increase then saturation
in backbone stretch, for strain rates ε̇ = O(1/τs) and
their counterpart imposed stresses.

The Pom-Pom model accordingly shows very similar
necking dynamics to those of the Rolie-Poly model, as
can be seen by comparing Figs. 3d) and 3e). However at
the highest imposed stresses there is an importance differ-
ence between the two models: in the Pom-Pom model the
backbone stretch is assumed to have an infinitely sharp
cutoff, compared with the more gentle saturation in the
chain stretch of the Rolie-Poly model. This gives an es-
sentially flat regime in the constitutive curve at the right
hand side of Fig. 2e), which manifests itself in Fig. 3e)
as very violent necking via the elastic Considère mode.
Whether this cutoff is physically realistic remains an open
question, which we discussed in the context of necking
under conditions of constant imposed Hencky strain rate
in Ref. [18].

Finally in Fig. 3f) we explore the necking dynamics
of our toy model of coil-stretch hysteresis, for which the
underlying constitutive curve is non-monotonic (Fig. 2f).
The important point to note here is that filament is sta-
ble against necking for imposed stresses in the regime
of negative slope in that constitutive curve. Whether a
different mode of extensional failure would take over in
practice remains an open question.

2. Nonlinear dynamics

So far we have discussed necking dynamics in the linear
regime, in which the amplitude of the growing necking
perturbations still remains small. To study the neck-
ing dynamics outwith the linear regime, once the ampli-
tude of the heterogeneous perturbations becomes non-
negligible, we simulated the full nonlinear slender fila-
ment equations.

Results for the finite-stretch Rolie-Poly model are
shown in Fig. 4. Panel a) shows the equivalent, for these
nonlinear calculations, of the linear stability results dis-
cussed above in Fig. 3d). As usual, a vertical cut up this
plane of strain ε and stress σE0 represents a single exper-
iment performed at a given imposed tensile stress σE0.
The experiment starts with an initially unstretched fila-
ment at ε = 0, then the accumulated strain ε increases
up the plot as the filament progressively stretches out.

The thin black lines then show contours of constant
Λ(t) ≡ Ahom(t)/Amid(t), where Ahom(t) is the filament
area calculated at any time t by supposing the filament
were stretching in a purely uniform way, and Amid(t) is
the actual cross sectional area at the filament’s midpoint.
In this way, Λ = 1 corresponds to a uniform filament,
and Λ progressively increases as the filament necks. The
first contour has Λ = 1, and each successive contour as
ε increases at fixed σE0 indicates an increase in Λ by a
factor 41/20. The 20th contour, which is the final shown,
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FIG. 4. Necking dynamics in nonlinear slender fila-
ment simulations of the Rolie-Poly model of linear
entangled polymers under conditions of constant im-
posed tensile stress. (a) Thin black lines show con-
tours of constant of necking heterogeneity, Λ, with the
nth contour having Λ = 4n/20. Also shown by the ma-
genta dashed line is the strain at which the sample
attains a state of flow on the homogeneous consti-
tutive curve to within 1%, which occurs before sig-
nificant necking develops. The sharp corners in some
earlier contours are an artefact of a breakdown in our
interpolation. For the six imposed strain rates indi-
cated by arrows in (a), the evolution of the nominal
strain rate as a function of time since the inception
of the flow is reported in (b) for both the nonlin-
ear simulation (solid lines) and for a calculation in
which the filament is artificially assumed to remain
uniform (dashed lines). Counterpart results for the
filament’s cross sectional area are shown in (c): as-
suming homogeneous flow (dashed black line) and at
the filament’s midpoint in a calculation that allows
for necking (symbols and solid lines).

therefore represents Λ = 4. (Although this ratio of ar-
eas is relatively modest we note that the sample is close
to necking by this time, because the global area has be-
come very small.) Accordingly we show only the first 20
contour lines, and simply assume that the sample will
fail altogether by some final pinch-off event before this
contour is attained. We note, however, that our slen-
der filament calculation is not capable of capturing the
dynamics of the final pinchoff, because it assumes varia-
tions along the filament to be gentle on the scale of the
filament radius. It also neglects any physics on the mi-
croscopic lengthscales associated with the surface tension
of the interface, which would surely affect the final stages
of failure.

