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Abstract

The concept of the survival signature has recently attracted increasing attention

for performing reliability analysis on systems with multiple types of components.

It opens a new pathway for a structured approach with high computational effi-

ciency based on a complete probabilistic description of the system. In practical

applications, however, some of the parameters of the system might not be de-

fined completely due to limited data, which implies the need to take imprecisions

of component specifications into account. This paper presents a methodology

to include explicitly the imprecision, which leads to upper and lower bounds of

the survival function of the system. In addition, the approach introduces novel

and efficient component importance measures. By implementing relative impor-

tance index of each component without or with imprecision, the most critical

component in the system can be identified depending on the service time of the

system. Simulation method based on survival signature is introduced to deal

with imprecision within components, which is precise and efficient. Numerical

example is presented to show the applicability of the approach for systems.
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1. INTRODUCTION

Networked systems are a series of components interconnected by communi-

cation paths. The analysis of these systems becomes more and more important

as they are the backbone of our societies. Examples include the Internet, social

networks of individuals or businesses, transportation network, power plant sys-5

tem, metabolic networks, and many others. Since the breakdown of a system

may cause catastrophic effects, it is essential to be able to assess the reliability

and availability of these systems. As an intrinsic feature, practical systems in-

volve uncertainties to a significant extent. Since the reliability and performance

of systems are directly affected by uncertainties, a quantitative assessment of10

uncertainty is widely recognized as an important task in practical engineering

[1]. The obvious pathway to a realistic and powerful analysis of systems is a

probabilistic approach. In practical cases there are two specific challenges that

need to be addressed to obtain realistic results. First, the complexity of the

system needs to be reflected in the numerical model. This goes far beyond a15

model based on a set of components with simple connections between them.

For instance, there may be several different types of components in the same

system. This variety together with the large size of real-life systems complicates

the propagation of the uncertainty from the various different component types

with their different performance and uncertainty characteristics to the system20

performance for the prediction of the system lifetime and reliability. Second,

the available information for the quantitative specification of the uncertainties

associated with the components is often limited and appears as incomplete in-

formation, limited sampling data, ignorance, measurement errors and so forth.

The present work contributes towards a solution to these challenges.25

The proposed approach is based on the survival signature, which is associ-

ated with a survival analysis [2] of systems. Survival analysis has important

applications in biology, medicine, insurance, reliability engineering, demogra-

phy, sociology, economics, etc. In engineering, survival analysis is typically
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referred to as reliability analysis, and the survival function is then called re-30

liability function. This survival function or reliability function quantifies the

survival probability of a system at a certain point in time. In this context, the

concept of the system signature [3] has been recognized as an important tool

to quantify the reliability of systems that consist of exchangeable components.

The main advantage of the system signature is its capability to separate the35

structure of the system from the probabilistic model used to describe the ran-

dom failure of the system components. Recent advancements using the concept

of system signature are reported in [4]. However the use of the system signature

is associated with the assumption that all components in the system are of the

same type. This is a major limitation since real systems are generally formed40

by more than one component type so that those systems cannot be analysed

with the system signature [5].

In order to overcome the limitations of the system signature, Coolen and

Coolen-Maturi [5] proposed the survival signature as improved concept, which

does not rely any more on the restriction to one component type. Specifically,45

the characteristics of the components do not need to be independently and

identically distributed (iid). In the case of a single component type, the survival

signature is closely related to the system signature. Recent developments have

opened up a pathway to perform a survival analysis using the concept of survival

signature even for relatively complex systems. Coolen et al. have shown how50

the survival signature can be derived from the signatures of two subsystems in

both series and parallel configuration [6], and they developed a non-parametric

predictive inference scheme for system reliability using the survival signature

[5]. Aslett et al. [7] presented the use of the survival signature for systems

reliability quantification from a Bayesian perspective.55

In many cases, uncertainties cannot be quantified precisely since they are

characterized by incomplete information, limited sampling data, ignorance, mea-

surement errors and so on. Thus, a thorough and realistic quantitative assess-

ment of the uncertainties is quite important. Moreover, it is essential to know

which component with uncertainties has the biggest influence degree to the60
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whole system.

Component importance measure allows to quantify the importance of system

components and identify the most “critical” component. It is a useful tool to

find weaknesses in systems and to prioritize reliability improvement activities.

