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ABSTRACT
The mass of galaxy clusters can be inferred from the temperature of their X-ray-emitting gas,
TX. Their masses may be underestimated if it is assumed that the gas is in hydrostatic equilib-
rium, by an amount bhyd ∼ (20 ± 10) per cent suggested by simulations. We have previously
found consistency between a sample of observed Chandra X-ray masses and independent
weak lensing measurements. Unfortunately, uncertainties in the instrumental calibration of
Chandra and XMM–Newton observatories mean that they measure different temperatures for
the same gas. In this paper, we translate that relative instrumental bias into mass bias, and infer
that XMM–Newton masses of ∼1014 M� (�5 × 1014 M�) clusters are unbiased (∼35 per cent
lower) compared to weak lensing masses. For massive clusters, Chandra’s calibration may thus
be more accurate. The opposite appears to be true at the low-mass end. We observe the mass
bias to increase with cluster mass, but presence of Eddington bias precludes firm conclusions
at this stage. Nevertheless, the systematic Chandra − XMM–Newton difference is important
because Planck’s detections of massive clusters via the Sunyaev–Zeldovich (SZ) effect are
calibrated via XMM–Newton observations. The number of detected SZ clusters are inconsis-
tent with Planck’s cosmological measurements of the primary cosmic microwave background.
Given the Planck cluster masses, if an (unlikely) uncorrected ∼20 per cent calibration bias
existed, this tension would be eased, but not resolved.

Key words: gravitational lensing weak – galaxies: clusters: general – cosmology: observa-
tions – X-rays: galaxies: clusters.

1 IN T RO D U C T I O N

The number of Sunyaev–Zeldovich (SZ) clusters detected with
Planck above a certain mass threshold (Planck Collaboration XX
2014, hereafter P13XX) falls short of the tally expected from
the Planck primary cosmic microwave background (CMB) con-
straints on cosmology (Planck Collaboration XVI 2014, hereafter
P13XVI). Several possible explanations have been brought for-
ward, such as incorrect assumptions about the cluster mass function
(P13XX) or modified cosmologies including massive neutrinos and
a shift in the Hubble parameter (Hamann & Hasenkamp 2013;
Battye & Moss 2014; Costanzi et al. 2014; Mantz et al. 2014);
P13XX. Another hypothesis is that hydrostatic cluster masses, in-
ferred from X-ray observations of the intracluster medium (ICM),
yielded only ∼60 per cent of the true cluster mass. Hydrody-
namic cluster simulations commonly find the hydrostatic assump-
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tion to retrieve only ∼70–90 per cent of the true cluster mass, i.e.
MHE = (1 − b

hyd
lin )M true with a hydrostatic mass bias b

hyd
lin = 0.1–0.3

(e.g. Nagai, Kravtsov & Vikhlinin 2007; Laganá, de Souza & Keller
2010; Kay et al. 2012; Rasia et al. 2012; Le Brun et al. 2014; Schaye
et al. 2014).

The validity of the assumption of hydrostatic equilibrium can po-
tentially be addressed by comparing to weak gravitational lensing
(WL) mass measurements, which are independent and free from
assumptions of the state of the gas. Noticing a considerable overlap
between the XMM–Newton sample of P13XX and the Weighing the
Giants WL survey (Applegate et al. 2014; Kelly et al. 2014; von
der Linden et al. 2014a), von der Linden et al. (2014b, hereafter
vdL14) measured 〈MPl/Mwl〉 = 0.688 ± 0.072 for the most mas-
sive (>6 × 1014 M�) clusters. If interpreted as a hydrostatic mass
bias, this value blin ≈ 0.3 falls short of the blin ≈ 0.4 necessary to
reconcile P13XX with P13XVI, confirming the Planck cluster mass
discrepancy.

Conversely, Israel et al. (2014, hereafter I14) found no signifi-
cant mass bias when comparing WL estimates to Chandra-based
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hydrostatic masses. For high-mass clusters (1014.5 M� < Mwl
500 <

1015 M�), the bias blog = −0.10+0.17
−0.15, is consistent with the expec-

tation based on simulations, although with large uncertainties due
to small number statistics.

An alternative hypothesis is that at least one of the two X-ray ob-
servatories is imperfectly calibrated. Indeed, difficulties modelling
their (energy-dependent) effective collecting area (Grant et al. 2013)
lead to uncertainty in measurements of the ICM temperature, TX. Di-
rect comparisons have shown that Chandra measures significantly
higher TX than XMM–Newton for the same clusters (e.g. Nevalainen,
David & Guainazzi 2010), and that significant differences even ex-
ist between the XMM–Newton instruments (Schellenberger et al.
2014, hereafter S14). S14 propagated this difference to a change in
the inferred cosmological matter density �m and power-spectrum
normalization σ 8. They concluded that the temperature calibration
alone is insufficient to explain the discrepancy between P13XVI
and P13XX.