Comparing Fig. 4a) with Fig. 3d), we see that our sim-
plified linear calculation in fact already performed rather
well in predicting the onset of necking in the full non-
linear calculations. Any differences in the quantitative
detail between the two plots can be explained by the fact
that the material functions at the filament’s midpoint in
the nonlinear simulations differ slightly from those in the
base state of the linear calculation.

The necking dynamics at the six imposed stress values
denoted by arrows in Fig. 4a) are presented in further
detail in panels b) and c). Panel b) shows the evolution
of the nominal (length-averaged) strain rate as a function
of time since the inception of the flow for the nonlinear
simulation (solid lines), and the strain rate predicted by a
calculation in which the filament is artificially assumed to
remain uniform (dashed lines). In each case except that
of the highest imposed stress, the strain rate attains its
value prescribed by the homogeneous constitutive curve
with only minimal necking occurring transiently en route
to that curve. A second flow regime then ensues in which
this state of homogeneous flow on the constitutive curve
destabilises and the strain rate increases as the filament
necks. Counterpart results for the cross sectional area at
the filament’s midpoint are shown in (c). This follows
the exponential prediction of the homogeneous calcula-
tion until necking occurs, when the signal plunges below
the homogeneous predictions. The least necking arises for
the imposed stress value σE0 = 100.0, which corresponds
in the constitutive curve Fig. 2d) to a strain rate of or-
der 1/τR, in the regime where chain stretch is rapidly
developing with increasing strain rate. Indeed, at this
stress value the flow remains on the underlying constitu-
tive curve without any appreciable necking effects up to
the final strain ε = 10.0 considered. The most dramatic
necking in Fig. 4c) arises for an imposed stress σE0 = 1.0,
in the regime of saturated orientiation in the constitutive
curve of Fig. 2d). Fig. 4(b) demonstrates that for larger
imposed tensile stresses there is a smaller time-window
over which the strain rate accords with its value as pre-
dicted by the stationary homogeneous constitutive curve,
before necking causes it to deviate significantly. This has
been observed experimentally: see, for example, Fig. 9
of Ref. [3].
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IV. CONSTANT FORCE PROTOCOL

In this section we consider a filament of viscoelastic
material that is initially cylindrical and undeformed, with
all internal stresses well relaxed. At some time t = 0 it is
then subject to the switch-on of a tensile force Fc, which
is held constant thereafter.

For the protocol of constant imposed stress in the pre-
vious section, we showed that (to good approximation)
the sample attains a state of stationary flow specified by
the homogeneous extensional constitutive curve, at the
given imposed stress, before starting to neck. That en-
abled us to consider the emergence of a necked state out
of an initially homogeneous ‘base state’ that was station-
ary in time.

In important contrast, under conditions of constant
force we shall find that the development of the neck
happens in tandem with a continuous time evolution in
the underlying homogeneous base state out of which the
necked state emerges. In what follows, therefore, our
strategy will be first (in Sec. IV A) to discuss the time-
evolution of that homogeneous underlying base state, and
then (in Sec. IV B) to discuss the way in which a neck
develops as that base state evolves. As usual our ana-
lytical discussion will focus for the sake of simplicity and
generality on the toy scalar constitutive model, with nu-
merical calculations confirming the same scenario in the
fully tensorial models.

A. Base state evolution

Within the toy scalar model, the homogeneous base
state obeys Eqns. II.34 to II.37. Repeating these here for
convenience, we have the condition of mass balance

Ȧ0(t) = −ε̇0A0, (IV.1)

while the tensile force, which is time-independent in this
protocol, obeys

F0 = Fc = A0σ0 = A0(GZ0 + ηε̇0), (IV.2)

with σ0 the tensile stress. The viscoelastic variable obeys

Ż0(t) = ε̇0f(Z0)− 1

τ
g(Z0). (IV.3)

Immediately following the imposition of a force Fc, the
stress σ0(0) = Fc/A0(0), where A0(0) is the filament’s
initial cross sectional area. The viscoelastic contribution
to the stress is initially zero, and all the load is carried
by the solvent. Accordingly a uniform initial strain rate
ε̇0 = Fc/A0(0)η instantaneously establishes along the fil-
ament. This is seen in the initial values of the strain-rate
signal versus time in Fig. 5b), which shows our numeri-
cal results for the base-state dynamics of the Rolie-Poly
model. In the flow-curve representation of Fig. 5a), there-
fore, the base state’s trajectory starts (for any given im-
posed force) on the solvent constitutive branch σE = ηε̇,
which is shown as a dotted black line.