Birnbaum [8] proposed a measure to find the reliability importance of a compo-65

nent in 1969, which is obtained by partial differentiation of the system reliability

with respect to the given component reliability. An improvement or decline in

reliability of the component with the highest importance will cause the greatest

increase or decrease in system reliability. Several other importance measures

have been introduced [9]. Improvement potential, risk achievement worth, risk70

reduction worth, criticality importance and Fussell-Vesely’s measure were all

reviewed in Ref. [10] [11] [12] [13]. To conduct reliability importance of compo-

nents in a complex system, Wang et al. [14] introduced and presented failure

criticality index, restore criticality index and operational criticality index. Zio

et al. [15] [16] presented generalized importance measures based on Monte Carlo75

simulation. The component importance measures can determine wiich compo-

nents are more important to the system, which may suggest the most efficient

way to prevent system fails.

Some of the importance measures can be computed through analytical meth-

ods, but limited to systems with few components. Traditional simulation meth-80

ods provide no easy way to compute component importance [14]. In addition,

in case with imprecision in the component failure, the simulation approaches

become intractable.

In this paper, a novel reliability approach and component importance mea-

sure based on survival signature is proposed to analyse systems with multiple85

types of components. The proposed approach allows to include explicitly im-

precision and vagueness in the characterization of the uncertainties of system

components. The imprecision characterizes indeterminacy in the specification of

the probabilistic model. That is, an entire set of plausible probabilistic models

is specified using set-values (herein, interval-valued) descriptors for the descrip-90

tion of the probabilistic model. The cardinality of the set-valued descriptors
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reflects the magnitude of imprecision and, hence, the amount and quality of in-

formation that would be needed in order to specify a single probabilistic model

with a sufficient confidence. In real cases the amount and quality of informa-

tion to specify a probabilistic model can be limited to such an extent that the95

associated magnitude of imprecision makes the entire analysis meaningless. In

such cases it is essential to identify those contributions to the imprecision, which

influence the results most strongly. Once these are known, targeted measures

and investments can be defined in order to reduce the imprecision to enable a

meaningful survival analysis. For this purpose, a component importance mea-100

sure is implemented to identify the most “critical” component of the system

taking into account the imprecision in their characterization. Specifically, new

component importance measure is introduced as the relative importance index

(RI). Through simulation method based on survival signature, upper and lower

bounds of survival function of the system or relative importance index can be105

got efficiently. On this basis, the survival function of system and the impor-

tance degree of components can be quantified. The proposed approaches of the

improved survival signature are demonstrated by some examples.

2. SURVIVAL SIGNATURE AND SURVIVAL FUNCTION

Suppose there is one system formed by m components. Let the state vector110

of components be x = (x1, x2, ..., xm) ∈ {0, 1}m with xi = 1 if the ith component

is in working state and xi = 0 if not. φ = φ(x) : {0, 1}m → {0, 1} defines the

system structure function, i.e., the system status based on all possible x. φ is 1

if the system functions for state vector x and 0 if not.

Now consider a system with K ≥ 2 types of m components, with mk indicat-115

ing the number of components of each type and
∑K
k=1mk = m. It is assumed

that the failure times of the same component type are independently and iden-

tically distributed (iid) or exchangeable. The components of the same type can

be grouped together because of the random ordering of the components in the

state vector, which leads to a state vector can be written as x = (x1, x2, ..., xK),120
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with xk = (xk1 , x
k
2 , ..., x

k
mk

) representing the states of the components of type k.

Coolen et al. [6] introduced the survival signature for such a system, denoted

by Φ(l1, l2, ..., lK), with lk = 0, 1, ...,mk for k = 1, 2, ...,K, which is defined to

be the probability that the system functions given that lk of its mk components

of type k work, for each k ∈ {1, 2, ...,K}. There are
(
mk

lk

)
state vectors xk with125

precisely lk components xki equal to 1, so with
∑mk

i=1 x
k
i = lk (k = 1, 2, ...,K),

and Sl1,l2,...,lK denote the set of all state vectors for the whole system.

