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ABSTRACT
We examine the performance of a variety of different estimators for the mass of galaxy
groups, based on their galaxy distribution alone. We draw galaxies from the Sloan Digital
Sky Survey for a set of groups and clusters for which hydrostatic mass estimates based on
high-quality Chandra X-ray data are available. These are used to calibrate the galaxy-based
mass proxies, and to test their performance. Richness, luminosity, galaxy overdensity, rms
radius and dynamical mass proxies are all explored. These different mass indicators all have
their merits, and we argue that using them in combination can provide protection against
being misled by the effects of dynamical disturbance or variations in star formation efficiency.
Using them in this way leads us to infer the presence of significant non-statistical scatter in the
X-ray based mass estimates we employ. We apply a similar analysis to a set of mock groups
derived from applying a semi-analytic galaxy formation code to the Millennium dark matter
simulation. The relations between halo mass and the mass proxies differ significantly in some
cases from those seen in the observational groups, and we discuss possible reasons for this.
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1 IN T RO D U C T I O N

An understanding of the mass of galaxy groups and clusters is essen-
tial to the study of these structures and their evolution. For example,
use of the concept of self-similarity, whereby larger systems behave
as scaled up versions of smaller ones (e.g. Kaiser 1986; Navarro,
Frenk & White 1997; Alard 2013), requires knowledge of the mass
of the objects in question. Studies of self-similarity based on cos-
mological simulations have direct access to dark matter particle
information, which in turn allows the user to construct robustly de-
fined halo masses. However, this luxury is not available in the case of
observational studies, and comparisons of baryonic properties, such
as X-ray luminosity and gas entropy, with self-similar expectations
require reliable estimates of the mass of the host haloes.

In practice, groups and clusters are observed to depart from
self-similar expectations (Arnaud & Evrard 1999; Ponman,
Cannon & Navarro 1999; Neumann & Arnaud 2001; Osmond &
Ponman 2004), and these departures offer valuable evidence about
the nature of additional astrophysical processes, such as cooling and
cosmic feedback, which break the symmetries observed in simple
gravity-only models. Estimates of halo mass, and the corresponding
characteristic overdensity radii of systems, are an essential element
in the study of the baryon astrophysics. The effects of these addi-
tional processes are especially notable within poor galaxy groups

� E-mail: richard@star.sr.bham.ac.uk (RJP); tjp@star.sr.bham.ac.uk (TJP)

(M � 1014 M�), so it is unfortunate that it is precisely in such
systems that masses are most difficult to determine.

Most existing methods of mass estimation rely on the group
or cluster mass distribution affecting a baryonic tracer population,
which then provides a measurable mass proxy. The simplest, and
oldest, of these approaches uses the dynamics of member galax-
ies within the cluster halo, whose velocity dispersion is related
to system mass through the Virial Theorem (e.g. Zwicky 1937).
This approach is often applied to large redshift surveys as a useful
and relatively straightforward mass estimator (e.g. Eke et al. 2004;
Ramella et al. 2004; Robotham et al. 2011). This estimator requires
that group membership be well-established, with limited contam-
ination from foreground and background galaxies, though robust
estimators of group velocity dispersion, such as the gapper esti-
mator (Beers, Flynn & Gebhardt 1990), help to reduce the impact
of outliers in the galaxy velocity distribution. The method also re-
quires that the galaxy tracers are relaxed – i.e. their motions are not
strongly affected by dynamical disturbances such as group mergers
or infall. Studies of simulated clusters by Biviano et al. (2006) indi-
cate that virial mass estimates are subject to biases of 10 per cent or
more. There are also indications, from comparisons between galaxy
dynamics and X-ray temperatures, that in poor groups velocity dis-
persions may be subject to unexplained downward biases which can
be substantially larger (Osmond & Ponman 2004).

An alternative approach uses the hot gas within the dark
matter halo of groups and clusters. This gas, heated by grav-
itational collapse to virial temperatures, radiates X-rays. The
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surface brightness distribution and spectrum of this radiation can
be used to infer the radial distribution of gas density and tem-
perature, and hence, via hydrostatic equilibrium, to estimate sys-
tem mass (e.g. Mulchaey 2000). Such an analysis requires high-
quality X-ray data, with radially resolved spectroscopy. With poorer
quality X-ray data, it is still possible to derive useful mass es-
timates if a mean X-ray temperature can be measured, applying
well-established mass–temperature relations for groups and clus-
ters (e.g. Sun et al. 2009). However, even this may not be available
for many galaxy groups, since they tend to have low X-ray surface
brightness. Moreover, as X-ray data are expensive to acquire and
existing all sky surveys such as RASS (ROSAT All Sky Survey;
Voges et al. 1999) are too shallow on average, high-quality X-ray
spectral imaging is still not available for the majority of the sky.
The upcoming surveys to be performed by the eROSITA instru-
ment (Merloni et al. 2012), may help moderate this, though the
detection of the lowest surface brightness groups may still be a
challenge.

The most direct estimator of gravitating mass is gravitational lens-
ing. The distortions imposed on the light from background galaxies
as it passes through the gravitational potential of a foreground clus-
ter allows the surface density of mass along the line of sight to be
derived (Narayan & Bartelmann 1996). However, the magnitude of
these lensing distortions is so small for poor groups that at present
lensing studies at such low masses are largely confined to stacking
analyses. These extract an average mass distribution, destroying
information on the properties of individual groups (Parker et al.
2005).

Due to the availability of large galaxy surveys, the ability to es-
timate the masses of galaxy groups and clusters from their galaxy
contents alone is an attractive possibility. The aim of this paper
is therefore to explore ways of estimating masses given only ba-
sic properties of member galaxies available from surveys such
as SDSS (Ahn et al. 2014) and GAMA (Driver et al. 2011). We
will evaluate the performance of these estimators using a sam-
ple of groups for which X-ray-based masses have been well-
constrained.

X-ray-bright groups appear to constitute a particular subset of the
group population (e.g. Rasmussen et al. 2006), so to check these
results and obtain access to a wider range of groups, we will also
investigate the performance of our mass proxies on a sample of
groups drawn from a cosmological simulation.

In Section 2, we discuss the data used in this study. Section 3
presents the mass proxies that we use and in Section 5, we present
the results for each methodology. In Section 6 and Section 7, we
present and discuss analogous results for a sample of groups drawn
from a cosmological simulation. Finally, in Section 8, we discuss the
implications of our results for the practical problem of estimating
the masses of galaxy groups.

Throughout the paper, we adopt a simple � cold dark matter cos-
mology with �m = 0.3, �� = 0.7 and H0 = 70 km s−1 Mpc−1.
When converting literature results to our cosmology, we adopt
h = H0/100 km s−1 Mpc−1 = 0.7 when required. Due to the small
range in current values of H0 and the relatively large scatter in
mass proxies observed, the choice of cosmology is not a signif-
icant concern; we therefore report values in physical units rather
than as a function of h70, where h70 = H0/70 km s−1 Mpc−1. The
analysis performed here makes use of the R statistical package
(R Development Core Team 2009).1

1 www.r-project.org

2 DATA

This study requires a sample of galaxy groups with both optical data,
for use in constructing mass proxies, and robust mass estimates that
are independent of optical properties, against which mass–proxy
scaling relations can be investigated and calibrated. We take our
canonical masses from high-quality X-ray analyses and use the
Sloan Digital Sky Survey (SDSS) as the source of our optical data.

2.1 X-ray

Our galaxy group sample is primarily drawn from the Sun et al.
(2009, hereafter S09) Chandra study of galaxy groups. This uses
a sample of 43 groups with Advanced CCD Imaging Spectrom-
eter (ACIS) observations from the Chandra archive. The groups
were selected to have low temperature (T500 � 2.7 keV) and red-
shift (0.015 < z < 0.13), together with a relaxed morphology (i.e.
emission is not significantly substructured or disturbed). These cri-
teria ensure that these groups have low mass and high-quality X-ray
data suitable for a hydrostatic mass analysis. The lower redshift limit
ensures that r2500, the radius enclosing a mean density 2500 times
the critical density of the Universe, for each group lies within the
ACIS field of view, allowing S09 to trace gas properties to large
radii.

The result is one of the most robust X-ray analyses of low mass
groups currently available. Additionally, the low redshifts of these
groups implies that their member galaxies should be well sampled
by the SDSS for groups which lie within the Sloan survey area. It
should be noted that this sample is an X-ray-selected sample and
may differ systematically from optically selected samples, as we
will discuss later.

