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Abstract 

We propose a test statistic for nonzero mean abnormal returns based on a Smooth Transition 

Auto Regressive (STAR) model specification. Estimation of STAR takes into account the 

probability of contaminated events that could otherwise bias the parameters of the market 

model and thus the specification and power of the test statistic. Using both simulated and real 

stock returns data from mergers and acquisitions, we find that the STAR test statistic is robust 

to contaminated events occurring in the estimation window and in the presence of event-

induced increase in return variance. Under the STAR test statistic the true null hypothesis is 

rejected at appropriate levels. Moreover, it exhibits the highest levels of power when 

compared with other test statistics that are widely and routinely applied in short-horizon 

event studies.  
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1. Introduction 

The short-horizon event study method, introduced in the seminal work of Fama, 

Fisher, Jensen and Roll (1969), has been one of the cornerstones of financial economics and 

accounting in the last few decades. Ever since, numerous research papers have endeavoured 

improvements in the basic empirical methodology.
1
 The most notable recent attempts focus 

on the introduction of test statistics for nonzero mean abnormal returns that are robust to 

event-induced increase in return variance (see, for instance, Harrington and Shrider 2007; 

Kolari and Pennönen 2010 and references therein).
2
 More recently, Aktas et al. (2007a) 

emphasize the need to consider event study methods that mitigate the effect of contaminated 

(unrelated) events arising from corporate actions and announcements that may occur during 

the estimation window. It is reasonable to expect that company press releases or leakage of 

private information occurring in the estimation window could create cross-sectional variation 

in the abnormal returns. This would inevitably bias the estimation of the (true) return-

generating process parameters, in particular, the estimated variance of the parameters which 

could deteriorate the detection of abnormal performance in the event window.  

In this study, we sought to make a dual contribution to the empirical corporate finance 

research. First, to tackle the estimation window contaminating-event problem, we estimate 

the widely applied event study market model as introduced by Sharpe (1963) by relying to 

regime switching approaches as a general method, highlighting at the same time the 

                                                           
1
 There is a vast amount of theoretical and empirical studies in the research realm of this topic such the ones of 

Ball and Torous (1988), Corrado (1989), Boehmer et al. (1991), Salinger (1992), Savickas (2003), Dombrow et 

al. (2000), Cyree and DeGennaro (2002), Harrington and Shrider (2007), Ahern (2009), Campbell et al. (2010) 

and Kolari and Pynnönen (2010), among others. The landmark work in this topic is that by Brown and Warner 

(1980, 1985) who investigate the specification (Type I error – rejecting the null when it is true) and power (Type 

II error – failing to reject the null when the alternative hypothesis is true) of several modifications of the short-

horizon event study by assuming that abnormal returns are intertemporally uncorrelated and there is no 

(significant) impact of event-induced variance.  
2
 Abnormal return (AR) is defined to be the difference between the actual return that is observed during the 

event day(s) (namely, the event window) and the expected return which is provided from a return-generating 

model estimated using stock returns data that precede the event (namely, the estimation window). Event-induced 

increase in return variance occurs when variance in the event window exceeds the variance over the estimation 

window; as a consequence, test statistics that ignore plausible implications of unexplained variation in true 

abnormal returns for the structure of heteroskedasticity may fail to detect event-related abnormal performance. 
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importance of the Smooth Transition Auto Regressive (STAR) specification; this is the first 

time that the STAR model is utilized to compute an event study test statistic for the detection 

of nonzero mean abnormal returns. STAR can be viewed as a statistical method that filters 

out firm-specific events that could otherwise induce unduly variance in the model’s generated 

returns (see Hansen 2011 for a detailed review in threshold autoregressive models and their 

applications). STAR is a regime-switching model that allows for two regimes, associated 

with extreme values of the transition function, where the transition from one regime to the 

other is done in a smooth or abrupt manner (see Terasvirta and Anderson 1992; Terasvirta 

1994, among others). We employ the STAR method to better model the stock returns data 

generating mechanism by taking into account the probability of the occurrence of unrelated 

firm events. In this respect, estimated parameters of the market model should be less subject 

to the influence of contaminating events in the estimation period compared to more 

traditional rival choices. Further, the findings of this study highly support the application of 

the STAR specification in the event study framework since it fits the empirical stock returns 

data generating process much better than any other rival method. Thus, the STAR event study 

test statistic could allow the researcher to conduct valid large scale statistical analysis of 

abnormal returns that are much better specified, as well as more powerful in detecting the 

(true) size of the abnormal returns around a particular corporate announcement.  

Second, we consider biases arising in short-horizon event study of test statistics for 

nonzero mean abnormal returns using real data from Mergers and Acquisitions (M&As) for 

the period 1980-2010. The majority of prior literature focuses on providing analytical and 

empirical evidence of the resulting test statistics biases using randomly selected firms with 

simulated induced contaminated events during the estimation period (e.g., Aktas et al. 2007a; 

Harrington and Shrider 2007). Nevertheless, by carrying out specification and power tests on 

estimation periods using simulated returns data may not always be representative enough of 
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the resulting cross-sectional variation in abnormal returns emerging from event-

contamination that is taking place in real situations. In the context of M&As, which by 

selection reflects a non-random sample (e.g., Fuller et al. 2002; Bhagat et al. 2005; Guo and 

Petmezas 2012), it is quite frequent for bidding firms to engage in several other unrelated 

corporate activities (e.g., earnings announcement, changes to dividend policy, etc) in the 

period preceding the deal announcement (see also, Bhagat et al. 2005; Aktas et al. 2009). In a 

vast amount of M&A deals, the number of major corporate events that may emerge in the 

estimation window is rather high: for example, Fuller et al. (2002) study a M&As sample 

where bidding firms complete bids for five or more targets within a three-year window. 

Moreover, the nature and duration of an event may not be captured accordingly with 

simulated contaminated stock-return series. Company press releases or leakage of private 

information usually happens rather close to the event announcement (e.g., Harrington and 

Shrider 2007; Kolari and Pynnönen 2010; Guo and Petmezas 2012). Therefore, any 

contaminated events are more likely to cluster in a non-random manner in the period just 

before the announcement day (implying, for instance, the need of a right-skewed distribution 

for capturing the arrival of news in the market). Lastly, the widely-adopted simulation 

approach of Brown and Warner (1980, 1985) does not consider the possible endogeneity of 

announcement decisions in the presence of private or market information. Harford (2005), for 

example, documents that M&As cluster in time due to the market timing of industry shocks. 

There is also evidence to support that market and firm-specific news-releases (Délèze and 

Hussain 2014; Laopodis 2010) and contagion effects caused by financial crises (Kenourgios 

et al. 2013) cause simultaneous price movements to different asset classes across different 

markets. This increases significantly the likelihood to observe great overlap on the event 

dates which could introduce contemporaneous correlations in the abnormal returns leading to 
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incorrect inferences regarding the detection of abnormal returns.
3
 All abovementioned cases 

may be rather compelling to be modelled properly under the simulated data set environment, 

especially when corporate event announcements occur in extreme market conditions where, 

for instance, firm-specific mean stock return or volatility are particularly high. Therefore 

assessing any aberration between simulated and real events that could impact the 

specification and power of event study test statistics remains an open question which we 

investigate in this paper.   

