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Quantum chaos in ultracold collisions between Yb( 1S0) and Yb( 3P2)
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We calculate and analyze Feshbach resonance spectra for ultracold Yb( 1
S0) + Yb( 3

P 2) collisions as a function
of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances
are distributed randomly in λ, but that signatures of quantum chaos emerge as a field is applied. The random zero-
field distribution arises from superposition of structured spectra associated with individual total angular momenta.
In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of
400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.
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I. INTRODUCTION

Ultracold collisions involving the lanthanides Er and Dy
in magnetic fields exhibit dense Feshbach resonance spectra
that show strong signatures of quantum chaos [1–3]. The
density of the spectra results from large reduced masses that
produce a large number of bound levels. The complexity
arises from anisotropic interactions, which couple different
end-over-end angular momenta of the colliding pair [4,5],
combined with magnetic fields, which couple different total
angular momenta. Chaotic behavior is likely to make the
assignment of quantum numbers to individual resonances and
prediction of their positions impossible. However, spectra of
this type are amenable to statistical analysis [6] that can yield
physical insight on the system [7], identifying the presence of
good quantum numbers or strong mixing.

Statistical analysis of complex spectra and sets of levels
has been applied to a plethora of physical systems. These
include nuclear energy levels [8], spectra of complex atoms
[9,10] and ions [11], and Rydberg spectra of hydrogen atoms
in large magnetic fields [12]. The statistics that are most
commonly studied include the distribution of nearest-neighbor
level spacings and the level-number variance [7,13]. The
nearest-neighbor spacing (NNS) distribution of a randomly
distributed set of levels is of Poisson type, while that of
a chaotically distributed set is of Wigner–Dyson type. The
Wigner–Dyson distribution exhibits strong level repulsion,
i.e., vanishingly small probabilities of finding levels that
coincide. The Feshbach resonance spectra for Er + Er and
Dy + Dy show statistics that indicate a considerable degree of
chaos [1,2,14], which for Dy increases steadily with magnetic
field [2].

The appearance of chaos in ultracold collision systems has
important consequences for their properties. Chaos implies
full redistribution of energy between all degrees of freedom. It
is likely to result in long-lived two-body collisions, which
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in turn can produce three-body losses [15]. It is therefore
very important to delineate the circumstances in which chaos
arises. Er + Er and Dy + Dy are very complex systems in-
volving many different electronic states. By contrast, ultracold
collisions in the simpler system Li + Er [16] have recently
been shown not to exhibit chaos. In this paper, we calculate
and analyze the spectrum of Feshbach resonance positions in
ultracold collisions between bosonic ground-state Yb( 1

S0) and
metastable Yb( 3

P 2) ytterbium atoms. We show that, even in
this remarkably simple system, application of a magnetic field
induces a transition to strongly chaotic statistics.

Yb( 1
S0) + Yb( 3

P 2) is of interest for applications in quan-
tum information processing [17] and quantum computing
[18,19]. Takahashi and coworkers have measured Feshbach
resonances in this system [20,21], and we discuss how the
signatures of quantum chaos could be observed with current
experimental capabilities.

II. CALCULATION OF NEAR-THRESHOLD
BOUND STATES

Yb( 1
S0) + Yb( 3

P 2) is a particularly simple case of atom-
atom interactions with strong anisotropy. In a spin-orbit-free
representation, there are only four electronic states arising
from the interaction, of which two ( 3

�g and 3
�g) contribute

to s-wave scattering. When spin-orbit coupling is included,
there are three Born–Oppenheimer curves that correlate with
the 1

S0 + 3
P 2 threshold. This contrasts with 49 and 81 curves

for the 3
H 6 and 5

I 8 states of the submerged f -shell atoms Er
and Dy.

Zero-energy Feshbach resonances occur when bound or
quasibound states cross the energy threshold of the entrance
channel as a function of a parameter such as magnetic field
[22]. In this work we perform coupled-channel calculations
to obtain the positions of near-threshold bound levels as a
function of either magnetic field B or a constant λ that scales
the interatomic interaction potential V → λV . Such a potential
scaling factor, previously used to explore the sensitivity of
coupled-channel calculations to uncertainties in the potential
[23–25], is used here to sample different Hamiltonians while
retaining a realistic model of the system.