The groups of S09 were split into four tiers depending on the
extent to which they were able to trace gas properties from the
emission centre. We use the two best subsets for which M500 was
either measured at r500 or was extrapolated based on gas properties
at a large fraction of r500 (�0.68r500) – ‘Tier 1’ and ‘Tier 2’, re-
spectively. There are 23 groups for which this was possible, 15 of
which are covered by the SDSS.

To supplement this sample, and to usefully extend the mass range
for calibration of mass proxies, we add four groups and eight clusters
with masses determined by Sanderson & Ponman. The cluster anal-
ysis is described in Sanderson & Ponman (2010, hereafter SP10).
The full sample included 20 high flux Chandra clusters drawn from
the flux-limited sample of Ikebe et al. (2002). The four groups were
analysed in exactly the same way. Our superset sample therefore
consists of 27 groups and clusters. However, in what follows we
will exclude five groups for which galaxy membership was not
well-defined (Section 2.2) or for which SDSS spectroscopic com-
pleteness was inadequate (Section 2.2.3), leaving a final sample of
22 systems.

The initial position and redshift of each of our groups was ex-
tracted from the NASA Extragalactic Database (NED).2 We note
that the cosmology used by S09 (�m = 0.24, �� = 0.76 and
H0 = 73 km s−1 Mpc−1) differs from that used here and in SP10.
Given the low redshift of our groups (z � 0.1) the effect of �m and
�� is negligible. However, we apply a correction for H0, scaling
masses from S09 to M� h−1

70 .

2 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.
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2.2 Optical

Optical counterparts were selected from the Seventh Data Release
(DR7) of the SDSS (Abazajian et al. 2009). Specifically, we use
data from the DR7 release of the New York University Value-
Added Galaxy Catalogue (NYU-VAGC; Blanton et al. 2005). This
catalogue features improvements on the original survey, includ-
ing photometric calibration (Padmanabhan et al. 2008) and source
identification. The NYU-VAGC also provides a set of K-corrected
absolute magnitudes (Blanton & Roweis 2007) such that

M = m − 5 log

(
DL(z)

10 pc

)
− K(z) + 5 log h, (1)

where DL(z) is the luminosity distance to the galaxy, M and m are the
absolute and apparent magnitude, respectively, and K(z) is the K-
correction. We use K-corrected catalogues where the K-correction
has been found for filters shifted to z = 0.1.

The original DR7 is nominally spectroscopically complete to an
apparent Petrosian magnitude limit of mr ≈ 17.77; however, this
can vary somewhat across the sky. Following Berlind et al. (2006),
we adopt a more conservative r-band magnitude limit of 17.5 to
ensure more uniform coverage with an average completeness of
∼95 per cent as discussed below (Section 2.2.3). We further subset
our galaxy sample by selecting only objects that meet the Blanton
et al. galaxy criteria, i.e. have the bitmask ‘VAGC_SELECT’>=4,
reducing potential contamination from spurious sources.

2.2.1 Group membership

To explore the impact of galaxy selection methods on our mass
proxies, we construct two optical group samples. A ‘volumetric’
sample, based upon selecting galaxies within a quasi-cylindrical
volume about each X-ray group, and a ‘Friends-of-Friends’ (FoF)
sample constructed by performing an FoF analysis on the galaxies
in the vicinity of each group and matching the extracted groups to
the X-ray groups. This allows us to examine effects such as the
imposition of a fixed metric aperture and the differing treatment of
interlopers.

The volumetric sample is initially built by selecting galaxies from
the NYU-VAGC spectroscopic sample within cones of radius 5 Mpc
about the group positions drawn from NED. An initial velocity cut
of ±1000 km s−1 about the group redshift, also drawn from NED,
is also applied.

Using galaxies from a smaller, 1 Mpc, aperture we then de-
termine a velocity dispersion, σ , for the system using the gapper
estimator from Beers et al. (1990). This estimator is unbiased in low-
multiplicity systems and is robust against outliers. For a system of
N galaxies each with a velocity vi, we first order these velocities
and determine the gap between pairs as gi = vi + 1 − vi for i = 1,
. . . , N − 1. Each gap is weighted by its position within the ordered
list, wi = i(N − i). The gapper estimator is then defined as

σgap =
√

π

N (N − 1)

N−1∑
i=1

wigi . (2)

As discussed by E04, if we assume that the brightest group galaxy
(BGG) is stationary within the group halo, then σ gap needs to be
modified by a factor

√
N/(N − 1) giving

σ =
√

N

N − 1
σ 2

gap. (3)

A refined volumetric group membership is then constructed iter-
atively by applying this 3σ clip until the number of galaxies within

1 Mpc converges (i.e. velocity dispersion converges). The galaxy
sample within the 5 Mpc cone is then refined by applying a 3σ clip
using the same value of σ .

We then determine the group centroid using these galaxies to
provide a consistent centroid definition (Section 2.2.2) and repeat
this selection using this updated group position, rather than the NED
coordinates.

We assume that our galaxy sample consists of two populations, an
interloper-contaminated group population within a 1 Mpc aperture,
and a local background which we determine within an annulus of
radius 3–5 Mpc about the group centre. Where possible, we use this
local background to statistically subtract interloper contamination
from our mass proxies. This annulus was chosen to be large enough
to reduce any group contribution to this local background even for
the largest systems (e.g. r200 ∼ 2 Mpc for M200 ∼ 1 × 1015 M�,
assuming a mean density 200ρc(z) at z = 0.1). This background
may include infalling galaxies or field galaxies in the Hubble flow
that have similar redshifts to the group itself. Mamon, Biviano &
Murante (2010) analysed an ensemble of haloes from a cosmologi-
cal simulation and found the surface density of interlopers within a
σ clipped volume to be approximately uniform with radius, so our
background subtraction should be effective so long as foreground
or background structures contribute equally to our source and back-
ground regions. The application of this background correction is
described in Section 3.

Due to sparse spectroscopic coverage for one group our calcula-
tion fails to converge on a velocity dispersion and group member-
ship. We exclude this group from our analysis, reducing the sample
to 26 groups.

To generate the FoF group sample, we follow the algorithm de-
scribed by E04. This was originally developed for the 2-degree Field
Galaxy Redshift Survey (Colless et al. 2001). We use the E04 link-
ing length calibration with modifications for the appropriate SDSS
luminosity function (LF) and magnitude limits. We apply this to all
galaxies within a cone with a radius of at least 5 Mpc and extending
to a redshift of 0.2 about each volumetric group. This volume will
contain more than one FoF group for a given X-ray system. We
select the central group by matching the NED position to the centre
of identified groups within a range of ±0.05 in redshift.

2.2.2 Group centres

We identify the centres of both volumetric and FoF groups us-
ing an iterative centre of light approach similar to that described
in Robotham et al. (2011). This iterative approach determines a
weighted centroid of the galaxy distribution. In addition to weight-
ing each galaxy by its luminosity, we also weight each galaxy by
its velocity offset from the mean. At each step, the galaxy fur-
thest from this centroid is discarded. This process is repeated until
only two galaxies remain, and the brightest of these is then taken
as the group centre. With the volumetric sample this is performed
only with galaxies within the innermost 1 Mpc, whilst all member
galaxies are used for the FoF sample.

Group redshifts are the median redshift of galaxies within 1 Mpc,
or the median redshift of all galaxies for the volumetric and FoF
samples, respectively.

2.2.3 Spectroscopic completeness and survey coverage

Whilst the SDSS spectroscopy is nominally �85 per cent com-
plete to mr = 17.77 (Blanton et al. 2005), variation in the target
selection function, as well as incompleteness due to fibre collisions
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and obscuration from bright foreground objects, can lead to a vari-
able level of completeness across the sky (Berlind et al. 2006). Our
initial apparent magnitude cut of mr ≤ 17.5 allows us to be confident
of greater, and more uniform, completeness.

Correcting for fibre collisions is especially important in regions
of high density such as the centres of galaxy groups and clusters.
This problem is moderated slightly for the SDSS due some overlap
in its tiling pattern allowing for repeat visits to regions of the sky.
However, as this overlap covered only a small fraction of the ob-
served field, fibre collisions still need to be considered. Failure to
account for this would result in an underestimate of galaxy group
richness and galaxy overdensities within these regions. We use the
NYU-VAGC data sets in which each collided galaxy is assigned
the spectroscopic redshift of the galaxy it collided with (Blanton
et al. 2005). This correction, found by Blanton et al. (2005) to af-
fect ∼6 per cent of galaxies globally, is used for 10.9 per cent of the
galaxies in our sample within 1 Mpc of the group centre. As we
focus on regions with known groups or clusters, i.e. high-density
galaxy fields, this increase compared to the global average is to be
expected.