From the stand-point of both the academic researcher and the investment practitioner, 

it is crucial to know which cross-sectional abnormal return test statistic(s) should be 

employed to make inferences; this is especially important for many corporate events such as 

M&As that represent huge deals and associate with enormous market dollar values.
4
 To better 

answer this question under a general viewpoint, we undertake a horserace of return-

generating process and statistical tests. We identify the one(s) that are best suited using both, 

simulated stock returns in accordance to the traditional approach (Brown and Warner 1980 

and 1985; Boehmer et al. 1991), as well as real stock returns coming from M&A deals. We 

focus on the most prominent cases of methods proposed so far in the literature. First, we 

include approaches that have been extensively used in prior empirical studies like the 

standardized cross-sectional test proposed by Boehmer et al. (1991), RANK test proposed by 

Corrado (1989) and GARCH test proposed by Savickas (2003). Second, we consider methods 

having greater flexibility to mitigate the presence of firm-specific (unrelated) events that 

precede corporate announcements like the BETA-1 approach, the two-state Markov-

switching market model test (TSMM) proposed by Aktas et al. (2007a) and the STAR test 

                                                           
3
 Cam and Ramiah (2014) also discuss the possibility that researchers may reach different results depending on 

the financial econometrics adjustments and asset pricing model used when calculating expected returns. 
4
 Although we focus our analysis on M&As as a major corporate event, our inferences could easily be 

generalized for any other corporate decisions that exhibit similar market performance, such as season equity 

offerings, share repurchase, goodwill write offs, cross-listings, etc.  
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statistic introduced in this study. For the TSMM, we do not only consider two-state variance 

regimes as in Aktas et al. (2007a), but we also investigate two-state regimes in the market 

model parameters (i.e., stock return mean regression equation).
5
 Unlike their peers, the 

regime-switching family comprised by the TSMM and STAR models, postulate an adaptation 

of the event study methodology that automatically takes into consideration the probability of 

contaminated events that could otherwise bias the estimated parameters of the market model 

(affecting in this way the specification and power of test statistics). Therefore, they should 

exhibit superior robustness to event-induced increase in return variance caused by the cross-

sectional variation in the effects of a firm-specific event occurring in the estimation window. 

In this respect, our null expectation is that test statistics computed from the regime-switching 

family, in particular from the STAR model, would perform significantly better than their rival 

methods.  

Our results show that the traditional test statistics employed by prior researchers in the 

short-horizon event study are mis-specified and exhibit weak statistical power in the presence 

of contaminating events in the estimation period, especially in the presence of event-induced 

increase in return variance. On the contrary, the STAR methodology introduced in this study 

is the best choice since it is resilient in any type (simulated or real) of firm-specific 

contamination that may occur; moreover, its statistical power is high even under severe 

event-induced increase in return variance. The Markov switching regression models as 

proposed in Aktas et al (2007a) are found to be the second best choice, although not too 

behind from the performance of the STAR model. Nonetheless, with real stock returns sub-

samples which present either extreme mean stock returns or extreme stock return volatility, 

we find a clear superiority of the STAR method all over other rival ones. Previous research 

                                                           
5
 Letting the market model parameters being regime-dependent allow a more realistic representation of the 

return-generating mechanism since prior empirical research has revealed a significant time-variation in the slope 

parameter which depends on rising and falling market conditions (Hays and Upton 1986; Klein and Rosenfeld 

1987; Chang and Weiss 1991; Chiang et al. 2013). 
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has largely overlooked the possibility that there may be significant aberrations between 

simulated and real events that could induce unduly variance in the estimation window that 

inevitably could impact the power of the test statistics.
6
 Therefore, the overall observed 

superiority of the STAR event study test statistic, especially under extreme market 

conditions, is evidence to support the use of this method in future empirical work relying on 

short-horizon event studies.  

The paper is organized as follows. Section 2 presents our experimental design 

including the data we use, the simulation setup we follow regarding the event study return-

generating process and relevant test statistics that we investigate. Section 3 discusses the 

performance results from the simulated and the real stock-returns data. Section 4 concludes 

the study.  

 

2. Methods and experimental design 

Following the seminal work by Brown and Warner (1985), previous researchers 

generate simulated random shocks in the estimation window in two steps. First, firms are 

randomly picked from the universe of stocks included in the Center for Research in Security 

Prices (CRSP) database. Second, an extraordinary event is simulated for each firm and 

randomly introduced in the real stock price series in the estimation window. Such a 

contaminated event is necessary to artificially induce variance in the estimation parameters of 

the market model. 

                                                           
6
 Campbell et al. (2001) document a noticeable increase in firm-level volatility relative to market volatility over 

the period from 1962 to 1997 which is associated with a decline in the explanatory power of the market model 

(see also empirical evidence in Aktas et al. 2007b, as well as Arora et al. 2009 for emerging markets). Kothari 

and Warner (2007) note that this is highly relevant on the implication behind the event study because it suggests 

a time-variation to the power of test statistics to detect abnormal performance for certain events. Studies that 

rely on purely simulated variance-induced events may fail to properly capture such stylized (structured) patterns 

in the returns-generating mechanism.    
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Our empirical analysis utilizes two sources of data return-generating processes to 

investigate the specification and power of test statistics. First, we follow the traditional event 

study approach proposed by Brown and Warner (1980, 1985) to simulate abnormal 

performance and variance increase event days. Since then, a notable amount of other research 

studies have adopted this approach (see, for instance, Corrado 1989; Corrado and Zivney 

1992; Boehmer et al. 1991; Savickas 2003; Aktas et al. 2009; and Kolari and Pynnönen 

2010). The traditional approach relies solely on simulated data to construct the event-induced 

variance increase in the return-generating process. In addition, we follow the notion 

postulated by Aktas et al. (2007a) to contaminate the event study estimation window. 

Second, we repeat all specification and power tests using a large sample of M&As to 

investigate the impact of estimation period contamination under the influence of unrelated 

events and of event-induced increase in return variance that may emerge naturally for firms 

that engage in this particular corporate activity. It is of vital importance to investigate 

whether assertions regarding the specification and power test statistics obtained with 

simulated contaminated returns also remain unchanged with real returns on which firm-

specific events emerge naturally and reflect news arrival in a purely stochastic manner (i.e., 

in accordance with the efficient market hypothesis). M&A announcements reflect real-event 

contamination that naturally induce variance in the estimation window. In this respect, we 

inherently take into account both, the cross-sectional variation relating to the underlying 

economic effects of a real event, as well as any structure in heteroskedasticity arising from 

these events.
7
 Hence, by investigating the performance of test statistics using a large data set 

of M&As we avoid any (unrealistic) assumptions imposed when contamination is done in an 

artificial manner. 

                                                           
7
 Both of these elements are deemed important since Harrington and Shrider (2007) identify them to be 

“troubling features” of the statistical tests reported in many prior studies. In addition, the real return-generating 

process would allow many different sorts of unrelated events to affect the estimation period, revealing which 

tests are robust when employed with non-simulated data. 
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2.1. Event study method  

2.1.1. Return generating processes 

A classical approach for abnormal returns is based on the market model introduced by Sharpe 

(1963): 

Rj,t = aj + βjRm,t + εj,t                     (1) 

where,  

– αj and βj are the coefficient estimates for firm j; 

– Rj and Rm are vectors of returns for firm j and for a market portfolio proxy m on day t, 

respectively; and the residuals are supposed to be independent and identically distributed and 

capture the abnormal behaviour.  

An alternative way to obtain event-day predictions and standard errors is by 

employing the market model augmented by a dummy variable to capture the effects of the 

event (see, Karafiath 1988; Salinger 1992): 

Rj,t = aj + βjRm,t + γjDj,t + εj,t            (2) 

where,  

– Dj is a dummy variable equal to 1 at the event window for firm j, and 0 otherwise; 

The coefficient γ captures the abnormal return which in essence is the forecast error of 

what is expected to observe using a normal return-generating model compared to what is 

really observed during the event window. This model however, as shown by Aktas et al. 

