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Searches for multi-Higgs final states allow to constrain parameters of the SM (or extensions thereof) 
that directly relate to the mechanism of electroweak symmetry breaking. Multi-Higgs production cross 
sections, however, are small and the phenomenologically accessible final states are challenging to isolate 
in the busy multi-jet hadron collider environment of the LHC run 2 and HL-LHC. This makes the 
necessity to extend the list of potentially observable production mechanisms obvious. Most of the 
phenomenological analyses in the past have focused on gg → hh + jets; in this paper we study pp → tt̄hh
at the HL-LHC and find that this channel for h → bb̄ and semi-leptonic and hadronic top decays has the 
potential to provide an additional handle to constrain the Higgs trilinear coupling in a global fit at the 
end of the high luminosity phase.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The Higgs discovery in 2012 by the ATLAS and CMS experi-
ments [1,2] and subsequent preliminary comparisons of its prop-
erties against the Standard Model (SM) expectation [3] have high-
lighted its SM character in standard measurements. The next step 
in demystifying the nature of the electroweak scale will therefore 
crucially rely on precise measurements of the Higgs’ properties at 
low as well as high momentum transfers during run 2 and the high 
luminosity phase, and on constraining or even measuring Higgs 
properties that have not been in the sensitivity reach during run 1.

A parameter in the SM that is directly sensitive to spontaneous 
symmetry breaking is the quartic Higgs coupling η

V (H† H) = μ2 H† H + η

2
(H† H)2

⊃ 1

2
m2

hh2 +
√

η

2
mhh3 + η

8
h4, (1)

where we use the unitary gauge H T = (0, (v + h)/
√

2 ) and v �
246 GeV. The second independent parameter in the SM Higgs po-
tential μ2 < 0 is reverse-engineered to obtain an acceptably large 
value of the electroweak symmetry breaking scale and pole mass
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(173 GeV)2 � v2

2
= −μ2

η
, m2

h = ηv2 (2)

for a given Higgs self-coupling η. These relations determine a 
unique value of the Higgs self-coupling in the SM η = m2

h/v2 as 
required by renormalisability.

To obtain a measurement of the Higgs self-coupling η, we may 
think of Eq. (1) as the lowest order in an effective field theory 
expansion in a new physics scale �. A new operator possibly rel-
evant for softening the correlation of Higgs mass and electroweak 
scale is, e.g., O 6 = (H† H)3. Consequently, in the absence of addi-
tional new resonant phenomena related to electroweak symmetry 
breaking and in order to prove or disprove the existence of such 
operators, a question that needs to be addressed is how well the 
Higgs self-interaction parameter can be constrained assuming the 
standard low-energy Higgs phenomenology only.

Our best option to phenomenologically access the relevant pa-
rameter η at the LHC is via its impact on di-Higgs production [4,5]
via the trilinear Higgs self-coupling. Inclusive di-Higgs cross sec-
tions typically have cross sections in the O(10 fb) range [6,7]. This 
implies that, in order to analyse them, the large SM-like Higgs 
branching ratios h → bb̄, τ+τ− [8–10] and h → W +W − [11] must 
be employed. Advanced substructure techniques [12,13] or small 
irreducible backgrounds such as in hh → bb̄γ γ [14,15] are cru-
cial in most analyses to date, which have focused on the dom-
inant di-Higgs production cross section, gluon fusion (GF) with 
σ NLO � 30 fb [16]. To increase sensitivities in this channel emission 
of an additional jet has been discussed in Refs. [8,17]; a complete 
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analysis of WBF-like production in pp → hhj j has become available 
only recently [18].

Common to all realistic di-Higgs analyses discussed in the lit-
erature is that they will be sensitive to systematic uncertainties 
at the end of run 2 and the high luminosity phase, and it is quite 
likely that measurements in only a single di-Higgs channel will not 
provide enough information to formulate a significant constraint 
on the Higgs self-interaction in the above sense [19]. Hence, it is 
mandatory to extend the list of potential phenomenologically in-
teresting search channels in proof-of-principle analyses.

In this paper we investigate pp → tt̄hh, and study semi-leptonic 
and hadronic top decays t → �νb, t → j jb and h → bb̄. In par-
ticular, we discuss the phenomenological appeal of this particular 
di-Higgs final state as a function of the number of applied b-tags. 
We first study the qualitative behaviour of pp → tt̄hh in Section 2, 
where we also comment on the signal and background event gen-
eration employed in the remainder of this work. In Section 3, we 
detail our analysis and we discuss the sensitivity of pp → tt̄hh to 
the Higgs trilinear coupling in detail before we present our con-
clusions in Section 4.