Assume that the random failure times of components of the different types

are fully independent, and in addition the components are exchangeable within

the same component types, the survival signature can be rewritten as:130

Φ(l1, ..., lK) = [

K∏
k=1

(
mk

lk

)−1
]×

∑
x∈Sl1,l2,...,lK

φ(x) (1)

Ck(t) ∈ {0, 1, ...,mk} denotes the number of k components working at time

t. Assume that the components of the same type have a known CDF, Fk(t) for

type k. Moreover, the failure times of different component types are assumed

independent, then:

P (

K⋂
k=1

{Ck(t) = lk}) =

K∏
k=1

P (Ck(t) = lk) =

K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

(2)

Hence, the survival function of the system with K types of components135

becomes:

P (Ts > t) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK)P (

K⋂
k=1

{Ck(t) = lk}) (3)

It is obvious from Equation 3 that the survival signature can separate the

structure of the system from the failure time distribution of its components,

which is the main advantage of the system signature. What is more, the survival

signature only need to be calculated once for any system, which is similar to the140

system signature for systems with only single type of components. It is easily

seen that survival signature is closely related with system signature. For a
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special case of a system with only one type (K = 1) of components, the survival

signature and the Samaniego’s signature [3] are directly linked to each other

through a simple equation, however, the latter cannot be easily generalized for145

systems with multiple types (K ≥ 2) of components [5].

This implies that all attractive properties of the system signature also hold

for the method using the survival signature, also the survival signature is easy

to apply for systems with multiple types of components, and one could argue it

is much easier to interpret than the system signature.150

3. GENERALIZED PROBABILISTIC DESCRIPTION OF THE FAIL-

URE TIMES OF COMPONENTS

3.1. Introduction of Probability Box

As stated in the previous section, the probability of the failure of each com-

ponent is described by the CDF, Fk(t). However, it is not always possible to155

fully characterize the probabilistic behaviour of components due to ignorance

or incomplete knowledge. This lack of knowledge comes from many sources:

in-adequate understanding of the underlying processes, imprecise evaluation of

the related characteristics, or incomplete knowledge of the phenomena. These

problems can be tackled by resorting to generalized probabilistic methods, such160

as imprecise probabilities, see e.g. [17] [18] [19] [20]. The main problem of gen-

eralized probabilistic methods is the computational cost associated with their

evaluation. In fact, these approaches required multiple probabilistic model eval-

uations, and often use global optimization procedures [21]. Efficient numerical

methods have been developed and made available in powerful toolboxes such as165

OpenCossan software [22] [23]. Recently, Coolen et al. have combined nonpara-

metric predictive inference method with survival signature to analyse system

reliability [24].

The generalized probabilistic model makes the uncertainty quantification a

rather challenging task in terms of computational cost, and the challenge comes170

mainly from computing the lower and upper bounds of the quantities of interest.
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Let F and F be non-decreasing functions mapping the real line < into [0,1]

and F (x) ≤ F (x) for all x ∈ <. Let [F , F ] denote a set of the non-decreasing

functions F on the real line such that F (x) ≤ F (x) ≤ F (x). When the functions

F and F circumscribe an imprecisely known probability distribution, [F , F ] is175

called a “probability box” or “p-box” [25]. Using the framework of imprecise

probabilities in form of a p-box (see [26] [27]), the lower and upper CDF for

the failure times of components of type k are denoted by F k(t) and F k(t),

respectively. The lower and upper CDF bounds can be obtained by calculating

the range of all distributions that have parameters within some intervals. For180

some distribution families, only two CDFs need to be computed to enclose the

p-box. For most distribution families, however, four or more crossing CDFs

need to be computed to define a p-box, see [28]. As an example, Fig. 1 depicts

a free p-box whose bounds arise from a lognormal distribution with parameters

intervals α = [0.5, 0.6] and β = [0.05, 0.1].185

3.2. Analytical Method to Deal with Imprecision within Components Failure

Times

Lower and upper bound of the survival function for a system consisting of

multiple types of components can be calculated analytically based on Coolens

works for nonparametric predictive inference in [24]. As Ck(t) denotes the num-190

ber of k components working at time t, and it is assumed that the components

can not be repaired or replaced. The lower survival function is:

STS
(t) = P (TS > t) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK)

K∏
k=1

D(Ck(t) = lk) (4)

where

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1) (5)

8



Figure 1: A distributional free p-box whose bounds arise from a lognormal distribution with

parameters intervals α = [0.5, 0.6] and β = [0.05, 0.1].

