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A key challenge for the visual system is to extract
constant object properties from incoming sensory
information. This information is ambiguous because the
same sensory signal can arise from many combinations
of object properties and viewing conditions and noisy
because of the variability in sensory encoding. The
competing accounts for perceptual constancy of surface
lightness fall into two classes of model: One derives
lightness estimates from border contrasts, and another
explicitly infers surface reflectance. To test these
accounts, we combined a novel psychophysical task
with probabilistic implementations of both models.
Observers compared the lightness of two stimuli under
a memory demand (a delay between the stimuli), a
context change (different surround luminance), or both.
Memory biased perceived lightness toward the mean of
the whole stimulus ensemble. Context change caused
the classical simultaneous lightness contrast effect, in
which a target appears lighter against a dark surround
and darker against a light surround. These effects were
not independent: Combined memory load and context
change elicited a bias smaller than predicted assuming
an independent combination of biases. Both models
explain the memory bias as an effect of prior
expectations on perception. Both models also produce
a context effect, but only the reflectance model
correctly describes the magnitude. The reflectance
model, finally, captures the memory-context interaction
better than the contrast model, both qualitatively and
quantitatively. We conclude that (a) lightness
perception is more consistent with reflectance
inference than contrast coding and (b) adding a
memory demand to a perceptual task both renders it

more ecologically valid and helps adjudicate between
competing models.

Introduction

In everyday life, we make use of sensory information
constantly and effortlessly to guide our behavior. The
seeming ease of perception belies its computational
complexity, which arises because sensory signals are
low-dimensional projections of an infinitely complex
external world. A retinal representation of a visual
scene, for instance, confounds the size and shape of
objects with their distance and pose and the properties
of surfaces with those of the ambient illumination. This
uncertainty about the source of a sensory signal is
compounded by the inherent variability in sensory
encoding. A central goal of neural information
processing is to transform these noisy and ambiguous
sensory signals into behaviorally relevant representa-
tions of world properties, in other words, to achieve
perceptual constancy. But even after decades of
research, we are far from understanding the computa-
tional and neural underpinnings of perceptual con-
stancy (e.g., DiCarlo, Zoccolan, & Rust, 2012;
Kingdom, 2010). Our purpose here is to elucidate the
computational strategies used by humans when esti-
mating surface properties from ambiguous sensory
input. We focus on the achromatic aspect of surface
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reflectance, lightness, although the same principles are
likely to hold for chromatic color perception as well.

Figure 1a illustrates the constancy problem for the
perception of surface lightness. In natural scenes,
luminance edges can be due to reflectance or shading
differences. Separating the retinal light signal into these
different underlying causes (sometimes termed layers) is
intractable without additional constraints, derived
from heuristics or prior information about the world
(Adelson & Pentland, 1996; Kingdom, 2008; Zaidi,
1998). Evidently, extracting invariant, stable informa-
tion from the light signal is necessary for the sensory
information to be behaviorally useful. Although the
early stages in the processing of light are relatively well
understood, much less is known about the transfor-
mation of these early signals into invariant lightness
percepts (e.g., Kingdom, 2010).

Several lightness illusions demonstrate the ambiguity
experienced by the visual system about the causes of
retinal light signals. In these illusions, physically
identical stimuli are perceived differently depending on
viewing context. A classical example is the simulta-
neous lightness contrast illusion, in which the same
gray patch appears either dark or light depending on its
surround (Figure 1b). Insofar as they reflect the
attempts of the visual system to parse an ambiguous
scene into invariant representations, illusions can shed
light on the underlying computations. Indeed, several
theories of lightness perception have been proposed
based on human responses to various ambiguous
displays (e.g., Allred & Brainard, 2013; Anderson &
Winawer, 2008; Blakeslee & McCourt, 2012; Bloj et al.,
2004; Brainard & Maloney, 2011; Gilchrist et al., 1999;
Land & McCann, 1971; Maertens, Wichmann, &
Shapley, 2015; Murray, 2013; Rudd & Zemach, 2005;
Vladusich, 2012). The majority of these theories fall
under one of two frameworks: In one, lightness is
derived from operations on border contrasts at one or
more spatial scales (e.g., Blakeslee & McCourt, 2012;
Land & McCann, 1971; Maertens et al., 2015; Rudd &
Zemach, 2005; Wallach, 1948); in another, lightness is
directly estimated by segmenting the sensory signals
into surfaces and illuminants based on prior constraints
(e.g., Allred & Brainard, 2013; Murray, 2013; Purves,
Williams, Nundy, & Lotto, 2004). Each theoretical
framework can account for a subset of the experimental
results, but there is no consensus as to which ultimately
describes human performance better, and we are not
aware of any direct comparisons between the two
frameworks. To advance our understanding of the
computations that underlie human lightness constancy,
we use a novel psychophysical paradigm together with
computational implementations of both frameworks,
which we term contrast and reflectance models.

Contrast models emphasize the role of low-level
processes such as ratio coding at luminance borders for
perceived lightness; quantitative models in this frame-
work have successfully accounted for many perceptual
phenomena, such as the classical simultaneous lightness
contrast illusion (Blakeslee & McCourt, 2012; Dakin &
Bex, 2003; Kingdom & Moulden, 1992; Rudd &
Zemach, 2005; Spehar, Debonet, & Zaidi, 1996).
Although the models in this framework differ consid-
erably in terms of implementation, all model outputs
depend on local luminance ratios. The classical
lightness contrast effect arises in these models from
different luminance ratios at the target-surround
border (Figure 1c); for the targets to match in perceived
lightness, the physical edge contrasts need to match.
Although this framework is attractive in its simplicity,
it fails to explain some well-known lightness phenom-
ena, such as the effect of spatial configuration on
perceived lightness (e.g., Adelson, 1993; Anderson &

Figure 1. (a) The light reflected from surfaces varies across a

scene both due to variations in surface reflectance (1, 3) and

illumination gradients (2). (b) In the simultaneous lightness

contrast illusion, the two central targets appear to differ in

lightness even though the reflected light matches. The effect

has been explained based on contrast matching (c) or on

reflectance estimation (d). (c) The contrast hypothesis. The

visual system matches the two targets when their edge

contrasts are equal. Here, the edge contrasts are unequal even

though the target luminances match. Thus, the squares appear

different. (d) The reflectance estimation hypothesis. The visual

system attributes the luminance change between the surrounds

to an illumination change. Because the targets are equal in

luminance, the reflectance of the targets must differ. Thus, the

targets appear different in lightness (perceived reflectance).
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Winawer, 2008; Bloj & Hurlbert, 2002; Gilchrist, 1977;
Hillis & Brainard, 2007b; Knill & Kersten, 1991;
Purves, Shimpi, & Lotto, 1999; Schirillo, Reeves, &
Arend, 1990).

The reflectance estimation approach, on the other
hand, emphasizes inferential processes for estimating
lightness from the incoming light signal (Adelson &
Pentland, 1996; Allred & Brainard, 2013; Bloj et al.,
2004; Purves et al., 1999, 2004; Schirillo & Shevell,
1997; von Helmholz, 1867). This framework assumes
that observers have knowledge about likely states of the
world that they then use to constrain perceptual
estimates. In the case of the classical simultaneous
contrast illusion, observers assume that the luminance
difference between the two sides of the display is due to
a difference in illumination rather than to a difference
in background material (Figure 1d). This assumed
illumination difference causes the two targets to appear
different in lightness, because the reflected light
(luminance) matches. Although the reflectance estima-
tion framework is powerful in explaining several
lightness phenomena not amenable to contrast coding
accounts (such as the effects of spatial configuration),
few model implementations exist (but see Allred &
Brainard, 2013; Bloj et al., 2004; Murray, 2013).