2. Signal cross section sensitivity and event generation

The sensitivity of di-Higgs cross sections from GF and WBF is 
dominated by destructive interference of continuum hh production 
and the subamplitude proportional to the trilinear coupling λ. In 
gluon fusion this is apparent from low-energy effective theory ar-
guments [20] by expanding

LLET = − αs

12π
Ga

μνGa μν log

(
1 + h

v

)

= αs

12π
Ga

μνGa μν

(
h2

2v2
− h

v

)
, (3)

which makes the relative minus between the continuum and the 
gg → h → hh diagrams explicit. As a consequence, the gluon 
fusion cross section is a decreasing function with λ � λSM =√

ηmh/2. In WBF the destructive character is explicit from nested 
cancellations that are similar to unitarity-based cancellations ob-
served in longitudinal gauge boson scattering.

Qualitatively different from GF- and WBF-induced di-Higgs pro-
duction, pp → tt̄hh is impacted by constructive interference, yield-
ing an increasing cross section with λ > λSM, Fig. 1. pp → tt̄hh
production is the biggest di-Higgs cross section among the pro-
duction modes which exhibit this behaviour (pp → W H H and 
pp → Z H H [6]). Quite different to loop-induced gluon fusion di-
Higgs production, there is no characteristic threshold scale in-
volved in pp → tt̄hh that can be exploited in a targeted boosted 
search strategy [8,9]; the tt̄hh cross section is a rather flat function 
of λ [6] and differential distributions away from the production 
threshold do not show a significant deviation apart from a global 
rescaling of the differential distribution by σ(λ �= λSM)/σ (λSM) for 
a transverse momentum range that is interesting for the experi-
ments (Fig. 1). Furthermore, the expected inclusive tt̄hh cross sec-
tion with σ � 1 fb at a 14 TeV LHC asks for a selection as inclusive 
as possible to be sensitive to the signal contribution even for a tar-
get luminosity of 3/ab in the first place.

If we treat the top-Yukawa interaction as legacy measurement 
and set yt = ySM

t , we can imagine a physics situation with an en-
hanced trilinear coupling that renders the dominant gluon fusion 
modes suppressed but leaves an excess in pp → tt̄hh production. 
In the general dimension six extension alluded to in the introduc-
tion this corresponds to a negative Wilson coefficient of O 6. En-
hanced Higgs self-couplings have been discussed more concretely 
in the context of conformal Coleman–Weinberg-type extensions of 
Fig. 1. Differential distributions at 14 TeV centre of mass energy of the inclusive 
maximum Higgs transverse momentum for different values of the Higgs trilinear 
coupling λ. The lower panel displays the ratio of the max pT (h) distribution with 
respect to the SM (λ = λSM).

the SM in [21]. Obviously, the opposite phenomenological situa-
tion of λ < λSM is accompanied by enhanced GF and WBF di-
Higgs cross sections while pp → tt̄hh becomes smaller (however 
the cross section becomes rather flat). Such a situation occurs for 
instance in composite Higgs scenarios [5], which typically have a 
smaller Higgs trilinear coupling than predicted in the SM (in ad-
dition to modified top Yukawa interactions). Therefore, comparing 
the measured rates and (ideally) distributions in all three channels, 
i.e. gluon-fusion, weak-boson-fusion and in association with a top 
quark pair, provides a precision tool for BSM electroweak symme-
try breaking.

Given the small production cross sections, we focus in the fol-
lowing on a combination of semi-leptonic and hadronic decays of 
the final state top pair, with both Higgs bosons decaying h → bb̄. 
We use Sherpa v2.1.1 with the Comix matrix element genera-
tor [22] to generate signal and background events for modified 
trilinear Higgs couplings with SM-like top Yukawa interactions and 
normalise to the signal events. We normalise these event samples 
to the NLO cross sections extracted from Ref. [6] for the different 
values of λ, after validating our calculation against the leading or-
der results of [6]. This means that we apply a flat K factor to our 
signal events. The signal and background samples have been gen-
erated at purely leading order matched to the parton shower, with 
modelling of hadronisation effects and underlying event. Unstable 
particles are treated in the narrow width approximation; any spin 
correlations are included in our Sherpa simulation.