While the corresponding upper bound of the survival function is:

STS
(t) = P (TS > t) =

m1∑
l1=0

...

mK∑
lk=0

Φ(l1, ..., lK)

K∏
k=1

D(Ck(t) = lk) (6)

where195

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1) (7)

For a system with m components in one type, Ct is represented to bino-

mial distribution, with Ct ∼ Binomial(m, 1 − F (t)). According to stochastic

dominance theory [29], Ct increases as (1− F (t)) increases.

For parametric distribution, the CDF of components failure time can be

expressed by F (t | θ), with θ ∈ Θ (e.g. parameter θ ∈ [θ, θ]). Therefore, there200
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will be a θ ∈ Θ leading to F (t | θ) = F (t) and a θ ∈ Θ leading to F (t | θ) = F (t),

which holds for all t.

Here, taking an exponential distribution with parameter λ ∈ [λ1, λ2] as an

example. It is known that F (t) = F (t | λ1) = 1− e−λ1t and F (t) = F (t | λ2) =

1 − e−λ2t. Ct increases as (1 − F (t)) increases, so P (Ct ≤ l) =
∑l
u=0

(
m
u

)
(1 −205

e−λ2t)m−u(e−λ2t)u and P (Ct ≤ l) =
∑l
u=0

(
m
u

)
(1− e−λ1t)m−u(e−λ1t)u.

For a system with one type of components, the lower bound of the survival

function for the system at time t becomes:

STS
(t) = P (TS > t) =

m∑
l=0

Φ(l)

(
m

l

)
(1− e−λ1t)m−l(e−λ1t)l (8)

and the corresponding upper bound of the survival function becomes:

STS
(t) = P (TS > t) =

m∑
l=0

Φ(l)

(
m

l

)
(1− e−λ2t)m−l(e−λ2t)l (9)

For a system composed of K ≥ 2 types of components, with parameter210

λk ∈ [λk1 , λ
k
2 ], the lower bound of the survival function for the system at time t

is:

STS
(t) = P (TS > t) =

m1∑
l1=0

...

mK∑
lk=0

Φ(l1, ..., lK)

K∏
k=1

(
mk

lK

)
[1−e−λ

k
1 t]mk−lk [e−λ

k
1 t]lk

(10)

The corresponding upper bound of the survival function becomes:

STS
(t) = P (TS > t) =

m1∑
l1=0

...

mK∑
lk=0

Φ(l1, ..., lK)

K∏
k=1

(
mk

lK

)
[1−e−λ

k
2 t]mk−lk [e−λ

k
2 t]lk

(11)

To illustrate the method presented in this section, the lower and upper

bounds of survival function for the system in Fig. 2 are calculated. The system215

has six components belong to two types. Results of survival signature of the

system can be seen in Table 1. The failure times of the two component types are

according to exponential distribution, with interval parameters λ1 ∈ [0.4, 1.2]

and λ2 ∈ [1.3, 2.1], respectively.
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Table 1: Survival signature of the system in Fig.2

l1 l2 Φ(l1, l2)

0 0 0

0 1 0

0 2 0

0 3 0

1 0 0

1 1 0

1 2 1/9

1 3 1/3

2 0 0

2 1 0

2 2 4/9

2 3 2/3

3 0 1

3 1 1

3 2 1

3 3 1
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Figure 2: System with two types of components.

This leads to lower and upper bounds of survival functions of the system as220

seen in Fig. 3.

For other distribution types, like Weibull distribution or gamma distribution,

if the shape parameter is fixed, the upper and lower bounds of survival function

can be deduced in a similar way as shown for the exponential distribution type.

However, if shape parameter is in an interval, finding the lower bound of survival225

function reduces to an optimisation problem over one variable (shape parameter)

only. Also, if all the parameters have interval values, by means of simulation

method is a replacement to get the probability bounds of the survival function.

3.3. Simulation Method to Deal with Imprecision within Components Failure

Times230

Let use the system in Fig. 2 as an example to illustrate the simulation

method. The survival signature represents the probability that the system works

given that the number of components of each type that are working. The system

in Fig. 2 is equivalent to a system composed by two components that can be

in four status (status 0 to status 3) as shown in 1. Each status represents the235

number of the working components.