(2007a), is problematic and its OLS solution overestimates the standard error of an individual 

firm's abnormal returns when the true return-generating process has two-states (see also 

discussions in Salinger 1992). This is mainly attributed to the fact that the variance 

covariance matrix is rather a state dependent and no longer homoskedastic. Therefore they 

suggest a model that captures a low and high variance regime. Hence, building on Aktas et al. 
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(2007a), we incorporate regime dependent intercepts and slope coefficients in the mean 

specification as follows: 

 
 

, , , , , , ,

2

, , ,~ 0,

j t j S j S m t j j t j S t

j S t j S

R a R D

N

     

 
, (3) 

where S is a state variable, with S = 1 for the low regime state and S = 2 for the high regime 

state. More specifically, parameters αj,S and βj,S allow to explicitly incorporate the presence of 

contaminated events into the mean specification of the model. Similar intuition applies for the 

variance where the high variance state is greater than the low variance state ( 2 2

,2 ,1j j   ).
8
  

As for the way the transition between the two regimes is governed, we follow 

methodology and notations as in Hamilton (1994). More specifically the transition between 

the two regimes is governed the by a Markov chain of order 1, for which the transition matrix 

is given by: 

 
11 22

11 22

1

1

p p
P

p p

 
  
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 (4) 

where pkl=p(St = k|St-1 =l) corresponds to the probability of changing from state l to state k 

with the unconditional probability of the regime given by:  
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
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  11

11 22

1
2

2
t

p
p S

p p


 

 
 

 (5) 

In addition, we introduce a STAR model specification that has the capacity to capture 

the state dependent generating process of stock returns. This model can be thought as an 

extension of the autoregressive models allowing for changes in parameters according to the 

                                                           
8
 Salinger (1992) also discusses deficiencies of the traditional approach on the estimation of the abnormal 

returns variance when the market model parameters are not stable and which could lead to incorrect inferences 

about the detection of abnormal returns. 
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value of a transition variable. More specifically, the market STAR model specification can be 

presented as follows: 

   (1) (1) (2) (2) ( )

, , , , ,

( ) 2,( )

,

( ) , , ( )(1 , , )   

~ (0, )

i

j t j j m t t j j m t t j j t j t

i i

j t j

R R G z c R G z c D

N

            

 
,  (6) 

where i = 1 for the low state of the market i = 2 for the high state of the market. To assess 

whether the effects on the returns vary with the state of the market, we employ a continuous 

transition function  , ,tG z c , which changes smoothly from 0 to 1, as the transition variable 

zt increases. A popular choice is the logistic function:
9
 

  
1

( , , )
1 exp

t

t

G z c
z c





  

. 
(7) 

In practice the appropriate transition variable zt is unknown, however a good choice is to use 

lagged endogenous variables (in our case, Rj,t-1). This is also supported by the LM-type 

statistic (see Terasvirta 1994, for further details) which was conducted during the analysis 

and supports that the first lag of the dependent variable is the best choice. Therefore, at any 

given point in time the evolution of Rj,t is determined by a weighted average of two different 

regression models. The weights assigned to the two models depend on the value taken by the 

transition variable zt. For small (large) values of zt,  , ,tG z c  is approximately equal to zero 

(one) and, hence, almost all weight is put on the first (second) part of the model. 

The parameter c, denotes the threshold between the two regimes corresponding to 

 , ,tG z c =0 and  , ,tG z c =1, in the sense that the logistic function changes monotonically 

from 0 to 1 as zt increases.
10

 

                                                           
9
 This logistic form has been widely used for smooth transition models. For further details we refer to Terasvirta 

and Anderson (1992), Terasvirta (1994), and van Dijk and Franses (1999).  
10  

The starting values of ζi and ci (with ζi >0) are determined by a grid search and are estimated in one step by 

maximizing the likelihood function while the threshold point between the states is estimated by the model.  
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The parameter ζ determines the speed at which the weights between the two parts of 

the specification change as zt increases; the higher ζ, the faster is this change. If ζ → 0, the 

weights become constant (equal to 0.5) and the model becomes linear, whereas, if ζ → ∞, the 

logistic function approaches a Heaviside function, taking the value of 0 for zt < c or 1 for zt > 

c. 

Although the STAR and Markov specifications belong to the family of switching 

models, there is an important conceptual difference between them. As noted by Deschamps 

(2008), the STAR model incorporates strong prior knowledge on the factors determining the 

onset of transitions between regimes (through the transition variable), while in the Markov 

switching model, such prior knowledge only consists in a flexible evolution equation. 

Therefore, the choice of an appropriate transition variable allows STAR to make better use of 

available information to deliver better results. 

 

2.1.2. Statistical tests of significance 

During the past decades, many studies contributed test statistics to the area of the event 

study methodology. These tests are the BMP (Boehmer et al. 1991), BETA-1, RANK 

(Corrado 1989), GARCH (Savickas 2003), TSMM (Aktas et al. 2007a) and its mean return 

regime dependent extensions. 

To introduce the different tests, we follow the notation used by Boehmer et al. (1991) and 

Aktas et al. (2007a): For each test, we consider the null hypothesis of no cross-sectional 

average (cumulative) abnormal returns around the event date.
11

 

 N: number of firms in the sample; 

 ARjE: abnormal return of firm j on the event date (following Eq. (2));  

                                                           
11

 These tests are analyzed very briefly. For further information about the tests we refer the reader to the original 

contributions made by the authors of each test. 
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 ARjt: abnormal return of firm j on date t; 

 T: number of days within the estimation period; 

 TE: number of days within the event period; 

 mR : average return on the market portfolio during the estimation period; 

 Rm,E: market return on the event date 

 Rm,t: market return on date t 

 Ŝj: standard deviation of firm j's AR during the estimation period; 

 SRjE: standardized AR of firm j on the event date, calculated as: 

 

 
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 (8) 

 

BMP test 

The BMP test employs a cross-sectional approach that relies on the use of standardised 

abnormal returns and it was introduced to deal with event-induced increase in return variance. 

The BMP test takes the following form: 
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1 1
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
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 (9) 

 

BETA-1 test 

The BETA-1 test is a simplification of the BMP test (where the restrictions β = 1 and α = 0 

transform Eq. (1) to the market-adjusted model). The test is based on cross-sectional 
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estimates of the standard deviation of the event-day abnormal returns, ARE. The BETA-1 test 

takes the following form:  
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1 1
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 (10) 

This test does not rely on estimating the unconditional expected return with stock returns data 

prior to the event window. Due to this feature, it has been employed by several empirical 

studies to investigate wealth effects of M&As (e.g., Fuller et al. 2002; Moeller et al. 2004) in 

an effort to isolate the event window abnormal returns from any unrelated events that could 

have been observed in the estimation window prior to the announcement.    

 

 RANK test 

This is a non-parametric test based on the ranks of abnormal returns proposed by Corrado in 

1989 (see also Corrado and Zivney 1992). The RANK test merges the estimation and event 

windows in a single time series. Abnormal returns are sorted and a rank is assigned to each 

day. If Kjt is the rank assigned to firm j’s abnormal return on day t, then the RANK test is 

given by: 

 

 

1

1 N

jEj

RANK

K K
NT

S K







  (11) 

where K  is the average rank and S(K) is the standard error, calculated as: 

   
1

1

1 1T TE
N

jtj
t

S K K K
T TE N






 
  

  
    (12) 

The use of ranks neutralizes the impact of the shape of the abnormal returns distribution (e.g., 

its skewness and kurtosis and the presence of outliers). It should therefore represent an 
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attractive alternative way of neutralizing contaminating events within the estimation window 

that may cause event-induced increase in variance and cross-correlation.  

 

GARCH test 

This test assumes that the variance of the error term of Eq. (2) is a time varying process. By 

adopting a GARCH approach Savickas (2003) suggested the use of the following return-

generating process: 

 , ,

2

, , 1 , 1 ,

~ 0,j t j t

j t j j j t j j t j j t

N h

h h d D 



     
 , (13) 

where hj,t is the conditional time-varying variance and ωj, φj, θj and dj are the coefficients of a 

GARCH(1,1) specification. Due to its time-varying nature, the GARCH model has the ability 

to control for the time-varying variance of AR and the event-induced increase in return 

variance.  

The conditional variance hj,t provides a natural estimator of the AR variance. Savickas 

(2003) used it to standardize the AR before proceeding with the BMP test. In this setting, AR 

is captured in the γ estimate of Eq. (3) and Eq. (8) is replaced by: 

*

,
ˆˆ

jE j ESR h    (14) 

 

Mean-Variance two-state market model test (MV-TSMM) 

The MV-TSMM test has been proposed by Aktas et al. (2007a) and utilizes the restricted 

version of Eq. (3) where only the variance is assumed to be state dependent (hereafter V-

TSMM). The idea of this test is based on the fact that the presence of contaminated events 

within the estimation window has an impact on the (ex-post) estimation of the abnormal 

return variance forcing in a way traditional tests to overestimate the variance of the residuals 
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during the estimation period. To deal with this bias, the V-TSMM test relies on the Markov 

switching regression framework developed by Hamilton (1989, 1994) and as in the previous 

GARCH-test, the standard error of the γ estimate is used to standardize the AR as in Eq. (14). 