In contrast to the protocol of constant imposed stress,
in this imposed-force protocol the stress must progres-
sively increase in time in order to maintain a constant
force as the filament stretches out and its cross sectional
area thins. (Recall that the tensile force is the product
of the tensile stress and the cross sectional area.) This
can be seen by differentiating Eqn. IV.2 to get

Ḟ0(t) = 0 = Ȧ0σ0 +Aσ̇0, (IV.4)

which rearranges to give

σ̇0
σ0

= − Ȧ0

A0
= ε̇0. (IV.5)

The second equality here follows from the mass balance
condition IV.1. Hence, the stress increases in time with
a fractional growth rate given at any time t by the strain
rate ε̇0(t).

If the flow were to remain dominated by the Newto-
nian solvent, with no load transfer to the viscoelastic
component, this strain rate ε̇0(t) would remain trivially
given by ε̇0(t) = σ0(t)/η for all times, and the fractional
rate of stress increase would accordingly likewise equal
σ0(t)/η. In the flow-curve representation of Fig. 5a), the
base-state’s trajectory would then simply sweep up the
solvent constitutive branch shown by the black dotted
line. At any time t, however, there is a competing ten-
dency of the flow to evolve away from the solvent consti-
tutive branch to the composite constitutive curve of the
combined viscoelastic and solvent components (which we
hereafter call simply the viscoelastic constitutive curve),
at a rate G/η. Recall Eqn. III.3 and the discussion im-
mediately following it.

For typical initial stress values σ0 . G, the second of
these processes (of evolution to the viscoelastic consti-
tutive curve) is faster than the first (of time-increase of
the stress up the solvent branch). As a result, for these
low imposed force values the system’s trajectory in the
flow-curve representation of Fig. 5a) quickly evolves away
from the solvent constitutive branch and leftwards to the
viscoelastic constitutive curve, before having chance to
sweep any way up the solvent branch. This progression
from the Newtonian to viscoelastic constitutive curve is
associated with a fast sudden decrease in the signal of
strain rate as a function of time ε̇0(t) at a time t ≈ 10−2

for the three lowest imposed force values in Fig. 5b).
Thereafter the base state flow remains specified by the
viscoelastic constitutive curve, exploring it in an upward
direction as the stress increases according to Eqn. IV.5,
and the strain rate likewise rapidly increasing in Fig. 5b).
(In fact this discussion holds for models with a finite ex-
tensional viscosity. The Oldroyd B model exhibits differ-
ent, but pathological behaviour on account of its exten-
sional catastrophe.)

For initial stress values σ0 & G, in contrast, the time-
increase of the stress up the solvent constitutive branch is
initially faster than the evolution away from that branch.
Accordingly for these larger imposed force values the
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FIG. 5. Finite-stretch Rolie-Poly model. (a) Viscoelastic constitutive curve (leftmost limiting curve line)
and solvent constitutive curve (dotted line). The trajectory of the base state flow is also shown, for several
different imposed forces, in this flow-curve representation of stress as a function of strain rate (b) Evolution of

the strain-rate with time. Imposed constant forces are 10n/2 with n = −2 · · · 4 and the colourscale is the same
as in figure 2 showing the value of [d log σE/d log ε̇]−1.

base state trajectory in the flow-curve representation of
Fig. 5a) first explores the solvent constitutive curve in
an upward direction, and only later makes its transit
leftwards to the viscoelastic constitutive curve, with the
associated sudden decrease in strain rate. Once the vis-
coelastic constitutive curve has been attained, the flow
again explores it with increasing stress and strain rate
according to Eqn. IV.5.

In any such regime where the base state flow sweeps up
one of these underlying constitutive branches (whether
initially that of the solvent or finally the full viscoelastic
constitutive curve), the time rate of change of the stress
is given by

σ̇0 = σ′0(ε̇0)
dε̇0
dt
, (IV.6)

where the function σ0(ε̇0) specifies the constitutive curve
in question, and σ′0(ε̇0) its slope. Substituting this into
Eqn. IV.5, and rearranging, gives an expression for the
time rate of change of the strain rate:

1

ε̇0

dε̇0
dt

=
σ0

σ′0(ε̇0)
. (IV.7)

In any regime where the constitutive curve in question
is approximately Newtonian, σ0 ∝ ε̇0, this can easily be
shown to lead to a blow-up of the strain rate in a finite
time set by the inverse initial strain rate:

ε̇0(t) =
ε̇0(0)

1− ε̇0(0)t
. (IV.8)

This is indeed evident in the signals of strain rate as a
function of time in Fig. 5b).