Finally, the existing model implementations in either
framework can account for only purely perceptual
effects. But real-world sensory estimation tasks com-
monly place demands on both perceptual and memory
processing: To identify previously seen surfaces in a
new scene (e.g., when looking for a lost item of
clothing), one has to both discount illumination
variation (such as shadows in Figure 1a) to estimate
reflectance and employ working memory to compare
percepts with the memorized surfaces. In the lightness
perception literature, perceptual errors have been used
to drive theory; the dependence of perceived lightness
on depth relationships, for example, demonstrates that
local contrast is not the only determinant of perceived
lightness. A separate visual memory literature has
revealed that working memory processing increases the
sensory noise of a representation (Pasternak & Green-
lee, 2005), leading to errors in memory-dependent
estimation (Ashourian & Loewenstein, 2011; Jazayeri
& Shadlen, 2010; Olkkonen, McCarthy, & Allred,
2014). Accumulating evidence from behavioral and
neurophysiological studies shows further that the
underlying neural processes for perception and working
memory are closely related (Ester, Serences, & Awh,
2009; Harrison & Tong, 2009; Kang, Hong, Blake, &
Woodman, 2011; Magnussen & Greenlee, 1999; Pear-
son & Brascamp, 2008; Serences, Ester, Vogel, & Awh,
2009; Supèr, Spekreijse, & Lamme, 2001). Although a
small number of studies have considered some aspects
of memory in a color constancy task (Allen, Beilock, &
Shevell, 2011; Jin & Shevell, 1996; Ling & Hurlbert,

2008; Uchikawa, Kuriki, & Tone, 1998), the indepen-
dence of perceptual and memory demands in percep-
tual constancy has not been characterized.

Here we take advantage of the fact that contrast and
reflectance models generate different predictions about
the interaction between perceptual and memory effects.
This allows us to adjudicate between competing
frameworks by comparing human and model perfor-
mance in a novel psychophysical task that factorially
combines perceptual and memory demands. To antic-
ipate, the reflectance model is consistent with the
pattern of biases in human lightness matching when
perceptual and memory demands are combined,
whereas the contrast model is not. The results prove
our experimental approach fruitful for differentiating
between competing models of human performance in
perceptual tasks across domains.

Experiment: Lightness matching

Before implementing computational models of
lightness perception, we sought to establish human
lightness matching performance in a novel task that
combines perceptual and memory demands in a 2 3 2
factorial design. After reporting the results from
psychophysics, we turn to model implementations and
their comparison to human results.

Methods

Participants

Five Rutgers undergraduates participated after
signing informed consent. Each participant ran all
experimental conditions. Participants were compensat-
ed $10/hr. Participants had normal or corrected-to-
normal visual acuity and normal color vision as
assessed with the Ishihara color plates. The experi-
mental procedures were approved by the Rutgers
University Institutional Review Board and adhered to
the Declaration of Helsinki.

Apparatus

Stimuli were displayed on a calibrated CRT monitor
with a spatial resolution of 1,024 3 786 pixels, 85-Hz
refresh frequency, and a 16-bit luminance resolution via
the DATAPixx box (VPixx Technologies, Inc., Saint-
Bruno, QC, Canada). We calibrated the monitor once a
month by measuring the output of the three monitor
primaries with a Photo Research PR655 spectroradi-
ometer and gamma-correcting the linear intensity
values with standard methods (Brainard, Pelli, &
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Robson, 2002) before sending them to the DATAPixx
box.

MGL functions (http://justingardner.net/doku.php/
mgl/download) and custom software were used for
stimulus display and data collection in Matlab (Math-
works, Inc., Natick, MA).

Stimuli

We characterized lightness perception with a light-
ness comparison task based on the classical simulta-
neous contrast illusion (see Figure 1b). We modified the
basic simultaneous contrast display to separately
measure the effect of perceptual context (Figure 2b),
memory (Figure 2c), and both together (Figure 2d) on

perceived lightness. To complete the factorial design,
we included a baseline condition without context or
memory demands (Figure 2a).

The two stimuli that observers compared on each
trial, reference and test, were 1.88 square patches
displayed on both sides of a central fixation cross at 38
eccentricity. We used three different reference lumi-
nances (4.4, 6.9, 10.9 cd/m2), all of which were darker
than the surrounds. We used only decrements because
the factorial design constrained the number of
references, and decrements have been found to be
more prone to simultaneous contrast effects than
increments (e.g., Arend & Spehar, 1993). The lumi-
nance of the test patch for a given reference was
determined on each trial according to a staircase
procedure, described below. The reference and test
stimuli were displayed on different sides of the display
on surrounds that were either the same (symmetric) or
different (asymmetric) in luminance, depending on
condition. The luminances for the dark and light
surrounds were 11.7 and 18.5 cd/m2, respectively.

Procedure

Observers viewed the display from a 94-cm distance
controlled with a chin rest. Stimulus timing varied
according to condition, but the general procedure was
as follows. On each trial, observers saw the reference
and test for 0.5 s (displayed either simultaneously or
with a 2.5-s delay), after which they indicated with a
key press which stimulus appeared lighter. ‘‘Lighter’’
was defined as the stimulus that appeared whiter on a
continuum from black to white. The instructions did
not contain any reference to surfaces or illuminants nor
cues that might direct the observer to a given scene
interpretation. The following trial started after a
response and a 0.5-s intertrial interval.

Test luminance for a given reference on each trial
was determined by an adaptive staircase procedure.
Four interleaved staircases with different decision rules
converged on different points of the psychometric
function (roughly 12.5, 25, 75, and 87.5 percentiles).
Using four decision rules allowed us to measure the
proportion of ‘‘lighter’’ responses for a large range of
test luminances and to fit a psychometric function to
the data. We defined perceived lightness for each
reference as the 50th percentile of the psychometric
function (the point of subjective equality [PSE]). We
also derived the precision of each estimate, or the
discrimination threshold, as the difference between the
50th and the 75th percentile of the psychometric
function (see below for more details on the fitting).

The four experimental conditions shown in Figure 2
were presented in blocks with counterbalanced order
across observers. In conditions in which the two
surrounds differed (context and joint), the darker

Figure 2. The experimental conditions. (a) In the baseline

condition, both stimuli were displayed simultaneously on a

surround that was either uniformly dark (shown) or light gray.

(b) In the context condition, both stimuli were displayed

simultaneously on a light and dark surround. (c) In the memory

condition, the reference stimulus was displayed in the first

interval either on the left (shown) or on the right side. The test

stimulus was displayed after a 2.5-s delay on the opposite side.

The surround was uniformly dark (shown) or light gray. (d) In

the joint condition, the reference was displayed in the first

interval either on the left (light surround; shown) or on the right

(dark surround). Test was displayed on the other side after a

2.5-s delay. In each condition, observers were instructed to

indicate which stimulus appeared lighter (see text for details).
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surround was displayed on the left. The left-right
location of the reference was always randomized.
Separate staircases controlled tests for each reference
on either surround. With three references, two sur-
rounds, four staircases, and 20 trials per staircase, this
resulted in 240 trials for the symmetric surround
conditions (baseline, memory) and 480 trials for the
asymmetric surround conditions (constancy and joint).
The blocks with symmetric surrounds had fewer trials
because they were run separately for the dark and light
surrounds to keep adaptation constant within a block.

Each observer ran two versions of the delay
conditions (memory and joint). In the blank version,
the delays between the reference and test were blank,
only showing the fixation cross (these are shown in
Figure 2b, d). In the distractor version, two distractor
stimuli were displayed for 0.5 s during each delay
period. The distractors had the same spatial dimensions
and locations as the reference and test stimuli.
Distractor luminances were selected from a Gaussian
distribution approximately 1.5 just-noticeable-differ-
ences from a given reference stimulus in either
direction. There was no task related to the distractors.
We included the distractor conditions because we
hypothesized that they might increase estimation noise
and thus exacerbate any potential biases. However,
analysis showed no significant differences between
distractor and blank versions of the task (Supplemen-
tary Figure S1), and so we pooled the data across the
two versions for the memory and joint conditions.