The test can then be constructed using the same approach as for ZBMP: 
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 (15) 

Prior empirical research has revealed a significant time-variation in the slope parameter 

which depends on market conditions (Hays and Upton 1986; Klein and Rosenfeld 1987; 

Chang and Weiss 1991; Chiang et al. 2013). Therefore, neglecting the state effects in the mean 

equation may lead to misleading inferences. To avoid this problem, we suggest using the 

unrestricted version of Eq. (3) and proceed using the same steps as before.
12

 We name this 

test ZMV-TSMM.  

 

STAR test  

Finally, the STAR test statistic, utilizes Eq. (6) were mean and variance are assumed to be 

state dependent.
13

 These states change according to the behaviour of the transition variable 

(in our case of the one-period lagged returns) filtering out firm-specific contaminating events 

that could otherwise influence the mean and variance in the model’s estimations.
14

 This 

model shares similar benefits to the rest of the regime specifications and has the advantage 

that it endogenously determines (and quantifies) the level of change from one regime to the 

other.  

                                                           
12

 Estimation is based on the Maximum-likelihood method using the MSVAR library in the GAUSS software. 
13

 Programming code for the STAR event study model is freely available from the authors’ websites.  
14

 The one-period lagged return was proved to be the most appropriate transition variable for more than 90% of 

the firms in our sample (based on the LM-type test). 
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As before, standard error of the γ estimate is used to standardize the AR as in Eq. (14). 

The test is constructed using the same approach as for ZBMP. We denote this test ZSTAR:  
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 (16) 

 

2.2. Data and sample construction 

2.2.1. Simulated return generating processes 

To generate the theoretical event-free return-generating process, we consider all 

stocks reported in the CRSP daily returns file from January 1980 to December 2010. 

Contaminating-events in each stock time-series are generated by random sampling from a 

uniform distribution, whereas for each stock we safeguard that the resulting return time-series 

(estimation period and event window) does not belong in the M&As data set used in this 

study. The estimation window is going from -255 to -30 days relative to the event date for the 

traditional tests estimated using the market model following Eq. (1). For the set of tests 

employing the dummy-based market model following Eq. (2), estimation is done from -255 

to +5 days relative to the event date. Following Fuller et al. (2002), we choose in all tests to 

measure cumulative abnormal returns (CARs) in the 11-day window [-5,+5] around the event 

announcement date. All stocks and event dates were randomly chosen with replacement such 

that each stock/date combination had an equal chance of being chosen at each selection. In 

the spirit of previous studies (e.g., Savickas et al. 2003; Aktas et al. 2007a; Harrington and 

Shrider 2007), we exclude securities with missing information on the event day and securities 

with less than 100 nonzero returns over the estimation window and no missing prices in the 

11-day window surrounding the event-announcement. The latter treatment is to avoid 

observations where the security had recently been added to the CRSP and to limit stocks that 
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are not actively traded in the market. Following the norm in similar studies, for each 

replication we construct 1000 samples of 50 stocks.
15

  

We investigate the specification and power of the test statistics by deliberately 

contaminating the data in the estimation window. We simulate significant events by 

introducing abnormal returns (of random sign) into the estimation window on randomly 

selected points in time which are twice the standard deviation of the actual stock. To generate 

stochastic shocks, we follow the method proposed of Brown and Warner (1985) by adding 

another two demeaned returns randomly drawn from the estimation window. The sign of the 

simulated abnormal return is determined by random sampling from a Bernoulli distribution. 

Allowing either a positive or a negative sign for the abnormal return merely reflects the 

unknown type of the events that may emerge in the estimation window. In statistical terms, 

the return for stock j on a contaminated date t, denoted *

,tjR  is generated as follows: 

)()(2 ,,,

*

, jYjjXjRtjtj RRRRRR
J

      (17) 

where tjR ,  is the actual return, XjR ,  and YjR ,  are the returns randomly selected from the 

estimation period and jR  and 
JR are the mean return and standard deviation in the 

estimation window. 

The number and nature of the events during the estimation window is determined in 

two steps. First, a random sample is drawn from a Poisson distribution with a mean of 2 

which captures the number of events during the estimation window. Events were then 

randomly assigned to specific days in the estimation window by random sampling from a 

                                                           
15

 We choose to report results using a portfolio size of 50 stocks to maintain conformity with notable previous 

studies (e.g., Brown and Warner 1980; Savickas 2003; Aktas et al. 2007a; Harrington and Shrider 2007; Kolari 

and Pynnönen 2010 etc). Nevertheless, some recent studies such as the ones by Ahern (2009) and Campbell et 

al. (2010) simulate larger stock portfolio sizes. We have repeated the whole analysis with 1000 samples of either 

100 or 250 stocks each to find that our results/inferences remain unchanged. 
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uniform distribution. Second, the length (in number of days) of each event was again 

randomly sampled from a Poisson distribution, this time with a mean of 4. 

On the simulated event day, the abnormal performance is 0% for the specification 

analysis and +1% for the power analysis.
16

 To capture the event-induced increase in return 

variance, similarly to Aktas et al. (2007a) each stock’s day 0 return, Rj,0, was transformed to 

triple its variance by adding 2 demeaned returns randomly drawn from the estimation 

window. The event-day transformed return was again following the nature of Eq. (17). In all 

cases, our market portfolio is taken to be the CRSP value weighted index.
17

  

 

2.2.2. Real data return generating processes 

This paper also strives to empirically validate the robustness of each event study 

approach to the return-generating mechanism by detecting abnormal performance in real data. 

It is intriguing from a practical perspective to investigate whether the results from simulations 

are also obtained when dealing with a real sample of corporate event announcements such as 

M&As. Therefore, we depart from the previous literature and instead of simulating abnormal 

returns to deliberately contaminate the estimation window with some significant events we 

randomly choose stock return time-series from a sample of M&A deals.
18

 In this manner, 

contaminated (unrelated) events due to other corporate actions that precede the acquisition 

announcement emerge naturally in the estimation window. This treatment allows us to be 

more realistic with respect to the characteristics of the contaminating events, which instead of 

                                                           
16

 We reach qualitatively similar results for any other abnormal performance above 1%. 
17

 All results are robust when we instead use the CRSP equally weighted index. 
18

 The samples for the tests are completed as follows. For the 10% rejection rates: to construct the 1000 portfolio 

samples, each 50-firm sample is formed by randomly picking 45 firms from the universe of CRSP stocks (event-

free sample) and 5 firms from the M&As data set (contaminated sample). Likewise, for the 5% rejection rates, 

in the first (second) 500 samples we randomly pick 3 (2) firms from the M&As data set and 47 (48) firms from 

the universe of CRSP stocks. For the 1% rejection rates, in the first (second) 500 samples we randomly pick 1 

(0) firms from the M&As data set and 49 (50) firms from the universe of CRSP stocks.     
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being artificially generated using some pre-determined nuisance distributional parameters, 

are taken from stock returns of firms that undergo a real corporate action. 

The analysis includes all merger and acquisition announcements involving U.S. 

targets and taking place in the period 19802010, extracted from the Securities Data 

Corporation (SDC) database. We require that firms are listed in NYSE, AMEX or NASDAQ 

with available CRSP data, the outcome of the deal is known (either completed or withdrawn), 

and the deal value is over 1 million USD. We exclude deals whose value represents less than 

1% of the bidder’s market capitalization. The final sample includes 4421 bidders and 5928 

targets which constitute the universe of our real stock returns data.  