In this paper, we simultaneously examine the hydrostatic bias
and XMM–Newton/Chandra instrument calibration, aiming to find
a solution for the cosmological discrepancy. We extend S14 by
comparing measurements in an X-ray-selected cluster sample with
independent WL masses. In Section 2, we re-evaluate I14’s mea-
surements of the mass bias between Chandra hydrostatic and WL
masses, and emulate XMM–Newton results based on S14’s cross-
calibration. Noting that the P13XX calibration relies on XMM–
Newton, in Section 3, we assess the degree to which X-ray tem-
perature calibration could be responsible for the P13XVI–P13XX
discrepancy. We conclude in Section 4.

2 R E C A L I B R AT I N G T H E 4 0 0 d S U RV E Y TO
XMM–NEWTON TEMPERATURES

2.1 Hydrostatic mass bias from the 400d cluster
cosmology survey

I14 recently compared WL masses to Chandra-based X-ray mass
estimates for eight clusters drawn from the 400d cosmology cluster
sample. The 400d cosmology sample selects X-ray luminous clus-
ters at 0.35 < z < 0.90 from the serendipitous 400d Rosat cluster
catalogue (Burenin et al. 2007). Chandra data for these clusters
were subsequently employed to constrain cosmological parameters
via the cluster mass function (Vikhlinin et al. 2009a,b, hereafter
V09a,b). The 400d WL survey follows up the cosmology cluster
sample, in order to test the mass calibration of V09a,b with inde-
pendent mass estimates. The methodology and first results of the
ongoing 400d WL survey were reported in Israel et al. (2010, 2012).
We refer the interested reader to these papers for details. Weak lens-
ing masses used in this paper make use of the Bhattacharya et al.
(2013) mass–concentration relation.

Hydrostatic masses in I14 were derived from the V09a
Chandra ICM density profiles ρg using the Vikhlinin et al. (2006)
parametrization, and temperatures TX(r) = TCXO(r). The empirical
Reiprich et al. (2013) relation was used to derive a temperature
profile

TX(r) = TX (1.19 − 0.84r/r200) (1)

from a cluster-averaged value TX and I14 WL radius r200.
This relation was determined and can be used in the range
0.3 r200 < r < 1.15 r200. We then compute

MHE(r) = −kBTX(r) r

μmpG

(
d ln ρg(r)

d ln r
+ d ln TX(r)

d ln r

)
, (2)

with kB the Boltzmann constant, μ = 0.5954 the mean molecular
mass of the ICM, mp the proton mass, and G the gravitational
constant. The resulting cumulative mass profile was evaluated at r500

taken from WL. Uncertainties on TCXO and rwl
500 were propagated

into an uncertainty on M
hyd
500 (rwl

500).

2.2 Monte Carlo analysis

We adopt a Monte Carlo approach to derive hydrostatic masses.
In our scheme, the V09a cluster-averaged temperature TCXO, the
square of the Israel et al. (2012, hereafter I12) WL cluster radius
(rWL

500 )2, and the slope, normalization, and intrinsic scatter of the
S14 Chandra − XMM–Newton calibration relation are sampled
from their Gaussian distributed probability densities. We point out
that we model each of our clusters independently. By choosing
(rWL

500 )2, whose I12 measurements we empirically find to follow a
normal distribution, we are able to easily reproduce the asymmet-
ric uncertainties in r500, improving our treatment from I14. Using
106 Monte Carlo realizations, we excellently recover the I12 WL
masses. Through the use of rWL

500 in equation (1), the updated account
of its asymmetric uncertainties results in slightly lower Chandra hy-
drostatic masses. Compared to I14, Chandra hydrostatic masses are
lower by an average (1.2 ± 0.3) per cent (compare tables 1 to 2 of
I14). Our new Monte Carlo technique leads to smaller uncertainties
in the hydrostatic masses compared to the conservative combination
of uncertainties in TCXO and rWL

500 that was employed by I14.

2.3 Pseudo-XMM–Newton temperatures for the 400d clusters

The International Astronomical Consortium for High Energy Cal-
ibration has tasked itself with improving (cross-)calibrations of X-
ray satellite observatories (Grant et al. 2013). In this context, S14
published a detailed comparison of Chandra and XMM–Newton
temperatures for the HIghtes X-ray FLUx Galaxy Cluster sample
(HIFLUGCS; Reiprich & Böhringer 2002) of 64 high-flux local
clusters, fitting spectra in the same radial and energy ranges. They
not only confirmed earlier studies (e.g. Nevalainen et al. 2010) that
Chandra yields significantly higher TX than XMM–Newton, but also
find significant differences between the XMM–Newton instruments.
These temperature differences are most pronounced at the high-
est plasma temperatures and can best be explained as calibration
uncertainties on effective area.

For the 400d cluster sample, we translate ICM temperatures mea-
sured with Chandra, TCXO, to pseudo-XMM–Newton temperatures
by applying the S14 conversion formula between Advanced CCD
Imaging Spectrometer (ACIS) and the combined XMM–Newton in-
struments for 0.7–7 keV energy range:

log

(
kBTXMM

1 keV

)
= A × log

(
kBTCXO

1 keV

)
+ B. (3)

Both the calibration of an X-ray instrument and our knowledge
about it evolve with time. S14 assume calibrations as of 2012 De-
cember (Chandra Calibration Database v4.2), while V09a used the
unchanged Vikhlinin et al. (2005) calibration procedure. This is
no Calibration Database calibration, but at the time of observation
v3.1 was in place. Therefore, we apply the following steps to derive
pseudo-XMM–Newton temperature profiles.