Each observer ran all six conditions twice with
different block orders for the two repetitions. As some
blocks were rather long (30–45 min), observers were
encouraged to take short breaks between trials. In
addition, observers were able to take longer breaks
between blocks. The whole experiment took about ten
1-hr sessions per observer.

Data analysis

Derivation of appearance and precision: Data from the
two repetitions in each condition were pooled for
analysis, and we fit psychometric functions (cumulative
Gaussian) to the pooled data (Wichmann & Hill,
2001a, 2001b). Perceived lightness of the reference was
defined as the PSE in each condition (i.e., the 50th
percentile of the psychometric function). Precision was
defined as the discrimination threshold (i.e., the
difference between the 75th and 50th percentile of the
psychometric function). Appearance bias (i.e., appear-
ance shift from veridical) was defined as the difference
between the PSE in a given condition and the veridical
reference luminance.
Independence analysis: Effects of memory and of
context on lightness matches can be characterized by
comparing the PSE in each condition to the veridical

reference luminance: Both memory and context can
bias lightness matches to a varying extent. If these
effects on lightness appearance are independent,
lightness appearance bias in the joint condition should
be a fully additive combination of the separate memory
and context biases. Let c ¼ C(r) be a context transfer
function, where r is the reference value and c the
reference lightness as quantified by a PSE. This
function describes the effect of context on perceived
reference lightness. Similarly, the effect of memory on
reference lightness can be described by a memory
transfer function m ¼M(r). If context and memory
exert independent influences on the perceived lightness
of a reference, the combined match should be given by
the concatenation of the two transfer functions, cm ¼
C(M(r)). In practice, we computed the predicted joint
matches by taking the measured memory matches (m)
as new references and deriving context matches (cm) to
those by interpolating/extrapolating from the existing
context matches (c).

After deriving the predicted joint matches, we
quantified the independence of memory and context
effects in the measured joint matches with an additivity
index (AI):

AI ¼ kðbiasobs � biaspredÞ; ð1Þ
where k¼ 1 for a dark surround and k¼�1 for a light
surround so that the context effect has the same sign for
both surrounds, and biasobs and biaspred are the
observed and predicted biases, respectively. An addi-
tivity index of zero indicates full additivity; negative
values indicate subadditivity, and positive values
superaddivity.

Results

First, we present data from one representative
observer, after which we show data in the aggregate.
Example psychometric functions for one observer are
shown in Figure 3a through c. These functions describe
the proportion of ‘‘test lighter’’ responses for the whole
range of test luminances, for one reference luminance
and one experimental condition per panel. The effects
of context and memory separately and jointly are
shown in the three panels through a comparison with a
baseline psychometric function. A horizontal shift of
the experimental function relative to baseline indicates
an effect on appearance (bias), whereas a change in
slope indicates an effect on precision (threshold).

As expected, surround luminance affected the per-
ceived lightness of the targets: In Figure 3a, the
psychometric function for the context condition (green)
is shifted rightward from the baseline function (black),
indicating that the reference stimulus on a dark surround
appeared lighter than the test stimulus on the light
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surround (as a higher test intensity was needed for a
perceptual match). This effect is consistent with previous
reports on the simultaneous lightness contrast illusion.

More surprisingly, memory retention affected both
lightness appearance and precision: The memory

function (blue) is both shifted and scaled in comparison
with baseline (Figure 3b). The leftward shift indicates
that this particular reference (the lightest reference in
the set) appeared darker than veridical with a 2.5-s
delay between reference and test. We analyze this bias

Figure 3. Psychophysics: Bias and thresholds. (a–c) Example psychometric functions with cumulative Gaussian fits are shown for

observer JC. The black curve in each panel shows data for the baseline condition for one reference on the dark surround. The

psychometric functions for the same reference/surround pair are shown in the context (a), memory (b), and joint (c) condition. Data

points show the probability of selecting the test as the lighter stimulus; marker size indicates the number of trials for each data point.

(d) Bias, as defined as the difference between each point of subjective equality (PSE) and the reference value for all reference/

surround pairs and conditions for observer JC. Solid lines show data for the dark reference surround; dashed lines show data for the

light reference surround. Colors are as in (a–c). Thick pink lines illustrate the independence prediction for the joint bias (see text). (e)

Thresholds for the same observer are shown for each of the three references. Colors and line styles are as in (d). (f, g) Bias and

thresholds averaged across five observers. Error bars are 61 SEM. Thick pink lines in (f) show the average independence predictions.
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more closely below. The shallower slope of the memory
function indicates that the added delay also made
responses less precise.

In Figure 3c, we plot data from the joint condition that
combines context change with memory demands. Light-
ness judgments were less precise in the joint condition,
just as they were in the memory-only condition.
Surprisingly, however, the context effect on appearance
was considerably lessened by the addition of memory
load. This can be seen by comparing the small shift of the
psychometric function in Figure 3c (red vs. black) to the
large shift in Figure 3a (green vs. black). In other words,
the effect of context on lightness judgments was smaller
when the comparison was made with memory load.

Figure 3a through c shows the data for just one
reference stimulus; next, we examine data across all
references and conditions. We quantify appearance bias
as the difference between the perceived (PSE) and the
veridical reference value in each condition. Figure 3d
shows the bias in each condition for the example
observer from Figure 3a through c, and Figure 3f
shows the bias averaged over all observers.

First, the effect of luminance context on lightness
judgments was similar for all reference values, shown by
the flat green lines. The context effect was also similar in
absolute magnitude regardless of whether the reference
was on the dark or light surround (solid and dashed
green lines are approximately mirror images). These
results replicate the classic finding in simultaneous
lightness contrast displays. Second, the memory bias was
always toward the mean of all the reference values, large
for extreme references, and small for the middle
reference. This pattern suggests a central tendency bias
caused by memory retention. Third, the joint effect of
context and memory was somewhere in between the
pure context and memory effects (red lines). The joint
bias had the negative slope of a central tendency bias,
but it was shifted in the direction of the context bias.

To evaluate whether the memory and context biases
acted independently in the joint condition, we com-
pared the joint data to an independence prediction
obtained by essentially adding the pure memory and
context biases (see the details in the Methods section).
The independence prediction is marked with thick pink
lines in Figure 3d and f. The joint biases were
consistently subadditive; the effects of memory and
context on lightness estimates are thus not independent.
We characterized the independence of context and
memory in the whole data set with an index that
measures the distance of each joint PSE from the PSE
expected from full additivity. The indices were signif-
icantly negative, indicating subadditivity [t(59) ¼�7.6,
p , 10�5; Figure 4].

So far, we have focused on the effects of context and
memory on lightness appearance. Next, we will turn to
the effects of context, memory, and reference lumi-

nance on the precision of lightness matches, which we
quantify as discrimination thresholds. As expected,
memory demands had a negative overall impact on
precision: Discrimination thresholds were generally
higher in the memory conditions than in the no-
memory conditions (blue and red lines in Figure 3g).
This can be seen more clearly in Figure 5a, which shows
thresholds for memory conditions to be consistently
larger than for the no-memory conditions. In contrast,
a context difference between the reference and test did
not affect thresholds systematically (green lines in
Figure 3g and Figure 5b).

The effect of reference luminance on thresholds
varied across conditions. In the baseline condition,
thresholds decreased with increasing reference intensi-
ty, which for our stimuli corresponds to decreasing
contrast (black lines in Figure 3e and g). This pattern
did not hold in the other conditions, in which
thresholds were often smallest for the middle reference,
as shown by the v-shape of the thresholds as a function
of reference value in Figure 3e and g. Was this pattern
systematically related to appearance bias? According to
a probabilistic estimation strategy, a decrease in
precision should increase the weight on prior informa-
tion in the final estimate, strengthening estimation
biases. The data shown in Figure 6b confirm this
prediction: Less precise judgments tended to be more
biased both in the memory (blue symbols, q¼ 0.57, r2¼
0.33, p , 10�5) and in the joint condition (red symbols,
q¼ 0.4, r2¼ 0.16, p ¼ 0.001).

