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SCIENCE

Snæfellsjökull volcano-centred ice cap landsystem, West Iceland
David J.A. Evansa, Marek Ewertowskia , Chris Ortona, Charlotte Harrisa and Snævarr Guðmundssonb

aDepartment of Geography, Durham University, Durham, UK; bHornafjordur Regional Research Centre, Hornafjordur, Iceland

ABSTRACT
A 1:10,526 scale map of Snæfellsjökull and its forelands is presented as the first landsystem
exemplar of volcano-centred ice caps, for application to understanding glacierized volcanic
terrains globally. Mapping of surface materials and landforms was undertaken using
orthorectified aerial photographs taken in 2002 and results of ground truth fieldwork in
2010. Nine natural surficial geology units were identified in addition to bedrock, glacier ice
and made ground associated with pumice mining. The spatial distribution of landforms and
sediments throughout the forelands comprises extensive areas of ice-cored moraine,
developed at the limit of the Little Ice Age readvance and located distal to extensive areas of
fluted till and glacially abraded bedrock with occasional eskers. This is a widely recognized
landsystem signature typical of former polythermal snout conditions at the Little Ice Age
maximum. Proglacially, thrust pumice sheets also occur on the east flanks of the volcano
where pre-existing deformable materials were susceptible to thrust block development.
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1. Introduction

Snæfellsjökull is typical of the many small mountain-
centred icefields and ice caps in Iceland and indeed
the North Atlantic region in that it is rapidly thinning
and receding from its historical Little Ice Age maxi-
mum limit, having profound effects on the generation
of freshwater for surrounding communities. Emerging
on the forelands of these Icelandic mountain glaciers
are landform-sediment assemblages that represent the
process-form relationships (landsystems) of upland
cryosphere settings as well as records of changing gla-
cier dynamics triggered by recent climate change. Map-
ping these forelands has facilitated a greater
understanding of the range of upland icefield landsys-
tems and their dynamics, specifically at, and since, the
Little Ice Age. To date, Icelandic upland landsystem
models or exemplars have related to plateau icefield
settings (e.g. Brynjólfsson, Schomacker, & Ingólfsson,
2014; Evans, 2010; Evans, Twigg, & Shand, 2006,
2015a) and cirque glaciers (Brynjólfsson, Ingólfsson,
& Schomacker, 2013) but volcano-centred ice cap land-
systems have not been assessed in a holistic way. A
1:10,526 scale map (MainMap) of Snæfellsjökull is pre-
sented here as the first landsystem exemplar of vol-
cano-centred ice caps, relevant specifically to the
Icelandic landscape but also more widely to glacierized
volcanic terrains globally.

2. Study area and methods

Snæfellsjökull (64°48′N, 23°47′W) is located in western
Iceland, on the westernmost tip of the Snæfellsnes

Peninsula (Figure 1) and became known as the fictional
route to the underworld after Jules Verne’s 1864 novel
Journey to the centre of the earth. The multi-lobed ice
cap covers an area of almost 12.5 km2. It occupies the
summit and fills the caldera of an active stratovolcano
that reaches a maximum elevation of 1446 m above sea
level (Thordarson & Larsen, 2007). The volcano is a
stratovolcano-tuya hybrid formed in the trans-current
fault-zone of the North Atlantic spreading ridge
(Hards, Kempton, Thompson, & Greenwood, 2000;
Thordarson & Larsen, 2007). The highly variable volca-
nic conditions associated with this hybrid feature
makes the geology of the area relatively complex
(Figure 2), characterized by a suite of mildly alkali
basalts and peralkaline rhyolites that are geochemically
similar to those from the Icelandic Torfajökull volcano
(Hards et al., 2000; MacDonald, McGarvie, Pinkerton,
Smith, & Palacz, 1990). Volcanic activity over the last
0.7–0.8 Ma is represented by early-, late- and post-
glacial stages of landform development (Hardarson &
Fitton, 1991; Kristjansson, Johannesson, Eiriksson, &
Gudmundsson, 1988) but the majority of the Snæfells-
jökull volcano is covered by post-glacial lava flows that
are less than 10,000 years old (Figure 2(b)), even
though the oldest dated rocks date back to 842 ka
(Jóhannesson, Flores, & Jonsson, 1981; Kokfelt,
Hoernle, Lundstrom, Hauff, & van den Bogaard,
2009). Three large post-glacial tephra deposits have
been radiocarbon dated to 7–9 ka BP, 3960 and 1750
years BP (Steinthorsson, 1967). Very prominent in
this respect is the blanket of light brown pumice and
tephra that lies on the outer forelands of the eastern
and northeastern margins of the ice cap, a deposit
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that was extensively mined during the twentieth cen-
tury. Elsewhere the steep volcano flanks are character-
ized by several subsidiary craters and impressive lava
flows, which are partially depicted by the orthophoto-
graph component of the Main Map.