(1) We transform the V09a TCXO from the energy range of 0.6–10
to 0.7–7 keV, by applying a correction

log

(
kBT

(0.7−7)
CXO

1 keV

)
= A0 × log

(
kBT

(0.6−10)
CXO

1 keV

)
+ B0 (4)
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Figure 1. The effect of re-calibration on the temperature profile. The black
solid line shows the Reiprich et al. (2013) Chandra temperature profile we
assume for CL 0030+2618. By applying equation (3), which is linear in
log TX, to each datum of the profile, we derive the grey solid pseudo-XMM–
Newton profile, which is slightly curved, but still close to the Reiprich et al.
(2013) form. As indicated by the vertical line, r500 lies safely within the
range (bold lines) in which the Reiprich et al. (2013) profile can be used.
Long-dashed curves denote the logarithmic derivatives. For the sake of
clarity, uncertainties are only shown at r500.

with A0 = 1.0027 ± 0.0018 and B0 = −0.0008 ± 0.0013 derived
from fitting the Chandra temperatures of the HIFLUGCS sample
in the two spectral ranges, in analogy to S14. This raises the TCXO

values by 0.1–0.3 per cent.
(2) Using the timestamp correction for TX between different Cal-

ibration Databases (Reese et al. 2010), derived for the 0.7–7 keV
band, we convert the V09a temperatures to the one used by S14
(version 4.2). From equation 23 of Reese et al. (2010), we take a
factor of TCXO, 3.1/TCXO, 4.2 = 1.06 ± 0.05.

(3) For each of the 106 Monte Carlo realizations, we compute
the Chandra temperature profile following equation (1). The black
solid line in Fig. 1 shows an example (CL 0030+2618).

(4) Finally, we perform the transformation (equation 3) between
Chandra and the combined XMM–Newton instruments, in the 0.7–
7 keV energy range. The best-fitting parameters taken from S14
are A = 0.889+0.005

−0.003 and B = 0.000 ± 0.004. This transformation is
applied to every datum of the temperature profile. As the grey solid
line in Fig. 1 shows, the re-calibration introduces a slight curvature,
because equation (3) is linear in log TX rather than in TX. Given the
measurement uncertainties, the resulting departure from the form
of equation (1) is insignificant.

By applying this conversion, we emulate what ICM temperatures
would have been obtained for the 400d clusters, had they been in-
ferred from both the Metal Oxide Semi-conductor (MOS) and the
pn-CCD (PN) instruments (collectively, the XMM–Newton Euro-
pean Photon Imaging Camera, EPIC) instead of Chandra’s ACIS.
We denote the resulting temperatures Txmm, with the lowercase in-
dicating that they are converted quantities, not actual XMM–Newton
measurements.

For the eight I14 clusters, whose 〈TCXO〉 = 4.4 keV/kB is
representative of the full 400d cosmology sample, we measure
〈Txmm/TCXO〉 = 0.81 ± 0.01, using the V09a cluster-averaged
temperatures. At r500, measured from weak lensing, the ratio is
〈Txmm/TCXO〉 = 0.85 ± 0.01. This ratio is closer to 1 because

TX(r500) < 〈TX〉 and the cross-calibration differences are smaller
for lower TX according to S14.

2.4 Pseudo-XMM–Newton hydrostatic masses

Within our Monte Carlo scheme, we re-derive hydrostatic masses
by inserting the pseudo-XMM–Newton profiles Txmm(r) and their
values at r500 into equation (2), thus accounting for the non-linear
nature of equation (3).

Differences in the effective area normalization between Chan-
dra and XMM–Newton also affect the measured gas mass Mgas and
hydrostatic mass via the calibration of the flux S. As Mgas ∝ √

S,
the 5 per cent flux difference for the full energy range in Nevalainen
et al. (2010) corresponds to 2 per cent uncertainty in Mgas. We ac-
count for this effect by rescaling the pseudo-XMM–Newton masses
by 0.98.

As expected for lower input temperatures and flatter TX gradients,
we find the resulting pseudo-XMM–Newton hydrostatic masses for
all clusters to be lower than the Chandra-measured values (Fig. 2).
We point out that in Fig. 2, we do not apply the timestamp correction
to the TCXO, to highlight the combined effect of both corrections.
The relative difference in masses is strongest for the hottest clusters,
for which the S14 conversion results in the largest change. Because
the I14 sample exhibits a limited TX range of 3–6 keV, the relative
change of the temperatures varies less than 5 per cent. Consequently,
the two sets of hydrostatic masses are well fit by a linear relation
(solid line in Fig. 2):

Mxmm
500

1014 M�
= P × MCXO

500

1014 M�
+ Q (5)

Figure 2. Mass estimates Mxmm
500 derived from pseudo-XMM–Newton tem-

peratures and assuming hydrostatic equilibrium as a function of masses
MCXO

500 derived from ICM temperatures observed by Chandra. Error bars
inscribed in the symbols denote the uncertainty in Mxmm