We solve the Schrödinger equation for bound states or
scattering in coupled-channel form. We use the atom-atom
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FIG. 1. Interatomic potentials for Yb( 1
S) + Yb( 3

P ). � and �

Born–Oppenheimer potentials calculated from Ref. [29] (red lines).
Isotropic V0(R) and anisotropic V2(R) Legendre expansion coeffi-
cients, as described in the text (blue lines).

Hamiltonian described in Ref. [26], except that in the present
case Yb( 3

P j ) interacts with a structureless partner. The inter-
action potential V̂ can be written as the Legendre expansion
V̂ (R,r̂) = ∑

k=0,2 Vk(R)Pk(R̂ · r̂) [4,27], where R is the inter-
nuclear separation vector and r̂ is a unit vector describing the
position of the Yb 6p electron. The expansion coefficients are
V0 = (V� + 2V�)/3 and V2 = 5(V� − V�)/3 [5,28], where
V� and V� are the 3

�g and 3
�g Born–Oppenheimer potentials.

Figure 1 shows the 3
�g and 3

�g potentials of Ref. [29],
together with V0 and V2. Physically, the anisotropy is due
to the 6p valence electron of [Xe]4f 146s6pYb( 3

P ). As a
result, the anisotropy in this system is much larger than in the
Er + Er and Dy + Dy systems, which involve f -shell electrons
submerged beneath a closed 6s shell [1,2]. We extrapolate the
potentials at long range with the dispersion form −C6/R

6 [30],
using calculated dispersion coefficients of 2999 and 2649Eha

6
0

[31] for the 3
�g and 3

�g states, respectively. The spin-orbit

interaction is taken to be independent of R, with a coupling
constant that gives the correct splitting between the 3

P 2 and
3
P 1 states [32].

At zero field the total angular momentum is a good quantum
number due to the isotropy of free space. In the absence of a
field, we use the space-fixed total angular momentum basis
set |(ls)jLJMJ 〉 [4]. Here the atomic orbital and spin angular
momenta l and s couple to give a resultant j , which then
couples to the end-over-end angular momentum L to give the
total angular momentum J . At finite magnetic field we use
the partially uncoupled basis set |(ls)jmjLML〉, where mj

and ML are the projections of j and L onto the field axis,
respectively [26]. We include values of L up to Lmax = 22,
for which the pattern of the Feshbach resonance spectrum is
converged. Increasing the value of Lmax introduces additional
bound states, but they are very weakly coupled to the entrance
channel.

The coupled equations for atom-atom scattering are solved
using the MOLSCAT package [33], modified to handle magnetic

fields [34] and P -state atoms [26]. Bound states are located
using the FIELD package [35], which solves the coupled-
channel equations subject to bound-state boundary conditions
by using the methods of Ref. [36] to locate the magnetic fields
at which bound states exist with a specified binding energy.

In this work, we consider resonances in s-wave collisions
of Yb( 3

P 2) in its mj = −2 state. This is the lowest component
of the j = 2 manifold. Inelastic decays to the j = 0 and j = 1
manifolds in two-body collisions with Yb(1S) are slow, with a
decay rate that has been measured to have an upper bound of
10−13 cm3/s at fields below 1 G [37]. We performed coupled-
channel calculations of the inelastic rate over the range 0 to
2000 G and find the background rate to be significantly smaller
than this bound, on the order of 10−17 cm3/s. The slow two-
body decay makes experiments on three-body losses in this
system viable.

Using the FIELD package at the energy of the lowest
threshold produces a list of fields at which zero-energy
Feshbach resonances occur [38]. For the present work we
extended the FIELD package to converge on levels (and thus
resonance positions) as a function of potential scaling factor
λ as well as magnetic field. In order to locate resonances at
the j = 2, mj = −2 threshold, basis functions for j = 0 and
1 were omitted, corresponding to neglect of the slow inelastic
decays considered above. We expect this approximation to
have no significant effect on level statistics.