The method used to simulate the survival function is derived from the ap-

proach proposed in [30]. The simulation approach requires the following steps:
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(1) Sampling the transition times of the first component type, hence a sequence

of transition time t1, t2 and t4 can be got; (2) Repeating the procedure of step240

(1) for the component type 2, which will obtain 4 additional transition times;

(3) Reordering all the transition times of (t1, t2, ..., t8); (4) For each time interval

the probability that the system functions can be computed based on survival

signature; (5) Repeating the steps (1) to (4) for n system histories and averaging

the obtained results; (6) The system probability of survive over the time t is245

obtained by averaging the values of survival function.

The above simulation procedures are used for components without impre-

cision, if there exist imprecision within components failure times, just adding

another loop to simulate the components’ imprecise parameters. Fig. 3 shows

the lower and upper bounds of survival function obtained by simulation method250

and compared with the analytical solution, and showing a perfect agreement.

Figure 3: Lower and upper bounds of the survival function obtained by simulation and ana-

lytical method.
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The simulation method can be used for analysing any systems with gen-

eral imprecision. Suppose components failure times of type 1 and type 2 obey

Weibull distribution and gamma distribution, respectively. Their imprecise pa-

rameters can be seen in Table 2.255

Table 2: Imprecise distribution parameters of components in a system

Component type Distribution type Parameters (α, β)

1 Weibull ([1.2,1.8], [2.3,2.9])

2 Gamma ([0.8,1.6], [1.3,2.1])

It is difficult to get the bounds of survival function by analytical method,

however, this problem can be tackled through simulation method. The results

are shown in Fig. 4.

Figure 4: Lower and upper bounds of survival function by simulation method.
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4. IMPORTANCE MEASURE OF A SPECIFIC COMPONENT

4.1. Definition of Relative Importance Index260

An important objective of a reliability and risk analysis is to identify those

components or events that are most important (critical) from a reliability/safety

point of view. These components should be given priority with respect to im-

provements or maintenance. Importance measures are important tools to eval-

uate and rank the impact of individual components within a system [31], which265

will allow one to study the relationship among components and the system.

Importance measures have many applications in probabilistic risk analysis and

there are many approaches based on various measures of influence and response

[32]. These importance measures provide a numerical rank to determine which

components are more critical to system failure or more important to system270

reliability improvement.

A new importance measure is introduced herein as relative importance in-

dex indicated by RI, which is utilized to quantify the difference between the

probability that the system functions if the ith component works and the prob-

ability that the system functions if the ith component is not working. The275

measure RIi(t) expresses the importance degree of a specific component during

the survival time.

The relative importance index RIi(t) can be expressed as follows:

RIi(t) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t) (12)

Where, P (TS > t | Ti > t) represents the probability that the system func-

tions if the ith component works; P (TS > t | Ti ≤ t) represents the probability280

that the system functions knowing that the ith component has failed.

The relative importance index RIi(t) is a function of time and it reveals the

trend of the survival functions P (TS > t | Ti > t) and P (TS > t | Ti ≤ t) of the

system. This measure quantifies the degree of the influence of imprecision in

each component characterization, i. e., the bigger the value of RIi(t), the bigger285

is the influence of the imprecision of the ith component on the estimation of
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the system reliability at a specific time t, and vice versa. At each point in time

the largest RI over all components shows the most “critical” component. This

helps to allocate resources for inspection, maintenance and repair in an optimal

manner over the lifetime of a system.290

Taking imprecise probabilistic characterizations of the component failure

probabilities into account, the set of all possible probability distribution func-

tions can be represented as distributional p-boxes [28] indicated with M : P ∈

M . The relative importance index can be defined as:

RIi(t | P ) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t) (13)

Therefore, the lower and upper bounds of relative importance index are:

RIi(t) =inf
P∈M RIi(t | P ) (14)

RIi(t) =sup
P∈M RIi(t | P ) (15)

4.2. Illustrative Example

Now let calculate the relative importance index of component 4 of the system

in section 3.2. First calculate the survival signature of the system in Fig. 5 and

Fig. 6, which represents the component 4 of type 2 works and fails at time t

respectively.295

The survival signature of the two circumstances can be expressed as Φ̃1(l1, l2)

and Φ̃0(l1, l2), and the results can be seen in Table 3 and Table 4 respectively.