Although the blow-up happens quickly in terms of
time, however, the filament nonetheless develops large
strains during this blow-up. In what follows, indeed, our
primary focus will be on elucidating the rate at which a
neck develops as a function of the accumulating strain
(while also recognising that the corresponding rate of
necking as a function of elapsed time will in many cases
be very quick indeed).

B. Rate of necking

So far, we have discussed how a base state of homoge-
neous flow evolves in time under conditions of constant
imposed force. In this section, we consider how a necked
state develops out of that initially homogeneous time-
evolving base state flow. At the level of linearised dynam-
ics the heterogeneous perturbations δε̇q(t), δaq(t), δZq(t)
that are the precursor of any neck evolve according to
Eqns. II.44 to II.47, which we repeat here for convenience.
The linearised mass balance condition gives

∂tδaq = −δε̇q. (IV.9)

The linearised force balance condition gives

0 = σEδaq +GδZq + ηδε̇q, (IV.10)
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and the linearised viscoelastic dynamics give

∂tδZq = δε̇qf(Z0) + CδZq, (IV.11)

in which

C = ε̇f ′(Z0)− 1

τ
g′(Z0). (IV.12)

Our aim in what follows is to relate the dynam-
ics of these necking perturbations (δε̇q(t), δaq(t), δZq(t))
to the time-evolution of the underlying base state
ε̇0(t), A0(t), Z0(t). Doing so will allow us to make pre-
dictions for the rate at which a necked state develops, in
terms of characteristic signatures in the rheological sig-
nals of the base state. It is also important to note that,
before any significant necking occurs, the rheological sig-
nals of the base state match the bulk rheological signals
measured experimentally. Therefore, our predictions for
the onset of a necked state are indeed made in terms of
characteristic signatures in the experimentally measured
rheological quantities.

The time-evolution of the base state is specified by
Eqns. IV.1 to IV.3. Differentiating these with respect to
time (with the mass balance condition first pre-divided
by A0(t)) gives

d

dt

(
Ȧ0

A0

)
= −dε̇0

dt
, (IV.13)

dF0

dt
= 0 = σ0

dA0

dt
+A0

(
G
dZ0

dt
+ η

dε̇0
dt

)
, (IV.14)

dŻ0

dt
=
dε̇0
dt
f(Z0) + C

dZ0

dt
. (IV.15)

Comparing Eqns. IV.9, IV.10 and IV.11 with
Eqns. IV.13, IV.14 and IV.15, we note that the heteroge-
neous perturbations (δε̇q(t), δaq(t), δZq(t)) to the homo-
geneous base state obey the same dynamical equations as
the base state quantities (ε̈0, Ȧ0/A0, Ż0). Therefore [52],
this means that

1

δaq

dδaq
dt

=
d

dt

(
Ȧ0

A0

)
/
Ȧ0

A0
=

1

ε̇0

dε̇0
dt
, (IV.16)

in which the final equality follow from the mass bal-
ance condition IV.1. This is an important result: it
predicts that any initially small heterogeneous pertur-
bations along the filament’s length will grow towards a
necked state in any regime where the bulk strain rate sig-
nal ε̇0(t) – i.e., the time-differential of the creep curve –
increases in time. A converse tendency to return towards
heterogeneous flow is predicted in any regime where the
strain rate decreases in time.

Looking back at Fig. 5, we recall that the strain rate
indeed increases in time in any regime where the sample

sweeps up any branch of a (positively sloping) constitu-
tive curve. The associated rate of necking per unit strain
can be calculated by substituting Eqn. IV.7 for the rate
of change of strain rate into Eqn. IV.16 to get

1

ε̇0

1

δaq

dδaq
dt

=
1

ε̇20

dε̇0
dt

=
σ0
ε̇0

dε̇0
dσ0

=

(
d log σ0
d log ε̇0

)−1
(IV.17)

At any instant during the evolution of the (base state)
flow up one of the underlying constitutive branches,
therefore, the rate of necking per unit strain is given
by the inverse slope of that constitutive curve on a log-
log plot. Indeed this mirrors the result of Eqn. III.9 for
the rate of necking (per unit strain) under conditions
of constant imposed stress. The important difference in
this case of constant imposed force is that the base state
doesn’t remain at a fixed point on the constitutive curve,
but rather moves upward along that curve as the fila-
ment’s area thins and the stress accordingly increases to
maintain constant force.