The incidence of collided galaxies is larger in the dense central
regions, and these central collisions are found in 12 of the final 22
groups, with, on average, two corrected galaxies in each. In case
the ‘cloning’ of redshifts in these systems introduces any significant
bias into their calculated velocity dispersions, we will pay special
attention to them in the analysis presented in Section 5.3.

We assess the level of any remaining spectroscopic incomplete-
ness by direct comparison of the spectroscopic and photometric
data. Selecting both photometric and spectroscopic galaxies (within
our apparent magnitude limited sample) within a cone about a point
on the sky, we can define completeness at each position as the ratio
of the number of galaxies with a redshift to the total number pho-
tometric galaxies available. To control the statistical uncertainty on
each point, yet ensure we have resolution as high as possible in
dense regions, the size of the cone is adjusted to contain at least 25
spectroscopic galaxies. In most cases, we find completeness close to
unity, with an average value of ∼95 per cent within our groups. The
inverse of the local completeness is included as a weight on each
galaxy when applied to the majority of our methods as described
in Section 3. As a dynamical mass estimator is robust to the effects
of incompleteness (assuming no velocity substructures), we do not
attempt to correct for incompleteness in the case of dynamical mass
proxies.

We also use the photometric data to derive a correction for fields
located on the edge of the survey. Using a coarsely smoothed map
of the photometric galaxy density we define the survey edge to be
a contour 2σ� below the mean surface density, where the mean
and standard deviation, σ� , are found iteratively, excluding regions
of high (the group) and low (beyond the survey edge) density.
Fig. 1 illustrates an example completeness map for one of our
groups which falls close to the SDSS survey boundary. We use this
knowledge of the survey boundary to account for any missing area
within each group, as described in Section 3.

To ensure that we do not use data requiring very large corrections
for spectroscopic completeness or survey coverage, we examine the
26 groups remaining in the current sample, and exclude those which
have a central or background completenesses <70 per cent (within
a 1 Mpc aperture and a 3–5 Mpc annulus, respectively), or have
<70 per cent and <50 per cent footprint coverage, respectively, in
the source and background regions. This excludes an additional
four groups, reducing the sample to 23 systems, four of which
intersect the survey edge. We exclude one last group due to a heavily

Figure 1. Completeness map for the group 3C 442A. Grey-scale contours
indicate the measured spectroscopic completeness as described in the text,
with black contours delineating 100, 80, 70 and 60 per cent completeness
levels. Dashed red circles indicate our 1, 3 and 5 Mpc boundaries represent-
ing the areas within which membership and background are determined,
respectively. The points represent the galaxies that pass through the 3σ clip,
filled circles represent member galaxies, open triangles all galaxies beyond
1 Mpc, whilst colour represents redshift (galaxies at larger redshift are redder
in the range 0.022 � z � 0.030).

contaminating background structure that could not be satisfactorily
excluded. The final group sample consists of 22 groups. Their X-ray
and initial optical properties are described in Table 1.

2.2.4 Luminosity completeness

As our optical data are drawn from an apparent magnitude-limited
survey, which results in a redshift-dependent absolute magnitude
limit, a final correction factor is needed to rescale results to the
same absolute magnitude for those mass proxies which scale with
the number or luminosity of galaxies.

To correct for this, we integrate over the galaxy LF to calculate
two factors,

cN =

L
bright
r∫

Lfaint
r (z)

�(Lr )dLr

L
bright
r∫

Lfaint
r

�(Lr )dLr

, (4)

and

cL =

L
bright
r∫

Lfaint
r (z)

Lr�(Lr )dLr

L
bright
r∫

Lfaint
r

Lr�(Lr )dLr

, (5)

to extrapolate number (cN) and luminosity (cL) estimates to a
fixed absolute magnitude. We use �(L) to be a standard Schechter
LF (Schechter 1976) with parameters from the r-band cluster
LF of Popesso et al. (2005) (M∗

r − 5 log h = −21.35 ± 0.19 and
α = −1.30 ± 0.06). We set the faint limit to be Mr = −16.5, com-
parable to the faintest absolute magnitude of galaxies within our
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Table 1. Our group + cluster sample.

Group za RAa Deca N1Mpc
b σ c TX M500, X Referenced

(deg) (deg) (km s−1) (keV) (1013 M�)

3C 442A 0.0261 333.70 13.841 48 435+47
−33 1.34 ± 0.04 4.07+0.23

−0.42 (1)

Abell 0160 0.0428 18.32 15.516 50 818+97
−68 1.68 ± 0.10 8.24+1.11

−1.15 (1)

Abell 1177 0.0322 167.44 21.759 28 311+50
−29 1.37+0.06

−0.07 5.51+0.88
−0.76 (1)

Abell 1275 0.0628 172.50 36.559 21 436+83
−40 1.46+0.08

−0.07 7.20+3.13
−1.74 (1)

Abell 1367 0.0214 176.01 19.950 170 833+54
−43 3.22 ± 0.18 13.20 ± 2.88 (2)

Abell 1692 0.0836 198.06 − 0.974 26 655+115
−64 2.61+0.16

−0.24 10.12+3.12
−1.99 (1)

Abell 1795 0.0629 207.22 26.593 62 742+64
−42 5.62+0.36

−0.35 53.00 ± 7.50 (2)

Abell 1991 0.0588 223.65 18.688 42 611+82
−48 2.68+0.10

−0.08 13.97+2.61
−1.98 (1)

Abell 2029 0.0774 227.75 5.783 72 1450+119
−75 8.96 ± 0.30 71.50 ± 17.10 (2)

Abell 2092 0.0668 233.31 31.145 34 567+85
−46 1.67+0.13

−0.12 9.33+1.89
−1.69 (1)

Abell 2142 0.0903 239.59 27.334 58 1340+170
−119 9.50+0.43

−0.42 125.00 ± 14.60 (2)

Abell 2147 0.0368 240.55 15.918 134 944+68
−52 3.69 ± 0.18 26.70 ± 3.72 (2)

Abell 2199 0.0304 247.16 39.553 150 841+49
−33 4.50+0.20

−0.24 31.50 ± 4.25 (2)

Abell 85 0.0564 10.46 − 9.303 73 872+81
−58 6.64 ± 0.20 47.40 ± 5.05 (2)

MKW04 0.0200 181.11 1.896 70 518+58
−45 1.58 ± 0.09 5.06+0.74

−0.71 (1)

NGC 4104 0.0277 181.66 28.174 50 461+43
−28 1.41+0.09

−0.06 5.06+0.57
−0.55 (1)

NGC 4325GROUP 0.0255 185.78 10.621 29 305+47
−25 1.00 ± 0.02 3.65 ± 0.44 (2)

NGC 5098 0.0365 200.05 33.324 48 523+55
−33 0.96 ± 0.04 2.09+0.29

−0.48 (1)

NGC 6338GROUP 0.0289 258.85 57.411 67 628+63
−43 2.03+0.12

−0.11 8.99 ± 0.51 (2)

RXJ1022.1+3830 0.0546 155.61 38.539 27 649+96
−57 1.94+0.20

−0.14 8.34+1.37
−1.46 (1)

RXJ1159.8+5531 0.0806 179.97 55.535 14 365+68
−25 1.84+0.14

−0.08 8.66+3.23
−1.17 (1)

UGC05088 0.0274 143.50 33.991 14 234+54
−18 0.81 ± 0.03 1.54+0.38

−0.25 (1)

Notes. aCoordinates for the volumetric sample estimated as described in Section 2.2.2.
bGroup multiplicity within 1 Mpc and brighter than mr = 17.5.
cVelocity dispersions calculated for the innermost 1 Mpc galaxies of the volumetric selection.
dMasses and temperatures drawn from (1) Sun et al. (2009, S09); (2) Sanderson & Ponman (2010, SP10).

sample and converted to luminosity assuming Mr, � = 4.67.3 The
correction is therefore ∼1 for the closest groups, and reaches values
of cN = 0.11, cL = 0.65 for our most distant, at z ≈ 0.09.