Intermediate discussion

We confirmed previous findings on lightness per-
ception without memory demands in the baseline and

Figure 4. Nonadditivity of context and memory. A histogram of

additivity indices calculated for each joint match. Vertical black

line indicates the independence of memory and context biases.

Negative values indicate subadditivity; positive values super-

additivity. Vertical dashed red line shows the median index,

which was significantly negative (see text).
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context conditions: Perceived lightness of a central
target depended on surround luminance (Arend &
Goldstein, 1987; Blakeslee, Reetz, & Mccourt, 2009;
Heinemann, 1955), and discrimination thresholds in the
baseline condition were lowest for smallest target
contrasts, an effect sometimes referred to as crispening
(Whittle, 1986).

Adding a 2.5-s retention interval between the
reference and test stimulus revealed more surprising
and novel patterns in the lightness matches. First,
delayed lightness matches were biased toward the
central stimulus value. Central tendency or range biases
have previously been reported for stimulus estimates
for line length (Ashourian & Loewenstein, 2011;
Crawford, Huttenlocher, & Engebretson, 2000; Duffy,
Huttenlocher, Hedges, & Crawford, 2010; Hutten-
locher, Hedges, & Vevea, 2000), spatial frequency
(Huang & Sekuler, 2010), and interval duration
estimation (Jazayeri & Shadlen, 2010) and recently for
color (Olkkonen & Allred, 2014; Olkkonen, McCarthy,
& Allred, 2014). Although our experimental design
does not discriminate between a bias toward the middle
reference and a bias toward the mean luminance of the
whole stimulus collection, the latter seems more likely if
we assume that observers were paying attention to all
stimuli nearly equally. Across stimulus domains, these
biases have been interpreted as an optimal solution to

disambiguating uncertain sensory information: As the
sensory representation of a stimulus becomes more
uncertain in memory, an ideal observer should rely
more on prior information about the stimulus ensemble
to make their estimate (Ashourian & Loewenstein,
2011; Jazayeri & Shadlen, 2010). This interpretation is

Figure 5. Effect of memory and context on thresholds. (a) Memory: Thresholds in the delay conditions (memory, joint) are plotted

against thresholds in the simultaneous conditions (baseline, context). The delay conditions without and with distractors are plotted

against the same simultaneous conditions, so each simultaneous threshold (x-axis) is plotted twice. Symmetric and asymmetric

conditions are indicated with dark and light symbols, respectively. Marginal plots show corresponding threshold histograms. (b)

Context: Thresholds in the asymmetric conditions (context, joint) are plotted against thresholds in the symmetric conditions (baseline,

memory). Simultaneous and delayed conditions are indicated with dark and light symbols, respectively. Marginal plots show

corresponding threshold histograms.

Figure 6. Relationship between bias and thresholds. Absolute

bias values in the memory (blue) and joint (red) conditions are

plotted against discrimination thresholds for each psychometric

function. Correlation coefficients are noted next to each linear

regression line.
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supported by our current finding that precision and
bias were correlated in the whole data set. It is worth
noting that bias and precision are not routinely
measured jointly in the color perception literature (but
see Hillis & Brainard, 2005, 2007a, 2007b, for related
work), and a relationship between bias and precision in
color perception or memory has only recently been
demonstrated (Bae, Olkkonen, Allred, & Flombaum,
2015; Olkkonen et al., 2014).

To our knowledge, this is the first report to reveal an
interaction between perceptual context and memory
processes for lightness processing (for hue, see Olkko-
nen & Allred, 2014). The joint effect of contextual and
memory processing on perceived lightness seems
puzzling: Adding a delay between the reference and
test, viewed on different surrounds, weakened the effect
of this context difference. One might expect the
opposite based on traditional accounts of color
adaptation: As the surrounds are visible throughout the
whole trial, there should be more adaptation to the
surrounds when a delay is added, resulting in a larger
context bias (Fairchild & Lennie, 1992). Note that this
result also means that lightness constancy became
poorer because of memory. It is possible that this
interaction is indicative of a more complex computa-
tional strategy that strives to be optimal, although in
this case, it results in less constancy. In the next section,
we explore this phenomenon by implementing two
prominent constancy theories—contrast coding and
reflectance estimation—and comparing them to human
data.

Two probabilistic models of
lightness perception

We compare two classes of model in explaining the
psychophysical data: the contrast model and the
reflectance model. The contrast model observer com-
pares stimuli by their local contrast, defined as the ratio
of the center and surround luminance. A contrast-
based model could be implemented in several ways. We
chose a simple version of the contrast model that is
known to produce the simultaneous lightness contrast
illusion. The reflectance model observer compares
stimuli in terms of their inferred reflectance.

We formulate both models probabilistically. This
allows a principled way for the model observers to
combine sensory evidence with prior knowledge about
stimulus properties (Knill & Richards, 1996). Although
our contrast model differs from previous implementa-
tions in that it is probabilistic, it has otherwise the same
flavor: It uses border contrast to calculate perceptual
matches. Amending existing implementations was
necessary to be able to model memory effects.

In both models, the model observer makes noisy
measurements of the presented stimuli and combines
this sensory evidence with prior information about
stimulus values to infer the values of interest (either
contrast or reflectance). Probabilistic models can
successfully account for several perceptual effects
(without memory), including color estimates under
uniform illumination (Brainard et al., 2006), lightness
estimates under nonuniform illumination (Allred &
Brainard, 2013), lighting direction (Stone, Kerrigan, &
Porrill, 2009), speed perception (Stocker & Simoncelli,
2006), and orientation perception (Girshick, Landy, &
Simoncelli, 2011). The probabilistic framework also
provides a natural way to model the effect of memory
on perception. Memory retention affects sensory
uncertainty (Pasternak & Greenlee, 2005), and in-
creased uncertainty, coupled with prior expectations
about stimulus statistics, can account for central
tendency biases in memory conditions (Ashourian &
Loewenstein, 2011; Jazayeri & Shadlen, 2010). In both
models, we model the effect of memory as increased
noise in the sensory evidence.

The generative models and inference processes of
both model observers are presented in Figure 7. The
input to the contrast model (Figure 7a) is the log border
contrast between the center and surround (k1 and k2 for
the two contrasts). The model observer makes noisy
measurements (m1 and m2) of these contrasts (noise is
assumed to be normally distributed). Given a mea-
surement, each contrast has a certain likelihood to have
given rise to the measurement. The model observer
combines the likelihoods with prior probabilities to
compute the posterior probabilities for the contrast
values, given the measurements p(kijmi). As in other
probabilistic models of delayed estimation, priors were
based on the statistics of the stimuli used in the
experiments.

We implemented two variants of the contrast model.
The first variant had a single prior that was centered on
the mean contrast across conditions (single-prior
variant). In the second variant, the prior was centered
on the mean in each condition separately (multiple-
prior variant; see the Appendix for details). Based on
the computed posteriors, the model observer chooses
the stimulus that more probably had lower contrast
(that is, was lighter, as the stimuli were decrements).
Figure 7c illustrates this inference process. Because this
model observer matches stimuli by contrast, it naturally
produces the simultaneous lightness contrast effect: If
the center patches have equal luminances but their
surrounds differ, they will have unequal edge contrasts
and thus they will be perceived differently. A perceptual
match (50% probability of choosing one stimulus over
the other) occurs when the contrasts match. To achieve
this match, the test luminance has to be adjusted to a
value that differs from the reference luminance.
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Figure 7. Two probabilistic models of lightness perception. Panels a and b show how the measurements are generated in each model

and present the inference problem. Panels c and d illustrate the inference process on a single trial. (a) The contrast model. The

variables ki represent the log border contrasts of the two stimulus patches. The model observer makes a noisy measurement of each

contrast (mi) and from these makes an inference about the contrasts ki. Given a measurement, each contrast is associated with a

likelihood. To infer which patch was lighter (had lower contrast), the observer combines the likelihoods with prior information and

chooses the patch that had the higher probability of having a smaller contrast. (b) The reflectance model. The observer makes four

noisy log luminance measurements (mi), one of each surround and center. The observer assumes each log luminance is the sum of log

illuminance and log reflectance (only the illuminance and reflectance variables are shown; the intervening luminance is omitted). The

observer infers center reflectance from the measurements by combining the likelihoods for log illuminance and reflectance with prior

information and computing the posterior distribution for the two center reflectances. The observer chooses the center that more

probably had the higher reflectance. (c) An example of the inference and decision process of the contrast model. Given the noisy

measurement, each log contrast is associated with a likelihood, as shown in the middle panels for the two stimuli to be compared.