The parton distribution functions used are from CT10 [23] and 
the scales are set according to Ref. [24]. The masses and widths of 
the SM particles used in the event generation are:

M Z = 91.188 GeV,

MW = 80.419 GeV,

Mh = 126 GeV,

Mt = 173 GeV. (4)
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Table 1
Cut flow for the analysis outlined in Section 3.1. Boson decays in the background samples are generated fully inclusive.

signal backgrounds

λ = λSM λ = 4λSM tt̄bb̄bb̄ tt̄hbb̄ tt̄h Z tt̄ Zbb̄ tt̄ Z Z W bb̄bb̄

trigger 0.10 0.23 4.75 1.38 0.64 1.37 1.36 × 10−2 1.33
jet cuts 7.40 × 10−2 0.17 1.44 0.76 0.40 0.65 8.74 × 10−3 7.46 × 10−2

5 b tags 1.23 × 10−2 2.83 × 10−2 4.46 × 10−2 6.19 × 10−2 7.24 × 10−3 4.43 × 10−2 1.25 × 10−3 5.35 × 10−4

2 × h → bb̄ 7.33 × 10−3 1.69 × 10−2 1.59 × 10−2 2.71 × 10−2 3.41 × 10−3 1.56 × 10−2 4.28 × 10−4 < 1 × 10−4

lep./had. t 5.04 × 10−3 1.12 × 10−2 9.50 × 10−3 1.66 × 10−2 2.29 × 10−3 9.42 × 10−3 2.69 × 10−4 < 1 × 10−4

lep. t only 2.33 × 10−3 5.29 × 10−3 5.03 × 10−3 9.36 × 10−3 1.14 × 10−3 4.90 × 10−3 1.39 × 10−4 < 1 × 10−4

had. t only 2.71 × 10−3 5.93 × 10−3 4.47 × 10−3 7.20 × 10−3 1.16 × 10−3 4.44 × 10−3 1.30 × 10−4 < 1 × 10−4

6 b tags 2.21 × 10−3 4.97 × 10−3 3.80 × 10−3 8.01 × 10−3 9.57 × 10−4 5.10 × 10−3 1.86 × 10−4 < 1 × 10−4

2 × h → bb̄ 1.81 × 10−3 5.94 × 10−3 2.01 × 10−3 5.47 × 10−3 6.60 × 10−4 3.28 × 10−3 1.11 × 10−4 < 1 × 10−4
Fig. 2. Reconstructed invariant mass of bottom-quark pairs based on Eq. (5) for λ =
λSM.

3. tt̄hh at HL-LHC

3.1. Final state reconstruction

While this high-multiplicity final state might allow to trigger 
in multiple ways, due to the low-pT thresholds for the jets we 
rely for this purpose on an isolated lepton (muon or electron) with 
pT ,l > 10 GeV. We define a lepton to be isolated if the hadronic 
energy deposit within a cone of size R = 0.3 is smaller than 10%
of the lepton candidate’s transverse momentum and |yl| < 2.5.

After removing the isolated leptons from the list of input parti-
cles (|y| < 4.5) of the jet finder we reconstruct jets with R = 0.4
and pT , j > 30 using the anti-kT algorithm [25] of FastJet [26]. We 
veto events with less than 6 reconstructed jets.

Out of the 6 jets we require at least 5 to be b-tagged by 
matching the b-meson before the decay to the jet. We assume a 
b-tagging efficiency of 70% and a fake rate of 1% [27].

As the signal rate after these inclusive cuts is already fairly 
small, O(10−2) fb for λ = λSM, we select the Higgs-decay jets by 
minimising

χ2
H H = (mbi ,b j − mh)

2


2
h

+ (mbk,bl − mh)
2


2
h

, (5)

where k �= l �= i �= j run over all b-tagged jets and mh = 120 GeV
(we comment on this choice further below) and 
h = 20 GeV. For 
the combination which minimises χ2 we require |mbi ,b j − mh| ≤

h and |mbk,bl − mh| ≤ 
h . We then remove these 4 b-tagged jets 
from the event.

To confidently reduce the large gauge boson induced back-
grounds, e.g. W + jets, we further require at least one top quark 
to be reconstructed. We provide cross sections after the recon-
struction of the leptonic top only, after reconstructing the hadronic 
Fig. 3. Expected confidence levels for the analysis of Section 3.1 as a function of the 
trilinear Higgs coupling λ.

top quark only or after reconstructing either the leptonic or the 
hadronic top quark.

To avoid biasing the vector boson backgrounds towards the top 
quark signal, for the leptonic top quark reconstruction we require 
that the invariant mass of the sum of the lepton, a b-jet and 
the missing transverse energy vector, built from all visible objects 
within |y| < 4.5, fulfils

|ml,b,/E − mt | ≤ 
t, (6)

with mt = 170 GeV and 
t = 40 GeV, which reflects the incom-
plete missing energy reconstruction from the top decay. To identify 
the b-jet for ml,b,/E we consider all remaining b-jets in the event 
and minimise

χ2
tl

= (ml,bi ,/E − mt)
2


2
t

. (7)

Similarly, for the hadronic top quark reconstruction we loop over 
all remaining jets and minimise

χ2
th

= (m ji , jk, jl − mt)
2


2
t

. (8)

We then request

|m ji , jk, jl − mt | ≤ 
t . (9)

The cut flow for the described analysis steps is shown in Ta-
ble 1.