Our research design with the real data closely follows the one we implement with the 

simulated stock returns. The aim of this analysis yet, is to validate the power of the event 

study when the estimation window is naturally contaminated by disruptions in the normal 

return-generating process, of the size and amplitude we might expect from various real-world 

corporate event announcements. Therefore, unlike the simulation case, various 

contaminating-events are assumed to inherently exist in the estimation window. Estimation 

and event window lengths are taken to be the same as with the simulated paradigm. To be 

able to study the rejection rates of the test statistics under the no event-induced increase in 

variance case, we enforce a neutral abnormal performance of 0% on the real event date by de-

meaning the real stock returns in the 11-day period [-5,+5] around the event date.
19

 In this 

way the actual event market reaction is neutralized and the event window with actual data has 

similar behaviour to the simulated data. Thereafter, to capture the event-induced increase in 

variance phenomenon each security's day 0 return, Rj,0, was transformed to triple its variance 

by adding 2 demeaned returns randomly drawn from the estimation window. The event-day 

                                                           
19

 Unreported findings suggest that our results are robust to longer or shorter event windows (e.g. [-20, +20] and 

[-1, +1]. 
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transformed return was again following the nature of Eq. (17). Finally, to study the power 

analysis of each method, we introduce an 1% abnormal return on the real event date. 

 

3. Discussion of results 

3.1. Simulated contaminated events 

Following previous studies, we first provide analytical and empirical evidence of the 

resulting biases using randomly selected firms with artificially induced abnormal events 

during the estimation period. Our results are presented in Tables 1 to 4, which show rejection 

and power rates. In particular, Tables 1 and 3 provide analysis on specification tests (Type I 

errors) under the null hypothesis of no event effect on the abnormal returns, while Tables 2 

and 4 report power tests (Type II errors) under the alternative hypothesis of nonzero mean 

abnormal returns. Tables 3 and 4 capture event-induced increase in return variance generated 

by stochastic shocks to comfort to recent theoretical and empirical evidence that documents 

that all events induce variance (see, Harrington and Shrider 2007). Nevertheless, to facilitate 

comparisons with prior literature, Tables 1 and 2 report specification and power analysis 

under the no event-induced increase in variance case. Results are presented for the BMP, 

BETA-1, RANK, STAR, GARCH, V-TSMM and MV-TSMM tests. 

Prior to examining the performance of various statistical tests of significance, we 

investigate the in-sample performance of the models used in this study. We rely on two 

widely used loss functions, namely the mean square error (MSE) and mean absolute error 

(MAE). In particular, we find that the STAR model specification delivers the overall best 

results with MSE (MAE) equal to 0.98 (0.77), followed by MV-TSMM with loss values of 

1.00 (0.81) and V-TSMM with 1.02 (0.82). The rest two model specifications, namely the 

GARCH and market model specifications deliver the worst fitting performance results with 

much higher loss values. The in-sample performance of the alternative market models 
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provides empirical support for the application of the STAR specification in the event study 

framework since it fits the returns data over the estimation window much better than any 

other rival method. Therefore, in-sample modelling performance of empirical stock returns 

generating process renders the use of the STAR method more desirable. 

 

3.1.1. Tests with no change in return variance 

Table 1 presents rejection rates for test statistics when an event creates no abnormal 

returns and no increase in variance in the event window. Panel A of Table 1 shows that if 

contaminating events are not present in the estimation window, all tests perform relatively 

well with BMP and TSMM to look the most attractive ones. Similar results are obtained in 

the case of contaminating events in the estimation window since as it can be seen in Panel B 

rejection rates are similar to the ones presented in Panel A. 

[Insert Table 1 about here] 

Table 2 presents power analysis in the case where an event creates an increase in the 

event window returns but no increase in variance. Panel A provides the analysis when the 

estimation window is not contaminated while in Panel B the same analysis is presented in the 

case of contaminating events. In Panel A of Table 2 we observe that RANK is the most 

powerful test. The less powerful tests are the BETA-1 and GARCH. When the significance 

level is 1%, STAR and V-TSMM provide similar results, while in the case of 5% and 10% 

levels, we find similar results for STAR and MV-TSMM. In the presence of contaminating 

events as shown in Panel B of Table 2, BETA-1 and GARCH are still the less powerful tests. 

In the case of 1% and 5% significance levels, RANK is the best approach and MV-TSMM 

the second best one. When the significance level is 10%, MV-TSMM performs slightly better 

than RANK. It is worth mentioning that while the power of the RANK test in Panels A and B 

seems to be the same, we do not observe the same behavior for the MV-TSMM. Particularly 
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for the MV-TSMM we notice an increase in the power when contaminating events are 

present. Furthermore, we observe that the STAR, V-TSMM and BMP allow the presence of 

contaminating events to be controlled much better for, without severe changes in power. This 

argument is not valid in the case of GARCH since a reduction in the power of the test is 

observed in the presence of contaminating events.  

[Insert Table 2 about here] 

Taken all evidence together from Tables 1 and 2, the traditional BMP and BETA-1 

approaches seem to perform well in the presence of contaminating events. Yet, for BETA-1 

this comes at a significant cost when someone considers the reduction in its power. Likewise 

Aktas et al. (2007a) and Kolari and Pennönen (2010), among others, our analysis reveals that 

under the simulated setting, the RANK test appears to be a well attractive alternative since is 

seems resilient to the presence of contaminating events and preserves the highest levels of 

power among the candidate tests in the absence of event-induced increase in variance. The 

more elaborated tests of the regime-switching family (STAR, V-TSMM and MV-TSMM) do 

not seem to outperform overall the (less complex) traditional tests in the absence of event-

induced increase in variance. Nonetheless, Harrington and Shrider (2007) provide theoretical 

and empirical evidence to support the notion that all events induce variance. Therefore, the 

following section compares the statistical performance of the battery of tests we employ in 

our analysis in a more realistic fashion where we simulate also a variance increase on the 

event date. 

 

3.1.2. Tests with variance increase in the event window 

Table 3 reports rejection rates for different cross sectional test statistics when an event 

creates no abnormal returns but increases variance in the event window. Panel A and Panel B 

of Table 3 show that the RANK test is poorly specified when an event-induced increase in 
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return variance is present. The traditional BMP continues to exhibit relatively good 

performance in terms of the specification tests both, in the absence or presence of 

contaminating events. Furthermore, for the family of the regime-switching models rejection 

rates are quite close to the expected ones and do not seem to be much different in Panels A 

and B, proving supportive evidence that these tests are robust in the presence of 

contaminating events under the induced increase in variance analysis.  

[Insert Table 3 about here] 

In Table 4 results show the power analysis for different test statistics when an event 

creates an increase in returns and variance. Comparing the results of Tables 2 and 4 we 

observe that the presence of an event-induced increase in return variance, drastically affects 

the power of all tests. In particular, the traditional BMP test statistic exhibits a severe 

reduction in power and appears to be extremely sensitive to the presence of event-induced 

increase in variance. In a similar fashion, BETA-1 and GARCH perform even worse than 

BPM and appear to be extremely weak in detecting abnormal performance in the presence of 

variance increases events. Contrary to its badly misspecification presented in Table 3, RANK 

shows the highest power from all traditional test statistics. The regime-switching family of 

models, STAR, V-TSMM and MV-TSMM, seem however to be the most attractive 

approaches in this investigation since by comparing the results in Panel A and Panel B of 

Table 4 there is a significant increase in the power of these three tests.  

[Insert Table 4 about here] 

Since the performance of the test statistics differs significantly with respect to the 

specification error (as shown in Table 3), power analysis which is tabulated in Table 4 is not 

directly comparable across the different tests. Therefore, to further scrutinize our findings, we 

employ a graphical method proposed by Davidson and Mackinnon (1998), namely the size-

power curves, which allows the comparison of alternative test statistics that have different 
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size. The results are presented in Figure 1: Panel A depicts the size-power curves in the 

absence of contaminating events in the estimation window, whereas, Panel B depicts 

evidence relating to the behavior of the tests in the presence of contaminating events. 

