
The Reaction of Stock Market Returns to Unemployment∗
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The Reaction of Stock Market Returns to Unemployment

ABSTRACT

We empirically investigate the short-run impact of anticipated and unanticipated unemployment rates on

stock prices. We particularly examine the nonlinearity in the stock market’s reaction to the unemployment

rate and study the effect at each individual point (quantile) of the stock return distribution. Using nonpara-

metric Granger causality and quantile regression-based tests, we find that only anticipated unemployment

rate has a strong impact on stock prices. Quantile regression analysis shows that the causal effects of antici-

pated unemployment rate on stock returns are usually heterogeneous across quantiles. For the quantile range

(0.35, 0.80), an increase in the anticipated unemployment rate leads to an increase in stock market prices.

For other quantiles, the impact is generally statistically insignificant. Thus, an increase in the anticipated

unemployment rate is, in general, good news for stock prices. Finally, we offer a reasonable explanation for

the reason, and manner in which, the unemployment rate affects stock market prices. Using the Fisher and

Phillips curve equations, we show that a high unemployment rate is followed by monetary policy action of

the Federal Reserve (Fed). When the unemployment rate is high, the Fed decreases the interest rate, which

in turn increases the stock market prices.

Keywords: Stock market returns; anticipated unemployment; unanticipated unemployment; nonparamet-

ric tests; conditional independence; Granger causality in distribution; Granger causality in quantile; local

bootstrap; monetary policy; Federal funds rate.

Journal of Economic Literature classification: C14, C58, E44, G12



1 Introduction

Stock market analysts argue that stock prices rebound after the announcement of an unemployment rate

increase. However, there is no clear academic consensus in the literature on the impact of unemployment

announcements on stock market returns. Most conclusions on the stock prices–unemployment rate causal

relationship are based on linear mean regression analyses. In mean regression, dependence is due to only

mean dependence, and therefore, studies based on regression analysis ignore the causal relationships that

show up in conditional quantiles as well as higher-order conditional moments (such as volatilities, skewness,

and kurtosis). This issue might have serious consequences on portfolio selection and risk assessment. Fur-

thermore, many financial models suggest nonlinear causal relationships; for example, see Linton and Perron

(2003), Dittmar (2002), and Bansal et al. (1993). The present study investigates nonlinearity in the stock

market reaction to unemployment rates and examines the impact at different quantiles of the stock return

distribution. We rigorously analyze the short-run impact of anticipated and unanticipated unemployment

rates on stock market prices. Using nonparametric Granger causality and quantile regression based tests,

we find that, contrary to the general findings in the literature, only anticipated unemployment rate has a

strong impact on stock prices. We also propose a monetary policy explanation for the reason, and manner

in which, the unemployment rate affects stock prices.

Numerous papers have examined the links between stock market prices and the real economy. Given

the importance of the issue for policy makers, researchers continue to be very interested in studying these

relationships. Existing papers analyzed two directions of causality, one from stock market prices to the

real economy, and the other from the real economy to stock market prices. In this study, we focus on

the latter direction of causality. Our main difference with the existing literature is that we examine the

reaction of both the distribution function and individual quantiles of stock market returns to the anticipated

and unanticipated unemployment rates, but most existing papers consider only the conditional linear mean

effect. They ignore the non-linear dependence and the dependence in the quantiles of the conditional stock

market returns distribution. The unemployment rate is chosen to represent the real economy because, in

addition to its accuracy, it gauges the economy’s growth rate. It is one of the important indicators for the

Federal Reserve (Fed) to determine the health of the economy when setting monetary policy.

Following Chen, Roll, and Ross (1986), several studies have shown reliable relationships between macroe-

conomic variables and security returns. Previous papers [see Bodie (1976), Fama (1981), Geske and Roll

(1983), and Pearce and Roley (1983)] have shown that the aggregate stock returns are negatively related

to inflation and money growth. According to Chen, Roll, and Ross (1986, pages 383-384), “A rather em-

barrassing gap exists between the theoretically exclusive importance of systematic “state variables” and our

complete ignorance of their identity. The comovements of asset prices suggest the presence of underlying
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exogenous influences, but we have not yet determined which economic variables, if any, are responsible”.

With respect to the empirical relevance of macroeconomic factors to equity returns, Chan, Karceski, and

Lakonishok (1998, page 175) wrote, “ Macroeconomic factors generally make a poor showing. Put more

bluntly, in most cases, they are as useful as a randomly generated series of numbers in picking up return

covariation. We are at a loss to explain this poor performance.” Motivated by these conclusions, Flannery

and Protopapadakis (2002) examined the impact of 17 macroeconomic variables, including unemployment

rate, on the mean and volatility of stock returns. They estimated a daily equity returns GARCH model

where the realized returns and their conditional volatility depend on the 17 macro series’ announcements,

to find the unemployment rate affecting not the mean, but the variance, of stock returns.

A recent paper by Boyd, Hu, and Jagannathan (2005) [hereafter BHJ (2005)] studied the impact of

unanticipated unemployment rate on stock returns. This paper finds that an announcement of rising un-

employment is generally good news for stocks during economic expansions and bad news during economic

contractions. The main difference between BHJ (2005) and this paper can be summarized as follows: (1)

BHJ (2005) focus only on the conditional mean effect using linear mean regression analysis, whereas we

investigate the non-linear effect on the conditional mean, conditional distribution, and individual quantiles

using a nonparametric approach as well as conditional quantile regression methods; (2) BHJ (2005) examine

the impact of only unanticipated unemployment rate on stock returns, whereas we examine and compare

the impact of both anticipated and unanticipated unemployment rates on stock returns; and (3) BHJ (2005)

find that unanticipated unemployment rate affects the mean stock returns, whereas we find that only the

anticipated unemployment rate has a non-linear impact on the conditional mean, distribution, and quantiles

of stock returns.

The present paper can be viewed as an extension of the previous research. We test the above relation-

ships using new nonparametric Granger causality tests and quantile regression-based tests. Nonparametric

causality tests allow for capturing the non-linearity and dependence in low- and high-order moments, whereas

quantile regression-based tests help identify and examine the effect at each quantile of the distribution of

stock returns. To the best of our knowledge, this is the first study to investigate the reaction of conditional

distribution and quantiles of stock returns to anticipated and unanticipated unemployment rates. This is

also the first study to use nonparametric tests to test for Granger non-causality in mean and distribution

from anticipated and unanticipated unemployment rates to stock market returns.

Our study first follows the approach considered by Barro (1977, 1978), Barro and Rush (1980), Sheffrin

(1979), and Makin (1982), among many others, and then decomposes the actual first log unemployment rate

difference [hereafter growth rate] into its “anticipated” and “unanticipated” components. Barro (1977, 1978)

used an autoregressive (AR) approximation to divide the observed money growth rate into anticipated and

unanticipated components. Thus, our anticipated and unanticipated growth rate measures are taken from

2



AR approximation to the Wold decomposition of the weak stationary growth rate of unemployment. Thus,

we ensure that the anticipated component is known at time t (containing only t − 1 information) and the

unanticipated component (news) is serially uncorrelated. Note that both these facts are not warranted in

the approach developed by BHJ (2005).