500 due to the un-
certainties in the ACIS-combined XMM and timestamp conversions. For
illustrative purposes, the timestamp correction is not applied to the MCXO

500 ,
but its inverse to the Mxmm

500 . The solid line marks the linear best fit. A dashed
line marks the best-fitting relation when the different Chandra calibration
timestamps are not taken into account. For the latter case, data points are
not shown for the sake of clarity.
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Figure 3. Ratio between the pseudo-XMM–Newton hydrostatic mass
Mxmm

500 , with timestamp correction, and the I14 WL mass Mwl
500 as a function

of Mwl
500. Short-dashed lines and light grey shading denote the logarithmic

bias blog =〈log Mxmm − log Mwl〉 obtained from averaging over Monte Carlo
realizations. We also show blog for the low- and high-Mwl clusters separately,
with the 1σ uncertainties presented as boxes, for sake of clarity. As a visual
aid, a dot–dashed line depicts the Monte Carlo best fit of log (Mxmm/Mwl)
as a function of Mwl. Empty symbols and the triple-dot–dashed line denote
the MCXO

500 case. Compare to fig. 2A in I14.

with P = 0.783 ± 0.007 and Q = 0.062 ± 0.015 that captures the de-
pendence of the Chandra–XMM–Newton disagreement on the mea-
sured mass itself. As a sample average and standard error, we find
1 − bxcal

lin = 1 − 〈Mxmm
500 /MCXO

500 〉 = 0.81 ± 0.01. The difference be-
tween this number and 1 − 〈Txmm(rwl

500)/TCXO(rwl
500)〉 = 0.15 ± 0.01

can be traced back to the additional factor of TX

( d ln TX(r)
d ln r

)
in equa-

tion (2).

2.5 Stronger WL mass bias for pseudo-XMM–Newton masses

Fig. 3 shows the measured bias between the WL masses Mwl
500 and

Mxmm
500 (including timestamp correction) for the I14 clusters. The

bias is measured by averaging 〈log Mxmm − log Mwl〉 over the suite
of Monte Carlo simulations described in Section 2.2 that was used
to obtain the Mxmm

500 measurements. The results are shown in Table 1
and indicated by a dashed line and shading for the 1σ interval in
Fig. 3. Dashed lines and boxes at Mwl

500 ≤ 1014.5 M� and Mwl
500 ≥

1014.5 M� show the bias for the thus-defined low- and high-mass
sub-samples.

For the eight clusters, we now find a pronounced bias of
blog = −0.08+0.10

−0.08, compared to blog = 0.02+0.10
−0.8 from Chandra, us-

ing the updated Monte Carlo method. For the low-mass sub-sample,
Mxmm

500 and MWL
500 are consistent (blog = 0.02+0.16

−0.12), while for the high-
mass sub-sample, we measure blog = −0.19+0.11

−0.10, i.e. Mxmm
500 that are

smaller than WL masses by a similar amount as the MPl of vdL14
(cf. Fig. 3).

We repeat our analysis for a few modifications highlighting the
relative importance of various contributing factors. First, we find
that Chandra masses, converted to the newer CALDB v4.2 and
the 0.7–7 keV band are systematically lower than for the V09a
calibration and energy range. The Chandra-only timestamp cali-
bration already accounts for ∼30 per cent of the difference with
XMM–Newton: blog = −0.01+0.10

−0.09, a difference of �blog = −0.03
(Table 1). This result is consistent with the higher masses the V09a
pipeline returns in the Rozo et al. (2014a,b) cross-calibration stud-
ies. Conversely, omitting the timestamps correction moves up the
Mxmm

500 , such that blog = −0.05+0.10
−0.08 is less negative by �blog = 0.03.

These comparisons demonstrate the importance of including the
timestamp correction.

The 2 per cent difference the masses experience due to the dif-
ferent flux calibration of Chandra and XMM–Newton relates to a
small, but measurable effect in the logarithmic bias. Ignoring it, we
find a slightly milder bias of blog = −0.07+0.10

−0.08 compared to the full
conversion (blog = −0.08+0.10

−0.08).
Considering the full mass range, the XMM–Newton hydrostatic

masses are ∼20 per cent lower than the WL masses, while Chandra
masses are consistent with the WL masses. This indicates that if the
blin = 0.2 linear hydrostatic bias in cluster simulations is correct,
the effective area calibration of XMM–Newton is consistent with
being correct. But if looking at the high-mass end, the conclusion
is the opposite: Chandra is consistent with the correct calibration
and 20 per cent hydro bias. The measurement uncertainties and the
unknown amount of Eddington bias in our small sample, however,
preclude more quantitative conclusions.

2.6 Mass-dependent bias with XMM–Newton

Finally, we measure the mass-dependence of the bias as the differ-
ence �bH−L

log between the logarithmic biases blog for the high- and
low-mass clusters. This observable is stable against changes to the
details of the probability distribution modelling in the Monte Carlo
algorithm. [Note that fitting log (Mxmm/Mwl) as a function of Mwl is
not stable.]