Given its altitude and proximity to the North Atlan-
tic Ocean moisture source, Snæfellsjökull likely devel-
ops as a summit ice cap in between periods of
intensive volcanic activity when climate conditions
are at least comparable with those of the Little Ice
Age; as the ice cap is presently in a state of rapid reces-
sion, its present day existence might be entirely related
to the climate conditions of the Little Ice Age, during
which it expanded to around 22 km2 in area. However
it is not possible to determine whether or not present
day climate warming will remove what has been a
stable summit ice cap for the first time in the Holocene
epoch. The maximum extent of the most recent, his-
torical glacier advance is demarcated by prominent
moraines on the forelands of the five named outlet
lobes of the ice cap, including Kvíahnúksjökull to the
south, Hólatindajökull to the southwest, Blágilsjökull
to the north, and Jökulhálsjökull and Hyrningsjökull
on the northeast margin (Main Map). However, the
exact age of this advance is unknown and therefore
can be related only to the broader definition of the Lit-
tle Ice Age in the context of the observations made by
Matthews and Briffa (2005) and Kirkbride and Dug-
more (2006). Firstly, in this context, the ice cap has
expanded in response to one of many Little Ice Age
Type Events (LIATEs; Matthews & Briffa, 2005) and
secondly, like other upland glacier systems in Iceland,
this may not necessarily have been the most recent or
classical LIATE of 1600–1900 AD. With these provisos
in mind, we refer hereon to the Little Ice Age in its
chronologically less specific sense in that the most pro-
minent glacial landforms that define the proglacial
forelands, when viewed in the context of dated moraine
assemblages on other Icelandic forelands, are indi-
cators of glacier response to climate cooling in the his-
torical period or the Late Holocene.

The glacier forelands were mapped using colour
aerial photographs taken by the Icelandic survey com-
pany SAMSYN in 2002. After the photographs were
orthorectified and mosaicked using Agisoft Photoscan
Professional Edition, mapping was undertaken on a
coloured ink film overlain on the orthophotograph.
The mapping involved the simultaneous interpret-
ation of surface materials and landforms based on
ground truth fieldwork in summer 2010 and the view-
ing of stereoscopic images at the desk top. The ortho-
photograph processing and contour generation were
both performed in ESRI ArcGIS and contours then
overlain on the surficial geology and geomorphology.
Extensive areas of volcanically related landforms and
deposits that lie beyond the glacial materials in the
mapped area are depicted by the orthophotograph.
A similar approach is taken with the glacier surface,
which is represented by the orthophotograph in
order to depict ice structures such as crevasses and
debris bands. The map overlay containing the base
data was manually digitized on a large format Cal-
Comp tablet digitizer using MapData vector digitizing
software. The digitized vector files for the base data
were converted from MapData format into ArcInfo
‘generate’ format for importing into Adobe Illustrator.
The map is at a scale of 1:10,526 when printed on an
A0 sheet.

3. Surficial geology and glacial
geomorphology of Snæfellsjökull

The mapped area (Main Map) is subdivided into one
anthropogenic and nine natural surficial geology
units, in addition to bedrock and glacier ice. Bedrock,
residuum and paraglacial deposits also comprise the
area beyond the historical Little Ice Age limit, as
depicted using the orthophotograph.