Second, we investigate the stock market’s reaction to anticipated and unanticipated unemployment rates

through two nonparametric tests. The first one tests for Granger non-causality in mean, and the second one

tests for general Granger non-causality in distribution. Both the tests do not require specification of the

model that might link the two variables of interest and therefore avoid the misleading results due to model

misspecification. Moreover, the two tests can detect both linear and nonlinear causal effects.

To test for Granger non-causality in mean, we use the nonparametric test recently proposed by Nishiyama,

Hitomi, Kawasaki, and Jeong (2011) [hereafter NHKJ (2011)]. The test statistic is based on moment

conditions. It can also test for the omitted variables in time series regression. To apply this test, we

need a Nadaraya–Watson [see Nadaraya (1964) and Watson (1964)] nonparametric estimator for conditional

moments. Using monthly data on the S&P 500 stock index and unemployment rate for the period 1950–2014,

we find that only the time-lagged anticipated unemployment rate Granger causes the conditional mean of

stock market returns. Thus, as shown later, the time-lagged anticipated unemployment rate has a nonlinear

impact on stock market returns.

The test for the reaction of the conditional distribution of the stock market returns to anticipated and

unanticipated unemployment rates is also based on the recent nonparametric Granger causality in distri-

bution test statistic proposed by Bouezmarni and Taamouti (2014). This test detects the nonlinearity and

dependence in low- and high-order moments as well as in quantiles. It is based on comparing the conditional

distribution function estimators using an L2 metric, where the distribution functions are estimated using the

Nadaraya–Watson approach. Using monthly data, and contrary to the conventional t-statistic in a linear

mean regression model, we find very convincing evidence that anticipated growth rate Granger causes the

conditional distribution function of the S&P 500 stock returns. We also find that unanticipated growth rate

does not affect the conditional distribution function of stock returns. Therefore, the unemployment rate

affects the conditional distribution of stock market returns only through its anticipated component.

Third, the nonparametric general Granger non-causality in the distribution test discussed in the previous

paragraph shows the impact of anticipated unemployment rate on stock return distribution. However, the

rejection of Granger non-causality in the distribution hypothesis does not reveal the return distribution

level(s) where causality exists. To overcome this problem, we consider conditional quantile regression-based

tests to identify the unemployment rate components’ impact on individual quantiles of the conditional stock

returns distribution. This will produce a broader picture of the causality effect in various scenarios. With

the same data used before, quantile regression analysis confirms our previous results and shows that only
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the anticipated unemployment rate component affects stock return quantiles. The causal effect is usually

heterogeneous across stock return quantiles. For the quantile range (0.35, 0.80), we find that an increase in

anticipated unemployment rate leads to an increase in stock prices. Thus, an increase in the anticipated

unemployment rate generally represents good news for stock prices. For the lower quantiles (0.05, 0.30), the

effect is negative and statistically insignificant (even at the 10% significance level).

Finally, we offer a reasonable explanation for why and how the unemployment rate affects stock market

prices. We use the monetary policy measure Federal funds rate to identify the possible channel of the impact

of unemployment rate on stock prices. This channel can be summarized as follows: the unemployment

rate affects the Federal funds rate, which in turn affects the stock market prices. We then use existing

economic theory (Fisher and Phillips curve equations) to show that the Federal funds rate reacts negatively

to unemployment rate. Numerous papers [see Rigobon and Sack (2002), Craine and Martin (2003), Bernanke

and Kuttner (2005), and the references therein] show a negative impact of Federal funds rate on stock market

returns. Thus, the signs in this channel can be summarized as follows: a decrease (increase) in unemployment

rate is followed by an increase (decrease) in Federal funds rate, which in turn leads to a decrease (increase)

in stock market prices (returns).

This paper is organized as follows. Section 2 describes the data and discusses the methodology used

to decompose the unemployment rate into its anticipated and unanticipated components. Section 3 uses

nonparametric Granger causality tests to examine the statistical significance of the impact of anticipated

and unanticipated unemployment rates on the conditional mean and distribution of stock returns. Section

4 examines the Granger causality at each quantile of stock market returns using the unemployment rate

components. Section 5 identifies one possible channel that explains how unemployment rate affects stock

prices based on the Fed’s monetary policy action. Finally, Section 6 concludes the paper.

2 Data and Methodology

2.1 Monthly unemployment announcements

This section describes the data used and discusses the methodology followed to decompose the unemployment

rate announced by the Bureau of Labor Statistics (BLS) into its anticipated and unanticipated components.

On the first Friday of each month, the BLS of the U.S. Department of Labor announces the employment and

unemployment rates of the United States for the previous month along with various worker characteristics

(gender, age, color, origin, education, etc.) The unemployment rate represents the number of unemployed

persons as a percent of the labor force. According to the BLS, “persons are classified as unemployed if they

do not have a job, have actively looked for work in the prior four weeks, and are currently available for work.

Persons who were not working and were waiting to be recalled to a job from which they had been temporarily
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laid off are also included as unemployed.” The government collects the data on unemployment through a

monthly sample survey called the Current Population Survey (CPS) to measure the extent of unemployment

in the country. The CPS has been conducted every month since 1940 in the United States. It has been

expanded and modified several times since then. The U.S. Department of Labor releases revisions of its

unemployment announcements for the previous three months, and thereafter the announcement becomes

final. BLS offers a long and accurately dated time series on the unemployment rate.

We chose the unemployment rate data from among many other macroeconomic variables because, besides

its accuracy, it gauges the economy’s growth rate. It is one of the important indicators for the Fed to deter-

mine the health of the economy when setting monetary policies and for investors who use the unemployment

statistics to look for sectors that are losing jobs faster.

The sample used here contains monthly seasonally adjusted unemployment rates and covers the period

from January 1950 to September 2014, for a total of 777 observations. The summary statistics (not reported,

but available upon request) for log unemployment rate log(urt) and its first difference gu,t = log(urt) −
log(urt−1), show that the unconditional distributions of monthly log(urt) and gu,t exhibit excess kurtosis

and positive skewness as expected. 1 The sample mean of the growth rate is almost zero, the value of the

sample skewness is also close to zero, but the sample kurtosis is greater than the normal distribution value

of three. The zero p-value of the Jarque–Bera test for gu,t, the growth rate of unemployment, indicates that

this variable cannot be normally distributed.

We also perform an Augmented Dickey–Fuller test (hereafter ADF-test) for nonstationarity of log (un-

employment rate) and its first difference, gu,t. Using an ADF-test with only an intercept and a test with

both an intercept and a trend, the null of the unit root is not rejected at the 5% level [p-values equal to 0.08

and 0.26 respectively]. We apply the same test to the first difference of log (unemployment), to find the null

clearly rejected [p-values equal to zero in both cases]. Therefore, our analyses in the next sections are based

on gu,t.