Consistent with the results in Aktas et al. (2007a), the size-power curves of BETA-1 and 

GARCH reveal that these are the least powerful tests. The widely applied BMP and RANK 

tests perform much better than BETA-1 and GARCH, yet their performance is much inferior 

compared to the regime-switching family models. In particular, the graphical evidence in 

Figure 1 strongly supports that the STAR event study model provides the overall most 

powerful test statistics, since its curve dominates all other test statistic curves, both without or 

with contaminating events. The MV-TSMM and the TSMM test are the second best choices.  

[Insert Figure 1 about here] 

Overall, empirical evidence so far lends credence to the use of the regime-switching 

family models and in particular towards the utilization of the STAR event study model which 

appears to be the most accurate and robust method in the presence of both, event-induced 

increase in return variance and contaminated events.
20

 

 

3.2. Real sample of M&As data  

Undoubtedly, the traditional simulated type event study approach has been routinely 

utilized to investigate specification and power performance of standard event study methods 

in the presence of artificially contaminated events and event-induced increase in variance 

cases. It remains interesting, however, to empirically validate whether similar model rankings 
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 To further guard against erroneous inferences that may arise in the presence of cross-sectional correlation and 

non-normal stock returns, we also apply the adjusted BMP test (cBMP) of Kolari and Pynnönen (2010) and the 

generalized RANK test (GRANK) of Kolari and Pynnönen (2011). Overall, performance of cBMP and GRANK 

is better when compared to their initial counterparts (i.e., the BMP and RANK tests, respectively). Our empirical 

results and inferences, however, are unchanged regarding the superiority of the regime-switching models and in 

particular of the STAR event study method over all other test statistics (the same holds true for the analysis that 

follows in Section 3.2). For the sake of brevity, we omit presenting results of these two tests in the tables; yet for 

illustration purposes and completeness, we include their size-power curve performance in Figures 1 and 2. 
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in terms of specification and power tests are also observed when dealing with real-world 

situations. Therefore, we focus on actual return generating processes coming from M&As 

where estimation period contamination and event-induced increase in return variance should 

emerge naturally for firms that engage in this particular corporate activity. 

The results from the M&As are presented in Table 5. Panels A and B present the 

rejection rates without or with the presence of event-induced increase in variance, 

respectively. Likewise, Panels C and D provide the corresponding power analysis 

performance. Overall, we observe that the most powerful approaches are again from the 

regime-switching family, in particular the STAR, V-TSMM and MV-TSMM models. Under 

the event-induced increase in return variance setting, the models exhibit rejection rates close 

to the expected ones, as well as the highest levels of power among all rival test statistics. In 

general, these results are in the same line of reasoning with the ones we observed in the 

simulated environment under the event-induced increase in return variance case.   

[Insert Table 5 about here] 

Figure 2 depicts the size-power curves with event-induced return of 1% and an event-

induced increase in return variance using the M&As sample. The overall model rankings are 

almost similar to the ones observed with the simulated data. The size-power curve evidence 

of BETA-1 and GARCH pinpoint that these are still the least powerful tests with real stock 

returns. The RANK test performs better than the BETA-1 and GARCH ones, whilst in 

contrast to results we get with the simulated data, the BMP test is now significantly inferior 

to the RANK test and only slightly better than BETA-1 and GARCH. Despite the good 

behavior exhibited by the RANK model, yet, its performance is much inferior compared to 

the regime-switching family models. In particular, the graphical evidence in Figure 2 

supports that the STAR event study model provides the overall most powerful test statistics, 

since its curve dominates all other test statistic curves. The MV-TSMM and the TSMM test 
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are again the second best choices. A noticeable difference we observed with the real stock 

returns is that the performance wedge between the regime-switching models and the rest 

traditional test statistics is much greater when compared to the simulated cases. 

[Insert Figure 2 about here] 

We further investigate the sensitivity of event study residuals to extreme market 

conditions. Particularly, from the sample of M&As we pick the 20% deals with either the 

lowest mean stock return performance or the highest volatility in the estimation window.
21

 

We draw our motivation from prior literature. For instance, Klein and Rosenfeld (1987) 

suggest that traditional event study methods may suffer from serious deficiencies due to high 

autocorrelation that may emerge in the time-series of the resulting abnormal returns if the 

event days take place during either bull or bear markets (see also Chiang et al. 2013). 

Moreover, Campbell et al. (2001) recognize that the increase in the idiosyncratic volatility 

might potentially affect the inferences of the event study analysis since abnormal event-

related returns are highly determined by the volatility of individual stock returns relative to 

the market. All-in-all, by using this M&As sub-sample analysis we endeavour to clarify 

whether the specification and power performance of the test statistics we investigate are 

stable under different market conditions.  

Table 6 presents the results for the sub-sample of M&As that exhibit the lowest mean 

returns in the estimation window.  In the case where there is no event-induced increase in 

variance the most powerful test from Panel C is the MV-TSMM, yet its rejection rates are not 

as expected (Panel A). Although STAR is the second most powerful test, its rejection rates 

(Panel A) are close to the expected ones. Rejection rates of GARCH are similar to the 

rejection rates of the other tests but GARCH is the test with the lowest statistical power. 

                                                           
21

 All conclusions regarding the mean return remain unaltered if we instead pick the 20% deals with the highest 

mean returns in the estimation window.  
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BETA-1 is similar to the RANK test regarding rejection rates and power. BMP and V-TSMM 

have similar rejection rates but V-TSMM clearly outperforms. Panel B (Panel D) provides 

rejection and power rates in the presence of event-induced increase in variance. We notice 

that the power of all tests is severely reduced in the presence of event-induced increase in 

variance. Results show that rejection rates for the STAR and V-TSMM tests are similar to the 

ones reported in Panel A and these tests are also the ones with the highest level of power. 

BETA-1 and GARCH are the least powerful tests under the event-induced increase in 

variance scheme. BMP has similar rejection rates as in Panel A but its power is significantly 

lower in Panel D than the power reported in Panel C. Rejection rates of MV-TSMM are 

similar to V-TSMM but the power of MV-TSMM is lower than the power of V-TSMM. The 

fact that we observe lower power of MV-TSMM compared to V-TSMM is in line with 

empirical findings as in Aktas et al. (2007a) which suggest that the market model parameters 

are the same under both regimes. However, this is no longer true since contaminating events 

affect both mean and variance specification. Therefore the power of the MV-TSMM model 

could happen to be higher. Another important observation in the presence of event-induced 

increase in variance is that rejection rates of RANK differ significantly from rejection rates of 

the other tests. This observation provides additional empirical evidence that the RANK test 

performs poorly under real stock return data. Overall, empirical observations in Table 6 give 

support to the STAR event study method which exhibits again reasonable performance under 

extreme stock returns occurring in the estimation window.  

[Insert Table 6 about here] 

Table 7 presents results regarding the case of investigating the 20% of M&As that 

preserve the highest return volatility in the estimation window. In general, this type of 

analysis again reveals that the regime-switching family of models dominates all other tests in 

terms of specification and power analysis. The power of the STAR model is yet much better 



 

29 

 

than the power of V-TSMM and MV-TSMM; at 1% significance level, we observe the most 

intense differences in power rates between the STAR and the other two models. Additionally, 

rejection rates of STAR, V-TSMM and MV-TSMM are similar in Panels A and B, a fact that 

empirically demonstrates that these models perform rather well when event-induced increase 

in variance is present.  

[Insert Table 7 about here] 

 

4. Discussion and conclusions 

There is a variety of tests that are robust to event-induced increase in variance caused 

by the cross-sectional variation in the effects of an event. According to Harrington and 

Shrider (2007), all events induce variance and therefore models that are robust to cross 

sectional variation must be used. 

Using simulated data, we observe that when there is no event-induced increase in 

variance, the RANK test is an attractive approach while using real M&A data the power of 

the RANK test deteriorates significantly. Furthermore, the RANK test in the presence of 

event-induced increase in variance seems to be poorly specified since in all results rejection 

rates of this test statistics are extremely high compared to rejection rates of all other tests. 