So:

RIi(t | P ) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t)

=

m1∑
l1=0

m2−1∑
l2=0

Φ̃1(l1, l2)P (

2⋂
k=1

{Ck(t) = lk})−
m1∑
l1=0

m2−1∑
l2=0

Φ̃0(l1, l2)P (

2⋂
k=1

{Ck(t) = lk})

=

m1∑
l1=0

m2−1∑
l2=0

[Φ̃1(l1, l2)− Φ̃0(l1, l2)]P (

2⋂
k=1

{Ck(t) = lk})

(16)
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Table 3: Survival signature of the system in Fig.5

l1 l2 Φ(l1, l2)

0 0 0

0 1 0

0 2 0

1 0 0

1 1 0

1 2 1/3

2 0 0

2 1 1/3

2 2 2/3

3 0 1

3 1 1

3 2 1

Table 4: Survival signature of the system in Fig.6

l1 l2 Φ(l1, l2)

0 0 0

0 1 0

0 2 0

1 0 0

1 1 0

1 2 1/3

2 0 0

2 1 0

2 2 2/3

3 0 1

3 1 1

3 2 1
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Figure 5: Component 4 works at time t.

Figure 6: Component 4 fails at time t.

If the components failure times have precise distribution parameters, e.g.

λ1 = 0.8 and λ2 = 1.6, M degenerates to a probability function P ≡M = {1−300

e−λt : λ1 = 0.8;λ2 = 1.6}. Hence, the relative importance index of component

4 can be calculated by using analytical method and the results can be seen in

Fig. 7.

Considering imprecisions within components failure times, the set of all prob-

ability distribution defines a probability p-box for each component failure time:305

M = {1 − e−λt : 0.4 ≤ λ1 ≤ 1.2; 1.3 ≤ λ2 ≤ 2.1}. Therefore, the lower and

upper bounds of relative importance index of component 4 can be calculated

through simulation method. Fig. 8 shows the results.
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Figure 7: Relative importance index of Component 4 with precise distribution parameters.

5. NUMERICAL EXAMPLE

In this section, a survival analysis of a real world hydro power plant based310

on survival signature is conducted. The system is schematically shown in Fig. 9

and its reliability block diagram is illustrated in Fig. 10. It can be modelled as

a complex system comprising the following main twelve components: (1) control

gate (CG), which is built on the inside of the dam, the water from the reservoir

is released and controlled through the gate; (2) two butterfly valves (BV 1,BV 2),315

which can transport and control the water flow; (3) two turbines (T1,T2), where

the flowing waters kinetic energy is transformed into mechanical energy; (4)

three circuit breakers (CB1,CB2,CB3), which are used to protect the hydro

power plant system; (5) two generators (G1,G2), which produce alternating

current by moving electrons; and (6) two transformers (TX1,TX2), which inside320

the powerhouse take the alternating current and convert it to higher-voltage
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Figure 8: Relative importance index of Component 4 with imprecise distribution parameters.

current.

Two cases are presented in the following part: Case A presents the survival

analysis with the fully probability model; Case B considers imprecision within

the model.325

5.1. Case A

It is assumed that all components of the same type have the same failure

time distribution. Failure type and distribution parameters are listed in Table

5.

Let l1, l2, l3, l4, l5 and l6 denote CG, BV , T , G, CB and TX, respectively.330

Table 6 shows the survival signature of the hydro power plant, whereby the rows

with values Φ(l1, l2, l3, l4, l5, l6) = 0 are omitted.

The survival signature can now be used as follows. There are m1 = 1, m2 =

m3 = m4 = m6 = 2 and m5 = 3 components of each type. The survival signa-
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Table 5: Failure types and distribution parameters of components in a hydro power plant

Component name Distribution type Parameters (α, β) or λ

CG Weibull (1.3,1.8)

BV Weibull (1.2,2.3)

T Exponential 0.8

G Weibull (1.6,2.6)

CB Gamma (1.3,3.0)

TX Gamma (0.6,1.1)

Table 6: Survival signature of a hydro power plant in Fig.9; rows with Φ(l1, l2, l3, l4, l5, l6) = 0

are omitted

l1 l2 l3 l4 l5 l6 Φ(l1, l2, l3, l4, l5, l6)

