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Abstract

The empirical likelihood (EL) method has a critical problem when the

objective function to be optimized cannot be computed or is not differen-

tiable if the moment condition is highly nonlinear or discrete. We deal with

this issue following the method of simulated moment (MSM) introduced by

Pakes and Pollard (1989) and McFadden (1989) to get an objective function

which is computable, and we use importance sampling method to smooth

discrete moment conditions. We have demonstrated the convergence and

asymptotic normality of the empirical likelihood estimator based on the

simulated moment conditions.

Key words: empirical likelihood, simulated moments, importance sam-

pling.

1 Introduction

Recently the Empirical Likelihood (EL) method has been increasingly popular in

statistics and econometrics as an alternative to GMM, due to its desirable higher

order properties, see Owen (2000) for a comprehensive introduction and Newey

and Smith (2004) for higher order asymptotics, among others. In this paper we

contribute to the literature by addressing how EL deals with non standard moment

conditions as

E [g (x, θ0)] = 0,
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where x is the observed data, θ0 is the parameter to be estimated and g is a

nonstandard function in the sense that g is diffi cult to compute or can even be

non-smooth. In this case both the generalised method of moments (GMM) and

EL will be diffi cult to apply because they require explicit calculation of the sample

analogue of the moment condition and existence of the derivative of g (x, θ) with

respect to θ.

To overcome this problem, the methodology of our paper is as follows: we

apply the method of simulated moment (MSM) introduced by Pakes and Pollard

(1989) (hereafter PP) andMcFadden and Ruud (1994) (hereafter MR) to empirical

likelihood to simulate the moment condition where it is hard to compute, so that

we extend MSM to broader applications. Furthermore, our another contribution is

to use importance sampling , that is, we replace the original moment condition by

another one obtained via simulation with observations from a different probability

distribution which is relatively easy to handle. Also, we notice that as McFadden

(1989) points out, importance sampling can be used to smooth discrete moment

conditions, therefore we extend our estimation method to more general case where

the moment conditions can even be discrete. The next step is that we then form

the EL objective function based on the simulated moment condition, and do a

Taylor expansion of the first order derivative of the objective function to show the

consistency and asymptotic normality of the solution (the estimator).

2 Empirical Likelihood with non Standard Mo-

ment Condition

Consider the following moment condition model:

E [g (x, θ0)] = 0, (1)

where x is the observed data, θ0 ∈ Θ ⊂ R is the parameter to be estimated and g is
a real function. Following the well established procedures, (e.g., Qin and Lawless

(1994) and Newey and Smith (2004)), the EL estimator based on (1) is defined as

θ̂ ≡ arg min
θ∈Θ

sup
λ∈R
R (θ, λ) , (2)
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where

R (θ, λ) ≡
N∑
n=1

log
(

1 + λ
′
g (x, θ)

)
(3)

and λ is a vector of Lagrangian multipliers.

A problem in empirical likelihood estimation of θ by minimizing (3) is that g (·)
is sometimes intractable, i.e., not in an explicit form, so that we cannot calculate

its sample analogue, nor we can get its derivative. Another situation is that

sometimes g (·) is not continuous in θ, but usually empirical likelihood estimation
assumes that g (·) should be continuous and differentiable in the parameter of
interest, so that we can demonstrate the consistency of EL estimator. (see, e.g.,

assumption 1 of Newey and Smith (2004)). To summarize these situations we list

the following cases.

Case 1 g (·) is discontinuous in θ.

Example 1 McFadden (1989) considered estimation of discrete response model.
Suppose we have obtained the model like

yi = I(βxi + εi > 0) (4)

where I (·) is the indicator function and εi is i.i.d with density p (ε). So we have the

moment conditions E [g (x, β)] ≡ E [yi − I(βxi + εi > 0)] and the GMM estimator

β̂ is based on the following sample analogue:

ĝ (x, β) =
1

N

N∑
i=1

[yi − I(βxi + εi > 0)] .

Problems arises because ĝ (x, β) is not continuous in β.

Case 2 Computation of g (·) is infeasible.