3.1. Bedrock and residuum

The bedrock of the map area is characterized by the
mildly alkali basalts and peralkaline rhyolites, pumice
and tephra that have been extruded and erupted
from the stratovolcano during several lava flow events
(Figure 2(b)). Geomorphologically these materials are
organized in sheets, cones and long leveed flow lobes
(see orthophotograph area on Main Map) typical of
emplacement on steep mountain slopes or volcano
margins, very prominent when viewed from the
south coast (Figure 1). As these volcanic materials are
prone to rapid post-depositional weathering, especially
at altitudes where freeze-thaw is prevalent, many rock
surfaces have been broken down in situ to produce a
predominantly thin (<50 cm) veneer of residuum.
The scale of mapping is not appropriate to the repro-
duction of the many small patches of residuum in
areas of bedrock and vice versa. Hence the bedrock

Figure 1. Aerial view of Snaefellsjokull from the south, taken
on 18 October 2001. Source: Oddur Sigurðsson.
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and residuum map units are described as containing
localized patches of other materials, including old
(pre-Little Ice Age) weathered till veneers. The resi-
duum classification in such areas of high relief also
includes locally gullied colluvium derived from in situ
volcanic deposits. At many locations, proglacial and
lateral meltwater has incised channels into less resistant
lithologies, especially in pumice sheets.

3.2. Till and moraines

Themost extensive surfacematerial on the forelands is a
predominantly strongly fluted, clast-rich till (Main
Map), which is generally less than 2 m thick but locally
thickens into recessional push and lateral moraines
that are unlikely to contain ice cores (Figure 3). The
till, which comprises lower fissile and upper massive

Figure 2. Simplified geology maps of the Snæfellsjökull volcano: (a) principle geological units, from Kokfelt et al. (2009); (b) pattern
and ages of lavas, hyaloklastites and intrusives derived from the volcano, from Jóhannesson et al. (1981). Black box shows area
covered by Main Map.

1130 D. J. A. EVANS ET AL.

http://dx.doi.org/10.1080/17445647.2015.1135301
http://dx.doi.org/10.1080/17445647.2015.1135301
http://dx.doi.org/10.1080/17445647.2015.1135301


components (Figure 3(a)), locally thins to reveal heavily
striated bedrock protuberances which also display roche
moutonnée forms in areas of stepped bedrock profiles
(Figure 3(b)). Bedrock steps are locally visible through
the thin fluted till cover. Bouldery flutings locally extend
down flow from abraded bedrock steps, indicating that

plucking has been effective at the glacier bed, especially
where basalt lava overlies less coherent pumice, as occurs
on the Jökulhálsjökull foreland, for example. Some flut-
ings on the foreland of Hyrningsjökull display a remark-
able curvilinear plan form (Figure 3(c)), the origin of
which is uncertain but potentially related to late stage

Figure 3. Characteristics of the till and moraine surficial map unit: (a) vertical profile log displaying typical subglacial till charac-
teristics of the till and moraine map unit based upon exposures on the foreland of Jökulhálsjökull (Dmm (s) = massive, matrix-sup-
ported diamicton displaying shearing; Gm =massive or structureless gravels); (b) roche moutonnée form on a bedrock step
emerging from beneath the thin till cover on the Jökulhálsjökull foreland; (c) aerial photograph (SAMSYN, 2002) extract of the fore-
land of Hyrningsjökull, showing flutings, some with curvilinear plan forms (bottom right), extending to the Little Ice Age hummocky
moraine belt.

Figure 4. Aerial photograph (SAMSYN, 2002) extract showing the recent ice-cored moraine developing around the margin of
Blágilsjökull.
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topographic flow constraints on basal ice. Both the bed-
rock erosional features and the well-developed flutings
indicate that large areas of the outlet glacier beds were
temperate and hence subglacial deformation and sliding
was in operation at the Little Ice Age maximum (Benn,
1994; Evans, Ewertowski, & Orton, 2015b). The exten-
sion of the flutings to the Little Ice Age ice-cored mor-
aine ridge complexes (see section 3.4) constitutes a
landform assemblage typical of former polythermal gla-
cier margins identified elsewhere in Icelandic mountain
icefields (Evans, 2010, 2011; Evans, Twigg, & Orton,
2010, 2015a). Patches of non-fluted till veneer and
occasional boulder spreads (‘trimline moraines’ sensu
Ó Cofaigh, Evans, & England, 2003) exist on the distal
sides of some ice-coredmoraine belts, where they consti-
tute the Little IceAgemaximum limit. These thin depos-
its are thought to represent the totally de-iced outer
margins of the Little Ice Age ice-cored terrain (see Sec-
tion 3.4). Recent moraine construction is evident in
some discontinuous, low amplitude push ridges and
ice-cored ridges located less than 100 m from the glacier
margins (Figure 4); where ice content is higher this
grades into recent ice-cored moraine (see Section 3.4).
Localized exposures through the push ridges reveal
deformed stratified sediments indicative of recent glacier
readvance into proglacial outwash, potentially driven by
themid to late 1990s positivemass balance trends recog-
nized throughout Iceland (e.g. Bennett & Evans, 2012;
Bradwell, Dugmore, & Sugden, 2006; Evans &Hiemstra,
2005; Evans, Shand, & Petrie, 2009, 2015b).