In motivating the result in Eqn. IV.17, we implicitly
assumed (via our use of Eqn. IV.7) that the flow state
is instantaneously prescribed by the underlying constitu-
tive curve at any value of the upwardly evolving stress.
While this is true to good approximation, the flow in
fact must obey the dynamical viscoelastic constitutive
equation. In making that assumption, therefore, we effec-
tively neglected one mode of the system’s dynamics. Cor-
rectly accounting for the viscoelastic constitutive dynam-
ics gives another mode of necking instability, the rate of
which is set by the inverse of the same quantity ∂εFelastic

as in Eqn. III.8 above: we identify this as the manifesta-
tion of the elastic Considère mode in the constant force
protocol.

C. Numerical results

With the predictions of the previous section in mind,
we now present our linear stability results for necking in
the constant force protocol. These are shown in Fig. 6,
each panel (a)-(f) of which corresponds to a counterpart
constitutive curve panel in Fig. 2. The data are presented
in the plane (ε̄, Fc) of accumulated strain and imposed
force, which should be interpreted as follows. Any ver-
tical cut up this plane corresponds to single experiment
in which the imposed tensile force Fc is held fixed and
the accumulated strain ε̄ increases up the plane as the
filament stretches out under the influence of this load.

The orange and magenta dashed lines in Fig. 6 reflect
our discussion of the trajectory of the base state flow
in Fig. 5a) above. In particular, at any imposed force Fc
the orange dashed line shows the strain at which the base
state flow first departs by more than 1% from the solvent
constitutive branch. The magenta dashed line shows the
strain at which it attains the stationary underlying vis-
coelastic constitutive curve, to within 1%. (These lines
merge towards the right hand side of the figure for the
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FIG. 6. Numerical results for the linearised necking dynamics at constant imposed tensile force within the
six constitutive models. In each panel the thin black lines show contours of constant area perturbations
δa/δa0 = 10n/8, with n = 1 · · · 20 in curves from bottom to top, representing the growing degree of necking
at increasing strain ε upwards in any filament stretching experiment at fixed imposed force Fc. The orange
dashed line shows the strain at which the underlying base state first departs the solvent constitutive branch
by more than 1%. The magenta dashed lines show the strain at which the underlying base state attains the
underlying homogeneous viscoelastic constitutive curve, to within 1%. The purple dot-dashed line shows the
strain at which the elastic Considère mode becomes unstable. The colours show the rate of necking for any
(ε̄, Fc), using the same colourscale as in figure 2. Regions of stability against necking are shown in white.



C Numerical results 20

finite-stretch Rolie-Poly and Pom-pom models: at very
high stresses in these models the constitutive curve is
dominated by the solvent contribution.)

The solid black lines show contours of constant area
perturbation δa(t). Each successive contour corresponds
to an increase in the degree of necking δa(t) by a factor
101/8. The nth contour thus represents a degree of neck-
ing δa/δa0 = 10n/8, where δa0 is the small initial seeding
at the start of the run. The more densely clustered the
contour lines vertically at any fixed Fc, therefore, the
faster necking occurs in an experiment at that imposed
force.

Focusing first for definiteness on our results for the
Giesekus model in panel b), we see that for any imposed
force Fc . 1.0 the base state flow quickly transits to
the viscoelastic constitutive curve as the strain increases
vertically up the panel at that fixed Fc, without first ex-
ploring the Newtonian branch. Indeed, the scale of strain
over which this transit happens is barely discernible. Af-
ter attaining the viscoelastic constitutive curve the flow
progressively sweeps up it as the filament stretches out
with accumulating strain ε̄(t), thins in area as exp(−ε̄(t)),
and the stress correspondingly increases to maintain a
constant force. At any accumulated strain ε̄, for the
given imposed Fc, the colourscale in Fig. 6b) shows the
inverse logarithmic slope of the constitutive curve at the
stress that has been attained by that strain, matching the
colourscale in Fig. 2b). Recall from Eqn. IV.17 that this
sets the rate at which the neck will be developing at any
time t, or correspondingly accumulated strain ε̄(t), dur-
ing the stretching process. For example, for a representa-
tive imposed force Fc = 0.1 in Fig. 6b), the flow quickly
attains the viscoelastic constitutive curve of Fig. 2b) at a
stress σE ≈ 0.1. It then transits up the slow-flow Newto-
nian part of of this viscoelastic constitutive curve, with
an O(1) rate of necking indicated in green, then transits
the steeply sloping part it, with a slower rate of necking
indicated in blue, then finally transients the Newtonian
fast-flow part of it, with a return to the O(1) rate of
necking indicated in green.