The observer combines these likelihoods with a prior distribution over log contrast (left panel) to compute the posterior distribution

for log contrast given the measurements (right panel). The observer chooses the stimulus that more probably had the smaller

contrast. (d) Inference and decision process of the reflectance model. The model observer has a separate prior for log center

�
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The input to the reflectance model is log luminance,
which in the real world depends on both illumination
and reflectance. The generative model and inference
problem for the reflectance model are described in
Figure 7b. This model observer makes four noisy log
luminance measurements, one for each surround (ms1

and ms2) and one for each center (mc1 and mc2, again
with normally distributed error). Each measurement
results in a two-dimensional illumination-reflectance
likelihood. The observer then infers the center reflec-
tances and chooses the center that more probably had a
higher reflectance. Figure 7d illustrates this computa-
tion graphically. The likelihood functions (middle
columns in Figure 7d) are ambiguous about reflectance,
because several different combinations of surface
reflectance and illumination can produce any given log
luminance value. Priors are therefore needed to
constrain the reflectance values (Figure 7d, left
column). The observer infers reflectance by combining
the likelihood with priors for illumination and reflec-
tance and computing the posterior probability for
center reflectances given the measurements p(rc1,
rc2 j mc1, mc2, ms1, ms2). Importantly, the observer
assumes that the surround reflectance is uniform across
the display (there is a single surround reflectance
variable, rs) and any luminance change between the two
surrounds is due to a change in illumination (two
illumination variables, i1 and i2). This constraint
produces the simultaneous lightness contrast effect:
Consider the case in which the two center patches have
equal luminances but the surround luminances differ.
The model observer assumes a constant surround
reflectance and thus imputes the luminance change to
an illumination difference across the stimulus. But if
the illumination is different for the two center patches,
they cannot have the same reflectance (as they have
equal luminance). Because this model observer bases its
lightness judgments on reflectance, the two centers will
be perceived as different.

In all models, we assume that a delay between the
first (reference) and the second (test) stimulus adds
noise to the first measurement. This added noise
produces the memory bias we observed: The noisier
measurement leads to a wider likelihood, which causes
the posterior distribution to be drawn more toward the
prior, biasing perception of the stimulus. The prior is
centered on the (average) reference value. Therefore,
the sign of the bias depends on whether the reference is
lighter or darker than this average: A reference that is

darker than average is matched with a lighter test than
it is without the delay, and vice versa for a lighter-than-
average reference. The effect of this added noise can be
seen in the example likelihoods in Figure 7c, d. The
implementation of all models is outlined in detail in the
Appendix.

Comparison with human data

We ran the models in all experimental conditions
and extracted the PSEs and discrimination thresholds
from the proportion-lighter data as with the human
observers. We adjusted the parameters of the models to
give as a good a match as possible to the average
human data (in terms of PSEs and thresholds; see
Appendix for details).

Several features emerge from a side-by-side com-
parison of model and human data (Figure 8; human
data reproduced from Figure 3d). First, both contrast
and reflectance models produce a memory effect (seen
as the negative slope in the blue lines). But in the case of
the single-prior contrast model, there is an additional
offset depending on whether the reference was on the
dark (solid line) or light (dashed line) surround: The
middle reference has a nonzero bias, unlike the human
data and the reflectance model. The nonzero bias for
the contrast model results from using one prior for all
experimental conditions (see the Appendix for expla-
nation). If the prior is allowed to shift with exper-
imental condition, as is the case in the multiple-prior
contrast model, this asymmetry disappears. The re-
flectance model (Figure 8d) matches human observers
even with a fixed prior.

Second, all models produce the simultaneous light-
ness contrast effect (context condition; green lines), but
the mechanism behind the effect is different for the
contrast and reflectance models as explained above.
The magnitude of the effect produced by the contrast
model depends only on border contrast and is clearly
larger than the effect in the human data. The
reflectance model produces an effect that is comparable
to human observers.

Finally, the reflectance model reproduces the sub-
additivity of the memory and context effects observed
in the human data (red lines). The predicted joint effect
of independent memory and context biases is shown by
the thick light-red lines as before. The reflectance model
shows a joint effect that is smaller than predicted

 
reflectance, surround reflectance, and illuminance. These are shown as two-dimensional priors in the left-hand panels. Given the

measurement, each reflectance-illuminance pair is associated with a likelihood (middle panels, for the two centers and two

surrounds). Combining the likelihoods with the prior distributions and integrating out the other variables, the observer computes the

posterior distribution for the two center reflectances and chooses the stimulus that more probably had a higher reflectance.
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(Figure 8d). The effect in the single-prior contrast
model matches the prediction, that is, shows no
subadditivity (Figure 8b). The multiple-prior contrast
model shows a degree of subadditivity, but its
magnitude depends on the reference luminance in a way
that is not consistent with the human data (Figure 8c).
In the case of the multiple-prior contrast model, the
subadditivity is due to the changing prior: The prior in
the memory-only condition is different from the prior
in the context and joint conditions, because the average
reference contrast was different in these conditions (the
surround was uniform in the memory-only condition
and bipartite in the other conditions). These different
priors bias perception to different extents, leading to
apparent subadditivity when compared side by side.
Note that the memory effect produced by this model is
not identical in the joint and memory-only conditions:
The slopes of the red (joint) and blue (memory) lines
are different in Figure 8c. This is inconsistent with the
human data, in which the slopes for the memory and
joint conditions are indistinguishable (Figure 8a).

The reflectance model, which has two priors that
remain the same across conditions, does produce the

same memory effect in the memory-only and joint
conditions (Figure 8d). The memory effect, character-
ized by the slope, occurs because the added noise in
both memory conditions biases perception toward the
average stimulus value, which is the same in the
memory and joint conditions. But at the same time, the
added noise puts less constraint on illuminance. As the
noise, and uncertainty, of the sensory signal increases,
the observer gives more weight to the prior distribution.
The model observer assumes there are two illuminants,
but these two illuminants have a common prior
distribution. Therefore, when uncertainty increases and
the prior is given more weight, the sensory measure-
ments become more consistent with the two illuminants
being closer together, which decreases the context
effect. The context effect is weakened because surround
reflectance is assumed uniform—the context effect in
this model comes from the assumption of two
illuminants, and the closer those illuminants are to each
other, the weaker the effect of context. Thus, compared
with the memory-only and context-only conditions, the
reflectance model produces the same memory effect but

Figure 8. Comparison of the biases in the human data and the three models. The upper left-hand panel shows the observed biases as

in Figure 3d. The other panels show the biases produced by the two contrast models and the reflectance model. Line colors: black,

baseline; blue, memory; gray, constancy; red, joint condition. The independence predictions (thick pink lines) were computed for the

models in the same way as for the data.
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a smaller context effect in the joint condition,
consistent with human data.

Figure 8 shows the appearance biases in each
condition for the human and model observers in
separate panels. An alternative way to compare the
models to the human data is to plot the PSEs for
human and model observers in the same panel for each
condition separately. The four panels in Figure 9 show
data from human and model observers in each of the
conditions, shown in a grid to illustrate the factorial
effects of memory and context. Average human data
are shown in black, the reflectance model in blue, and
the contrast models in green and red. Overall, the
reflectance model PSEs are clearly a better fit to the
observed PSEs; this can be seen by comparing the error
between model estimates of PSEs and observed PSEs in
Figure 9b, c. On average, the reflectance model PSEs
(blue) were closer to the observed values than the
contrast model PSEs (green in b, red in c).