3.3. Glacitectonized pumice moraines

The outermost historical (Little Ice Age) moraines on
the forelands of Jökulhálsjökull and Hyrningsjökull
are composed entirely of pumice granules. Although
these ridges have been heavily dissected by meltwater,
they still display an arcuate plan form that parallels
the former glacier margin (Main Map; Figure 5).
Localized excavations related to mining provide
exposures through the deposits and reveal that the
pumice is well stratified and locally heavily deformed
(Figure 6). Folds and faults indicate that stress was
imparted from the west and hence the moraines
were constructed by the glacitectonic compression
of pre-existing pumice sheets that originally blan-
keted the eastern slopes of the mountain. The proxi-
mal slopes of the pumice moraines are draped by the
feather edge of the more recent, basalt boulder-rich
hummocky terrain/ice-cored moraine (see Section
3.4), indicating that the glacier snouts have thrust
the pumice sheets proglacially and then deposited
farther-travelled basalt debris as ice-cored controlled
or hummocky moraine and push moraines partially
over the pumice moraines (Figure 6). Exposures
through the areas of thinner basalt-rich debris reveal
that stratified pumice underlies large areas of the

forelands, indicating that the eastern slopes of the
volcano were draped by pumice prior to the Little
Ice Age advance.

3.4. Ice-cored hummocky terrain and thicker
bouldery drift

The Little Ice Age limits on the forelands of the ice cap
are demarcated by arcuate assemblages of thick, basalt-
rich bouldery drift and ice-cored hummocky terrain
(Figure 7; Main Map); on the forelands of Jökulhálsjö-
kull and Hyrningsjökull these lie inside glacitectonized
pumice moraines (Figures 5 and 6). Ice cores are
obvious where glacier ice is exposed but elsewhere it
is assumed based upon buried ice indicators such as
large tension cracks, water-filled kettle holes and sur-
face saturation and retrogressive flow slide activity
(Figure 7). The hummocky terrain displays numerous
discontinuous but substantial linear ridges which
could be either individual push features and/or con-
trolled moraine (sensu Evans, 2009). This map unit
also includes areas of densely spaced push moraines
where ice content is uncertain and hence either a con-
trolled moraine or a push moraine origin is possible.
Minimal former ice content is evident wherever flut-
ings can be traced through the bouldery surface
material, which is classified as ‘thicker boulder drift’
because it is clearly visibly distinct from the normal flu-
ted till (Figure 7(e)). Interesting features on the proxi-
mal side of the ice-cored hummocky terrain on the east
Blágilsjökull foreland are large kettle-like depressions
into which dry stream beds terminate abruptly, indicat-
ing that the depressions acted as sink holes or sumps
(Main Map). Meltwater appears to have fed numerous
proglacial channels and linear sandar beyond the Little
Ice Age limit. These features are further evidence of
melting ice cores within the Little Ice Age outer mor-
aine belt. Recent ice-cored moraine, which is being
fed by supraglacial controlled debris ridges/englacial
debris bands, occurs around the margins of most
of the outlet glacier lobes but is best developed around
the margin of Blágilsjökull (Figures 4 and 7(f), Main
Map). Together with the most recent push moraines
(see Section 3.2), this moraine belt possibly marks the
position of the mid to late 1990s readvance margin, a
feature identified at a range of locations around Iceland
(e.g. Bennett & Evans, 2012; Bradwell et al., 2006;
Evans et al., 2009, 2015b; Evans & Hiemstra, 2005).