2.2 Measuring anticipated and unanticipated unemployment rates

This section examines the reaction of stock market returns to anticipated and unanticipated growth rates

of unemployment. We follow the approach of Barro (1977, 1978), Barro and Rush (1980), Sheffrin (1979),

and Makin (1982), among others, to decompose the actual growth rate of unemployment into “anticipated”

and “unanticipated” components. Barro (1977, 1978) uses AR approximation to divide the observed money

1We use log(urt) instead of urt in order to work with the same transformation for the dependent variable (stock prices) and

independent variable (unemployment rate). This makes it easier to interpret the results without having to change the main

conclusion. Note that the returns are defined as the first difference of the log (stock prices). From a statistical perspective,

the log transformation applied to urt reduces the skewness and eliminates certain types of heteroscedasticity. For the results

obtained when using urt − urt−1 instead of gu,t, see the appendix.
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growth rate into anticipated and unanticipated components. The anticipated and unanticipated unemploy-

ment rates we consider are from the AR approximation to the MA (∞) Wold decomposition of weakly

stationary process, the growth rate of unemployment (gu,t). In comparison to many other linear and nonlin-

ear processes, as argued by van Dijk, Teräsvirta and Franses (2002) and Deschamps (2008), AR processes

are appropriate to model the unemployment rate.

The equation to decompose an observed growth rate into its anticipated and unanticipated components

is

gu,t = μ+

p∑
j=1

βjgu,t−j + ut, (1)

where gu,t is the growth rate of unemployment at time t, (μ, β1, ..., βp)
′ is the vector of parameters to estimate,

and ut is an error term. The number of lags, p, is based on the Akaike information criteria (AIC). Using the

data described earlier, p = 15 (over a maximum of 30 lags). Further, the AR(15) model estimation results

can be summarized by the following equation:

ĝu,t = 8.35 10−4

(0.434)
+ 0.084

(2.317)
gu,t−1 + 0.160

(4.393)
gu,t−2 + 0.117

(3.171)
gu,t−3 + 0.078

(2.150)
gu,t−4

+0.079
(2.189)

gu,t−5 + 0.012
(0.357)

gu,t−6 + 0.005
(0.153)

gu,t−7 + 0.040
(1.123)

gu,t−8 − 0.008
(−0.244)

gu,t−9 −0.113
(−3.146)

gu,t−10

+0.070
(1.937)

gu,t−11 −0.146
(−4.041)

gu,t−12 −0.019
(−0.538)

gu,t−13 −0.036
(−1.024)

gu,t−14 +0.050
(1.421)

gu,t−15, (2)

R2 = 14.45%, F-statistic = 8.392.

To validate the estimated model, we consider an AR residual Portmanteau test for the existence of autocor-

relations; the results (not reported, but available upon request) suggest that the estimated AR(15) model

is adequate in that the residuals do not contain any correlation.

Finally, we use the estimated equation in (2) to decompose the observed growth rate gu,t into its an-

ticipated component geu,t, and unanticipated component guu,t. Obviously, the anticipated component is the

fitted values geu,t = Et−1 (gu,t) � ĝu,t and the “unanticipated” growth rate is the residuals ût = gu,t − geu,t.

The anticipated and unanticipated components are shown in Figure 1. We find the anticipated component

smoother than the unanticipated one, and the average values of the two components almost equal to zero

[see Table 1].

2.3 Monthly stock return

The stock market data comprise the monthly S&P 500 indices including dividends, which are available from

Yahoo Finance. As for unemployment rate, the sample covers the period from January 1950 to September

2014 for a total of 777 observations. Stock returns are computed using the standard continuous compounding
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Table 1: Descriptive statistics of anticipated and unanticipated growth rates

Mean Median Std. Dev. Skewness Kurtosis Jarque-Bera (Prob.)

geu 0.00084 0.00007 0.01346 0.96285 7.81353 0.000

guu -0.0000 -0.00144 0.03274 0.49032 5.60806 0.000

Note: This table reports the descriptive statistics of anticipated ( geu) and unanticipated ( guu) growth rates of unem-

ployment rate. The sample covers the period from January 1950 to September 2014.
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(b) Unanticipated Growth Rate

Figure 1: This figure illustrates the time series of anticipated ( geu) and unanticipated ( guu) growth rates of

unemployment rate. The sample covers the period from January 1950 to September 2014.
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formula. If we denote the time t logarithmic price of the stock market by pt, the continuously compounded

stock return from time t−1 to time t is defined by rt = pt−pt−1. The stock returns summary statistics (not

reported, but available upon request) show the S&P 500 price movements exhibiting the expected excess

kurtosis and negative skewness. The sample kurtosis is greater than the normal distribution value of three.

The p-value of the Jarque–Bera test statistic suggests that stock returns cannot be normally distributed.

Finally, we perform ADF-tests for nonstationarity of the S&P 500 stock returns. The results of the ADF -test

with only an intercept and with an intercept and a trend show that the S&P 500 stock return is stationary,

thus validating the asymptotic distribution theory of the test statistics; we consider these in the following

sections.

3 Stock market reaction: Nonparametric analysis

We begin by testing whether stock market returns react to anticipated and unanticipated unemployment

rates in a broad framework so that the specification of the underlying model is left free. Nonparametric tests

are well suited for that. They do not impose any restriction on the model linking the dependent variable to

independent variables.

Most of the empirical studies on the stock price–unemployment rate relationship focus only on the tra-

ditional linear Granger causality tests based on conditional linear mean regression analysis; see BHJ(2005),

Flannery and Protopapadakis (2002), and the references therein. Although these tests can easily detect

linear causal relations, they find it hard to detect nonlinear causal relations [see Baek and Brock (1992),

Hiemstra and Jones (1993), Bouezmarni and Taamouti (2014), and Bouezmarni, Rombouts, and Taamouti

(2012)]. Therefore, traditional linear Granger causality tests might overlook the significant nonlinear relation

between stock returns and unemployment rate.

In this section, we first test for Granger non-causality in mean and then check for general Granger

non-causality in distribution. The idea is to first investigate the impact of anticipated and unanticipated

unemployment rates on the conditional mean of stock market returns without assuming any parametric

model for the mean. A comparison with the results obtained from linear regression tests will help us see the

nature (linear or nonlinear) of the impact if any of the components of unemployment rate on the conditional

mean of stock returns. Thereafter, we test for general Granger non-causality in distribution, again without

assuming any parametric model for the conditional distribution of stock returns. This second test is to see

whether the unemployment rate components affect other levels (apart from the mean) of the distribution of

stock returns.
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3.1 Nonparametric Granger Causality in Mean

To test for Granger non-causality in mean, we use the nonparametric test recently proposed by NHKJ

(2011). The test statistic is based on moment conditions. To apply this test, we need the Nadaraya–Watson

nonparametric estimator of moments. Before seeing how the test works, let us assume that
{
(rt, zt)

′}T

t=1
is a

sample of T observations of weakly dependent random variables in R×R, with joint distribution function F

and density function f . The random variable zt represents either the anticipated component or unanticipated

component of gu,t. Suppose we are testing the Granger non-causality in mean from zt−1 to rt. This is to test

the null hypothesis

Hm
0 : Pr {E [vt|Xt−1] = 0} = 1

against the alternative hypothesis

Hm
1 : Pr {E [vt|Xt−1] = 0} < 1,

where vt = rt−E [rt| rt−1] and Xt−1 = (rt−1, zt−1)
′ ∈ R

2. If the null hypothesis Hm
0 is true, the past changes

in z, where z = geu, g
u
u , will not affect the conditional mean of stock market returns. From NHKJ (2011),

the above null and alternative hypotheses can be rewritten in terms of unconditional moment restrictions

as follows:

Hm
0 : Pr {E [vtf (rt−1) q(Xt−1)] = 0} = 1, for ∀q (x) ∈ s⊥r (3)

against the alternative hypothesis

Hm
1 : Pr {E [vtf (rt−1) q(Xt−1)] = 0} < 1, for some q (x) ∈ s⊥r , (4)

where q (x) is any function in the Hilbert space s⊥r orthogonal to the Hilbert L2 space

sr =
{
s (.)|E

[
s (rt−1)

2
]
< ∞

}
.