III. STATISTICAL ANALYSIS

We analyze sets of levels (or resonance positions) through
two commonly used statistics: the nearest-neighbor spacing
(NNS) distribution, which is the probability density P (s) of
two neighboring levels having the spacing s, and the variance
in the number of levels in a given energy range. These statistics
probe short-range correlations (on the order of a few mean level
spacings) and longer-range correlations, respectively [7,13].

The NNS distribution and number variance must be
calculated from a set of levels on a dimensionless scale with
unit local number density: the “unfolded” scale. To obtain
the unfolded levels from the calculated levels Xi , we first
construct the staircase function S(X) = ∑

i �(X − Xi), where
� is the Heaviside function. X is commonly the energy but
here is either B or λ. We then fit a low-order polynomial
ξ (X) to the smoothly varying average density, isolating the
fluctuations that are of interest, and obtain the unfolded levels
ξi by mapping Xi → ξi = ξ (Xi) [7].1

The NNS distribution is commonly used to distinguish
between regular and chaotic systems. For an uncorrelated (ran-
dom) spectrum, the NNSs on the unfolded scale si = ξi+1 − ξi

are distributed according to Poisson statistics PP(s) = exp(−s)

1In general, S(X) can be decomposed as S(X) = ξ (X) + Sfl(X),
where ξ (X) is a smooth part given by the cumulative mean level
density, and Sfl(X) describes fluctuations about this average. The
unfolding procedure rescales the staircase function S(X) → S(ξ ) =
ξ + Sfl(ξ ), i.e., to unit average density, isolating the fluctuating part
that is of interest.
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FIG. 2. Statistical analysis of Feshbach resonance positions with respect to potential scaling factor λ. Panels (a), (c), and (e) show the NNS
distributions P (s): coupled-channel results (blue histograms); fitted Brody distributions (black lines, with the corresponding Brody parameters
stated); Poisson and Wigner–Dyson distributions (green and red dashed lines, respectively). Panels (b), (d), and (f) show the corresponding
number variances �2(�ξ ): coupled-channel results (blue solid lines); Poisson and GOE results (green and red dashed lines, respectively).
(g) Calculated Brody parameter as a function of magnetic field. (h) NNS distribution for individual blocks of total angular momentum J in the
absence of magnetic field, averaged over J = 2, . . . ,20.

[7,13]. By contrast, for a chaotic system the distribution is
well approximated by the Wigner–Dyson form PWD(s) =
(πs/2) exp(−πs2/4) [7,13], with strong level repulsion. This
distribution is an approximation to the prediction of the
Gaussian orthogonal ensemble (GOE) [7], which the Bohigas–
Giannoni–Schmit conjecture [39] suggests is the appropriate
random-matrix-theory model for a quantum system that is
chaotic in the classical limit.

Physical systems rarely conform to either of these special
cases. Following recent practice in the cold-matter literature
[1,2,40], we interpolate between the Poisson and Wigner–
Dyson cases by using the Brody ansatz P

(η)
B (s) = cη(1 +

η)sη exp(−cηs
η+1), where cη = 
[(η + 2)/(η + 1)]η+1 [41].

We note that other methods of interpolating between the
Poisson and Wigner–Dyson NNS distributions exist, including
rigorous semiclassical expressions [42]. The “Brody param-
eter” η takes values between zero (Poisson distribution)
and unity (Wigner–Dyson distribution). We calculate η by
maximum likelihood estimation [43], maximizing the log-
likelihood function l(η) = ∑

i ln P
(η)
B (si) with respect to η.

The uncertainty in η is thus the standard deviation σ =
(−d2l/dη2)−1/2.

The second statistic that we consider, to probe long-range
correlations, is the level-number variance �2. This is defined
as �2(�ξ ) = 〈Ŝ2(�ξ,ξ )〉 − 〈Ŝ(�ξ,ξ )〉2, where Ŝ(�ξ,ξ )
counts the number of levels in the interval [ξ,ξ + �ξ ] and
the average is taken over the starting values ξ [7,13]. For
a randomly distributed (Poisson) set it is �2(�ξ ) = �ξ ,
whereas for a Hamiltonian belonging to the GOE it is
�2(�ξ ) = 2π−2[ln(2π�ξ ) + γ + 1 − π2/8] + O(�ξ−1),
where γ = 0.5772 . . . is Euler’s constant [7,13].