In I14, the hydrostatic mass exhibited the least significant mass-
dependent bias of four tested mass observables. For the four more
massive clusters, blog is ∼1σ different to the four less massive

Table 1. Observed mass bias in the I14 sample, for several choices of X-ray masses. Columns 2 and 3 give the slope P and intercept Q
of the general best-fitting relation (equation 5) between Chandra and XMM–Newton masses. Column 4 shows the X-ray calibration bias,
i.e. the mean and standard error of 〈Mxmm

500 /M
CXO,I14
500 〉. Columns 5 and 6 show the apparent bias with respect to the WL masses, averaged

over Monte Carlo simulations for all clusters (blog = 〈log Mxmm
500 − log Mwl

500〉) and for the Mwl
500 ≥ 1014.5 M� bin (blog, H). The final column

measures the mass-dependent mass bias as the difference �bH−L
log between blog for the high- and low-mass clusters.

Hydrostatic mass P Q bxcal
lin blog blog, H �bH−L

log

MCXO
500 , new Monte Carlo 1 0 0 0.02+0.10

−0.08 −0.09+0.11
−0.10 −0.20+0.20

−0.16

MCXO
500 , incl. timestamp correction 0.946 ± 0.009 − 0.002 ± 0.020 0.06 ± 0.00 −0.01+0.10

−0.09 −0.11 ± 0.11 −0.20+0.20
−0.16

Mxmm
500 , full conversion 0.783 ± 0.007 0.062 ± 0.015 0.19 ± 0.01 −0.08+0.10

−0.08 −0.19+0.11
−0.10 −0.21+0.20

−0.16

Mxmm
500 , temperature effects only 0.799 ± 0.007 0.064 ± 0.015 0.17 ± 0.01 −0.07+0.10

−0.08 −0.18+0.11
−0.10 −0.21+0.20

−0.16

Mxmm
500 , no timestamp correction 0.826 ± 0.004 0.061 ± 0.007 0.15 ± 0.01 −0.05+0.10

−0.08 −0.16+0.11
−0.10 −0.21+0.20

−0.16
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ones, as opposed to ∼2σ . We reproduce this result and measure
�bH−L

log = −0.20+0.20
−0.16 for Chandra and �bH−L

log = −0.21+0.20
−0.16 for

XMM–Newton (Table 1).
We interpret the observed mass-dependence of blog as the super-

position of (1) physical effects, e.g. the stronger hydrostatic bias for
high-mass clusters Shi & Komatsu (2014) predict analytically, and
(2) Eddington bias: as Sereno & Ettori (2014) demonstrate, intrinsic
scatter in the abscissa mass leads to a mass-dependent bias when
compared to an independent mass observable. Eddington bias is
most severe in our case of a small sample size and a narrow range
in the underlying true mass. In principle, the statistically complete
nature of the 400d cosmology (V09a) sample would allow for a
rigorous correction of such selection effects, once the WL follow-
up has been completed. For our given sub-sample, the Eddington
bias and true mass-dependent mass bias cannot be disentangled.
While we can provide much needed relative cross-calibrations be-
tween X-ray and WL instruments/pipelines, selection effects pre-
clude us from determining absolute calibrations for Chandra and
XMM–Newton. Moreover, selection biases also limit the direct ap-
plicability of �bH−L

log to other cluster samples.

3 T R A N S L AT I O N TO PLANCK CLUSTERS

3.1 What did the Planck collaboration measure?

P13XX model the redshift-dependent abundance of clusters de-
tected from the Planck catalogue of SZ sources (Planck Collabo-
ration XXIX 2014, hereafter P13XXIX), covering the whole extra-
galactic sky. The thermal SZ effect describes the inverse Compton
scattering of CMB photons with ICM electrons, resulting in a dis-
tortion YSZ of the CMB signal in the solid angle subtended by
a galaxy cluster, proportional to the integrated electron pressure.
All 189 S/N > 7 sources selected from the P13XXIX catalogue
are confirmed clusters of known redshift; the vast majority with
spectroscopic redshifts. The P13XXIX mass estimates MPl (MYz

in P13XXIX) that enter the P13XX calculation are the only, and
crucial, piece of Planck data P13XX used.

Due to the large beam compared to the typical Planck cluster size,
the aperture size θ , in which YSZ is integrated, is hard to determine
from the SZ data itself. P13XXIX rely on the additional YSZ(θ )
constraint provided by the scaling of YSZ with an X-ray mass proxy,
M

YX
500, to fix θ and calibrate the MPl. By convention, r� denotes a

radius such that the mass M� within it exceeds the critical density
ρc(z) at redshift z by a factor of �. The M

YX
500 mass proxy is based

on YX = TXMgas, which is the product of the ICM temperature TX

and the cluster gas mass Mgas, measured from X-rays within r500,
and thus provides an X-ray analogue of YSZ.

P13XX calibrate MPl on a validation sub-sample of 71 clus-
ters observed with XMM–Newton, i.e. they derive the best-fitting
YSZ, 500–M

YX
500 relation. In turn, M

YX
500 was calibrated on a sample of

local, relaxed clusters whose ‘true’ masses could be measured using
X-ray observations and assuming hydrostatic equilibrium (Arnaud
et al. 2010). All EPIC instruments were used, with the pn/MOS
normalization as a free parameter. Spectra were fitted in the 0.3–
10 keV energy band (Arnaud, private communication). It is via this
ladder of mass proxies that the hydrostatic mass bias is inherited on
to MPl, appearing in the YSZ, 500–M

YX
500 relation that summarises the

calibration process (equation A.8 of P13XX). P13XX considered
a flat prior of 0.7 < (1 − blin) < 1, but any additional systematic
effect in the calibration chain would mimic a spurious ‘hydrostatic’
bias.