To overcome these problems in GMM, Pakes and Pollard (1989) considered

simulating a good estimate g̃ (·) instead of using g (·) directly. Specifically, if we
let Gn (θ) be a simulation of E [g (x, θ)] and θ̃ be the GMM estimator based on

Gn (θ), then the conditions under which θ̃ converges to θ0 are described in the

following theorem.

Theorem 1 (Pakes and Pollard, 1989) θ̃ converges in probability to θ0 if
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a.
∥∥∥Gn

(
θ̃
)∥∥∥ ≤ infθ∈Θ ‖Gn (θ)‖+ op(1)

b. Gn (θ0) = op(1)

c. sup‖θ−θ0‖>δ ‖Gn (θ)‖−1 = Op(1), ∀δ > 0.

where ‖·‖ is some norm depending on θ.

Remarks

The intuitions of these conditions is to require the simulation Gn (·) be as close
to E [g (x, θ)] as possible. Specifically,

a. Gn (·) evaluated at the estimator θ̃ cannot be much bigger than the smallest
value of Gn (θ) in Θ.

b. Gn (·) evaluated at the true parameter θ0 cannot be much bigger than zero.

c. Gn (·) evaluated outside some neighborhood of θ0 should be large.

To use the results of this theorem in EL, we consider a specific simulation

method Importance Sampling which is introduced in the next section.

3 Importance sampling

Importance sampling is a simulation method which is useful to estimate an integral

about a probability distribution from a different distribution. Suppose we want

to evaluate the integral

Ep [g(x)] =

∫
D

g(x)p(x)dx

where g(x) is a function of x and p(x) is the density of x. If it is diffi cult to sample

from p(x) , we can choose another probability distribution Q(x) with density q(x),

which is called the importance function and has the same support as p(x), and

transform Ep [g(x)] as

Ep [g(x)] =

∫
g(x)

p(x)

q(x)
q(x)dx = Eq [g(x)w(x)] , (5)

where w(x) = p(x)/q(x) is called the importance weight (also inverse likelihood

ratio). Note that w (x) is always positive, Eq [w(x)] = 1, and this weight function

reflects the important regions of the sampling space. A special case is that q(x) =

p(x), when w (x) = 1.

(5) motivates an unbiased estimator for Ep [g(x)] by sampling S independent

4



values from Q(x) and calculating

1

S

S∑
s=1

g(xns)w(xns) (6)

as simulated value of g(x)w(x). Hence Ep [g(x)] can be estimated by

Ẽp [g(x)] =
1

NS

N∑
n=1

S∑
s=1

g(xns)w(xns). (7)

Note that g(x)w(x) is an unbiased estimator of Ep [g(x)] by construction, with

expectation taken with respect to q(x). It is interesting to check the expectation

of g(x)w(x) with respect to p(x). Generally it will depend on the choice of q(x),

but in some circumstances this expectation can be bounded by a function that

does not depend on the choice of q(x). The following result will be useful later:

Proposition 1 Assume that g(x) is nonnegative and the importance weight w(x) =

p(x)/q(x) is infinitely integrable, i.e., Ep [w(x)∞] < M, where M is finite, then

Ep [g(x)w(x)] is also bounded, in particular

Ep [g(x)w(x)] ≤ Ep [g(x)]M. (8)

Proof. The result is directly from the Hölder inequality:

Ep [g(x)w(x)] =

∫
g(x)

p(x)

q(x)
p(x)dx ≤

(∫
g(x)p(x)dx

)
‖w(x)‖∞ ≤ Ep [g(x)]M,

where ‖·‖∞ denotes the norm in L∞ space.