3 MASS PROXIES

3.1 Richness and luminosity

One of the simplest mass proxies available to us is the number
of galaxies brighter than a specific luminosity contained within a
galaxy group. Through hierarchical formation we expect larger dark
matter haloes to have formed through the assimilation of smaller
structures, and the total number of galaxies will be conserved dur-
ing this process. Whilst there are processes that can reduce the final
richness of groups, such as the orbital decay and merger of large
galaxies, the impact of this on richness would be limited by the
large dwarf populations in groups. In the absence of major trends
in star formation efficiency (SFE) and trends in the LF parameters
with halo mass, we would naively expect richness to scale approx-
imately linearly with mass. In practice, this is not the case; SFE,
and therefore stellar mass fraction, have been shown to vary with
halo mass (e.g. Moster et al. 2010; Leauthaud et al. 2012), whilst
LFs have been found to become significantly more ‘field’-like in
lower mass haloes (e.g. Hansen et al. 2005; Robotham, Phillipps
& de Propris 2010; Zandivarez & Martı́nez 2011), both of which

3 As listed by C. N. A. Willmer, http://mips.as.arizona.edu/∼cnaw/sun.html

will affect the number of galaxies observed above a given luminos-
ity. We discuss the impact these have on our naive expectations in
Section 5.1.

Richness-based mass proxies have previously been studied by
a number of different authors. Budzynski et al. (2012), for ex-
ample, use a mass–richness relation to determine the masses of
their high mass group and cluster sample (M500 > 1013.7 M�).
Other studies examine the mass–richness relation for a subset of
galaxy types, such as red sequence galaxies (Rozo et al. 2009), and
sources of scatter therein (Rozo et al. 2011), as well as Andreon &
Hurn (2010) who similarly select only red galaxies. Rykoff et al.
(2012) extend the richness estimator of Rozo et al. (2009) to include
blue galaxies, finding that it increases the observed scatter in the
LX-richness relation. However, rather than restricting our analysis
to a single class of galaxy, which would limit the diversity of groups
suitable for analysis, we use all galaxies within each group.

To avoid the circularity involved in counting galaxies within some
radius (e.g. an overdensity radius) which scales with mass, we em-
ploy a simple aperture-limited richness for our volumetric sample.
Richness is defined as the number of galaxies within 1 Mpc of the
group centre, corrected for incompleteness. Each galaxy’s contribu-
tion within the aperture is weighted by the inverse of its local spec-
troscopic completeness, and the number counts, after background
subtraction, are corrected to our standard absolute magnitude range
as described in Section 2.2.4 above. We make no correction for pro-
jection effects or for the imposition of a fixed aperture. Our aim here
is to keep the procedure simple and to calibrate out these effects by
comparison with the X-ray masses.
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To correct for interloper contributions we first estimate the sur-
face number density in a background annulus of radius 3–5 Mpc.
Again, each galaxy contribution is weighted by its local spectro-
scopic completeness. If the annulus intersects the survey edge, we
estimate the area that is covered and determine the surface den-
sity within this area. Using this surface density, we estimate the
number of background galaxies within the 1 Mpc aperture (again,
correcting for the survey footprint if necessary). We subtract this
background estimate from our total richness and rescale to a fixed
absolute magnitude limit using equation (4) to determine our final
corrected volumetric richness estimate, Ñ1 Mpc.

For our FoF sample, the procedure is simpler. Here no back-
ground subtraction is performed – it is assumed that background
contamination is negligible – and the FoF multiplicity (NFoF) is
corrected for spectroscopic and survey incompleteness and scaled
to our standard absolute magnitude, to give the corrected richness
estimate, ÑFoF.

A closely related mass proxy to richness is the total optical lu-
minosity of a group. This has the advantage over richness of being
less sensitive to variations in the faint-end slope of the LF. Further-
more, galaxy mergers conserve luminosity but not number, although
in practice it is known that mergers and tidal interactions can re-
move stars from galaxies, forming an intracluster light (ICL; see
e.g. Gonzalez, Zabludoff & Zaritsky 2005; Zibetti et al. 2005) com-
ponent. Our SDSS-derived luminosities do not include any con-
tribution from ICL, and rather than attempting to correct for any
trends in ICL, we assume that they can be calibrated out in our
mass–luminosity analysis below. We convert absolute magnitudes
to luminosities in solar units assuming Mr,� = 4.67, and treat back-
ground and correction as for richness. The final luminosity-based
mass proxies, L1 Mpc and LFoF, are then derived by rescaling to our
standard absolute magnitude using the cL factor from equation (5).

3.2 Overdensity

It is has been established that dark matter haloes in simulations are
generally well represented by Navarro, Frenk and White density
(NFW; Navarro, Frenk & White 1996) profiles,

ρ(r) = ρ0

r
rs

(
1 + r

rs

)2 , (6)

where rs is the scale radius and ρ0 is the normalization, or charac-
teristic density of the NFW profile.

Under the assumption that galaxies trace mass, it is possible to
use the galaxy density profile to infer the total mass of the system.
A similar approach was employed by Hansen et al. (2005), who
determined galaxy surface densities by counting galaxies within
cylinders of increasing radius about each group or cluster. By ap-
plying a scale factor, these surface densities were converted into
3D densities and, comparing to the field density based on the Blan-
ton et al. (2003) SDSS LFs, characteristic overdensity radii were
derived. These radii, rN200, were defined to be the radius at which
the estimated galaxy density was 200/�m times the mean galaxy
density, where the factor of �m allows conversion from mean to
critical density.

We expand on this approach by fitting a projected NFW profile
to the observed galaxy number distribution and using the resultant
NFW profile to determine the radius at which the density of galaxies
is 500/�m times that derived from the global LF. This radius should
be equivalent to the radius enclosing a mean density of 500 times

the critical density. Using a maximum likelihood method, we fit the
projected NFW profile derived by Bartelmann (1996),

�NFW(x) = 2ρ0rs

x2 − 1
f (x), (7)

where x = r/rs and

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2√
x2−1

arctan
√

x−1
x+1 x > 1

1 − 2√
1−x2

arctanh
√

1−x
1+x

x < 1

0 x = 1

.

For the volumetric sample, we add to this fit a background term,
�bg, to account for any background in the field, i.e.

�(r) = �NFW(r) + �bg. (8)

Incorporating this background term, we fit the galaxy distribution
for each group within its full 5 Mpc, 3σ cone. For the FoF sample,
the profile is fit to the FoF-linked galaxies assuming no background
contribution.

The fit to the observed number distribution of galaxies involves
using equation (8) to predict the number of galaxies within each
annulus of width dr, centred at projected radius r,

dN (r) = 2πA(r)r�(r)dr. (9)

The constant 2π assumes an annulus of radius r and width dr is
fully covered, and in these cases A(r) = 1. As already discussed,
there are instances where the group intersects the survey edge. For
these groups, the factor A(r) ≤ 1 is used to rescale the area of the
annulus as required.

The likelihood, Li , of observing a galaxy i at radius ri is

Li = 2πA(ri)�(ri)∫ rmax

0 2πA(r)�(r)dr
, (10)

where rmax is the largest projected radius of the galaxies included
in the fit. The likelihood function that we maximize with respect to
rs and �bg is then

L =
N∏
i

Li . (11)

The full analysis is an iterative process, in which we initially use
all galaxies within a group’s volume, with each galaxy weighted by
the inverse of its local completeness. The fitted projected NFW and
background terms are then renormalized to reproduce the observed
number of galaxies used in the fit.

The group mass is then inferred by integrating the 3D NFW den-
sity profile, equation (6), using the values of rs and ρ0 determined
from the fit. This gives a mean galaxy density profile from which we
estimate r500 as the radius within which the mean number density is
500/�m times the mean galaxy number density. We determine the
mean number density using a global LF for the SDSS with r-band
parameters of M∗

r − 5 log h = −20.44 ± 0.01, α = −1.05 ± 0.01
and φ∗ = (1.49 ± 0.04) × 10−2h3 Mpc−3 from Blanton et al. (2003),
and integrate from Mr = −25 to an absolute magnitude determined
by the apparent magnitude limit at the group’s redshift.

Using this initial estimate of r500 and the fit results as new initial
guesses for rs and �bg, we then repeat the fit excluding the central
galaxies (r < 0.1r500). This radial cut excludes central galaxies,
which may be affected by orbital decay and galaxy merging at
the centre of the group potential, and may therefore depart from
the expected NFW distribution. We run this core-excised fit twice,
iterating r500.
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We adopt a similar approach to define a luminosity overdensity.
As with the richness/luminosity estimators, this extension provides
an estimator which should be more robust against variations in the
faint-end slope of the LF, since this contains many galaxies but not
much light. The above analysis is simply modified to weight each
galaxy in the likelihood fit by its luminosity. When determining
luminosity overdensity we also explicitly add the BGG luminosity,
which can represent a substantial fraction of the group total for poor
groups, and estimate the mean global luminosity density from the
Blanton et al. (2003) LF.