We also extracted model discrimination thresholds.
In all models, thresholds in the memory conditions
were higher than in the no-memory conditions (the
memory-related noise in the model was nonzero; this is
what leads to the memory bias described above). All

models, however, showed a systematic deviation from
the observed thresholds (see Supplemental Figure S2).
First, in the human data, thresholds tended to decrease
with reference intensity, especially in the baseline
condition. The models do not show this behavior.
Second, the modeled thresholds in the memory
conditions are lower than in the human data (increased
memory noise would lead to better fits for the
thresholds, but it would also worsen the fit for PSEs).
There was, however, much more variation in thresholds
than in PSEs across the human observers.

The contrast model has three parameters, whereas
the reflectance model has four (see the supplemental
material for all model parameters). To compare the
goodness-of-fit of the models while taking the number
of parameters into account, we computed the reduced
v2 values for each (the raw v2 values divided by degrees
of freedom). Comparison of the v2 values confirms that
the reflectance model gives the best account of the PSE
data (v2¼ 4.05 for Contrast Model 1, 2.67 for Contrast
Model 2, and 1.31 for the reflectance model). Note that
the second contrast model is in a way more complicated
than either of the other models, because there the prior
depends on the condition. If we allowed the tuning of

Figure 9. (a) Comparison of PSE values in the human data and the models. The PSE values are plotted against the reference luminance

values. Human data are plotted in black symbols and lines; the thick colored lines show the model fits. Blue, reflectance model; green

and red, contrast models. (b, c) Analysis of errors in the model PSE values. The error (difference between the model PSE and the

observed PSE) is plotted against the observed PSE. The histograms to the right show the distribution of errors. Blue, reflectance

model; green and red, contrast models. The reflectance model errors are plotted in both (b) and (c) to ease comparison with both

contrast models.
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the prior in the reflectance model also, it would
probably give an even better fit. For threshold data, the
contrast models fit the human data better (v2¼ 1.35 for
Contrast Model 1, 0.97 for Contrast Model 2, and 1.88
for the reflectance model), but considering both PSEs
and thresholds together, the reflectance model gives the
best fit (v2 ¼ 2.52 for Contrast Model 1, 1.70 for
Contrast Model 2, and 1.45 for the reflectance model).

Discussion

We studied the strategies used by humans to judge
lightness from ambiguous sensory data. Our novel
psychophysical paradigm factorially combined percep-
tual context and memory demands, and the data
provide support for a model of lightness perception in
which observers base lightness judgments on inferred
reflectance and not on border contrast. We focused
here on lightness judgments, but as similar context
dependencies exist in both achromatic and chromatic
color perception (see, e.g., Maloney & Schirillo, 2002),
we expect the same principles to hold in full-color
scenes. Furthermore, both memory and context effects
have been separately reported in other perceptual
domains, such as orientation (e.g., Goddard, Clifford,
& Solomon, 2008; Fischer & Whitney, 2014) and
motion (e.g., McKeefry, Burton, & Vakrou, 2007;
Nawrot & Sekuler, 1990) perception; an exciting
avenue for future research is to investigate general
principles of constancy computations by testing for
perception-memory interactions in many perceptual
domains.

The addition of a memory load into a perceptual
task introduced systematic errors: a central tendency
bias that did not add simply to the (perceptual)
simultaneous contrast effect. This bias is similar to
range effects reported in other stimulus domains
(Ashourian & Loewenstein, 2011; Crawford et al.,
2000; Duffy et al., 2010; Huang & Sekuler, 2010;
Huttenlocher et al., 2000; Jazayeri & Shadlen, 2010)
and in the hue dimension of color (Olkkonen et al.,
2014). The most interesting and novel experimental
finding, however, is the subadditivity of the memory
and context biases. If these two biases were indepen-
dent, one would expect them to add in a joint
condition. We should then be able to predict the joint
memory-context bias from the separately measured
memory and context biases. This was not the case: The
observed joint bias was considerably smaller than the
prediction. In other words, observers were less constant
when evaluating surface lightness across a memory
delay compared with simultaneous comparison. Light-
ness theories do not tend to make predictions about
memory effects, so it is not clear how this result fits into

existing frameworks. But in the chromatic color
domain, we recently found a similar effect for hue
(Olkkonen & Allred, 2014), and de Fez, Capilla, Luque,
Pérez-Carpinell, and del Pozo (2001) reported slightly
poorer constancy when observers matched Munsell
chips across an illuminant change with a memory delay
compared with simultaneous matching. To gain a
better understanding about what might cause this
subadditivity between context and memory effects, we
investigated how different models of lightness percep-
tion can account for the biases. The 2 3 2 design we
used, especially with the joint memory-context condi-
tion, provided a rich enough data set against which to
test these models.

We evaluated two classes of computational frame-
work invoked most often to explain contextual effects
in lightness perception: models that use border contrast
as a proxy to reflectance (e.g., Blakeslee & McCourt,
2012; Land & McCann, 1971; Rudd & Zemach, 2005;
Wallach, 1948), and models that form explicit reflec-
tance (and sometimes illumination) estimates based on
scene cues and prior information (e.g., Allred &
Brainard, 2013; Bloj et al., 2004; Murray, 2013). The
two approaches use fundamentally different strategies
to provide stable lightness percepts: one relies on a type
of heuristic (contrast) whereas the other tries to solve
the (ill-defined) problem of inferring stimulus reflec-
tance.

Contrast models successfully account for a variety of
perceptual phenomena. These models rely on straight-
forward calculations operating on contrast signals
rather than on complex inferences about attributes that
are not directly observable (such as reflectance).
However, contrast models fail when border contrast
signals do not correlate with reflectance in a straight-
forward manner, such as when scenes contain complex
illumination or geometric structure (Bloj, Kersten, &
Hurlbert, 1999; Gilchrist, 1977; Maertens et al., 2015).
On the other hand, reflectance estimation models
successfully account for many perceptual phenomena
in simple and complex scenes, but only a few
implementations exist (Allred & Brainard, 2013;
Brainard et al., 2006; Murray, 2013; also see Bloj et al.,
2004, for an analogous ‘‘equivalent illuminant’’ model).
Reflectance (or illumination) estimation models are
necessarily more complex than contrast models as they
embrace the ambiguity of luminance being a product of
reflectance and illumination. To alleviate this ambigu-
ity, the models use prior constraints on reflectance and
illumination. In our probabilistic formulations, both
contrast and reflectance model observers used prior
information to constrain the percepts. Although the
contrast model does not necessarily need prior infor-
mation (without a prior, the model observer could still
perform inference based on maximum likelihood), it
does not produce a memory bias without a prior. We
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thus augmented the contrast model to include memory
effects to make the two models more comparable.