4 Large Sample Results

Now we replace E [g (x, θ)] in the original model (1) by its simulated version com-

puted by (7) through importance sampling and define

g̃ (xn, θ) ≡ E [g (x, θ)]− Ẽp [g (x, θ)] , (9)
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As mentioned above, Ẽp [g (x, θ0)] is unbiased, so E [g̃ (xn, θ)] = 0 and therefore

can be used as a new moment condition to estimate θ0. We further define:

g̃ (θ) ≡ 1

N

N∑
n=1

g̃ (xn, θ) , (10)

G̃ ≡ E

[
∂g̃ (xn, θ0)

∂θ

]
, (11)

and

Ω̃ ≡ E
[
g̃ (xn, θ0)

′
g̃ (xn, θ0)

]
, (12)

and let their counterparts from g (x, θ) be defined analogously, and denoted with-

out accent above, e.g., g (θ) ≡ 1
N

ΣN
n=1g (xn, θ) . To apply the results of theorem

1, we define the empirical likelihood estimator θ̃ as the solution to the following

problem:

R̃(θ̃, γ̃) ≤ min
θ

sup
γ∈Rp
R̃ (θ, γ) + op(N

−1), (13)

where

R̃ (θ, γ) =
1

N

N∑
n=1

log(1 + γ
′
g̃ (xn, θ))

and γ is a vector of Lagrangian multipliers which is a function of θ implicitly

defined through
1

N

N∑
n=1

g̃ (xn, θ)

1 + γ′ g̃ (xn, θ)
= 0,

e.g., see Qin and Lawless (1994).

For the general asymptotic properties of empirical likelihood estimator, we

make the following regularity assumption.

Assumption 1 a. θ0 ∈ int (Θ) , and Θ is a compact subset of Rp.
b. E [supθ∈Θ ‖g (x, θ)‖ε] <∞ , ∀ε > 2.

c. Ω ≡ E
[
g (x, θ0)

′
g (x, θ0)

]
is nonsingular.

Assumption 2 For any δ > 0, sup‖θ−θ0‖>δ ‖g (θ)‖−1 = Op(N
−1).

Furthermore, we need a smoothing condition for uniform convergence. Let the

simulation residual process defined as

ω (θ) =
√
N (g̃ (θ)− Ep [g̃ (x, θ)]) . (14)
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Assumption 3 The process ω (θ) is stochastically equicontinuous at θ0, i.e., for

any ε > 0, there exists a neighborhood U of θ0, which satisfies

sup
θ∈U
|ω (θ)− ω (θ0)| ≤ ε a.s

The following theorem demonstrates the consistency of θ̃, by checking similar

conditions given in theorem 1.

Theorem 2 Given assumption 6-8, we have the following results:
1. sup‖θ−θ0‖>δ ‖g̃ (θ)‖−1 = Op(N

−1).

2. g̃ (θ0) = op(1)

3. g̃(θ̃) = op(1)

4. R̃ (θ0, γ̄) = Op

(
N−1/2

)
, where γ̄ = arg supγ R̃ (θ0, γ) .

and then θ̃ converges in probability to θ0.

Proof. The first result is to say that g̃ (θ) is big outside some neighborhood of

θ0, which is from the identification of θ0. To see this, note that from triangle

inequality we have

sup
‖θ−θ0‖>δ

‖g̃ (θ)‖ = sup
‖θ−θ0‖>δ

‖−g (θ)− (g̃ (θ)− g (θ))‖

≥ sup
‖θ−θ0‖>δ

‖g (θ)‖ − sup
‖θ−θ0‖>δ

‖g̃ (θ)− g (θ)‖

≥ sup
‖θ−θ0‖>δ

‖g (θ)‖ − sup
θ
‖g̃ (θ)− g (θ)‖ ,

given the assumption 3 of stochastic equicontinuity, supθ ‖g̃ (θ)− g (θ)‖ = op (1) ,

and with assumption 2 we have sup‖θ−θ0‖>δ ‖g̃ (θ)‖−1 = Op(N
−1).

Secondly we follow the way of McFadden (1989), McFadden and Ruud (1994),

where
√
Ng̃ (θ) is decomposed as

√
Ng̃ (θ) = AN + [ω (θ)− ω (θ0)] +BN (θ) + CN (θ) (15)

where

AN ≡ g (z, θ0) +
1√
N

N∑
n=1

(g̃ (xn, θ0)− Eq [g̃ (xn, θ0)]) ,

CN (θ) ≡ 1√
N

N∑
n=1

g (xn, θ)− g (xn, θ0) ,
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BN (θ) ≡ 1√
N

N∑
n=1

(Eq [g̃ (xn, θ)]− g (xn, θ)) .