Since E [vtf (rt−1) q(Xt−1)] is unknown, we use a nonparametric approach to estimate it. Following NHKJ

(2011), we use the Nadaraya–Watson method to estimate this expectation. To test the null hypothesis (3)

against the alternative hypothesis (4), NHKJ (2011) suggest the test statistic

ŜT =

kT∑
i=1

wiâ
2
i , (5)

where âi = 1√
T

∑T
t=2 v̂tf (rt−1) q̂i(Xt−1) and wi is a nonnegative weighting function, such as wi = 0.9i.

To avoid technicalities as well as to save space, we refer the reader to NHKJ (2011) for the details of the

nonparametric estimation of vtf (rt−1) and qi(Xt−1) and on how to choose kT .

Obviously, the test statistic ŜT depends on the sample size. According to NHKJ (2011), under the

null hypothesis, ŜT converges in distribution to
∑∞

i=1 wiε
2
i , as T → ∞, where εi are i.i.d. N(0, 1). Thus,
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for a given summable positive sequence of weights {wi}, the test statistic ŜT is pivotal and asymptotically

distributed as an infinite sum of weighted chi-squares. To compute the critical values, NHKJ (2011) truncate

the infinite sum to
∑L

i=1 wiε
2
i and simulate its distribution using N(0, 1) random variables. An advantage

of this test is that its simulation is very simple and the critical values do not dependent on the data.

NHKJ (2011) further show that their test has nontrivial power against
√
T -local alternatives. They argue

that previously proposed tests [see Bierens and Ploberger (1997) and Bierens (2004) among others] can be

rewritten as special cases of their test statistic, and that the latter has an advantage over the earlier ones in

that it can easily control the power properties directly. Finally, they use the weighting function wi = 0.9i in

simulation and show that their test has reasonably good empirical size and power for a variety of linear and

nonlinear models. Their power section also discusses how sequence {wi} can be chosen to maximize power.

3.2 Nonparametric general Granger causality in distribution

Now, we test whether the past and present changes in the anticipated and unanticipated unemployment

rates affect the conditional distribution of stock market returns. The null hypothesis is defined as equality

between the distribution of stock returns conditional on its own past and the past (present) changes in the

anticipated or unanticipated unemployment rate, and the distribution of stock returns conditional only on its

own past, almost everywhere. This corresponds to testing the conditional independence of stock returns and

the past (present) changes in the anticipated or unanticipated unemployment rate conditional on the past

stock return. It tests the Granger non-causality in distribution, as opposed to the existing regression-based

tests examining only Granger non-causality in mean. In the mean regression, the dependence is only due to

the mean dependence; thus, the dependence described by high-order moments and quantiles is ignored.

Granger causality tests provide useful information on whether the knowledge of past (present) changes

in the anticipated and unanticipated components of the unemployment rate improves the short-run forecasts

of current and future movements in stock returns. The test considered here [hereafter non-linear Granger

causality test, or nonparametric Granger causality test] can detect linear and non-linear Granger causality

at any level (quantile) of the conditional distribution of stock returns.

We consider a new nonparametric test statistic proposed recently by Bouezmarni and Taamouti (2014)

[hereafter BT (2014)]. This test is based on comparing the conditional distribution functions using an L2

metric. Suppose we have to test the Granger non-causality in distribution from zt−1 (zt) to rt. This is done

by testing

HD
0 : Pr {F (rt | rt−1, zt−1(or zt)) = F (rt | rt−1)} = 1 (6)
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against the alternative hypothesis

HD
1 : Pr {F (rt | rt−1, zt−1(or zt)) = F (rt | rt−1)} < 1. (7)

Note that due to the lack of persistence in the returns, in the above hypothesis we consider only one lag for

the unemployment rate components (z) and stock returns (r).

Since the conditional distribution functions F (rt | rt−1, zt−1(or zt)) and F (rt | rt−1) are unknown, we

consider a nonparametric approach to estimate them. Following BT (2014), we consider the Nadaraya–

Watson approach, as proposed by Nadaraya (1964) and Watson (1964). For expositional simplicity, we

focus our discussion on testing the time-lagged impact of guu and geu on stock market returns. The test

can be defined similarly to that for testing contemporaneous (instantaneous) effects. Denoting x̄ = (r, z)′

and remembering that Xt−1 = (rt−1, zt−1)
′ ∈ R

2 for z = geu, g
u
u , the Nadaraya–Watson estimator of the

conditional distribution function of rt, given zt−1 and rt−1, can be defined by

F̂h1(rt|x̄) =
∑T+1

t=2 Kh1(x̄−Xt−1) IArt
(rt)∑T+1

t=2 Kh1(x̄−Xt−1)
, (8)

where Kh1(.) = h−2
1 K(./h1), for K(.) is a kernel function, h1 = h1,T is a bandwidth parameter, and IArt

(.)

is an indicator function defined on the set Art = [rt,+∞). Similarly, the Nadaraya–Watson estimator of the

conditional distribution function of rt, given only rt−1, can be defined as

F̂h2(rt|r) =
∑T+1

t=2 K∗
h2
(r − rt−1) IArt

(rt)∑T+1
t=2 K∗

h2
(r − rt−1)

, (9)

where K∗
h2
(.) = h−1

2 K∗(./h2), for K∗(.) is a different kernel function and h2 = h2,T is a different bandwidth

parameter. Note that the Nadaraya–Watson estimators of conditional distribution functions are positive

and monotone.

To test the null hypothesis (6) against the alternative hypothesis (7), we follow BT (2014) and use the

following test statistic:

Γ̂ =
1

T

T+1∑
t=2

{
F̂h1(rt|Xt−1)− F̂h2(rt|rt−1)

}2
w(V t−1), (10)

where w(.) is a nonnegative weighting function of the data Xt−1, for 2 ≤ t ≤ T . Obviously, the test statistic

Γ̂ depends on the sample size. It is close to zero if conditional on rt−1, variables rt and zt−1 are independent

and it diverges in the opposite case. BT (2014) establish the asymptotic distribution of the nonparametric

test statistic in (10). They show that the test is asymptotically pivotal under the null hypothesis and follows

a normal distribution. Since the distribution of their test statistic is valid asymptotically, for finite samples

they suggest standardized data and the local bootstrap version of the test statistic. In a finite sample,

an asymptotic normal distribution generally does not provide a satisfactory approximation of the exact

distribution of a nonparametric test statistic. Further, a simple resampling from the empirical distribution
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will not conserve the existing conditional dependence structure of the data. This shows the importance of

using the local smoothed bootstrap as suggested by Paparoditis and Politis (2000). The latter improves

considerably the finite sample properties (size and power) of the test.

BT (2014) report the results of their Monte Carlo experiment to illustrate the size and power of their test

based on a local smoothed bootstrap. The simulation study considers two groups of data-generating processes

(DGPs), corresponding to linear and nonlinear regression models with different forms of heteroscedasticity.