3.2 Comparison to Planck and vdL14 samples

The mean WL mass of the I14 high-mass sub-sample is
4.9 × 1014 M�. The typical P13XX cluster mass, defined by
their mass pivot ∼6 × 1014 M�, falls into the mass range probed
by the I14 high-Mwl range, whether or not the mass bias is in-
cluded. Therefore, for the relevant P13XX mass range, our result
of blog,H = 0.20+0.17

−0.16 agrees with the 1 − blin ≈ 0.4 that would rec-
oncile cosmological constraints derived from Planck cluster counts
(P13XX) and primary CMB anisotropies (P13XVI).

The high-mass end of the I14 sample also overlaps with the vdL14
sample. Using the Mxmm

500 for the I14 clusters instead of Chandra
masses, we also find better agreement to the vdL14 measurement of
〈MPl/Mwl〉 = 0.688 ± 0.072 for a subset of P13XX clusters. How-
ever, such comparisons are limited by the small number statistics
of our sample, hence caution is necessary when interpreting these
results.1

Complications arise from the different energy range used for
Planck and the temporal variability of X-ray calibrations. Our results
for the cases with and without timestamp correction (Table 1) tell
us, however, that the impact of those systematics is rather small,
with �blin � 0.05.

3.3 How much can X-ray calibration bias have influenced
the P13XX results?

3.3.1 From Planck pre-calibration to calibration

We attempt to estimate how an additional bias bxcal
lin arising from

the XMM–Newton calibration relative to Chandra will influence
the overall bias measured by P13XX. We emphasize that we do
not know or assume which, if any, satellite calibration is correct.
The ‘pre-calibration’ from 20 relaxed clusters (Arnaud et al. 2010)
determines the normalization 10B and slope β of a scaling relation

E−2/3(z)

[
YX

2 × 1014 M� keV

]
= 10B ×

[
MHE

500

6 × 1014 M�

]β

(6)

between the YX and hydrostatic masses MHE
500 measured with XMM–

Newton. The evolution factor E(z) = H(z)/H(z = 0) depends on
cosmology via the Hubble parameter H(z).

In equation (6), MHE
500 scales roughly as T

3/2
X (e.g. Kay et al.

2012), through the measurement at r500. If q = TXMM/TCXO for the
typical Arnaud et al. (2010) cluster, hydrostatic masses are biased
MHE

500 → qδMHE
500, with δ ≈ 1.5. Similarly, YX depends on TX via the

measurement of the gas mass Mgas within r500: we have r500 ∝ M
1/3
500 .

If M500 ∝ T
3/2

X upon a change in TX, then r500 ∝ (T 3/2
X )1/3 = T

1/2
X .

Because Mgas(< r) increases linearly with r in a given cluster,2 it
follows Mgas,500 ∝ T

1/2
X upon a change in TX. Indeed, we measure

Mgas, 500 to be affected as q0.5–0.6 to by a relative temperature change
q, using the V09a gas density model for the I14 clusters. Hence, we

1 The difference in cosmologies between P13XX and vdL14 on the one
hand (flat universe with matter density �m = 0.3 and Hubble parameter
H0 = 70 km s−1 Mpc−1) and I14 and this work the other hand (the same, but
H0 = 72 km s−1 Mpc−1) adds a factor of 70/72 to convert Planck masses to
our cosmology.
2 If the cluster is isothermal, and ρgas ∝ r−2, as motivated by assuming
the standard β = 2/3 in the β model for the gas density (Cavaliere &
Fusco-Femiano 1978), then the 3D mass within a radius R is M(< R) =∫ R

0 ρgas(r) dV ∝ ∫ R
0 r−2 r2 dr = R.
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have YX → qγ YX with an exponent γ ≈ 1.5. Thus, TX re-calibration
affects equation (6) like

qγ YX ∝ [
qδMHE

500

]β ⇔ YX ∝ qβδ−γ
[
MHE

500

]β
. (7)

For a (residual, unaccounted) temperature bias q, the mass proxy
M

YX
500 will be biased by a factor C = qβδ − γ . This factor propagates

into the main P13XX scaling relation, connecting the masses M
YX
500

to Y500 instead of YX:

E−2/3(z)

[
D2

AYSZ,500

10−4 Mpc2

]
= 10Aqαδ−γ ×

[
M

YX
500

6 × 1014 M�

]α

. (8)

Here, DA denotes the angular diameter distance. Because YX is
theoretically expected to be proportional to YSZ, we identified α = β

in equation (8).