McFadden and Ruud (1994) have shown that AN = op(N
1/2), with i.i.d assump-

tion on the observations and simulations. Also note that CN (θ0) = op(N
1/2), and

BN (θ0) = 0, so we have
√
Ng̃ (θ0) = op(N

1/2) + op(N
1/2) and hence g̃ (θ0) = op(1).

To see the third results, a first order Taylor expansion of R̃ (θ, γ) around γ = 0

gives

R̃ (θ, γ) = γ
′
(g̃ (θ))− 1

2
γ
′

[
1

N

N∑
n=1

g̃ (xn, θ) g̃ (xn, θ)
′(

1 + γ̇
′
g̃ (xn, θ)

)2

]
γ, (16)

where γ̇ lies between 0 and γ. According to Lemma A1 and A2 of Newey and

Smith (2004) we have γ̄ = Op

(
N−1/2

)
and 1

(1+γ̇
′
g̃(xn,θ))

2 ≤ −1/2. Thus from (16)

and result 1 we have

R̃ (θ0, γ̄) ≤ Op

(
N−1/2

)
op(1) +Op

(
N−1

)( 1

N

N∑
n=1

g̃ (xn, θ)
′
g̃ (xn, θ)

)
= op(N

−1/2) +Op

(
N−1

)
= Op

(
N−1/2

)
.

Now from the definition of θ̃ we have

R̃(θ̃, γ̃) = Op

(
N−1/2

)
g̃
(
θ̃
)

+Op

(
N−1

)
(17)

≤ min
θ

sup
γ∈Rp
R̃ (θ, γ) + op(N

−1)

≤ R̃ (θ0, γ̄) + op(N
−1)

= Op

(
N−1/2

)
.

Solving g̃(θ̃) out of (17) gives ∥∥∥g̃(θ̃)
∥∥∥ = op(1). (18)

Then the following argument is similar to Pakes and Pollard (1989). By result 1

we have just proved, for arbitrary δ > 0, there exists a bounded, positive constant

M such that sup‖θ−θ0‖>δ ‖g̃ (θ)‖−1 < M. On the other hand, since
∥∥∥g̃(θ̃)

∥∥∥ is op(1),

for N large enough
∥∥∥g̃(θ̃)

∥∥∥−1

> M with probability approaching one. Hence

sup
‖θ−θ0‖>δ

‖g̃ (θ)‖−1 < M <
∥∥∥g̃(θ̃)

∥∥∥−1

,
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which implies θ̃ must be within the neighborhood of θ0 of radius δ, by noting that

g̃(θ) is continuous. The convergence follows since δ can be arbitrary small.

Assumption 4 g (x, θ) is differentiable at θ0 and G = E [∂g (x, θ0) /∂θ] is of full

rank.

Theorem 3 Given assumption 1-3,
√
n
(
θ̃ − θ0

)
d→ N(0, V ), where

V =
(
G

′
Σ̃−1G

)−1

.

Proof. Firstly we show that
√
n
(
θ̃ − θ0

)
is stochastically bounded. Since g̃(θ̃) =

op(1), hence CN
(
θ̂
)

= Op(1) and by expanding CN
(
θ̃
)
we have

CN

(
θ̃
)

=
√
n
(
θ̃ − θ0

)( 1

N

N∑
i=1

(
∂m (xn, θ0)

∂θ
+O

(
θ̃ − θ0

)))
= Op(1).

With the consistency θ̃
p→ θ0, we have

√
n
(
θ̃ − θ0

)
= Op(1). Based on theorem 1,

the following proof is similar to Parente and Smith (2008). Now we define(
θ̇, γ̇
)

= arg min
θ

sup
γ∈Rp
R̃ (θ, γ) . (19)

LetGn (θ) = ∂m̃n (θ) /∂θ, G (θ0) = 1
N

∑N
n=1Gn (θ0) , Ω̃n = 1

N

∑N
n=1 m̃n (θ0) m̃n (θ0)

′
.