3.2. Discussion

At a centre-of-mass energy of 14 TeV, the signal cross sec-
tion for tt̄hh is in the sub-femtobarn range before decays are 
included. Therefore, the reconstruction requires an approach that 
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on the one hand retains an as large as possible signal yield and 
on the other hand triggers in the high-luminosity regime. We 
therefore focus on the Higgs decays to bottom quarks and semi-
leptonic t̄t decays. Other channels can be combined with the one 
we focus on to improve the sensitivity on measuring the self-
coupling.

Already after fulfilling the trigger requirement, minimal jet cuts 
and 5 b tags we find S/B � 1/15 for the backgrounds we consider. 
To confirm the measurement of a di-Higgs event both Higgs bosons 
have to be fully reconstructed. At this stage we find S/B � 1/9
with 5 b tags and S/B � 1/6 with 6 b tags respectively. We show 
the reconstructed masses of the hardest and second hardest Higgs 
boson in Fig. 2. Due to the partly invisible decay of B-mesons, 
mH is systematically shifted to slightly lower values. This is why 
we choose mH = 120 GeV for the minimisation procedure for the 
purpose of this paper, guided by comparisons against Monte Carlo 
truth. In measurements, the experiments can compensate for this 
systematic shift in the invariant Higgs mass using b-jet calibra-
tions. Further, at this point with the chosen b-tagging-efficiency 
working point W + jets backgrounds are already subleading. Thus, 
choosing a higher b-tagging efficiency working point at cost of a 
larger fake rate could be beneficial in this analysis to retain a larger 
signal yield and improve the statistical significance expressed in 
S/

√
B .

In a further step we then perform a leptonic or hadronic top 
quark reconstruction using the remaining measured final state ob-
jects. This can help to further suppress potentially large reducible 
QCD-induced backgrounds, e.g. W + jets. However, for the top-rich 
irreducible backgrounds we focus here mostly on, an improvement 
in S/B cannot be achieved using the signal-sparing χ2 minimisa-
tion we apply.

From Table 1 it becomes obvious that the signal vs. background 
ratio is expected to be in the 10% range for λ = λSM. After 3/ab we 
expect 13 signal events including the reconstruction of a top quark 
and 22 signal events reconstructing only the two Higgs bosons. 
While the signal yield is too small to claim a discovery at this 
stage the number of observed events is high enough to formulate 
an expected 95% confidence level limit on λ assuming yt = ySM

t . In 
order to do this, we employ the CLs method [28,29] inputting the 
expected number of signal and background events for a luminosity 
of 3/ab including the reconstruction of at least one top quark. The 
result is shown in Fig. 3; and we obtain

λ � 2.51 λSM at 95% CLs. (10)

Together with analyses of the bb̄γ γ and bb̄ττ channels that 
yield a confidence interval λ � 1.3 λSM [9,14], depending on sys-
tematic uncertainties, tt̄hh will allow us to extend the sensitivity 
to λ to a parameter region that is not accessible via the former 
modes.

4. Summary and conclusions

With current Higgs property measurements strongly indicat-
ing a SM-like character of the discovered Higgs boson, analysis 
strategies for parameters relevant for electroweak symmetry break-
ing that remain unconstrained in standard Higgs searches will 
play a central role in the search for new physics beyond the SM 
during run 2. Constraining the Higgs self-interaction as one of 
the most interesting couplings in this regard is an experimen-
tally challenging task and will require a large accumulated data 
set.

As we have discussed in this letter, the role of pp → tt̄hh
production in this regard is twofold: Firstly, it provides an addi-
tional channel that can be added to a global Higgs self-coupling 
analysis across the phenomenologically viable channels. Signal vs. 
background ratios indicate that top-pair associated Higgs pair pro-
duction can provide significant statistical power to increase the 
sensitivity to this crucial coupling at a targeted 3/ab and extend 
the sensitivity coverage to the Higgs trilinear coupling. Secondly, if 
we face a situation with λ � λSM, pp → tt̄hh provides the leading
channel, where we can expect to observe an excess over the SM 
expectation. A negative search outcome in GF and WBF dominated 
search strategies in addition to an excess in tt̄hh final states would 
therefore be a strong indication of λ > λSM, eventually allowing 
us to put strong constraints on BSM scenarios such as composite 
Higgs models.
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