3.5. Overridden moraines

Small areas of the fluted forelands, especially on the Blá-
gilsjökull foreland, are characterized by discontinuous
arcuate chains of low amplitude ridges (Figure 8),
which are interpreted as overridden moraines (sensu
Evans, Archer, & Wilson, 1999, 2009, 2015a; Evans &
Orton, 2014; Evans & Twigg, 2002; Krüger, 1994).
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Also very prominent on thewest side of the Blágilsjökull
foreland is a high relief ridge that appears to be a former
lateral moraine partially superimposed on to an
elongate bedrock promontory. As this feature is locally
fluted and draped by recent recessional moraines it is
interpreted as an overridden lateral moraine whose
main ridge is denoted by the dotted line symbol on
the Main Map. Like similar features mapped widely
over deglaciated Little Ice Age forelands around Iceland,
the overridden moraines of Snæfellsjökull likely date to
pre-LIA ice margins overrun during the LIA advance.

3.6. Glacifluvial deposits

Glacifluvial processes have mostly produced linear
spreads of outwash sands and gravels confined to narrow
valleys, channels and gorges incised into the steep slopes
of the volcano (MainMap). Largelydiscontinuous ribbon
sandar also occur on the fluted till surfaces as do
occasional esker ridges, especially on the foreland of Blá-
gilsjökull. Debris flow-fed alluvial fans/aprons have also
been produced by glacial meltwater on steeper slopes.

3.7. Alluvial fan slackwater deposits

A veneer of fine-grained alluvial fan deposits occurs in
the small upland basin that lies between the northwest
corner of the Little Ice Age maximum limit of Blágils-
jökull and the amphitheatre-like hollow of the east side
of the Bárðarkista mountain. These deposits record a
short period of drainage damming or slackwater devel-
opment which back-filled the amphitheatre floor when
the glacier margin encroached on the lower slopes of
the mountain some 400 m to the northeast. Surface

channels on the sediments document incision by mar-
ginal meltwater after the slackwater had drained and
these can be traced northwards into incised and ter-
raced outwash that was deposited in and around resi-
duum-covered bedrock highs and pumice mounds at,
and just beyond, the Little Ice Age limit.

3.8. Paraglacial deposits

Small areas inside the Little Ice Age limit have been sub-
ject to slope processes, whereby glacial sediments and
freshly exposed bedrock have been reworked during
the period immediately following glacier recession. As
these processes are conditioned by deglaciation, they
are classified as paraglacial deposits (sensu Ballantyne
2002a, 2000b). These deposits largely comprise debris
flow fans and screes. Small areas of in situ bedrock too
small to depict at the map scale are also included.

3.9. Made ground

Substantial areas ofmade ground occur on the east side of
the icefield, on Jökulháls, where pumice moraines have
been quarried. The pumice was transported originally
via sluice networks down to the south coast where it
was processed for use in the concrete industry from
1937 until sometime in the latter half of the twentieth cen-
tury. Other small quarries appear to have been excavated
for road building material on the F570 mountain track.

4. The volcano-centred ice cap landsystem

The spatial distribution of landforms is consistent
throughout the forelands of the various outlet lobes

Figure 5. Aerial photograph (SAMSYN, 2002) extract of the northeastern foreland of Hyrningsjökull, showing the outermost histori-
cal (Little Ice Age) moraines, with the outer glacitectonized pumice ridges visible as a light brown colour and the inner hummocky
and ice-cored moraines as darker coloured ridges. A pumice quarry, in which glacitectonic structures were logged (see Figure 6(a)),
is visible on the far right of the image. Note that meltwater channels have been excavated between, and locally through, moraine
ridges. Black broken line shows Figure 6(a) line of cross profile.
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of the Snæfellsjökull ice cap and hence constitutes a
landsystem signature for independent volcano-centred
ice caps. Specifically this signature comprises extensive
areas of ice-cored moraine, developed at the limit of the
Little Ice Age readvance and located distal to extensive
areas of fluted till and glacially abraded bedrock with
occasional eskers. This association has now been
widely documented across Iceland, especially in upland
settings on the deglaciated forelands of plateau ice-
fields, where it is regarded as a landsystem product of
former polythermal snout conditions at the Little Ice

Age maximum (e.g. Evans, 2010, 2011; Evans et al.,
2010, 2015a). The occurrence of proglacially thrust
materials, in this case pumice sheets on the east flanks
of the volcano, has been documented also in such poly-
thermal settings, for example, at Eiríksjökull, Iceland
(ice-contact fans/aprons; Evans, Ewertowski, &
Orton, 2015a) and northwest Ellesmere Island, Arctic
Canada (proglacial lake sediments and outwash;
Evans, 1989; Evans & England, 1991; Ó Cofaigh
et al., 2003), where pre-existing deformable materials
are susceptible to thrust block development.