We note that this approach assumes that an overdensity in the
baryonic properties (e.g. galaxy number) of a group relates directly
to the same overdensity in mass, essentially assuming that light-
traces-mass. As demonstrated by the need to excise the core, this
is not necessarily the case. Indeed, it has been shown that galaxy
density profiles are typically a factor of 2 less concentrated than
those of dark matter profiles (e.g. Budzynski et al. 2012). As we
normalize galaxy profiles to recover the observed number and total
light of galaxies, this concentration difference will trade against
normalization, ultimately reducing the observed group overdensity
radius compared to what would be expected if the galaxies were
concentrated as the underlying dark matter. This should however
be a systematic bias we can calibrate out. More importantly, ef-
fects such as mass-dependent variation in SFE will likely introduce
substantial bias into this analysis which we will discuss more in
Section 5.2.

3.3 Dynamical mass

Dynamical mass estimation is one of the oldest and most well
established techniques. The Virial Theorem, applied to a stable
system, leads directly to

M ∝ rσ 2. (12)

Eke et al. (2004), calibrating this relation on simulated clus-
ters for the 2dF Galaxy Redshift Survey, with a cosmology of
H0 = 100 h km s−1 Mpc−1 with h = 1, find

Mvir = 5
rrmsσ

2

G
, (13)

where rrms is the rms group radius and σ is the velocity dispersion
found using the gapper estimator described in Section 2.2.1. For the
same H0 with a different set of simulations, Robotham et al. (2011)
find a substantially higher constant with

Mhalo = 10
r50σ

2

G
, (14)

where r50 is the radius containing 50 per cent of a group’s galaxies.
This constant is likely due to the different definition of radius.

Alternatively, this can be cast completely in terms of the veloc-
ity dispersion, σ , by assuming r� ∝ σ (e.g. Carlberg et al. 1997;
Ramella et al. 2004) such that

M� = 3
r�σ 2

G
= 3

√
6

�

σ 3

H (z)G
, (15)

where � is the overdensity, relative to the critical density, enclosed
within r�.

Despite the fact that these methods are well established, we in-
clude them to investigate the possible biases that have been re-
ported in dynamical mass estimates of poor groups, as discussed in
Section 1. For each of these estimators, we reduce the proxies to
M500 ∝ rrmsσ

2 and M500 ∝ σ 3, respectively, taking radii and velocity

dispersion within 1 Mpc for the volumetric sample, and using all
member radii and velocities for the FoF sample.

3.4 Radii

At constant density, it is easy to see that the mass and radius of
groups are related by M ∝ r3. We initially examined a number of
different estimates for the projected group radius, such as the half-
light radius and harmonic mean radius, finding little difference in
their behaviour. We use the root-mean-square radius, rrms, of the
group galaxies.

For the FoF sample, rrms is simply the rms radius of all the linked
group galaxies. For the volumetric sample, we use all velocity-
selected galaxies within the 1 Mpc cone. Each galaxy is again
weighted by its local completeness. This estimator ignores the ex-
pected background contamination, since we have no way of know-
ing exactly which galaxies are interlopers. Since the distribution of
interlopers should be fairly uniform, we expect that this will bias
estimated radii to larger values. When applied to a volumetric sam-
ple, both this bias and the use of an aperture turn out to be serious
flaws for this mass proxy.

4 STATI STI CAL ANALYSI S

Our aim is to calibrate the relationship between system mass and
each of our mass proxies, and to examine the statistical performance
of each method. In each case, we evaluate the strength of correlations
using the Spearman rank correlation coefficient, and fit the mass–
proxy relations with power laws of the form

log10

(
M500

1014 M�

)
= α log10

(
x

x0

)
+ β, (16)

where M500 is the X-ray-determined mass and x is the relevant ob-
servable. To reduce correlation between the fitted slope and intercept
we pivot the fit about 1014 M� and x0 = x̄.

4.1 Regression methods

To avoid arriving at biased estimates of calibrated relations, it is
important to use the most appropriate regression method. Differ-
ent methods make different assumptions regarding the dependent
and independent variables and optimize scatter differently. These
differences may result in biased estimates of any relation.

To explore this, we examine the performance of two different
techniques which have been widely used – the frequentist BCES
regression methods (Akritas & Bershady 1996) and the Bayesian
fitting approach of Kelly (2007) – and compare them with a gener-
ative modelling technique of our own.

The BCES estimators are a general extension of the ordinary least
squares estimator capable of accounting for intrinsic scatter and
measurement errors in both axes. A number of forms of BCES are
available: (Y|X) and (X|Y) regression which distinguish dependent
and independent variables, and symmetric bisector and orthogonal
techniques.

The Kelly (2007) estimator is a Bayesian linear regression esti-
mator that models the mass–proxy relation, stressing the importance
of correctly handling statistical errors. The method not only deter-
mines the optimum regression line but also provides an estimate of
the intrinsic scatter in the relation.

The generative fitting method attempts to model the statistics of
the process that produces measured mass and proxy values. The
procedure is similar to some of the methods discussed in Hogg,
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Table 2. Results of regression tests – recovered slopes
and their standard errors for each regression method.

Method Mean recovered slope

Input 0.8
BCES(Y|X) 0.686 ± 0.005
BCES(X|Y) 0.808 ± 0.007
BCES(Bi) 0.745 ± 0.006
BCES(Orth) 0.727 ± 0.006
Kelly 0.687 ± 0.005
Generative 0.730 ± 0.008

Bovy & Lang (2010); it is also similar in spirit, if not in detail,
to the method of Kelly (2007). However, whilst Kelly (2007) as-
sumes an ‘independent’ variable upon which the ‘dependent’ second
variable is conditioned, our generative model treats the two vari-
ables symmetrically. Further details of the generative fitting method
can be found in Appendix A.

To decide which of these methods is the best method to use, we
generate an ensemble of 200 mock mass–proxy data sets using a
generative model and, through application of each fitting method,
evaluate their accuracy in recovering the input relation. Our aim
is to use a regression with the least biased slope, allowing, on
average, accurate masses be recovered from a mass–proxy relation.
Alternatively, we could optimize to a relation that recovers the
lowest intrinsic scatter. Due to the sample size, we expect statistical
errors and errors on the calibration to contribute significantly to the
scatter, therefore we prioritize recovering an unbiased relation over
minimizing the intrinsic scatter about that relation.

Each mock data set consists of 22 mass values drawn from a log-
uniform distribution with 13 � log10(M/M�) � 15. We assume a
mass–proxy relation as per equation (16) with slope α = 0.8 and
intercept β = 5. From this, proxy values are found as

log10(x) = 1/α log10(M) − β/α + N (0, σint),

where N(0, σ int) models intrinsic scatter in the proxy about the
relation, assuming proxies are scattered as a Gaussian of width
σ int = 0.3 dex. The final step of constructing the mock data set is to
add statistical errors. To do this, we rank both mock and observed
mass–proxy pairs by mass and match them. The mock data are then
assigned errors in mass and proxy based on the corresponding errors
in the observational sample, where the proxy errors are drawn from
the volumetric σ 3 proxy.

Each of the regression techniques are applied to the mass–proxy
data for all 200 data sets. We collect the estimated slopes from
each ensemble and determine the mean slope and standard error on
this mean for each regression method. The results in Table 2 show
that all methods apart from the frequentist BCES(X|Y) estimator
return slopes which exhibit significant bias relative to the input value
of 0.8.

Given these results, we adopt the BCES(X|Y) estimator to fit
the mass–proxy calibration relations used for the remainder of this
study.

4.2 Errors and scatter analysis

Measurement errors on masses are taken from the studies of S09
and SP10. Statistical errors on the proxies are derived in one of two
ways. For the richness proxy, we simply assume Poisson noise on
galaxy number counts. All other values have errors defined by a
68 per cent confidence interval from a bootstrap analysis. For each
group, and without redefining the galaxy selection (i.e. we do not

repeat the FoF analysis), we resample from its input galaxy cata-
logue a new, random set of galaxies, with replacement, of equal size
to the original. We then repeat our analysis to determine a revised
set of mass proxies. This is performed 1000 times for each group,
allowing a distribution of proxy values to be found.