In our hands, both types of model produce memory
and context effects, but the reflectance model is quanti-
tatively closer to human performance.Moreover, only the
reflectance model accurately captures the subadditivity of
memory and context biases. The mechanism for the
memory bias is similar in both models: Keeping the
sensory evidence in memory increases uncertainty, which
leads to more weight being given to prior information.
The prior is centered on the average stimulus value,
drawing the perceived value toward the mean. The
mechanism for the context effect, on the other hand, is
very different in the two models, as explained in the
modeling section. The reflectance model produces a
context bias that is comparable with the one measured
with human observers. The context bias of the contrast
model, however, is larger than observed with humans.
There is no parameter in the model that could be adjusted
to remedy this, as the match depends only on the border
contrast. More complex contrast-based models could,
however, correctly account for the effect of context (e.g.,
Gilchrist et al., 1999; Rudd, 2014). The main difference
between the models, finally, is their ability to account for
the subadditivity of the memory and context biases. The
reflectance model shows this subadditivity, giving a fairly
good fit both qualitatively and quantitatively, whereas the
first contrast model does not produce any subadditivity.
To evaluate whether a more complex contrast model
would better match human performance, we additionally
implemented a contrast model with separate priors for
each condition, reflecting the possibility that the observers
switched priors between every block. This model
produced the correct pure memory bias but did not quite
capture the pattern of additivity between context and
memory. To recapitulate, the subaddivitity in the
reflectance model is caused mainly by the two putative
illuminant estimates being drawn toward the prior. The
shift toward a common prior means that the effective
difference between the two estimated illuminants becomes
smaller in memory. But the context effect is a result of the
two illuminants being different, so the shift also reduces
the context effect. Because the contrast model only has a
prior for border contrast (one or many, depending on the
version), there is no mechanism for the two backgrounds
to become more similar in memory. This is the key
difference between the contrast and reflectance models
and presumably the reason why the reflectance model
does better in explaining human performance. Thus, by
adding a temporal dimension that affected internal
estimation noise, we were able to separate the predictions
from contrast coding and reflectance estimation models.
Comparison of modeling results to human data suggests
that human observers employ a reflectance estimation
strategy when estimating lightness from an ambiguous
center-surround display.

Implementing the models, we made assumptions
about the priors. First, we assumed the prior distribu-
tions to be centered on the mean stimulus value. We
find this reasonable, especially as it leads to the central
tendency bias demonstrated by both the current study
and earlier reports. The second assumption concerned
the shape of the distribution. We assumed the prior to
have a normal distribution (see model descriptions for
details), although we naturally cannot be sure that this
is the case. Strictly, if the prior reflects a learned
stimulus distribution, it could be a series of very narrow
peaks placed at the stimulus values already encoun-
tered. Or it could be a uniform distribution from the
lowest to the highest encountered value. Both of these
alternatives seem too strict given the uncertainty in
sensory encoding. Some earlier studies have decoded
the prior used by observers (Girshick et al., 2011;
Stocker & Simoncelli, 2006). We made no such attempt,
especially given the complexity of the reflectance
model, which is beyond the scope of our article. The
main purpose of the modeling was to illustrate the
differences in the behavior of the two models, given
certain types of prior distribution. Finally, alternative
model structures surely exist for the contrast and
reflectance-estimation models, and a different or more
complex contrast model might well account for the
results. The present models, however, are good
exemplars of two model classes and seemed reasonable
starting points in comparing probabilistic versions of
contrast and reflectance-estimation models.

Some lightness models do not neatly fall under the
two categories we have imposed. For instance, scission
or layer models are similar to our reflectance model in
that they seek to separate the retinal image into layers
of surface reflectance, illumination, and transparency
(Adelson & Pentland, 1996; Anderson & Winawer,
2008). The key difference to our reflectance model is
that in layer models, lightness estimates are not
constrained by prior information about surfaces and
illuminants but rather by contrast relationships at
borders and on figural information, such as border
junctions. Another influential model that falls outside
our classification is the anchoring model, which
explains perceived lightness with a ‘‘brightest-is-white’’
anchoring rule specific to a given illumination frame-
work (Gilchrist et al., 1999). The anchoring model is
similar to contrast models in that it derives lightness
from luminance relationships, but it has the added
complexity of segmenting a scene into illumination
frameworks. This allows the model to qualitatively
account for the effects of spatial arrangement on
perceived lightness. The gamut relativity model by
Vladusich (e.g., Vladusich & McDonnell, 2014) com-
bines assumptions from both layer and anchoring
models to derive lightness estimates. Although layer
and anchoring models can easily account for the
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classical simultaneous lightness contrast illusion, it is
unclear how they would model the effects of memory
uncertainty, as they are not probabilistic. We wish to
advance the general point that a computational
strategy that uses constraints from prior knowledge
rather than from pictorial cues alone seems more
flexible in accounting for lightness perception in a
dynamic, three-dimensional world. The present results
show that a probabilistic estimation strategy that has
access to prior information about surfaces and
illuminants does indeed account for human lightness
perception in a combined perceptual and memory task.

Conclusion

Both context and memory bias the perception of
lightness, but these biases are not additive: The bias in a
joint memory-context task is smaller than one predicted
by independent, additive biases. The addition of a
memory load to a perceptual task in fact decreased the
perceptual, context-induced bias. The results are
consistent with a model observer that makes lightness
judgments based on inferred stimulus reflectance and
less well described by a model observer that uses simple
border contrast for lightness judgments. More gener-
ally, these results suggest that adding realistic task
demands (memory) to classical perceptual tasks may
help adjudicate between competing computational
frameworks across sensory domains.

Keywords: perceptual constancy, memory, probabilis-
tic inference, color perception, lightness perception
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Appendix

Contrast model

The signal to the contrast model is the log-contrast k
between the surround and the center of the stimulus: kj
¼ log(Lsj/Lcj)¼ log(Lsj) – log(Lcj), where Lsj and Lcj are
the surround and center luminances, respectively, and j
¼ 1, 2 is the index for the stimulus (log border contrast
well approximates Weber contrast at low contrasts). On
each trial, the model observer makes noisy measure-
ments of the two stimulus contrasts. The measurements
grow with log-contrast, and the noise is additive:

mj ¼ kj þ �m; ðA1Þ
where the error is normally distributed: �m ; N(0, rm)
and thus mj ; N(kj, rm); rm is the standard deviation of
the measurement noise. The observer only has access to
the measurements mj and not to the actual contrast
values. On a given trial, the observer infers the contrast
values kj from the measurements mj as explained
further below. The inference problem is illustrated in
Figure 7a.

When there is a delay between the first and the
second stimulus (the memory and joint conditions in
the experiment), the first measurement becomes noisier
with time. We assume that the delay only adds noise
and does not on average bias the measurement itself.
This time-dependent noise is normally distributed and
adds to the measurement noise. In the delay conditions,

the measurement of the first stimulus is

m1 ¼ k1 þ �m þ �t ðA2Þ
where �t ; N(0, rt) is the time-dependent noise. In the
delay conditions, the total noise for the first stimulus is
then

rtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
m þ r2

t

q
ðA3Þ

Note that the delay only adds noise to the first
measurement, not to the second one.

Given a measurement m (and dropping the subindex
j for the moment), each log-contrast is associated with a
likelihood L(k) ¼ p(mjk). The observer combines the
likelihood with prior information about stimulus
contrast. The prior probability, p(k), is normal with
mean lp and standard deviation rp. With the likelihood
and the prior, the observer computes the posterior
probability given the measurement

pðkjmÞ ¼ pðmjkÞpðkÞ
pðmÞ ; ðA4Þ

where p(m)¼
R
p(mjk)p(k) dk. From the posterior

probabilities, the model observer computes the proba-
bility that stimulus 1 had a higher contrast than
stimulus 2:

pðk1 . k2jm1;m2Þ ¼
Z ‘

�‘

pðk0
1jm1Þ

Z k 0
1

�‘

pðk0
2jm2Þ dk0

2 dk0
1

ðA5Þ
Finally, the observer chooses the stimulus that had a

greater probability of having a lower contrast (or
higher luminance, as the stimuli were decrements). That
is, counting the number of times the observer chooses
Stimulus 2 over Stimulus 1, the response y is

yðm1;m2Þ ¼
1 if pðk1 . k2jm1;m2Þ, 0:5
0 otherwise

�

ðA6Þ
The psychometric function—the probability of

choosing Stimulus 2 as a function of the stimulus
values—is the expected value of the response condi-
tional on the stimulus values, given by

pð‘‘k1 . k2’’jk1; k2Þ
¼
R R

yðm1;m2Þpðm1jk1Þpðm2jk2Þ dm1 dm2 ðA7Þ
We tested two variants of the contrast model

(Contrast Model 1 and 2 in the figures). In the first
variant, we fixed the mean of the prior, lp, to be the
mean of all the reference stimulus values against both
surrounds. In the second variant, lp was fixed to the
mean reference value in each particular condition. We
assume that the observer learns the prior during the
experiment and that the width of the learned prior
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depends on the range of contrasts used. There were
thus three variables that we varied: the standard
deviations for the prior (rp), the measurement (rm), and
time-dependent noise (rt).