They used four DGPs to evaluate the empirical size and five DGPs to evaluate the power of the test. They

also considered two different reasonable sample sizes, T = 200 and T = 300. For each DGP and sample

size, they generated 500 independent realizations, and for each realization they obtained 500 bootstrapped

samples. Since optimal bandwidths are not available, they considered the bandwidths h1 = c1T
−1/4.75 and

h2 = c2T
−1/4.25 for various values of c1 and c2 (c1 = c2 = 2, c1 = c2 = 1.5, c1 = c2 = 1, and c1 = 0.8 and

c2 = 0.7), corresponding to the values commonly used in practice. These bandwidths satisfy the assumptions

needed to derive the asymptotic distribution of the test statistic. From 500 replications, the standard error

of the rejection frequencies in their simulation study is 0.0097 at the nominal level α = 5% and 0.0134 at

the level α = 10%. Globally, the size of the test is fairly well controlled for even with a series of length

T = 200. At 5%, all the rejection frequencies are within two standard errors. However, at 10%, three

rejection frequencies are between two and three standard errors (two at T = 200 and one at T = 300). They

find no strong evidence of overrejection or underrejection. Finally, the empirical power of the test performs

quite well. In most cases, the test has the greatest power when c1 = c2 = 1.

3.3 Empirical results: linear versus non-linear causality

Before obtaining the results of nonparametric Granger non-causality in mean and distribution tests, we

examine the causal effect of anticipated and unanticipated unemployment rates using standard linear mean

regressions

rt = ωr + α1 geu,t + α2 geu,t−1 + α3 guu,t + α4 guu,t−1 + α5 rt−1 + et, (11)

where et is assumed to be an error term with conditional mean equal to zero. The parameters in equation

(11) are unknown and can be estimated through ordinary least squares (OLS). The anticipated (resp. unan-

ticipated) changes in unemployment rate geu,t (resp. g
u
u,t) do not instantaneously Granger cause stock market

returns rt if the null hypothesis H0 : α1 = 0 (resp. H0 : α3 = 0) holds. Similarly, geu,t−1 (resp. guu,t−1) does

not Granger cause stock market returns rt if the null hypothesis H0 : α2 = 0 (resp. H0 : α4 = 0) is not

rejected.

Since the dependent variable in equation (11) is given by stock returns rt, the error term et is very likely

heteroscedastic. To avoid the effect of heteroscedasticity on inference, we consider a robust HAC t-statistic.

The estimation and inference results obtained with the data described in section 2 are presented in Table
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Table 2: Linear Granger causality in mean tests

rt Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Const. 0.0056
(0.000)

0.0056
(0.000)

0.0056
(0.000)

0.0055
(0.001)

0.0056
(0.000)

0.0055
(0.001)

geu,t −0.0303
(0.813)

−0.0304
(0.814)

geu,t−1 0.1431
(0.236)

0.1431
(0.235)

guu,t −0.0288
(0.470)

−0.0288
(0.471)

guu,t−1 0.0093
(0.840)

0.0093
(0.839)

rt−1 0.0501
(0.259)

0.0483
(0.272)

0.0482
(0.271)

0.0519
(0.247)

0.0517
(0.243)

0.0521
(0.244)

R2(%) 0.261 0.302 0.311 0.476 0.271 0.482

Note: This table reports the estimation results that correspond to the linear mean regressions in (11). The p-values

are given in parentheses. The sample covers the period from January 1950 to September 2014.

2. The table shows that the constant terms in all linear mean regressions are positive and statistically

significance at the 5% and 1% significance levels. We also find that the immediate effects of the anticipated

and unanticipated components of unemployment growth on the conditional mean of stock market returns

are negative whereas the time-lagged effects are positive. However, none of the coefficients of immediate

and time-lagged effects is statistically significant at the 5% and 10% significance levels. The highest R2 is

obtained in the regression with time-lagged anticipated and unanticipated unemployment rates.

Our linear mean regression analysis shows that both anticipated and unanticipated unemployment rates

have no impact on the conditional mean of stock market returns. Thus, if we focus only on linear mean

regressions, we can conclude that there is no causality from the unemployment rate to stock market returns.

This raises the question of whether the dependence in mean is nonlinear or whether it exists at other levels

(other than the mean) of the conditional distribution of stock market returns. To answer these questions,

we use nonparametric Granger non-causality in mean and distribution tests as follows.

We apply the nonparametric test statistic given in (5) to test for nonlinear Granger non-causality in

mean from geu (resp. guu) to stock market returns. Following NHKJ (2011), we choose as weighting function

wi = 0.9i. We also considered many other weighting functions such as wi = 0.5i, 0.6i, 0.7i, and 0.8i. For all

the weighting functions considered, we found a negligible change in critical values obtained from simulating

the distribution of
∑L

i=1wiε
2
i when the truncation L is bigger than 300. We again followed NHKJ (2011) in

choosing the bandwidth h = cT−0.3 for various values of c : c = 1, 2.5, 5, 7.3.

The results from testing the nonlinear time-lagged Granger non-causality in mean are presented in Table

3. The table reports the test statistics and the corresponding 5% critical values. For all the considered

weighting functions and bandwidths, only the time-lagged anticipated unemployment rate (geu) Granger
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causes the conditional mean of stock market returns. Given the results of linear regression analysis [see

table 2], this suggests that the time-lagged anticipated unemployment rate has a nonlinear effect on stock

market returns.

We now test for general Granger non-causality in distribution from the anticipated and unanticipated

components of gu,t to stock market returns. For this, we test the null hypothesis (6) against the alternative

hypothesis (7) using the nonparametric test statistic given in (10). The results are presented in Table 4. The

table reports the p-values computed using local smoothed bootstrap. Contrary to the linear mean regression-

based tests, we find strong evidence at the 5% significance level of the time-lagged anticipated growth rate of

unemployment rate Granger causing the conditional distribution function of stock market returns. Further,

we find very weak evidence of an instantaneous causality between anticipated unemployment rate and stock

market returns. Moreover, we also find convincing evidence of no instantaneous and time-lagged Granger

causality from the unanticipated component of growth rate of unemployment to stock returns even at the

10% significance level. Thus, we conclude that the unemployment rate affects the distribution of stock

market returns only through its anticipated component. This could imply that the time-lagged anticipated

unemployment rate affects other levels (other than the mean) of the conditional distribution of stock market

returns.

The rejection of Granger non-causality in the distribution hypothesis from the anticipated component of

the unemployment rate to stock market returns does not indicate the quantiles of stock return distribution

where causality may exist. To overcome this problem, in the next section, we use quantile regression analysis

to identity the effect at each quantile of the stock return distribution.

4 Quantile analysis

While a large majority of regression models focus on examining the conditional mean of a dependent variable,

we find an increasing interest in methods to model other aspects of the conditional distribution. One

important and popular approach is quantile regression, which models the quantiles of the dependent variable

given a set of conditioning variables. Originally developed by Koenker and Bassett (1978), the quantile

regression model estimates the relationship between a set of covariates and a specified quantile of the

dependent variable. It offers a more complete description of the conditional distribution than conditional

mean analysis. For example, the model describes how the median, or the 10th or 90th quantile of the

response variable, can be affected by regressor variables. Moreover, quantile regression does not require

strong distributional assumptions; it is robust against outliers compared to mean regression and can thus

be estimated with greater precision than the conventional moments regression [see Harvey and Siddique

(2000)].