IV. RESULTS AND DISCUSSION

Figures 2(a)–2(f) show the NNS distribution and number
variance for a sequence of 1000 resonance positions calculated
with respect to λ on the range [0.9,1.13] and in external
magnetic fields of 0, 100, and 700 G. In the absence of a
field, the NNS distribution and the number variance are close
to those expected for Poisson statistics, with a Brody parameter
η = 0.06 ± 0.03. However, application of a magnetic field
induces a clear transition towards chaotic statistics. Figure 2(g)
shows the Brody parameter η as a function of field B: it rises
steadily from close to zero at B = 0 to a value around 0.6
at fields above 500 G. The high-field value is comparable to
that observed experimentally for Er and Dy [2]. The number
variance also changes steadily from near-Poissonian to chaotic
behavior as the field increases, following the GOE prediction
at high field more strongly than for Er and Dy.

Let us consider further the result at zero field, where
the total angular momentum J is a good quantum number.
In Fig. 2(h) we show the NNS distribution for individual
Hamiltonian blocks of a given total angular momentum J ,
averaged over values of J = 2, . . . ,20 to obtain improved
statistics.2 Although this superficially resembles a Wigner–
Dyson distribution, except that there is a cutoff at large
spacing, the levels associated with individual blocks of the total
Hamiltonian are in fact highly structured. They correspond to

2The average is performed by first calculating the unfolded spacings
for each J before combining the sets and normalizing the resulting
histogram.
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FIG. 3. Statistical analysis of Feshbach resonance positions with respect to magnetic field for different isotopes of Yb. Upper panels show
NNS distributions P (s): coupled-channel calculations (blue histograms); fitted Brody distributions (black lines, with the corresponding Brody
parameters stated); Poisson and Wigner–Dyson distributions (green and red dashed lines, respectively). Lower panels show the corresponding
number variances �2(�ξ ): coupled-channel calculations (blue solid lines); Poisson and GOE results (green and red dashed lines, respectively).

the superposition of nearly independent sequences for |
| = 0,
1, and 2, where 
 is the projection of J onto the interatomic
axis.3 It is evident that the Poisson statistics exhibited by the
full spectrum at zero field result from superposition of these
structured spectra.

Thus far we have considered the distribution of resonances
with respect to an interatomic potential scaling factor. We now
consider the distribution of Feshbach resonances with respect
to magnetic field, for homonuclear collisions involving the four
most abundant bosonic isotopes of Yb. The typical density of
resonances is ∼0.05 G−1. This is comparable to that found in
Cs [44] and Li + Er [16], but less than that observed in the
Er and Dy systems, where it can be as large as ∼4G−1 (for
bosonic isotopes) [1,2].

Figure 3 shows the NNS distributions and number variances
for 170Yb, 172Yb, 174Yb, and 176Yb in the field range of 400 to
2000 G. The statistics show strong signatures of chaos in each
case, with Brody parameters ranging from 0.4 to about 1 and
number variances much closer to the GOE predictions than to
Poisson statistics. We emphasize that the statistics depend on
the potential scaling factor as well as on the isotopic mass, so
the results in Fig. 3 are representative of typical behavior, rather
than specific predictions for individual isotopes. Signatures
of chaos emerge at somewhat different fields for different
cases but are always strongly present for fields over 600 G.
These signatures will be observable if current experiments on
Feshbach resonances in Yb( 1

S0) + Yb( 3
P 2) [20,21] can be

extended to suitable magnetic fields.

3The cutoff at approximately s = 1.8 in Fig. 2(h) is consistent
with the vibrational spacing for the |
| = 2 potential at dissociation,
calculated with respect to λ. This is the deepest of the three potentials
and is equivalent to the 3�g potential.

The results in Figs. 2 and 3 show that a large number of
electronic states is not required for signatures of chaos to
emerge in ultracold collisions, as may have been expected from
the Er and Dy examples. We conclude that chaos in Yb + Yb∗

emerges as a result of the combination of strongly anisotropic
interactions and magnetic field, consistent with the findings
for Dy + Dy [2]. As a counterexample, we analyzed the
Feshbach resonance positions in Cs( 2

S) + Cs( 2
S) collisions

in magnetic field [44], where there are two electronic states
but only very weak anisotropy. We find no deviations from
Poisson statistics for Cs.