We report all errors and scatter estimates as fractional errors
in dex, where the statistical errors on each group are converted
to dex4 using σ log x = σ x/ln (10)x. Errors on our fitted calibration
parameters are derived by bootstrap resampling from the group
mass–proxy pairs. The resulting fits are presented in Table 3.

We illustrate the error on our fits as the shaded regions on Fig. 2.
At each point along the proxy axis, we calculate a mass distribu-
tion using the spread of calibration parameters from the bootstrap
resampling. The error region is then a 68 per cent (1σ ) interval
bounding the 16th to 84th percentiles in mass about the regression
line.

One aim of this work is to explore the statistical performance of
these mass proxies. We approach this by attempting to quantify the
minimum error one would see if applying these relations to perfect
data. That is, assuming no measurement error on a given proxy,
how much uncertainty in a mass estimate would be introduced by
the intrinsic scatter about these relations and the uncertainty in our
calibration?

We estimate intrinsic scatter as

σ 2
log M,int = σ 2

log M,tot

− σ 2
log M,stat − α2σ 2

log x,stat, (17)

where σ log M, tot is the total fractional scatter in mass observed
about the relation (i.e. the rms fractional residuals) and σ log M, stat

the mean fractional statistical error in the mass (0.08 dex).
The term α2σ 2

log x, stat accounts for the additional scatter in
mass about the relation introduced by the statistical scatter of
the proxy and propagated into the intrinsic scatter as σ 2

log M =
(d log10(M)/d log10(x))2σ 2

log x .
The mean uncertainty in mass introduced by the calibration is

found by

σ 2
log M,cal = 1

N

N∑
i

[(
log10

(
xi

x0

)
σα

)2

+ σ 2
β + 2 log10

(
xi

x0

)
Cov(α, β)

]
, (18)

where Cov(α, β) is the covariance of the relation parameters, ac-
counting for any correlation in the errors. The sum σ 2

log M,sys =
σ 2

log M,int + σ 2
log M,cal gives the minimum fractional variance in mass

one would expect for a given proxy. Our scatter analysis is also
summarized in Table 3.

5 R ESULTS AND DI SCUSSI ON

In this section, we present the main results of this investigation.
Using the statistical techniques described in the previous section,
we calibrate each mass–proxy relation and examine its statistical
performance. Where possible, we also make comparisons with the-
oretical expectations to try to better understand these relations.

5.1 Richness and luminosity

The top row of Fig. 2 shows the results of the richness and luminosity
proxies, with fit estimates in Table 3. We find that for both galaxy

4 For example, 0.1 dex is a factor of 100.1.
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Table 3. BCES regression results for our sample corresponding to the best-fitting regression lines in Fig. 2.

Volumetric selection
Method α β log10(x0) ρa σ log x, stat

b σ log M, tot
b σ log M, int

b,c σ log M, cal
b σ log M, sys

b,d

Richness 1.61+0.21
−0.23 0.21+0.05

−0.04 2.24 0.93 0.08+0.01
−0.01 0.22 0.17+0.09

−0.04 0.08+0.02
−0.01 0.19+0.08

−0.04

Luminosity 1.73+0.24
−0.26 0.22+0.06

−0.05 11.94 0.88 0.11+0.01
−0.01 0.30 0.21+0.13

−0.05 0.10+0.03
−0.02 0.23+0.12

−0.05

Overdensity (N) 1.25+0.10
−0.12 0.29+0.05

−0.05 14.32 0.90 0.17+0.02
−0.02 0.27 0.13+0.12

−0.06 0.07+0.01
−0.01 0.15+0.09

−0.06

Overdensity (L) 1.14+0.11
−0.12 0.31+0.06

−0.05 14.34 0.89 0.19+0.02
−0.02 0.26 0.12+0.11

−0.05 0.07+0.02
−0.01 0.14+0.08

−0.05

Dynamical (rrmsσ
2) 1.26+0.18

−0.23 0.30+0.06
−0.06 8.50 0.84 0.09+0.01

−0.005 0.30 0.26+0.08
−0.06 0.10+0.03

−0.02 0.28+0.09
−0.06

Dynamical (σ 3) 0.94+0.13
−0.17 0.39+0.07

−0.07 8.70 0.85 0.13+0.01
−0.01 0.30 0.26+0.08

−0.05 0.10+0.03
−0.02 0.28+0.09

−0.05

Radius 12.60+12.33
−15.38 0.09+0.23

−0.19 2.75 0.66 0.03+0.004
−0.004 0.54 0.31+0.33

−0.26 0.21+1.91
−2.12 0.37+1.95

−2.11

FoF selection

Richness 1.03+0.13
−0.13 0.34+0.07

−0.06 2.63 0.93 0.06+0.01
−0.01 0.24 0.21+0.07

−0.04 0.08+0.02
−0.01 0.23+0.07

−0.04

Luminosity 1.06+0.15
−0.15 0.33+0.08

−0.06 12.33 0.91 0.08+0.01
−0.01 0.26 0.23+0.08

−0.04 0.09+0.02
−0.02 0.25+0.08

−0.04

Overdensity (N) 1.24+0.11
−0.12 0.30+0.07

−0.06 14.33 0.88 0.15+0.02
−0.01 0.29 0.22+0.11

−0.05 0.08+0.02
−0.01 0.23+0.11

−0.05

Overdensity (L) 1.17+0.15
−0.16 0.33+0.07

−0.07 14.37 0.82 0.19+0.02
−0.02 0.33 0.24+0.09

−0.04 0.10+0.02
−0.02 0.26+0.09

−0.05

Dynamical (rrmsσ
2) 0.94+0.14

−0.15 0.39+0.09
−0.08 8.80 0.86 0.08+0.01

−0.01 0.30 0.28+0.08
−0.05 0.10+0.03

−0.02 0.30+0.09
−0.05

Dynamical (σ 3) 1.05+0.15
−0.17 0.35+0.07

−0.07 8.48 0.84 0.12+0.01
−0.01 0.31 0.28+0.08

−0.05 0.10+0.03
−0.02 0.29+0.09

−0.05

Radius 2.33+0.41
−0.47 0.21+0.09

−0.09 3.04 0.84 0.04+0.004
−0.004 0.35 0.33+0.10

−0.05 0.12+0.03
−0.02 0.35+0.10

−0.05

Notes. aSpearman rank correlation. All results have >95 per cent significance.
bEstimated fractional scatters in proxy and mass in dex.
cIntrinsic scatter in mass accounting for statistical scatter in the proxy (see equation 17).
dThe systematic scatter in mass, σ 2

log M,sys = σ 2
log M,int + σ 2

log M,cal.

selection methods these mass proxies are highly correlated with
M500 with a low degree of scatter about the regression.

Comparing the volumetric Ñ1 Mpc against the literature, we note
that Budzynski et al. (2012) compute a similar relation for high
mass clusters (M500 > 1013.7 M�) and find that M500 ∝ N1.4±0.1

1Mpc .
This relation is shallower than ours, though it is (just) consis-
tent within our 1σ error. Conversely, our FoF result is con-
sistent with a 1:1 relation between mass and richness as one
would expect if SFE and galaxy LF were independent of halo
mass.

Likewise, we compare the L1 Mpc result to the result of Popesso
et al. (2007) who find an L200–M200 relation with a slope of
0.92 ± 0.03. Converting this to an M500–L1Mpc relation using the
NFW model discussed below gives a slope of ∼1.5, which is well
within our estimated error. As with FoF richness, the FoF luminos-
ity is also consistent with a slope of unity. A noticeable kink in the
volumetric mass–luminosity data is apparent at ∼1014 M�. There
is some indication of a similar feature in a number of the other
mass–proxy relations, though as it is not seen in any proxy–proxy
relation and given the limited sample size it is hard to be confident
of its reality.

We note from Table 3 that there is a significant difference between
the slopes of the volumetric and FoF samples, indicating that, as
one would expect, selection plays a significant role. This difference
can be plausibly attributed to the use of a 1 Mpc aperture for the
volumetric sample. For example, at low mass, where r500 
 1 Mpc
this would result in recovering N1 Mpc > N500, and similarly recov-
ering N1 Mpc < N500 at high mass. Conversely, a Friends-of-Friends
analysis should link galaxies together in a way that scales with the
size of the group. Hence, we expect the volumetric scaling relations
to be steeper.