14



Table 3: Nonparametric test (expression (5)) for nonlinear Granger causality in mean

Test statistic / H0 From Time-lagged geu to r From Time-lagged guu to r

Bandwidths: h = cT−0.3 Panel A: wi=0.5i, Critical Value=2.60

c = 1 3.27 0.805

c = 2.5 3.61 0.711

c = 5 3.61 0.707

c = 7.3 3.61 0.702

Panel B: wi=0.6i, Critical Value=3.57

c = 1 8.29 1.961

c = 2.5 8.15 1.933

c = 5 8.16 1.925

c = 7.3 8.15 1.923

Panel C: wi=0.7i, Critical Value=5.01

c = 1 19.12 3.01

c = 2.5 19.21 2.93

c = 5 19.23 2.92

c = 7.3 19.23 2.91

Panel D: wi=0.8i, Critical Value=7.58

c = 1 42.93 4.41

c = 2.5 42.35 4.37

c = 5 42.35 4.33

c = 7.3 42.34 4.31

Panel E: wi=0.9i, Critical Value=14.38

c = 1 79.55 5.27

c = 2.5 79.14 5.21

c = 5 79.18 5.12

c = 7.3 79.14 5.12

Note: This table reports the test statistics and the 5% critical values of nonparametric test for testing nonlinear

time-lagged Granger causality in mean from the anticipated component ( geu) and unanticipated component ( guu) of

unemployment rate (gu) to stock market returns ( r). h1 and wi are the bandwidth parameter and weighting function

in the test statistic (5). The sample covers the period from January 1950 to September 2014.
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Table 4: Nonparametric test (expression (10)) for nonlinear Granger causality in distribution

Test statistic / H0 From geu to r From guu to r

Bandwidths: h1 = c1T
−1/4.75, h2 = c2T

−1/4.25 Panel A: Instantaneous Effect

c1 = c2 = 2 0.049 0.384

c1 = c2 = 1.5 0.061 0.402

c1 = c2 = 1 0.070 0.367

c1 = 0.8, c2 = 0.7 0.081 0.327

Panel B: Time-lagged Effect

c1 = c2 = 2 0.000 0.392

c1 = c2 = 1.5 0.000 0.459

c1 = c2 = 1 0.000 0.436

c1 = 0.8, c2 = 0.7 0.000 0.365

Note: This table reports the p-values of the nonparametric test for testing nonlinear instantaneous and time-lagged

Granger non-causality in distribution from the anticipated ( geu) and unanticipated ( guu) components of unemployment

rate (gu) to stock market returns ( r). h1 and h2 are the bandwidth parameters in test statistic (10). The sample covers

the period from January 1950 to September 2014.

To examine the estimation and inference of quantile regressions, we first denote the αth quantile of the

conditional distribution of stock returns by Qα (rt | It−1) , where It−1 is an information set containing past

(present) covariates. Note that the null hypothesis in (6) is equivalent to

HQ
0 : Qα (rt | rt−1, zt−1(or zt)) = Qα (rt | rt−1) , ∀α ∈ (0, 1) , a.s. (12)

If HQ
0 holds for all α in (0, 1), the changes in components of the unemployment rate do not Granger cause

the distribution of stock market returns. In other words, Granger non-causality in the distribution from z

to r is equivalent to Granger non-causality in all quantiles from z to r. One advantage of testing HQ
0 instead

of HD
0 is that the former helps to identify the levels of conditional distribution of stock market returns at

which causality might exist. The null hypothesis for testing Granger non-causality at a given αth quantile

of the stock return distribution is

HQα
0 : Qα (rt | rt−1, zt−1(or zt)) = Qα (rt | rt−1) , for a given α ∈ (0, 1) . (13)

If HQα

0 holds, changes in the components of the unemployment rate do not Granger cause the αth quantile

of the stock market returns.

Note that the null hypotheses HQ
0 and HQα

0 are general hypotheses in that they do not specify the

functional form of conditional quantiles that might be linear or nonlinear. However, because nonparametric

quantile regression is not yet well developed, we follow the literature and propose a linear quantile regression
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as approximation to the possible non-linear quantile regression specification as follows:

rt = θ (α)′wt−1 + ε
(α)
t , for a given α ∈ (0, 1) , (14)

where wt−1 = (1, zt−1, rt−1)
′ , zt−1 = geu,t−1, g

u
u,t−1, θ (α) = (μ (α) , β1 (α) , β2 (α))

′ is an unknown vector

of parameters associated with the αth quantile and ε
(α)
t is an unknown error term satisfying the unique

condition

Qα

(
ε
(α)
t | rt−1, zt−1

)
= 0, for α ∈ (0, 1) ; (15)

that is, the conditional αth quantile of the error term is equal to zero. Note that for the purposes of

estimation and inference, the i.i.d. errors assumption is not needed.

From the quantile regression in (14), the time-lagged anticipated and unanticipated components of un-

employment rate do not Granger cause the αth quantile of stock market returns if HQα

lin,0 : β1 (α) = 0 holds.

We can similarly define an instantaneous Granger non-causality in the αth quantile between the components

of unemployment rate and stock returns by replacing in equation (14) zt−1 for zt.

From Koenker and Bassett (1978), the quantile regression estimator of the parameter vector θ (α) is the

solution to the following minimization problem:

θ̂ (α) = argmin
θ(α)

⎛
⎝ ∑

t:rt>θ(α)′wt−1

α | rt− θ (α)′wt−1 | +
∑

t:rt<θ(α)′wt−1

(1− α) | rt− θ (α)′wt−1 |
⎞
⎠ . (16)

Estimator θ̂ (α) minimizes the weighted sum of the absolute errors ε
(α)
t , where the weights α and (1− α) are

symmetric and equal to 1
2 for median regression and asymmetric otherwise. This estimator can be used to

solve the linear programming problem. Several algorithms to solve this problem have been proposed in the

literature [see Koenker and D’Orey (1987), Barrodale and Roberts (1974), Koenker and Hallock (2001), and

Portnoy and Koenker (1997)]. Moreover, under some regularity conditions, estimator θ̂ (α) is asymptotically

normally distributed [see Koenker (2005)]

√
T
(
θ̂ (α)− θ (α)

)
d∼ N (0,Σα) . (17)

Here, “
d∼” denotes convergence in distribution, Σα is the covariance matrix of θ̂ (α), and T is the sample

size. Tests for statistical significance of parameter estimates can be constructed using critical values from

the Normal distribution.

The computation of an estimator of covariance matrix Σα is very important in quantile regression analysis.