In contrast, for a representative imposed force Fc =
100.0 in Fig. 6b), the base state flow initially evolves up
the solvent constitutive branch σE = ηε̇ (not shown in
Fig. 2b), with an O(1) rate of necking indicated in green.
Between a strain of roughly 4 and 5 it then makes a rapid
transit to the Newtonian fast-flow part of the viscoelastic
constitutive curve in Fig. 2b), during which the degree of
necking actually decays slightly. Finally, it transients up
that fast-flow part of the viscoelastic constitutive curve,
again with an O(1) rate of necking indicated in green.

Although we have focused the discussion here on the
Giesekus model for the sake of a definite example, a
closely analogous explanation underpins essentially all
the results in Fig. 6. To summarise: under conditions
of a constant imposed force the flow typically sweeps up
the underlying viscoelastic constitutive curve of the ma-
terial. At any given time, the rate of necking is given by
the inverse of the slope of that constitutive curve, shown

in a log-log plot, at the stress that has been attained by
that time. For low imposed forces the flow first sweeps up
the constitutive curve of the solvent contribution, before
transiting to the viscoelastic curve.

One further feature appears in the results for the non-
stretch Rolie-Pole and Pom-Pom models in Figs. 6c) and
e) respectively: here the elastic Considère mode also op-
erates, and is marked as a purple dot-dashed line on the
figures.

V. CONCLUSIONS

By means of linear stability analysis and nonlinear sim-
ulations performed at the level of a slender filament ap-
proximation, we have studied the onset of necking during
the stretching of an initially cylindrical filament of com-
plex fluid or soft solid, separately under conditions of con-
stant imposed tensile stress and constant imposed tensile
force. Our results pertain to highly viscoelastic filaments
of large enough radius that bulk stresses dominate sur-
face effects, with surface tension neglected accordingly.

Under conditions of constant imposed tensile stress,
the flow first quickly attains a state with the strain rate
prescribed by the underlying homogeneous stationary ex-
tensional constitutive curve of the fluid in question, at
the given imposed stress value. During this early time
regime, the filament remains homogeneous to good ap-
proximation, without any significant necking. A second
regime then ensues in which that initially homogeneous
flow destabilises to the formation of a neck. This insta-
bility can occur via one of two modes, the first of which
arises widely across all the constitutive models that we
have studied, while the second is rarer in comparison.

The first mode of instability has a characteristic rate
of necking per accumulated Hencky strain unit set by the
inverse of the slope of the underlying stationary homoge-
neous constitutive curve, on a log-log plot, at the given
imposed stress. This is an important result: essentially
all materials of which we are aware have a positively slop-
ing extensional constitutive curve, and should therefore
be unstable to necking under conditions of a constant im-
posed tensile stress. This prediction is indeed consistent
with ubiquitous reports of necking in the literature.

A possible rare exception to this “constitutive curve”
mode of necking is however predicted in a material that
has a non-monotonic extensional constitutive curve, for
imposed stresses in the regime where that curve has neg-
ative slope, such as could arise in polymer solutions dis-
playing coil-stretch hysteresis [34–36]. It would be inter-
esting to study the implications of the analysis offered
here in that case. It would also be interesting to con-
sider the implications of the presence of a yield stress
in a material for necking (or its possible absence) at im-
posed stresses below yield, where the constitutive curve is
essentially vertical. Necking in constant strain rate and
constant velocity protocols in a yield stress fluid were
discussed previously in [53].