Wemade no attempt to fit themodel to the raw data of
individual observers. We are comparing the two models
(contrast and reflectance models) in their ability to
explain the main characteristics of the data, most
importantly the subadditivity of memory and context
effects. We do this by adjusting the parameters of each
model to give a good fit to the average results over
observers. This adjustment of parameters is described
below.

The parameters rm, rt, and rp were fit to the average
observer data by minimizing the v2 error between the
model and observer PSEs and thresholds. The raw v2 is

v2 ¼
X
i

ðoi � eiÞ2

r2
i

: ðA8Þ

Here, ei are the modeled PSE and threshold values in
condition i, and oi are the observed values, averaged
over observers. ri is the standard deviation of the
observed values.

The following is a (partial) list of some key
assumptions in the contrast model:

� Observers base their judgments on noisy measure-
ments that grow with log contrast and have
normally distributed error.

� The errors are uncorrelated between trials and
between the two stimuli.

� Holding a contrast measurement in memory adds
noise (variability) to the measurement; measurement
and memory noise are independent and their
variances add.

� The observer uses prior information about stimulus
contrasts when making contrast estimates. This
prior has the form of a normal distribution in log
contrast space, centered on the mean of the stimulus
ensemble. The observer learns the prior quickly
during the experiment.

� The observer computes posterior probability dis-
tributions for the two contrasts and chooses the one
that more probably had a higher luminance (lower
contrast).

Reflectance model

The signal to the reflectance model is the log
luminance l of the two centers and surrounds. The
model observer has an internal model in which the
luminance is the product of illumination I and
reflectance R: L ¼ IR. Or, as the model observer does
the computations in a log space, log luminance is a sum
of log illuminance and reflectance: l ¼ i þ r, where l ¼
log(L), i ¼ log(I), and r¼ log(R). See Figure 7b for

illustration. The observer infers the reflectance of the
two center patches and chooses the one that more
probably had a higher reflectance. Details of the
inference are explained below.

On each trial, the observer makes noisy measure-
ments of the four luminances. The measurements grow
with log luminance and have normal error:

mcj ¼ lcj þ �m
msj ¼ lsj þ �m

ðA9Þ

where �m ; N(0, rm); lcj and lsj are the center and
surround luminances, respectively; and j¼ 1, 2 is again
the index for the stimulus. As in the contrast model, a
delay between the first and the second stimulus adds
noise to the measurement of the first stimulus. We
assume only the measurement for the center becomes
noisier, because both surrounds were visible through-
out the trial in all conditions. The measurement for the
first center patch in the delay conditions is then

mc1 ¼ lc1 þ �m þ �t ðA10Þ
where �t ; N(0, rt) is again the time-dependent noise.
The total noise for the first center patch is

rtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
m þ r2

t

q
: ðA11Þ

The measurement is a function of luminance.
Luminance is a function of both illumination i and
reflectance r, so the likelihood function is two-
dimensional: L(i, r)¼ p(m j i, r). The observer’s task is
to infer the values of the two center reflectances. There
is obviously an infinite number of illuminance-reflec-
tance combinations that would produce a given
luminance. As the measurements m are a function of
luminance, estimating the reflectance from the likeli-
hood alone would be an ill-defined problem. To reduce
the ambiguity, the observer combines the likelihood
with priors for illumination and surface reflectance.
The inference is more complicated than in the contrast
model, but the basic idea is straightforward. The
observer has access only to the noisy measurements m.
From the measurements, the observer infers the values
of the center reflectances rc1 and rc2 (see Figure 7b).
Making the optimal inference requires computing the
two-dimensional posterior distribution for (log) center
reflectance, given the measurements

pðrc1; rc2j~mÞ ¼
pðrc1; rc2; ~mÞ

pð~mÞ

¼
R R R

pði1; i2; rc1; rc2; rs; ~mÞ drsdi1di2
pð~mÞ ;

ðA12Þ
where the four measurement are represented as a
vector: m� ¼ [mc1, mc2, ms1, ms2]. As only the center
reflectances are of interest, the observer marginalizes
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over the two illuminants and the surround reflectance
(the triple integral in the above equation). The (total)
joint probability above can be written out (with the
help of the graph in Figure 7b):

pði1; i2; rc1; rc2; rs; ~mÞ
¼ pði1; i2; rc1; rc2; rs;mc1;mc2;ms1;ms2Þ
¼ pði1Þpði2Þpðrc1Þpðrc2ÞpðrsÞpðmc1jI1; rc1Þ

pðmc2jI2; rc2Þpðms1ji1; rsÞpðms2ji2; rsÞ ðA13Þ
There are three prior distributions in this joint

probability: The illumination prior p(i) (same prior for
the two illuminants), the center reflectance prior p(rc)
(same prior for the two centers), and the surround
reflectance prior p(rs).

From the posterior distribution, the observer com-
putes the probability that the log reflectance of
Stimulus 2 was greater than that of Stimulus 1:

pðrc2 . rc1j~mÞ ¼
R R

pðr0c1; r0c2j~mÞIr 0c2
. r 0

c1
dr0c1 dr0c2;

ðA14Þ
where Irc2 . rc1

is the indicator function. The model
observer then chooses Stimulus 2 if it has a greater
probability to have a higher reflectance:

yð~mÞ ¼ 1 if pðrc2 . rc1j~mÞ. 0:5
0 otherwise

�
ðA15Þ

This model is computationally much heavier than
the contrast model. For each condition, we picked
seven stimulus values from the appropriate range and
ran 50 simulated trials at each point. We then fit
psychometric functions to these data to extract the PSE
and threshold.

We adjusted the parameters of the model to find as
close correspondence as possible to the average
empirical data. First, we fixed the means of the three
priors with the constraints that (a) the peak of the joint
log illuminance-center reflectance prior corresponded
to the mean of the log reference luminances and (b) the
peak of the joint log illuminance-surround reflectance
prior corresponded to the average log surround
luminance. In other words, if li is the mean (and the
mode of the normal) illuminance prior, the mean center
reflectance prior lrc was set so that liþ lrc equaled the
average reference log luminance. Similarly, the mean
surround reflectance prior lrs was set so that li þ lrs

equaled the average surround log luminance.

The other parameters in the model are the prior
standard deviations ri (illuminance), rrc (center reflec-
tance), and rrs (surround reflectance); the measurement
noise parameter rm and the time-dependent noise
parameter rt. These parameters were adjusted by trial
and error to find a close match to the empirical data.
Instead of letting all three prior width parameters vary
freely, we introduced a constraint: When projecting the
two-dimensional prior on to the luminance axis, we
required the extreme center luminance values and the
two surround luminance values to have the same z-
score; call the parameter that defines this score z. There
were thus four free parameters in the model: ri, z, rm,
and rt.

The following is a list of some of the key
assumptions in the reflectance model:

� Observers infer the log reflectance of the center
patches from noisy measurements that grow with
log luminance and have normally distributed error.

� The errors are uncorrelated between trials and
between different parts (center, surround) of the
stimulus.

� Holding a measurement in memory adds normally
distributed noise to it; measurement and time-
dependent noise are independent and their variances
add.

� Observers use prior information on surface reflec-
tance and illumination when making the inference.
Observers learn the range of log luminances (sum of
log illuminance and reflectance) during the experi-
ment and adjust their priors accordingly.

� Observers compute the posterior probability for the
two center reflectances and choose the one that
more probably had a higher reflectance

Model comparison

The models have an unequal number of parameters
and thus unequal degrees of freedom. To compare the
models, we computed a v2 statistic for each. We first
computed the ‘‘raw’’ v2 value according to Equation
A8. The final, reduced v2 value was the raw value
normalized by the degrees of freedom m:

v2
N ¼

v2

m
: ðA16Þ
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