Generally, we distinguish between three classes of estimators: (1)methods for estimating Σα in i.i.d. settings;

(2) methods for estimating Σα for independent but non-identically distributed settings; and (3) bootstrap

resampling methods for both i.i.d. and independent and non-identically distributed settings [see Koenker

(2005)]. The estimator most commonly used and more efficient in small samples is based on the design matrix
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bootstrap [see Buchinsky (1995)]. The design matrix bootstrap estimator of Σα was initially suggested by

Efron (1979, 1982); it is given by

Σ̂∗
α =

T

B

B∑
j=1

(
θ̂∗j (α) − θ̂ (α)

)(
θ̂∗j (α)− θ̂ (α)

)′
, (18)

where θ̂∗j (α) is the quantile regression estimator based on the jth bootstrap sample for j = 1, ..., B. Bootstrap

samples
{
(r∗t , z∗t )

′}T

t=1
are drawn from the empirical joint distribution of r and z. The design matrix bootstrap

is the most natural form of bootstrap resampling; it is valid in settings where the error terms ε
(α)
t and

regressors (zt−1, rt−1)
′ are not independent. Using Monte Carlo simulations, Buchinsky (1995) examined

six different estimation procedures of the asymptotic covariance matrix Σα: design matrix bootstrap, error

bootstrapping, order statistic, sigma bootstrap, homoscedastic kernel, and heteroscedastic kernel. He draws

Monte Carlo samples from real data sets and evaluates the estimators under various realistic scenarios.

His results favor the design bootstrap estimation of Σα for a general case. Consequently, in our empirical

application, we use a t-statistic based on the standard errors obtained from the design matrix bootstrap

estimator.

4.1 Empirical Results

Nonparametric analysis has shown that the anticipated unemployment rate might cause any quantile of

conditional distribution of stock market returns. Consequently, we need to identify the causal effect at each

quantile of stock return distribution.

Since nonparametric Granger non-causality tests have shown that only the time-lagged unemployment

rate components can explain stock market returns, we concentrate on testing the time-lagged effects using

the quantile regression specification as follows:

rt = η(α)r + λ
(α)
1 geu,t−1 + λ

(α)
2 guu,t−1 + λ

(α)
3 rt−1 + ε

(α)
t , for α ∈ (0, 1) , (19)

with Qα

(
ε
(α)
t | geu,t−1, guu,t−1, rt−1

)
= 0. For the estimation of parameters η

(α)
r , λ

(α)
1 , λ

(α)
2 , and λ

(α)
3 and to

test their statistical significance, we use the techniques discussed in section 4.

The estimation and inference results for the coefficients of the anticipated and unanticipated components

of the unemployment rate in equation (19) are reported in Figures 2 and 3, respectively. The figures show

that the point estimates of the coefficient of impact of the time-lagged anticipated unemployment rate are

negative for the quantile range (0.05, 0.30) whereas the estimates are positive for the quantile range (0.30,

0.95) [see Figure 2-(a)]. Thus, during a bear market, the point estimates of the 20% lowest quantiles are

negative whereas during a bull market, the estimates are positive for 75% of the upper quantiles of the stock

market returns distribution. From Figure 2-(b), the effect is statistically significant both at the 5% and

1% significance levels for quantile range (0.35, 0.80), but it is not significant for lower and upper quantiles.
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Figure 2: This figure illustrates the coefficient estimates and p-values for the statistical significance of the

causal impact of the anticipated component (geu) of the growth rate of unemployment(gu) on the quantiles

of stock market returns. The results correspond to the quantile regressions in (19). The sample covers the

period from January 1950 to September 2014.
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Figure 3: This figure illustrates the coefficient estimates and p-values for the statistical significance of the

causal impact of the unanticipated component (guu) of the growth rate of unemployment (gu) on the quantiles

of stock market returns. The results correspond to the quantile regressions in (19). The sample covers the

period from January 1950 to September 2014.
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Thus, most of the time, an increase in time-lagged anticipated growth rate leads to a statistically significant

increase in stock market returns. This may be linked to the results in Table 4. In particular, the coefficients

for the quantile range of (0.35, 0.80) are roughly equal to 0.25 on average, meaning that an anticipated

increase in unemployment growth rate of 1% raises the monthly stock returns by 0.25%. 2

Moreover, from Figure 3-(a), contrary to the anticipated unemployment rate, the sign of the impact of

the unanticipated rate on stock market returns is not clear: the sign changes across quantiles, indicating

that its effect is not statistically significant. This is confirmed in Figure 3-(b), where the effect is statistically

insignificant both at the 1% and 5% significant levels for all the stock market return quantiles. This result

is also as expected from the analysis of causality in distribution in Table 4. In fact, Table 4 indicated that

there will be no causal relationship between the unanticipated component, guu , of the unemployment rate

and stock returns.

Again, quantile regression analysis confirms that only the anticipated component, geu, of the unemploy-

ment rate affects the stock market returns. This is both economically and statistically significant. It provides

empirical evidence that we can learn more about the stock market through studying the joint dynamics of

stock prices and unemployment rate. Thus, quantile analysis provides stylized facts on how the monthly

aggregate stock prices and unemployment rate are intertemporally related.3

Finally, we checked the robustness of our results by repeating the previous nonparametric (for mean and

distribution) and parametric (for mean and quantile) analyses using the changes in the unemployment rate

(urt − urt−1) instead of the growth rate of unemployment (log(urt)− log(urt−1). To save space, we report

only the main results that correspond to our quantile analysis; see Figures 7–9 in the appendix. From the

figures, the results from using the new transformation of the unemployment rate are quite similar to those

obtained previously, thus confirming our conclusions.

2Note that we are looking at a percentage, not a percentage point. A better way to interpret these numbers is to convert them

into annual rates. Thus, when in a month the unemployment rate goes from 5.00% to 5.05%, in annual terms this represents

an increase from 5.00% to 5.63%. Therefore, if investors anticipate such an annual increase in the unemployment rate, this will

cause an annual increase in stock returns of 3.4% (0.25% monthly). This roughly represents half the annual average of the stock

returns, which is not very large, given that it has been caused by a no minor increase in the annual unemployment rate.
3To check the robustness of our earlier results, we considered an alternative statistical procedure based on the Markov Chain

Marginal Bootstrap (MCMB) method [see He and Hu (2002) and Kocherginsky, He, and Mu (2005)] for testing the statistical

significance of the impact of the anticipated unemployment rate on stock market returns. Both the design bootstrap and

MCMB methods yielded similar results. Finally, we tried several other specifications to separate unanticipated and anticipated

unemployment. For example, we considered a specification where we had to add some nonlinearity: dummy variable for the

2008 financial crisis and the square of the lagged growth rate. Both the nonparametric and parametric results (for mean and

quantile) are very similar to those obtained in the present paper. The results are available upon request.
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5 Explaining the stock market reaction to unemployment rate

In this section, we identify one possible channel through which stock market prices react to the unemployment

rate. We follow the argument of Bernanke and Blinder (1992) that any measure of monetary policy “should

respond to the Federal Reserve’s perception of the state of the economy”. We believe that this can explain

the movements in monetary policy measures (Federal funds rate) in terms of movements in unemployment

rate. This function quantifies the reaction of such measures to changes in the unemployment rate. To

complete the channel, stock market prices must react to the monetary policy measure Federal funds rate.

One possible channel is given by the following scheme:

Unemployment Rate −→ Federal funds rate −→ Stock Market prices;

this suggests that the unemployment rate affects the Federal funds rate, which in turn affects the stock

market prices. Evidence of a causal effect from the Federal funds rate to stock market prices (returns) can

be found in the literature. Several studies have investigated the impact of the Federal funds rate on stock

market prices, the most recent ones being Rigobon and Sack (2002) and Bernanke and Kuttner (2005),

which found a negative impact of the Federal funds rate on stock market returns. Since the latter causal

effect is well established in the literature, we next focus on analyzing the causal impact of unemployment

rate on the Federal funds rate. We will also briefly examine the causal effect of the Federal funds rate on

stock market returns.