1 1 1 1 2 [1,2] 1/12

1 1 1 2 2 [1,2] 1/6

1 1 2 1 2 [1,2] 1/6

1 2 1 1 2 [1,2] 1/6

1 1 1 1 3 [1,2] 1/4

1 1 2 2 2 [1,2] 1/3

1 2 1 2 2 [1,2] 1/3

1 2 2 1 2 [1,2] 1/3

1 1 1 2 3 [1,2] 1/2

1 1 2 1 3 [1,2] 1/2

1 2 1 1 3 [1,2] 1/2

1 2 2 2 2 [1,2] 2/3

1 1 2 2 3 [1,2] 1

1 2 1 2 3 [1,2] 1

1 2 2 [1,2] 3 [1,2] 1
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Figure 9: Schematic diagram of a hydro power plant system.

ture must consider combinations for all l1 ∈ {0, 1}, l2, l3, l4, l6 ∈ {0, 1, 2} and l5 ∈335

{0, 1, 2, 3}, and the state vector is x = (x11, x
2
1, x

2
2, x

3
1, x

3
2, x

4
1, x

4
2, x

5
1, x

5
2, x

5
3, x

6
1, x

6
2).

Now consider Φ(1, 1, 1, 2, 2, 1) for example. This covers all possible vectors x

with x11 = 1, x21+x22 = 1, x31+x32 = 1, x41+x42 = 2, x51+x52+x53 = 2 and x61+x62 = 1.

There are 24 such vectors, but only four of these can make the system function.

Due to the iid assumption of the failure times of components of the same type,340

and due to independence between components of different types, all these 24

Figure 10: Reliability block diagram of a hydro power plant system.
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vectors have equal probability to occur, hence Φ(1, 1, 1, 2, 2, 1) = 4/24 = 1/6.

The survival function of the hydro power plant system with twelve compo-

nents of six types is shown in Fig. 11.

Figure 11: Survival function of a hydro power plant system along with survival functions for

the individual components.

Based on the survival function it is possible to calculate the influence of345

each component on the system reliability for each point in time t. The basic

theoretical knowledge and equations can be seen in Section 4, which allows to

estimate of relative importance index RIi(t) of each component.

For the other component importance measures, analytical methods can be

used to rank the component importance degree. The equations of Birnbaum’s350

measure (BM), risk achievement worth (RAW ) and Fussel-Vesely’s measure

(FV ) to calculate the component importance Ii(t) of the ith component at

time t can be seen in Table 7.

In the above equations, RS(t) andRi(t) represent the reliability of the system
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Table 7: Component importance equations of BM , RAW and FV

Methods Component Importance Equations

BM IBi (t) = ∂RS(t)
∂Ri(t)

RAW IRAWi (t) = RS(t)(Ri(t)=1)
RS(t)

FV IFVi (t) = RS(t)−RS(t)(Ri(t)=0)
RS(t)

and the ith component at time t. For the power plant in Fig. 9, the reliability355

equation RS(t) = R1(1−(1−R2R3R4R5)(1−R6R7R8R9))R10(1−(1−R11)(1−

R12)).

The component importance obtained at t = 0.12 using the proposed method

for the power plant system have been compared with the results Birnbaum’s

measure (BM), risk achievement worth (RAW ) and Fussel-Vesely’s measure360

(FV ) as shown in Table 8.

Table 8: Comparision of component importance obtained using different methods at t = 0.12

Components

Methods

CG BV 1

BV 2

T1

T2

G1

G2

CB1

CB2

CB3 TX1

TX2

BM 0.8854 0.1181 0.1366 0.1177 0.1191 0.8846 0.2703

ranking 1 6 4 7 5 2 3

RAW 7.8947 1.9280 1.9280 1.9280 1.9280 7.8947 2.5270

ranking 1 3 3 3 3 1 2

FV 1.000 0.1346 0.1346 0.1346 0.1346 1.000 0.2215

ranking 1 3 3 3 3 1 2

RI 0.8831 0.1217 0.1401 0.1213 0.1221 0.8693 0.2656

ranking 1 6 4 7 5 2 3

According to the above table, it can be drawn that RI method can get

the same component importance ranking as Birnbaum’s measure. Also, the

proposed RI method has the same ranking trend as RAW and FV . The RI

method just needs the survival signature without calculating the reliability equa-365

tion, which is useful for large systems with multiple component types.