This result is also supported by previous studies, see for example Aktas et. al. (2007a). The 

BMP model is a good choice to work with in the case of contaminated events under the 

simulated data environment. In the real data setting, however, BMP performs reasonably well 

but not as good as the regime-switching family and in particular when compared to the STAR 

event study test statistic. 

The least powerful tests are BETA-1 and GARCH. When using simulated data, these 

two tests have similar rejection rates and power regardless of the presence of contaminating 

events. On the other hand, evidence from using the real data suggests that in the presence of 
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event-induced increase in variance the rejection rates of these tests as well as their power are 

severely reduced making these tests the less preferable. 

Comparing the real returns results under different extreme market conditions we 

observe differences in the power of the test statistics especially in the presence of event-

induced increase in variance. Yet, extreme market conditions do not affect the models’ 

ranking performance. Again the best approach is one of the regime-switching models with 

STAR event study model to show the overall best performance.  

In a nutshell, we find empirical evidence to support that the best approach under 

contamination and event-induced increase in variance is the test statistic computed from the 

STAR event study model followed by V-TSMM and MV-TSMM. Overall, it is found that the 

STAR event study test statistic outperforms, in almost all cases, any other rival method. 

Therefore, our analysis empirically supports that the STAR model should be employed in the 

application of short-horizon event studies since it appears to be the most credible method in 

detecting the true size of abnormal returns.  
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Panel A. Without contaminating events 
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Panel B. With contaminating events 
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Figure 1. This figure provides size-power curves with event-induced return of 1% and an event-induced 

increase in return variance with simulated data. BMP is as in Boehmer et al. (1991), RANK is as in Corrado 

(1989), GARCH is as in Savickas (2003), BETA-1 is the cross-sectional test using the constrained version of the 

market model, cBMP is the adjusted BMP test as in Kolari and Pynnönen (2010) and GRANK is the generalized 

RANK test as in Kolari and Pynnönen (2011). STAR estimates the market model according to a two-state 

transition variable, while V-TSMM and MV-TSMM are, respectively, the two-state market model extensions 

for variance and mean returns and variance following Aktas et al. (2007a). 
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Figure 2. This figure provides size-power curves with event-induced return of 1% and an event-induced 

increase in return variance with M&As stock returns data. BMP is as in Boehmer et al. (1991), RANK is as in 

Corrado (1989), GARCH is as in Savickas (2003), BETA-1 is the cross-sectional test using the constrained 

version of the market model, cBMP is the adjusted BMP test as in Kolari and Pynnönen (2010) and GRANK is 

the generalized RANK test as in Kolari and Pynnönen (2011). STAR estimates the market model according to a 

two-state transition variable, while V-TSMM and MV-TSMM are, respectively, the two-state market model 

extensions for variance and mean returns and variance following Aktas et al. (2007a). 
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Tables 

 

Table 1 

Rejection Rates of Test Statistics: no event-induced returns – no event-induced variance 

 Significance Level 

1% 5% 10% 

Panel A: Without contaminating events 

BMP 0.70% 5.30% 10.40% 

BETA-1 0.60% 5.50% 9.60% 

RANK 1.50% 8.00% 14.10% 

STAR 0.10% 2.50% 8.60% 

GARCH 2.00% 5.90% 11.20% 

V-TSMM 0.70% 4.80% 10.30% 

MV-TSMM 0.70% 5.30% 10.90% 

Panel B: With contaminating events 

BMP 0.90% 5.00% 10.40% 

BETA-1 0.80% 5.40% 9.70% 

RANK 1.40% 7.60% 13.50% 

STAR 0.20% 2.50% 8.90% 

GARCH 1.60% 6.50% 13.10% 

V-TSMM 0.60% 5.20% 12.60% 

MV-TSMM 0.90% 4.60% 9.60% 

The table presents rejection rates for cross-sectional test statistics when an event creates no abnormal returns 

and no increase in variance. BMP is as in Boehmer et al. (1991), RANK is as in Corrado (1989), GARCH is as 

in Savickas (2003) and BETA-1 is the cross-sectional test using the constrained version of the market model. 

STAR estimates the market model according to a two-state transition variable, while V-TSMM and MV-TSMM 

are, respectively, the two-state market model extensions for variance and mean returns and variance following 

Aktas et al. (2007a). Panel A provides the analysis when the estimation window is not contaminated and Panel 

B when it is contaminated. 
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Table 2 

Power Analysis: event-induced returns – no event-induced variance 

 Significance Level 

1% 5% 10% 

Panel A: Without contaminating events 

BMP 42.30% 67.80% 77.50% 

BETA-1 10.80% 26.70% 38.80% 

RANK 53.60% 75.40% 82.30% 

STAR 20.70% 52.30% 68.60% 

GARCH 8.90% 23.00% 32.90% 

V-TSMM 18.40% 34.90% 45.10% 

MV-TSMM 31.80% 51.70% 62.20% 

Panel B: With contaminating events 

BMP 42.10% 66.90% 77.10% 

BETA-1 10.10% 27.10% 38.70% 

RANK 51.70% 75.00% 81.40% 

STAR 22.80% 52.90% 69.70% 

GARCH 6.40% 16.50% 26.20% 

V-TSMM 20.80% 36.00% 45.90% 

MV-TSMM 47.70% 71.70% 81.50% 

The table presents power rates for cross-sectional test statistics when an event creates an increase in returns of 

1% and no increase in returns variance. BMP is as in Boehmer et al. (1991), RANK is as in Corrado (1989), 

GARCH is as in Savickas (2003) and BETA-1 is the cross-sectional test using the constrained version of the 

market model. STAR estimates the market model according to a two-state transition variable, while V-TSMM 

and MV-TSMM are, respectively, the two-state market model extensions for variance and mean returns and 

variance following Aktas et al. (2007a). Panel A provides the analysis when the estimation window is not 

contaminated and Panel B when it is contaminated. 
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Table 3 

Rejection Rates of Test Statistics: no event-induced returns – but event-induced variance 

 Significance Level 

1% 5% 10% 

Panel A: Without contaminating events 

BMP 1.60% 6.00% 11.70% 

BETA-1 0.70% 6.70% 11.60% 

RANK 11.40% 22.90% 30.00% 

STAR 0.20% 3.50% 9.90% 

GARCH 1.70% 5.00% 9.50% 

V-TSMM 1.30% 6.80% 9.60% 

MV-TSMM 1.20% 5.90% 9.50% 

Panel B: With contaminating events 

BMP 0.80% 5.60% 10.50% 

BETA-1 0.80% 5.10% 10.60% 

RANK 9.50% 20.40% 29.60% 

STAR 0.20% 4.20% 10.10% 

GARCH 1.90% 6.80% 11.30% 

V-TSMM 1.30% 6.30% 9.00% 

MV-TSMM 1.20% 6.30% 9.50% 

The table presents rejection rates for cross-sectional test statistics when an event creates no abnormal returns but 

an increase in returns variance. BMP is as in Boehmer et al. (1991), RANK is as in Corrado (1989), GARCH is 

as in Savickas (2003) and BETA-1 is the cross-sectional test using the constrained version of the market model. 