We start with the following simple observation based on real data. Figure 4 plots the monthly U.S.

unemployment rate and Federal funds rate. The data on the effective Federal Funds Rate are from the

Federal Reserve Bank of St Louis and date back to July 1954. From the figure, the two variables move

generally in opposite directions, with some lag: a decrease (increase) in unemployment rate is always followed

by an increase (decrease) in the Federal funds rate. This could reveal the important relationship between

unemployment rate and the Federal Funds Rate.

We now explore the existing economic theories to investigate the reaction of the Federal funds rate to the

unemployment rate. We consider the well-known Fisher and Phillips curve equations. Let in,t, ir,t, πt, and

urt, be the nominal interest rate, realized real interest rate, actual rate of inflation, and the unemployment

rate at time t, respectively. From the Fisher equation, the following identity holds:

in,t = ir,t + πt. (20)

The difference between the nominal interest rate in,t and realized real interest rate ir,t gives by the actual

inflation rate πt. Further, from a simple version of the Phillips curve equation, we have

πt = πe + v − αurt, (21)
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Figure 4: This figure illustrates the time series of unemployment rate and the Federal funds rate. The sample

covers the period from July 1954 to September 2014.

where πe is the expected inflation, v represents exogenous economic shocks, and α is a positive constant.

For expositional simplicity, we assume that the expected inflation and economic shocks are constant, at

least in the short run. Considering random variables πe and v will not affect our analysis. Thus, Equation

(21) implies that a rise in unemployment rate lowers inflation by the amount α. It also indicates that

governments have a tool to control inflation, and if they are willing to raise inflation, they can achieve a

lower unemployment level. By plugging the Fisher equation into the Phillips curve equation, we obtain

in,t = πe + v − αurt + ir,t. (22)

From Equation (22), the nominal interest rate is a linear function of the unemployment rate urt and real

interest rate ir,t, given constantinflation and economic shocks. We now define the component of the nominal

interest rate response that is strictly due to a change in the unemployment rate factor as follows:

din,t
durt

|dir,t=0 . (23)

Thus, from equations (22) and (23), we find that

din,t
durt

|dir,t=0= −α. (24)

Since α is a positive value, the marginal effect of unemployment rate on the nominal interest rate must be

negative
din,t

durt
|dir,t=0< 0. Bernanke and Blinder (1992) also found a negative reaction of the Federal funds

rate to the unemployment rate. Thus, a high unemployment rate is followed by a stimulus by the Fed, which

could consist of lowering the Federal funds rate. In turn, the Federal funds rate affects the stock market

prices, as shown by Rigobon and Sack (2002), Craine and Martin (2003), Bernanke and Kuttner (2005), and

the references therein.
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To confirm the previous theoretical result of negative impact of unemployment rate on the Federal funds

rate, we first consider a mean regression of the growth of the Federal funds rate on the constant and time-

lagged growth rate of unemployment (gu,t). We find that the coefficient estimate of the unemployment rate

impact is negative and equal to −0.896. The latter is statistically significant with a robust t-statistic equal

to −4.428. We also applied quantile regressions; the results shown in Figure 5 confirm the strong negative

and statistically significant unemployment rate impact on the Federal funds rate.

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quantile

C
o
e
ff
ic
ie
n
t

(a) Coefficient

.00

.01

.02

.03

.04

.05

.06

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quantile

P-value
1%  Significance Level
5%  Significance Level

P
-v
a
lu
e

(b) P-value

Figure 5: This figure illustrates the coefficient estimates and the p-values for the statistical significance of the

causal impact of the growth rate of unemployment on the Federal funds rate. The sample covers the period

from July 1954 to September 2014.

Finally, we briefly examine the causal impact of the Federal funds rate on stock market returns. We use

quantile regressions to identify the sign of the impact of the Federal funds rate, say ffrt, on S&P 500 stock

returns:

rt = π
(α)
0 + π

(α)
1 ffrt + π

(α)
2 ffrt−1 + π

(α)
3 rt−1 + ēαt , for α ∈ [0.05, 0.95]. (25)

Figures (6)-(a) and 6-(b) report the coefficient estimates and p-values for statistical significance of those

coefficients, respectively. The stock market returns react immediately to the Federal funds rate. From

these figures, the Federal funds rate has a negative and statistically significant impact on the quantile range

[0.788, 0.95]. Bernanke and Kuttner (2005) also find a negative Federal funds rate impact on the mean stock

returns.

The signs of the various causal links in the channel through the Federal funds rate can be summarized

as follows: a decrease (increase) in unemployment rate is followed by an increase (decrease) in the Federal

funds rate, which in turn leads to an immediate decrease (increase) in stock market prices. This confirms our

finding in section 4 that a decrease (increase) in unemployment rate is followed by a statistically significant

decrease (increase) in stock market prices.
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Figure 6: This figure illustrates the coefficient estimates and the p-values for the statistical significance of

the immediate causal impact of the Federal funds rate on stock returns. The sample covers the period from

July 1954 to September 2014.

6 Conclusion

We examined the nonlinearity in the stock price–unemployment rate relationship. We conducted a rigorous

analysis of the impact of the anticipated and unanticipated unemployment rates on the distribution and

quantiles of stock prices. Using nonparametric Granger causality and quantile regression-based tests, we

find that, contrary to the general findings in the literature, only the anticipated unemployment rate has a

strong impact on stock prices.

From quantile regression analysis, the causal effects of the anticipated unemployment rate on stock

returns are usually heterogeneous across quantiles. For the quantile range (0.30, 0.80), an increase in the

anticipated growth rate of the unemployment rate leads to an increase in stock market prices. For other

quantiles, the impact is statistically insignificant. Thus, an increase in the anticipated unemployment rate

is good news for stock market prices.

Finally, we offer a reasonable explanation for why and how the unemployment rate affects stock market

prices. Using the Fisher and Phillips curve equations, we show that a high unemployment rate is followed

by monetary policy action of the Fed. When the unemployment rate is high, the Fed decreases the interest

rate, which in turn increases the stock market prices.

A Appendix: Additional empirical results of using changes in unem-

ployment rate
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Figure 7: This figure illustrates the coefficient estimates and p-values for the statistical significance of the

causal impact of the anticipated component of changes in unemployment rate on the quantiles of stock market

returns. The results correspond to the quantile regressions in (19), but the growth rate of unemployment is

replaced by the changes in unemployment rate. The sample covers the period from January 1950 to September

2014.
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Figure 8: This figure illustrates the coefficient estimates and p-values for the statistical significance of the

causal impact of the unanticipated component of changes in unemployment rate on the quantiles of stock

market returns. The results correspond to the quantile regressions in (19), but the growth rate of unemploy-

ment is replaced by the changes in unemployment rate. The sample covers the period from January 1950 to

September 2014.
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Figure 9: This figure illustrates the coefficient estimates and p-values for the statistical significance of the

causal impact of changes in unemployment rate on the Federal funds rate. The sample covers the period

from July 1954 to September 2014.
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