21

Under these conditions of a constant imposed stress
a second, more dramatic mode of necking instability can
also arise. This is essentially the direct counterpart of the
elastic Considère mode predicted earlier by ourselves in
the context of filament stretching at constant imposed
Hencky strain rate [18]. However it arises relatively
rarely: of the six constitutive models studied in this work,
it only occurs in only two of them, and in a relatively re-
stricted regime of strain rate in each case. In particular,
it arises in models of polymeric flow in which polymer
chain stretch is dramatically inhibited: in the Rolie-Poly
model of linear entangled polymers with chain stretch
disallowed, and in the Pom-Pom model of branched en-
tangled polymers with a hard cutoff in the permitted
degree of chain stretch.

We have also studied the onset of necking under condi-
tions of constant imposed tensile force. In this protocol,
in contrast to the case of constant tensile stress, the stress
progressively increases over time in order to maintain a
constant tensile force as the filament stretches out and
gets thinner. (Recall that the force is the product of the
stress and the filament’s cross sectional area.) Typically,
the flow simply sweeps progressively up one of the fluid’s
underlying constitutive branches (whether that of the sol-
vent, or the full viscoelastic constitutive curve). At any
time during this progression the rate of necking is set by

the inverse of the slope of that constitutive curve (on a
log-log plot), at the stress that has been attained by that
time, in close analogy with the case of a constant imposed
stress. Accordingly, a neck is predicted to develop in any
regime in which the measured strain rate signal increases
in time. During progression up a Newtonian or quasi-
Newtonian part of a constitutive curve, a finite-time di-
vergence is predicted in the signal of strain rate (and
associated rate of necking) as a function of time. The
elastic Considère mode also operates in the non-stretch
Rolie-Poly and Pom-Pom models in some regimes.

Throughout this manuscript we have restricted our-
selves to regimes relevant to our slender filament approx-
imation, in which the wavelength of any heterogeneities
that develop along the length of the filament are long
compared with the filament radius. The manner in which
these ‘fluid-like’ necking instabilities cross over to more
dramatic solid-like fracturing at very high imposed loads,
where the sample sharply rips across its cross section, re-
mains an interesting open issue.
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[11] N. J Alvarez, J Maŕın, Q Huang, M Michelsen, and
O Hassager. Creep Measurements Confirm Steady Flow
after Stress Maximum in Extension of Branched Poly-
mer Melts. Physical Review Letters, 110(16):168301, apr
2013.

[12] M. H Wagner, H Bastian, A Bernnat, S Kurzbeck, and
C. K Chai. Determination of elongational viscosity of
polymer melts by RME and Rheotens experiments. Rhe-
ologica Acta, 41(4):316–325, may 2002.

[13] P Szabo, G. H McKinley, and C Clasen. Constant force
extensional rheometry of polymer solutions. Journal
of Non-Newtonian Fluid Mechanics, 169-170:26–41, feb
2012.

[14] J Matta and R Tytus. Liquid stretching using a falling
cylinder. Journal of Non-Newtonian Fluid Mechanics, 35
(2-3):215–229, jan 1990.

[15] T Raible and S Stephenson. Constant Force Elongational
Flow of a low-density polyethylene melt - Experiment

mailto:d.m.hoyle@durham.ac.uk
http://community.dur.ac.uk/d.m.hoyle/ 
http://community.dur.ac.uk/d.m.hoyle/ 
mailto:suzanne.fielding@durham.ac.uk
http://community.dur.ac.uk/suzanne.fielding/


22

and Theory. Journal of Non-Newtonian . . . , 11:239–256,
1982.

[16] M. H Wagner and V. H Rolon-Garrido. Constant force
elongational flow of polymer melts: Experiment and
modelling, 2012.

[17] S. M Fielding. Criterion for Extensional Necking Insta-
bility in Polymeric Fluids. Physical Review Letters, 107
(25):258301, dec 2011.

[18] D. M Hoyle and S. M Fielding. Criteria for extensional
necking instability in complex fluids and soft solids. Part
I: imposed Hencky strain rate protocols. Journal of Rhe-
ology, 60:XXX–XXX, 2016.

[19] V. C Barroso and J. M Maia. Influence of long-chain
branching on the rheological behavior of polyethylene in
shear and extensional flow. Polymer Engineering & Sci-
ence, 45(7):984–997, jul 2005.

[20] G Liu, H Ma, H Lee, H Xu, S Cheng, H Sun, T Chang,
R. P Quirk, and S.-Q Wang. Long-chain branched poly-
mers to prolong homogeneous stretching and to resist
melt breakup. Polymer, 54(24):6608–6616, 2013.
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