Expand the first order condition for the saddlepoint problem of (??) around θ0

and γ0 = 0 :

∂R̃ (θ, γ)

∂θ
= 0 = −

N∑
n=1

Gn

(
θ̇
)′
γ

1 + γ̇
′
(
bn − m̃n

(
θ̇
)) (20)

' 1

N

N∑
n=1

Gn (θ0)
′
γ̇,

∂R̃ (θ, γ)

∂γ
= 0 = −

N∑
n=1

m̃n

(
θ̇
)′

1 + γ̇
′
(
bn − m̃n

(
θ̇
)) (21)

' −g̃ (θ0)− 1

N

N∑
n=1

Gn (θ0)
(
θ − θ̇

)
+ Ω̃nγ̇,
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(20) and (21) imply

√
N
(
θ̇ − θ

)
' −

(
G (θ0)

′
Ω̃−1
n G (θ0)

)−1

G (θ0) Ω̃−1
n

√
Ng̃ (θ0) .

Note that from Lemma 1 we have

√
Ng̃ (θ0)

d→ N
(

0, Σ̃
)
.

Also from i.i.d assumption and unconditional simulation,

1

N

N∑
n=1

Gn (θ0)
p→ E [Gn (θ0)] = G.

So
√
n
(
θ̇ − θ0

)
→ N(0, V ). Next we show θ̃ and θ̇ are asymptotically equivalent.

The definition of θ̃ implies:

R̃(θ̃, γ̃) ≤ R̃(θ̇, γ̇) + op
(
N−1

)
≤ R̃(θ̇, γ̃) + op

(
N−1

)
.

Then with the similar expansion as (17) we have

Op

(
N−1/2

)
g̃
(
θ̃
)

+Op

(
N−1

)
≤ Op

(
N−1/2

)
g̃
(
θ̇
)

+Op

(
N−1

)
+ op

(
N−1

)
⇒ g̃

(
θ̃
)
− g̃

(
θ̇
)

= Op

(
N−1/2

)
.

So g̃(θ̃)−g̃(θ̇) = op (1) . Thus according to the continuity of g̃ we have θ̃ = θ̇+op (1) .

Discussion of the asymptotic results:

1. The consistency result also holds if Ẽp [g (x, θ0)] is a biased estimator for

E [g (x, θ)] if

sup
Θ
N1/2 |B| = o(1)

where B ≡ Ẽp [g (x, θ0)]−E [g (x, θ)] is the simulation bias. See, e.g., McFadden

(1989), who uses smoothed kernel simulator, which is biased.

2. The consistency of θ̃ does not depend on the choice of number of simulations

S, although S does affect the asymptotic effi ciency of θ̃.

3. It turns out that the asymptotic variance-covariance matrix of θ̃ does not
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depend on the choice of importance function q(·) but on the number of simulations
S: this is the case which MR called unconditional simulation. As S goes to infinity

the disturbance of simulation vanishes, and thus θ̃ is asymptotically equivalent to

general EL estimators.

4. These asymptotic results is similar to that of McFadden and Ruud (1994)

obtained for GMM estimator. The covariance matrix of their estimator is larger

than general GMM estimator due to simulations, which is slightly different from

the covariance matrix of our EL estimator. However, both of our proofs aim to

show that, the simulated moment indicator evaluated at the true parameter and at

the estimator satisfies similar conditions indicated in the proof of theorem 3.1 of

Pakes and Pollard (1989).

5 Conclusion

We have presented EL estimation with moment condition which is intractable,

and we also mentioned that simulation by importance sampling can be used to

smooth moment condition with discreteness in parameter. This is a different way

from Parente and Smith (2008) approach. Rather than simulating the moment

indicator, they put different assumption on it to ensure the EL estimator to have

standard first order asymptotic properties.

It is important to note that these asymptotic results of our estimator rely heav-

ily on i.i.d assumptions on observations and simulations, and for time series model

our EL estimator may fail since the general conditions for uniform convergence

and the law of large numbers will not be satisfied. So if we want to use EL by

simulating moment conditions with dependent data through importance sampling,

more assumptions on stochastic convergence (e.g., see Pollard (1984) and chapter

4 of Billingsley (1999)) should be added, and the choice of importance function

should also be carefully considered, to make the simulated moments satisfy certain

conditions. These are the directions of our further research.
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