STAR estimates the market model according to a two-state transition variable, while V-TSMM and MV-TSMM 

are, respectively, the two-state market model extensions for variance and mean returns and variance following 

Aktas et al. (2007a). Panel A provides the analysis when the estimation window is not contaminated and Panel 

B when it is contaminated. 
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Table 4 

Power Analysis: event-induced returns – event-induced variance 

 Significance Level 

1% 5% 10% 

Panel A: Without contaminating events 

BMP 4.00% 11.40% 18.70% 

BETA-1 1.60% 6.20% 13.30% 

RANK 12.50% 24.80% 33.60% 

STAR 10.80% 37.60% 56.20% 

GARCH 2.10% 7.10% 12.70% 

V-TSMM 16.90% 32.20% 42.10% 

MV-TSMM 12.80% 33.20% 52.10% 

Panel B: With contaminating events 

BMP 4.80% 12.30% 22.60% 

BETA-1 2.20% 8.00% 15.00% 

RANK 12.30% 26.70% 33.90% 

STAR 14.20% 41.60% 59.00% 

GARCH 2.00% 6.70% 11.80% 

V-TSMM 15.70% 40.30% 55.10% 

MV-TSMM 16.50% 36.90% 52.70% 

The table presents power rates for cross-sectional test statistics when an event creates an increase in returns of 

1% and an increase in returns variance. BMP is as in Boehmer et al. (1991), RANK is as in Corrado (1989), 

GARCH is as in Savickas (2003) and BETA-1 is the cross-sectional test using the constrained version of the 

market model. STAR estimates the market model according to a two-state transition variable, while V-TSMM 

and MV-TSMM are, respectively, the two-state market model extensions for variance and mean returns and 

variance following Aktas et al. (2007a). Panel A provides the analysis when the estimation window is not 

contaminated and Panel B when it is contaminated. 
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Table 5  

Rejection Rates and Power Analysis of Test Statistics: Pooled sample of M&A deals  

 Significance Level 

1% 5% 10% 

Panel A: Rejection Rates of Test Statistics: No event-induced variance 

BMP 4.80% 14.40% 20.80% 

BETA-1 4.60% 12.60% 22.40% 

RANK 4.00% 13.10% 19.90% 

STAR 1.30% 6.50% 12.10% 

GARCH 6.70% 16.40% 20.60% 

V-TSMM 1.60% 5.90% 11.70% 

MV-TSMM 1.30% 7.00% 12.20% 

Panel B: Rejection Rates of Test Statistics: Event-induced variance 

BMP 2.10% 7.30% 13.10% 

BETA-1 1.70% 5.90% 12.40% 

RANK 13.80% 26.00% 35.20% 

STAR 1.10% 4.90% 9.50% 

GARCH 3.40% 10.50% 13.90% 

V-TSMM 0.80% 4.90% 10.60% 

MV-TSMM 0.90% 5.00% 10.30% 

Panel C: Power Analysis: No event-induced variance 

BMP 45.00% 53.50% 65.90% 

BETA-1 47.20% 52.90% 61.70% 

RANK 52.80% 56.90% 71.90% 

STAR 75.00% 82.40% 89.90% 

GARCH 20.80% 25.20% 33.50% 

V-TSMM 65.20% 75.90% 86.90% 

MV-TSMM 71.50% 82.50% 89.40% 

Panel D: Power Analysis: Event-induced variance 

BMP 14.80% 31.90% 41.60% 

BETA-1 7.90% 20.90% 30.90% 

RANK 20.60% 35.50% 43.80% 

STAR 25.90% 39.80% 50.10% 

GARCH 14.50% 18.70% 24.10% 

V-TSMM 18.30% 37.20% 49.70% 

MV-TSMM 18.30% 37.90% 48.60% 

Rejection and power rates without or with an event-induced increase in return variance for the pooled sample of 

M&As. BMP is as in Boehmer et al. (1991), RANK is as in Corrado (1989), GARCH is as in Savickas (2003) 

and BETA-1 is the cross-sectional test using the constrained version of the market model. STAR estimates the 

market model according to a two-state transition variable, while V-TSMM and MV-TSMM are, respectively, 

the two-state market model extensions for variance and mean returns and variance following Aktas et al. 

(2007a). 
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Table 6 

Rejection Rates and Power Analysis of Test Statistics: 20% of M&A deals with lowest mean returns 

 Significance Level 

1% 5% 10% 

Panel A: Rejection Rates of Test Statistics: No event induced variance 

BMP 1.40% 7.80% 14.60% 

BETA-1 2.60% 10.80% 18.30% 

RANK 2.40% 11.80% 16.20% 

STAR 0.80% 4.90% 9.10% 

GARCH 2.40% 10.30% 16.70% 

V-TSMM 1.30% 5.80% 15.50% 

MV-TSMM 4.80% 13.30% 22.50% 

Panel B: Rejection Rates of Test Statistics: Event-induced variance 

BMP 1.70% 6.40% 11.50% 

BETA-1 1.40% 5.90% 12.50% 

RANK 11.90% 23.60% 31.80% 

STAR 0.70% 4.90% 11.30% 

GARCH 2.50% 7.90% 12.90% 

V-TSMM 1.40% 5.80% 12.20% 

MV-TSMM 1.30% 5.70% 10.90% 

Panel C: Power Analysis: No event-induced variance 

BMP 49.00% 50.30% 62.70% 

BETA-1 46.40% 56.80% 76.90% 

RANK 47.30% 58.10% 77.20% 

STAR 65.90% 75.40% 86.20% 

GARCH 17.30% 36.20% 48.50% 

V-TSMM 63.10% 77.00% 84.50% 

MV-TSMM 69.80% 81.20% 86.30% 

Panel D: Power Analysis: Event-induced variance 

BMP 4.40% 12.30% 19.70% 

BETA-1 2.60% 9.70% 15.20% 

RANK 12.10% 24.40% 31.90% 

STAR 12.10% 24.90% 35.40% 

GARCH 2.30% 8.10% 13.40% 

V-TSMM 12.40% 25.60% 36.00% 

MV-TSMM 7.10% 18.10% 28.50% 

Rejection and power rates without or with an event-induced increase in return variance for an M&As sub-

sample with the lowest mean returns in the estimation window. BMP is as in Boehmer et al. (1991), RANK is as 

in Corrado (1989), GARCH is as in Savickas (2003) and BETA-1 is the cross-sectional test using the 

constrained version of the market model. STAR estimates the market model according to a two-state transition 

variable, while V-TSMM and MV-TSMM are, respectively, the two-state market model extensions for variance 

and mean returns and variance following Aktas et al. (2007a). 
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Table 7 

Rejection Rates and Power Analysis of Test Statistics: 20% of M&A deals with highest standard deviation 

 Significance Level 

1% 5% 10% 

Panel A: Rejection Rates of Test Statistics: No event-induced variance 

BMP 3.90% 11.20% 16.90% 

BETA-1 4.40% 10.90% 17.80% 

RANK 4.00% 11.40% 17.50% 

STAR 0.90% 5.10% 9.80% 

GARCH 3.70% 12.10% 18.60% 

V-TSMM 1.10% 5.40% 10.20% 

MV-TSMM 1.00% 5.20% 10.10% 

Panel B: Rejection Rates of Test Statistics: Event-induced variance 

BMP 1.90% 6.00% 12.00% 

BETA-1 1.80% 6.30% 12.10% 

RANK 11.60% 24.10% 32.70% 

STAR 1.10% 5.10% 10.30% 

GARCH 2.90% 7.30% 12.40% 

V-TSMM 1.20% 5.30% 10.20% 

MV-TSMM 1.20% 5.20% 10.10% 

Panel C: Power Analysis: No event-induced variance 

BMP 41.80% 49.00% 62.40% 

BETA-1 42.50% 49.20% 58.40% 

RANK 48.70% 53.60% 68.40% 

STAR 71.20% 78.60% 87.40% 

GARCH 18.10% 21.20% 30.20% 

V-TSMM 61.20% 72.20% 80.80% 

MV-TSMM 66.70% 80.80% 87.40% 

Panel D: Power Analysis: Event-induced variance 

BMP 2.70% 9.70% 15.50% 

BETA-1 2.70% 9.10% 15.30% 

RANK 13.10% 25.20% 33.50% 

STAR 24.90% 38.50% 50.20% 

GARCH 2.20% 8.50% 13.90% 

V-TSMM 15.70% 36.60% 46.90% 

MV-TSMM 18.80% 38.80% 49.50% 

Rejection and power rates without or with an event-induced increase in return variance for an M&As sub-

sample with the highest return volatility in the estimation window. BMP is as in Boehmer et al. (1991), RANK 

is as in Corrado (1989), GARCH is as in Savickas (2003) and BETA-1 is the cross-sectional test using the 

constrained version of the market model. STAR estimates the market model according to a two-state transition 

variable, while V-TSMM and MV-TSMM are, respectively, the two-state market model extensions for variance 

and mean returns and variance following Aktas et al. (2007a). 

 

 

 

 

 