To investigate further, we construct a simple analytic model. We
assume that galaxies are distributed as an NFW with a concen-
tration half that of the dark matter (Budzynski et al. 2012), and
take the dark matter concentration from the mass–concentration

relation derived from simulations of relaxed haloes by Duffy et al.
(2008):

c200 = 6.71 ± 0.12

(
M200

2 × 1014 h−1 M�

)−0.091

(1 + z)−0.44. (19)

We assume z= 0.05, close to the mean of our sample, and find that
including scatter in the mass–concentration relation has a negligible
impact on our results, so we do not include it. We then model the
aperture richness Nap as

Nap =
∫ 1 Mpc

0
2πr�(r, rs(M200))dr, (20)

where � is the projected NFW from equation (7) and rs = 2r200/c200.
We then calculate Nap for a set of equally spaced log M200 values in
the range 12.5 � log10(M200/M�) � 15.5. We also convert each
M200 to M500 using the 3D NFW, equation (6), and concentration
c200.

Applying a BCES (X|Y) regression to the resulting points in the
M500–Nap plane gives a slope of 1.42 ± 0.02. This is shallower
than our observational result, though marginally within the errors.
Whilst the effect of an aperture does indeed appear to steepen the
relation, this suggests that a second effect may be at work.

A possible second source of discrepancy could be variation of
SFE as a function of halo mass (see e.g. Behroozi, Conroy &
Wechsler 2010; Moster et al. 2010; Leauthaud et al. 2012; Budzyn-
ski et al. 2014). This variation is both inferred through abundance
matching techniques (e.g. Behroozi et al. 2010) and measured di-
rectly using, for example, cluster mass-to-light ratios (e.g. Budzyn-
ski et al. 2014). This would boost the stellar mass fraction in lower
mass haloes relative to those of higher mass. Using the Budzynski
et al. (2014) stellar mass fraction–M500 relation, and comparing it
to a global stellar mass fraction from the SDSS, �∗ = 1.9 × 10−3

(Panter et al. 2007), we can determine a mass-dependent bias factor
to scale the modelled M500–Nap relation discussed previously. As
our groups are an order of magnitude more massive than the halo
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Optical mass estimation for galaxy groups 3091

Figure 2. X-ray M500 plotted against each mass proxy with, from left to right, top to bottom, richness, luminosity, number overdensity, luminosity overdensity,
rrmsσ

2 dynamical, σ 3 dynamical and rrms radius. Alternating plots show results for the volumetric and FoF sample. Blue points are from the S09 sample,
red points from the SP10 group and cluster samples, respectively (see Table 1). The solid lines and shaded regions show the BCES(X|Y) regressions and a
68 per cent interval drawn from the distribution of bootstrapped fit results. For the dynamical estimators (third row), groups with a large fraction of central
galaxies with ‘cloned’ redshifts (see Section 2.2.3) are shown by triangular points.
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Figure 3. Modelled bias factors and best-fitting curves. These are required
to rescale Ñ1 Mpc to N500 (CN, red, solid line) and to account for variation in
SFE (C∗, green, dotted line). The combined scale factors, (CNC∗) are shown
as the blue, dashed line.

mass where the stellar mass fraction peaks (M500 ∼ 1012 M�), in
the mass regime where the change in stellar mass fraction is rel-
atively shallow, we would expect to see limited variation in SFE.
However, this small variation appears sufficient to modify the slope
of the modelled M500–Nap relation to 1.67 ± 0.03 – close to our
observed relations for aperture richness and luminosity.

We can cast these two effects into two bias factors, CN = Nap/N500

and C∗ = f∗/f̄∗, where f̄∗ = �∗/�m. In Fig. 3, we show the mag-
nitude of these bias factors as a function of N1 Mpc.

Unlike the volumetric sample, the richness and luminosity prox-
ies for the FoF sample require no aperture correction. We attempt
instead to correct NFoF and LFoF for SFE only. Scaling for C∗ brings
the observed slopes down to 0.92 ± 0.10 and 0.96 ± 0.11, respec-
tively, both consistent with, though rather lower than, the expected
slope of unity. We also note that even without this factor, both FoF-
selected proxies are already consistent with unity. This may relate
to the nature of the FoF algorithm used. As we will discuss in Sec-
tion 6, we believe that this is rather overgenerous in terms of linking
galaxies together. If this effect is stronger for higher mass systems it
would lead to some flattening of the observed mass–proxy relation.

We perform one final check on our data by examining the
luminosity–richness relation for our sample. Popesso et al. (2007)
found luminosity and richness to be well correlated, with a slope
of 1.00 ± 0.03. Whilst we use a slightly different definition of both
group richness and luminosity, we also find (Fig. 4) that they are
strongly correlated (Spearman rank correlations of 0.95 and 0.99
for volumetric and FoF samples, respectively). BCES orthogonal
regression slopes are 0.96+0.07

−0.08 and 0.98 ± 0.03 for our two se-
lection methods, both in excellent agreement with each other and
consistent with the Popesso et al. (2007) result. This suggests that
there is no systematic trend in mean galaxy luminosity with system
mass within our sample.

5.1.1 Stellar mass

As group stellar mass is a more fundamental property than optical
luminosity, one might expect stellar mass to also be a useful mass

Figure 4. Top: background-subtracted optical luminosity against richness
within 1 Mpc. Bottom: total FoF luminosity against FoF richness. Colour
coding is as for Fig. 2.

proxy. In practice, however, with photometric data typical of optical
surveys, the stellar mass has to be estimated from the luminosity
and colour of member galaxies. By using such a colour-dependent
mass-to-light ratio (e.g. Bell et al. 2003), estimates of the group
stellar mass are a more indirect halo mass proxy than luminosity
or richness. We nevertheless briefly investigate the effectiveness of
such an approach.

To estimate group stellar mass we use the mass-to-light ratio of
Bell et al. (2003), log10(M/Lr) = −0.306 + 1.097(g − r) − 0.1
(see also Budzynski et al. 2014). We cut our galaxy sample fur-
ther to include groups that are complete to an absolute magnitude
Mr < −20 (equivalent to groups extending to z = 0.07). Using this
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Optical mass estimation for galaxy groups 3093

truncated sample of 18 groups, we calculate a luminosity-weighted
mean log10(M/Lr) for each group. We estimate the stellar mass of
the halo as the product the total luminosity of each group for galax-
ies brighter than Mr < −20 and the characteristic mass-to-light of
that group. As with other estimators, the volumetric sample repeats
this using the 3–5 Mpc aperture to estimate a background contribu-
tion which is then subtracted from the stellar mass measured within
1 Mpc. No background correction is applied to the FoF sample.

This brief examination shows halo mass–stellar mass relations
that are comparable to the luminosity estimates, with slopes of
1.83+0.29

−0.37 and 1.10+0.17
−0.16 for the volumetric and FoF samples, re-

spectively. Interestingly, we observe a marginally larger degree of
intrinsic scatter in the volumetric sample (0.24+0.15

−0.06 dex) than that
observed for the luminosity-based proxy. Including calibration un-
certainties similarly produces a greater degree of systematic uncer-
tainty of 0.27+0.14

−0.06 dex.
Unfortunately, the bootstrap analysis of the FoF sample results

in large statistical uncertainties on stellar mass. These large uncer-
tainties, possibly due to large interloper populations degrading the
mass-to-light estimation, are too large to allow the systematic un-
certainty on the FoF stellar mass based proxy to be constrained. We
note however that the total scatter observed is again larger than for
the FoF group luminosity at 0.28 dex.

The implication is that whilst stellar mass can be used as a halo
mass proxy, the assumptions made in converting luminosity to stel-
lar mass can introduce substantial uncertainty. For this reason, this
study favours the use of luminosity over stellar mass as a halo mass
proxy. We also note that whilst we can empirically estimate the
variation in SFE, the large uncertainty we find again causes us to
prefer the Budzynski et al. (2014) stellar mass fraction formalism.

5.2 Overdensity

The second row of Fig. 2 shows the observational results of the
number and luminosity-based overdensity analyses, with fit param-
eters given in Table 3. The number overdensity mass proxy performs
well, exhibiting a strong correlation with mass and the lowest levels
of intrinsic and calibration scatter for both volumetric- and FoF-
selected groups. However, it also has the largest statistical errors on
the measured proxy value.

As this proxy provides a direct measure of group mass, we would
expect the mass–proxy relation to have a slope of unity. We observe
however that whilst our richness overdensity masses are broadly
consistent with X-ray masses, the slope of the relation is signifi-
cantly steeper than unity, implying that there is a mass-dependent
bias in the measured overdensities. A similar, though slightly less
significant, bias is observed for the luminosity overdensity. The re-
duced bias for luminosity may be due to its reduced sensitivity to
the faint-end slope of the LF.