Figure 6. Cross sections through the surficial map units of the outer forelands of Hyrningsjökull (a) and Jökulhálsjökull (b), display-
ing the morphostratigraphic relationships of the Little Ice Age moraines on the eastern side of the ice cap.
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The delivery of bouldery till and glacigenic debris to
the Little Ice Age maximum limit to construct ice-
cored and controlled moraine was facilitated by the
efficient plucking of vertically jointed basaltic lavas,
which in many places stratigraphically overlie less
coherent pumice sheets. The horizons identified within
the fluted till (Figure 3(a)) are typical of sub-glacially
deformed tills identified elsewhere in Icelandic temper-
ate snout settings (e.g. Boulton & Hindmarsh, 1987;
Evans, 2000; Evans & Hiemstra, 2005; Evans &
Twigg, 2002) and hence the fluted terrain of the

Snæfellsjökull forelands is regarded as diagnostic of a
deforming and sliding bed that transported debris to
the frozen snout zones, thereby feeding controlled
moraine development (sensu Evans, 2009) at the Little
Ice Age maximum. Linear ridges within the ice-cored
hummocky terrain are most likely the manifestation
of such controlled moraine but other inset, parallel
ridges developed on the proximal and fluted margins
of the thicker bouldery drift are more likely to be
push moraines constructed in the smaller volumes of
englacial debris released by snout melt-out. Hence

Figure 7. Characteristics of the ice-cored hummocky terrain and thicker bouldery drift: (a) aerial photograph (SAMSYN, 2002)
extract showing the Little Ice Age ice-cored moraine arc on the northern edge of the Blágilsjökull foreland. Note that the moraine
arc grades southwards into faintly fluted, thicker boulder drift and then into strongly fluted till. Also visible are narrow corridors of
outwash that terminate in sumps on the proximal sides of the ice-cored moraine arc; (b) ground view of the Blágilsjökull ice-cored
moraine arc with melt-out pit/sump in the middleground; (c) exposure of glacier ice in the front of the Blágilsjökull ice-cored mor-
aine arc; (d) ground view of the bouldery drift produced by the melt-out of the Blágilsjökull ice-cored moraine arc; (e) aerial photo-
graph (SAMSYN, 2002) extract showing the outer part of the Jökulhálsjökull foreland, inboard of the ice-cored hummocky moraine
(visible bottom right), where flutings can be traced through the thicker bouldery drift. Note also the occurrence of some small push
moraines in this zone (centre of image); (f) ice-cored moraine (likely dating to the 1990s readvance) near the margin of Blágilsjökull.
Inset photograph shows stratified, debris-rich ice indicative of former debris freeze-on at the glacier snout (penknife for scale).
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the frozen snout conditions became less proficient in
constructing moraine ridges during the early stages of
Little Ice Age recession and did not become effective
again until the colder climate of the mid to late
1990s, when ice-cored moraine was again constructed
at the more restricted snouts.

Conclusions

A 1:10,526 scale map of the Little Ice Age landform-
sediment associations on the forelands of the outlet
lobes of Snæfellsjökull constitute a landsystem signa-
ture for independent volcano-centred ice caps. The
landsystem comprises an outer zone of ice-cored mor-
aine in front of which is a locally developed set of pro-
glacially thrust pumice deposits. The ice-cored
moraine, documenting former frozen snout conditions,
passes proximally into bouldery drift and push mor-
aines and then a large area of flutings and glacially
abraded bedrock, indicative of temperate basal ice con-
ditions. This style of landform zonation is widely
recognized throughout Iceland on mountain glacier
forelands and records former polythermal conditions
at the Little Ice Age maximum. Although this landsys-
tem is an exemplar relevant specifically to the Icelandic
landscape, it is also more widely relevant to glacierized
volcanic terrains globally.

Software

Aerial photographs were orthorectified and mosaicked
using Agisoft Photoscan Professional Edition. Ortho-
photo processing and contour generation were per-
formed in ESRI ArcGIS. Adobe Illustrator was used
to draw the map and Adobe Photoshop was used for
glacier and background image manipulation.
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