V. CONCLUSIONS

We have calculated and statistically analyzed the positions
of Feshbach resonances for collisions of ground-state and
metastable Yb. This is one of the simplest possible cases
of atom-atom interactions with strong anisotropy. Even in
this remarkably simple system, the application of an external
magnetic field induces a transition from random (Poisson)
statistics at zero field to chaotic statistics at high field. This
suggests that chaos is likely to be widespread in ultracold
collisions, which will have important consequences for the
lifetimes of ultracold species. We predict that the positions of
magnetically tunable Feshbach resonances for the four most
abundant bosonic Yb isotopes will exhibit strong signatures of
quantum chaos at high magnetic fields. These signatures could
be observed in experiments within reach of current technology.

The data presented in this paper are available online [45].
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Martı́nez, and Paul S. Julienne for valuable discussions. This
work was supported by the Engineering and Physical Sciences
Research Council under Grant No. EP/I012044/1.

022703-4



QUANTUM CHAOS IN ULTRACOLD COLLISIONS BETWEEN . . . PHYSICAL REVIEW A 93, 022703 (2016)

[1] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C.
Makrides, A. Petrov, and S. Kotochigova, Nature (London) 507,
475 (2014).

[2] T. Maier, H. Kadau, M. Schmitt, M. Wenzel, I. Ferrier-Barbut,
T. Pfau, A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J.
Mark, F. Ferlaino, C. Makrides, E. Tiesinga, A. Petrov, and S.
Kotochigova, Phys. Rev. X 5, 041029 (2015).

[3] T. Maier, I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel,
C. Wink, T. Pfau, K. Jachymski, and P. S. Julienne, Phys. Rev.
A 92, 060702 (2015).

[4] R. H. G. Reid and A. Dalgarno, Phys. Rev. Lett. 22, 1029 (1969).
[5] R. V. Krems, G. C. Groenenboom, and A. Dalgarno, J. Phys.

Chem. A 108, 8941 (2004).
[6] E. P. Wigner, Math. Proc. Cambridge Philos. Soc. 47, 790

(1951).
[7] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys.

Rep. 299, 189 (1998).
[8] T. A. Brody, J. Flores, J. B. French, P. A. Mellow, A. Pandey,

and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
[9] N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960).

[10] V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and M. G.
Kozlov, Phys. Rev. A 50, 267 (1994).

[11] V. V. Flambaum, M. G. Kozlov, and G. F. Gribakin, Phys. Rev.
A 91, 052704 (2015).

[12] H. Friedrich and H. Wintgen, Phys. Rep. 183, 37 (1989).
[13] M. L. Mehta, Random Matrices, 2nd ed. (Academic Press, San

Diego, 1991).
[14] J. Mur-Petit and R. A. Molina, Phys. Rev. E 92, 042906 (2015).
[15] M. Mayle, B. P. Ruzic, and J. L. Bohn, Phys. Rev. A 85, 062712

(2012).
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[34] M. L. González-Martı́nez and J. M. Hutson, Phys. Rev. A 75,
022702 (2007).

[35] J. M. Hutson, FIELD Computer Program, Version 1 (2011).
[36] J. M. Hutson, Comput. Phys. Commun. 84, 1 (1994).
[37] S. Uetake, R. Murakami, J. M. Doyle, and Y. Takahashi, Phys.

Rev. A 86, 032712 (2012).
[38] Y. V. Suleimanov and R. V. Krems, J. Chem. Phys. 134, 014101

(2011).
[39] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984).
[40] K. Jachymski and P. S. Julienne, Phys. Rev. A 92, 020702

(2015).
[41] T. Brody, Lett. Nuovo Cimento 7, 482 (1973).
[42] M. V. Berry and M. Robnik, J. Phys. A: Math. Gen. 17, 2413

(1984).
[43] R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods

in the Physical Sciences (Wiley, Chichester, 1989).
[44] M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nägerl,
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