3.3.2 Results for temperature re-calibration

The Arnaud et al. (2010) clusters used in the Planck pre-calibration
show an average3 kBTXMM ≈ 5 ± 2 keV (Arnaud, Pointecouteau
& Pratt 2007; Pratt et al. 2010). Following equation (3), the S14
conversion for the combined XMM–Newton instruments, Chandra
temperatures for these clusters would be lower by a factor of q =
0.84+0.05

−0.03.
Using α = 1.79 ± 0.06 from P13XX, and γ = 1.5 ± 0.3 and

δ = 1.5 ± 0.3 (i.e. allowing for broad uncertainties in both), we
find the normalization of equation (8) to be reduced by a factor of
C = 0.81 ± 0.09.

3.3.3 Breaking the size–flux degeneracy

The exact algorithm by which P13XXIX combine Planck mea-
surements with equation (8) has yet to be published. However,
using θ500 = (

3M500/[4πρcD
3
A]

)1/3
, one can easily convert equa-

tion (8) into a scaling relation in terms of an aperture scale θ500,
i.e. YSZ ∝ θ3α

500. The intersection of this relation with the size–flux
degeneracy modelled as Y obs

SZ ∝ θλ yields a point (θ×,YPl), that can
in turn be used to compute an SZ mass MPl ∝ θ3

×. Thus, the de-
generacy is broken. How is this MPl affected if the normalization
of equation (8) changes by a factor C? We geometrically infer the
changes in the intersection point and final mass as

log (Y ′
Pl/YPl) = [−λ/(λ − 3α)] × log C (9)

log Cfin = log (M ′
Pl/MPl) = [−3αλ/(λ − 3α)] × log C. (10)

From Fig. 4 of P13XXIX, we read that the Y obs
SZ –θ relation is linear,

so λ= 1. With C = 0.81+0.05
−0.03 from above, we find that cluster masses

would be biased low by a factor Cfin = 0.78+0.10
−0.07 due to the tem-

perature calibration. Thus, if the Chandra calibration was correct,
the need for a hydrostatic mass bias of more than the ∼20 per cent
favoured by simulations would be eased. Alternatively, if the XMM–
Newton calibration was correct, evidence for stronger departures
from hydrostatic equilibrium would persist.

We note that the ‘hydrostatic’ bias blin that P13XX consider
is meant to include instrument calibration effects: 1 − blin = (1 −
b

hyd
lin )(1 − bxcal

lin ) ≈ (1 − b
hyd
lin − bxcal

lin ). Nevertheless, even a partially
unaccounted calibration bias would contribute some of the apparent

3 In principle, the temperature re-calibration should be applied to individual
clusters. This would alter the slope β in equation (6) in a similar way as the
mass-dependent mass bias discussed below.

Figure 4. The P13XX calibration sample. Diamonds and the long-dashed
fit line show the SZ signal as a function of original P13XX YX mass (com-
pare their fig. A.1). Triangles and the solid fit line show re-scaled masses,
assuming an extreme case of a mass-dependent hydrostatic bias.

mass discrepancy. The point of this exercise lies not in suggesting
that the Planck discrepancy is caused by the X-ray calibration.
Rather it should serve to demonstrate how such effects can not only
fold through but even become amplified in a multistep calibration.

3.3.4 Inclusion of the mass-dependent bias

The above calculations treat the case of a potential residual tem-
perature calibration offset in the Planck calibration. To this end, we
assume the hydrostatic mass bias to be taken into account and well
represented by the P13XX baseline value of (1 − bhyd) = 0.8+0.2

−0.1.
But it is instructive to include a mass-dependent hydrostatic mass

bias, as suggested by I14 and Fig. 3. Because we are interested
in extreme cases, we assume that the best-fitting blog(Mxmm

500 ) =
−0.346 × (E(z)Mxmm

500 /2.44 × 1014 M�) − 0.111 is purely physi-
cal (departure from hydrostatic equilibrium). We emphasize that
this is not the case. As detailed in Section 2.6, not all of the mass-
dependence is physical, but an unknown fraction is caused by se-
lection effects (Eddington bias).

Fig. 4 shows how a mass-dependent mass bias differentially
stretches the mass range occupied by the Planck calibration clus-
ters. In our extreme scenario, masses for all clusters are higher
after accounting for blog (triangles) than before (diamonds), but
most so for the most massive ones. Consequentially, the slope of
equation (8) needs to be corrected from P13XX’s α = 1.79 ± 0.06
to a lower value of α = 1.19 ± 0.04.4

Interestingly, a flatter Y–M slope largely cancels out the
temperature re-calibration effect seen in Section 3.3.3. With
α = 1.19 ± 0.04, we arrive at a factor of C = 0.95+0.08

−0.05 in
equation (8) and final Planck masses different by a factor of
Cfin = 0.94+0.11

−0.07. We conclude that inclusion of a mass-dependent
hydrostatic bias that grows more negative with mass cannot increase
the final calibration offset. The better, still partial, alleviation of the

4 Observations of the Y–M relation have yet to reach an accuracy that would
such constrain the mass-dependence of the hydrostatic bias. While Bender
et al. (2014) and Czakon et al. (2014) report low best-fitting Y–M slopes
consistent with α ≈ 1.2, Liu et al. (2014) find a slope steeper than the
self-similar value of 5/3.
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Planck cluster counts–CMB discrepancy is achieved from X-ray
calibration effects alone.