24



The relative importance index values of each components over the time are

shown in Fig. 12.

Figure 12: Relative importance index values of the system components.

The relative importance index values reveal the component importance over

time. The bigger the value of RIi(t) is, the more “critical” the ith component is.370

The above results show that BV 1 and BV 2 have the same relative importance

index values, and the same applies to T1 and T2, G1 and G2, CB1 and CB2,

TX1 and TX2. This is because the components are in a parallel configuration

and they have the same failure time distribution type and parameters, which

is also according to our common sense that these components have the same375

importance degree to the system. For component CB3, it has same failure time

type and distribution parameters as components CB1 and CB2, but has dif-

ferent location in the system. Therefore, the relative importance index value

of component CB3 is bigger than relative importance index values of compo-

nents CB1 and CB2, but not as big as the relative importance index value of380
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component CG. Components CG and CB3 have the same decreasing trend of

relative importance index over time, while for the other components, the trends

of relative importance index increase first, then decay with time. The rela-

tive importance index values of components TX1 and TX2 are always smaller

than other components, which means they have smallest influence degree to the385

system reliability.

5.2. Case B

The investigation from CASE A is now extended by considering imprecision

in the description of the probabilistic model for the failure characterization of

the system components. Intervals are used to describe the imprecision in the390

failure time distribution as shown in Table 9.

Table 9: Failure types and distribution parameters of components in a hydro power plant

Component name Distribution type Parameters (α, β) or λ

CG Weibull ([1.2,1.5], [1.5,2.1])

BV Weibull ([1.0,1.6], [2.1,2.5])

T Exponential [0.4,1.2]

G Weibull ([1.3,1.8], [2.3,2.9])

CB Gamma ([1.2,1.4], [2.8,3.3])

TX Gamma ([0.3,0.8], [1.0,1.3])

The upper and lower bounds of the parameters reflect the ideal and the

worst case of the performance of the components, respectively. The range of

the parameters represents epistemic uncertainty, which results from expert as-

sessments of the component performance. This modelling leads to upper and395

lower survival functions of the hydro power plant system reflecting the epistemic

uncertainties as range between the curves, see Fig. 13. The imprecision from

the input is translated into imprecision of the output.

As a further step the imprecision can be carried forward to calculate ranges

for the relative importance index. Firstly, ranges for the survival functions400

assuming given component fails or works are calculated for each component,
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Figure 13: Upper, lower and precise survival functions of the hydro power plant system.

then the associated ranges for the relative importance index for each component

are determined, see Fig. 14 and Fig. 15.

From the above figures it can be recognized that imprecision within compo-

nent failure times can lead to imprecision of relative importance index of the405

component.

6. CONCLUSIONS

In this paper an efficient approach for analysing imprecise system reliability

and component importance has been presented. The method is based on the

survival signature, which has been proven to be an effective method to estimate410

the survival function of systems with multiple component types. In the proposed

approach, the system model needs to be analysed only once in order to conduct

a reliability analysis and measure a component importance, which represents a
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Figure 14: Upper and lower relative importance index of components CG, BV , T and G.

significant computational advantage. Performing a survival analysis on systems

using the survival signature has been presented as a novel pathway for system415

reliability and component importance. In addition, the effect of imprecision,

for example resulting from incomplete data, has been taken into account in

the system reliability analysis and component importance measurement. As a

consequence, bounds of survival functions of the system and intervals of relative

importance index values can be obtained.420

In order to quantify the influence degree of components without and with

imprecision, a novel component-wise importance measure has been presented:

the relative importance index. Importance measures allow to identify the most

“critical” system component at a specific time. This allows an optimal alloca-

tion of resources for repair, maintenance and inspection. This novel and effi-425

cient method is conducted in an analytical way or through simulation method

based on survival signature, which improves the computational efficiency. Using
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Figure 15: Upper and lower relative importance index of components CB and TX.

the relative importance index, the importance of the individual components is

ranked to obtain a preference list for maintenance and repair. The effectiveness

and feasibility of the proposed approaches have been demonstrated with some430

numerical examples. The results show that the survival signature is an efficient

method to perform a reliability analysis of systems and measure components

importance.
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