4 SU M M A RY

Starting from the recent S14 comparative study of ICM temper-
atures measured with Chandra and XMM–Newton, we revisit the
bias between WL and hydrostatic masses from I14. We find the
following.

(1) Because of different uncertainties in the effective area calibra-
tion, hydrostatic masses for the I14 clusters would have been mea-
sured to be ∼15–20 per cent lower, had the clusters been observed
with XMM–Newton instead of Chandra. The measured calibration
bias depends on the sample, but can be transferred to clusters of
similar mass (1014–1015 M�).

(2) XMM–Newton masses for the most massive I14 clusters are
lower than WL masses by ∼35 per cent.

(3) Assuming a true hydrostatic bias of b
hyd
lin = 0.2, our results

for the whole mass range indicate that the calibration of the energy
dependence of the effective area of the XMM–Newton EPIC instru-
ments in the 0.6–10.0 keV band is rather accurate. In the high mass
range, the data however indicate that Chandra calibration is more
accurate. Given the uncertainties these results are not significant.

In addition, we consider the Planck clusters and find the follow-
ing.

(4) Hence, consistent with vdL14, a bias of (1 − b
hyd
lin − bxcal

lin ) ≈
0.4 for the rather massive P13XX clusters seems plausible.

(5) If there was a residual calibration bias q in the TXMM mea-
surements on which the Planck analysis is based, the normalization
of the P13XX YSZ–MYX calibration would be affected as C = q∼1.2.
We show that the mass bias further amplifies when propagated into
the SZ masses. Without accounting for calibration uncertainties, a
mass bias of up to 20 per cent is plausible. We do not claim that
this is the case for Planck. However, a small, residual bias would
amplify in the same way. Pointing to the S14 result that calibra-
tion alone cannot explain the discrepant cosmological parameters
of P13XVI and P13XXIX, we conclude that a possible contribution
would ease the discrepancy and allow for a true hydrostatic bias
consistent with simulations.

(6) A hydrostatic bias increasing with mass counteracts the am-
plification of a calibration bias.

Our results are consistent with the WL/X-ray mass biases recently
reported by Donahue et al. (2014), comparing Cluster Lensing
And Supernovae with Hubble (CLASH; Postman et al. 2012) WL
mass profiles to those obtained with Chandra and XMM–Newton.
Donahue et al. (2014) found their TXMM/TCXO and MXMM/MWL to
depend on the integration radius, suggesting soft X-ray scattering
as a cause for the calibration offset. Donahue et al. (2014) study
mostly cool core clusters. Since S14 find that the TX bias depends
on TX, this could explain why they find less bias in the cooler
centres. The radial dependence could at least partly be due to a
secondary correlation: at the radius where the cluster temperature
is typically hottest, the largest discrepancy between Chandra and
XMM–Newton is found.

Cluster mass calibrations still bear considerable uncertainties
not only between the main techniques (X-ray, lensing, SZ, galaxy
based), but also within techniques, i.e. for different instruments and
calibration and methods. Thorough cross-calibration of different
instruments and techniques, as already performed by Nevalainen
et al. (2010), Rozo et al. (2014a,b) and Schellenberger et al. (2014)

for X-rays are the necessary way forward. Recent comparisons of
WL masses to both XMM–Newton and Chandra include Mahdavi
et al. (2013), Donahue et al. (2014), and Martino et al. (2014).
We notice that Martino et al. (2014) find temperature discrepancies
between XMM–Newton and Chandra similar to S14, but consis-
tent hydrostatic masses from both satellites. More overlap between
clusters with X-ray and WL data would be necessary to define mass
standards against which other surveys could then be gauged.

Recently, Sereno & Ettori (2014), Sereno, Ettori & Moscardini
(2014) compared several of the larger current WL and XMM–
Newton and Chandra X-ray samples, emphasizing how intrinsic
and measurement scatter can induce scaling relation biases. Sereno
& Ettori (2014) confirm that compared to simulated clusters WL
masses are biased low by ∼10 per cent and hydrostatic masses
by ∼20–30 per cent. However, these authors find literature masses
from the same observable, X-ray or WL, can differ up to 40 per cent
for the same cluster, impeding an absolute calibration. Sereno et al.
(2014) extend the analysis to the Planck clusters, whose absolute
mass calibration is likewise affected. They find scatter in the calibra-
tion scaling relation to invoke a mass-dependent bias in the Planck
masses.

Here, the 400d cluster sample provides relative calibrations be-
tween the different instruments and methods. Once the WL follow-
up has been completed, we will be able to disentangle the physical
mass-dependent mass bias from selection effects and provide abso-
lute calibrations.

The advent of larger SZ samples for scaling relation studies (e.g.
Bender et al. 2014; Czakon et al. 2014; Liu et al. 2014), and fore-
most the all-sky P13XXIX offers the possibility of including a
complementary probe and clusters at higher redshift. For future
high-precision cluster experiments, e.g. eROSITA (Predehl et al.
2010; Merloni et al. 2012; Pillepich, Porciani & Reiprich 2012) or
Euclid (Laureijs et al. 2011; Amendola et al. 2012), the absolute
X-ray observable-mass calibration needs to be improved further.
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