A fundamental assumption in the use of the galaxy (and galaxy
luminosity) overdensity is that galaxies are a perfect tracer of the
underlying dark matter. As noted previously however, it is well
known that galaxy density profiles have concentrations different to
that of their dark matter counterparts (see e.g. Hansen et al. 2005;
Budzynski et al. 2012). However, this would be expected to make
only a minor difference to the integrated galaxy density within r500.
More significant is likely to be the bias discussed in Section 5.1,
which would arise from halo mass dependence in the efficiency of
star formation. Some bias may also be introduced by the comparison
between our observed mean density and the global mean density,
which incorporates an assumption about the stellar mass-to-light
ratio.

It is well known that clusters and groups have different stellar
mass-to-light ratios compared to the Universe as a whole, a property
that varies with the scale of the system (see e.g. Ostriker, Peebles
& Yahil 1974; Davis et al. 1980). We investigate this briefly here,
again using the colour-dependent mass-to-light ratio of Bell et al.
(2003). Using the g and r absolute magnitudes from the NYU-
VAGC catalogues from which our sample was drawn in Section 2,
we find that the mean log mass-to-light ratio of the global sample in
the range Mr < −19 and 0.01 ≤ z ≤ 0.1 gives a mass-to-light ratio of
2.8. Repeating this for our clusters, using galaxies projected within
1 Mpc, we find a mean mass-to-light ratio of 3.6. This implies that
our overdensity analysis would systematically underestimate the
overdensity of haloes by a factor of 1.3. In practice, the mass-to-light
ratio of clusters varies with halo mass (e.g. Budzynski et al. 2014)
so we also estimate the mass-to-light ratio of our groups in mass
bins split at group masses of M = 7.5 × 1013 and 2 × 1014 M�. We
do not see any substantial change with group mass (mean mass-to-
light values of 3.5, 3.6 and 3.8, respectively) so we adopt the mean
factor above. This translates to underestimating masses by ∼1.5,
bringing our relation into agreement with expectations at high mass
(∼1015 M�). However, as this correction is mass independent it
will have no effect on the measured slope.

As with Section 5.1, we again look to variation in SFE and
the consequent stellar mass fraction of haloes as an effect that
will modify the slope of our observed relation. This is also estab-
lished to be different in groups and clusters compared to global
values (see e.g. Behroozi et al. 2010; Moster et al. 2010; Leau-
thaud et al. 2012; Budzynski et al. 2014). It is also known to be
mass dependent (e.g. Leauthaud et al. 2012; Budzynski et al. 2014),
such that low-mass haloes have higher stellar mass fractions com-
pared to high-mass systems, which are considerably closer to the
global value. A halo with higher SFE will have a higher density
of galaxies and light than might be expected for its mass over-
density (ignoring galaxy mergers). A correction for this would in-
volve scaling the modelled halo densities by a factor that would
allow a correct comparison to the global density. We define such
a factor as CO = f∗(M500)/f̄∗ where log10(f∗(M500)) = −0.11
log10(M500/3 × 1014 M�) − 2.04 (Budzynski et al. 2014) and
f̄∗ = �∗/�m. Again, we use �∗ = 1.9 × 10−3 derived from the
SDSS (Panter et al. 2007).

Applying a correction for both a variable SFE and the dif-
ference between global and cluster mass-to-light ratios, we find
that the overdensity mass–X-ray mass relations are consistent with
our expectations. A richness-based overdensity recovers slopes of
1.03+0.08

−0.09 and 1.00 ± 0.10 for the volumetric and FoF samples,
respectively, with no significant bias in normalization. Luminos-
ity similarly is corrected to a slope of 0.94+0.08

−0.10 (volumetric) and
0.96+0.12

−0.14 (FoF). Given that we now understand the discrepancy
between observations and expectations, we believe that it is safe
to simply calibrate the uncorrected overdensity mass–X-ray mass
relation.

5.3 Dynamical mass

Results for the dynamical mass estimators are shown in the third row
of Fig. 2 and in Table 3. The 12 groups for which there is a central
population of galaxies with cloned redshifts due to fibre collisions,
as discussed in Section 2.2.3, are flagged in these figures, but do not
appear to be systematically offset. Excluding these systems from
the fit results in only modest changes to the fitted slope (to α = 1.12
and 0.85 for the volumetric rrmsσ

2 and σ 3 relations, respectively).
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These changes lie within the statistical errors, and we therefore
retain the affected systems in our analysis.

Whilst the two proxies for both selection methods appear well
correlated with the X-ray masses, they also show a large amount
of scatter compared to some of our other mass estimators. From
the Virial Theorem, we expect these estimators to scale linearly
with mass. We find that all but the volumetric rrmsσ

2 estimator are
consistent with this expectation at the 1σ level. Given the highly
discrepant behaviour of the rrms proxy for the volumetric sample
(discussed in Section 5.4), the behaviour of the rrmsσ

2 mass proxy
is not surprising.

We note that our three good dynamical estimators – two FoF and
one volumetric – have mass–proxy slopes which are consistent with
each other, indicating that the extracted velocity dispersion is quite
robust against the treatment of interlopers and the use of apertures.
We also see no strong indication of the biased velocity dispersions
at low mass suggested by previous work (e.g. Osmond & Ponman
2004). However, we note that our sample has been selected to be
X-ray bright and morphologically relaxed, whilst the Osmond &
Ponman (2004) study involved a more diverse set of galaxy groups.

5.4 Radii

The observed rms radius–mass relation is shown in the final row of
Fig. 2, with fit parameters in Table 3. Based on M ∝ r3 at constant
density (in this case, overdensity), we would expect the mass–radius
relation to have a slope of 3. We instead find that the relation for
the volumetric sample is much steeper, whilst the slope for the FoF
sample is somewhat shallower than expected by almost 2σ . This
mass proxy is the worst performing of those discussed in this paper
with the largest final systematic uncertainty of both samples.

The difference in the fitted relations between the volumetric and
FoF selection methods is likely to be due to the use of a metric
aperture for the volumetric sample, coupled with the impact of in-
terlopers. Interlopers, due to their uniform distribution, would be
expected to increase the measured rms radii, especially for poorer
groups, steepening the observed slope. At the same time, the impo-
sition of an aperture sets an upper limit to the radius. The result is a
very small dynamic range in rrms, as can be seen in the bottom-left
panel of Fig. 2.

To investigate these effects, we construct a model to probabilisti-
cally sample projected NFW models, constructing haloes of a given
richness, and estimating their rrms radii. We base our approach on
the method Budzynski et al. (2012) used to estimate mass complete-
ness. We first estimate the number of galaxies contributed by a halo
of a given mass using our observed mass–aperture richness relation.
This relation is calibrated to recover galaxies brighter than a fixed
absolute magnitude, Ñ1 Mpc, whilst we require the number of galax-
ies that would actually be observed at some specific redshift, N1 Mpc.
We account for this by removing the correction given by equation
(4), adopting a redshift of z = 0.05 for our simulated group. A pro-
jected NFW with a galaxy concentration as described in Section 5.1
is then normalized to recover this halo richness. We add a back-
ground term to introduce interloper contamination and integrate the
combined normalized NFW and interloper density profile within
our aperture to estimate the ‘observed’ aperture richness.

To probabilistically construct a group with a halo of given mass,
we draw the desired number of galaxies (N) from a Poisson dis-
tribution using the estimated richness as the mean. We then draw
N − 1 radii from the projected NFW likelihood function, equation
(10), and add a single galaxy to the centre for the BGG. We generate
50 000 such simulated groups uniformly spanning the mass range

Figure 5. Red: modelled rrms radius including interloper contamination
with BCES(X|Y) best fit line shown. Blue: modelled rrms radius not including
interloper contamination.

12.5 ≤ log10(M200/M�) ≤ 15.5. We generate our simulations for
two scenarios: one where we include no interloper contamination,
and one where we assume an interloper population with galaxy
number density (1.0 ± 0.3) × 10−6 kpc−2, based on the mean back-
ground measured by our overdensity method (Section 5.2).

Finally, we bin these two sets of 50 000 randomizations into
bins of 0.1 dex in mass. The resulting mass–radius relations are
shown in Fig. 5. The small dynamic range in rrms is similar to
that seen in Fig. 2, and power-law fits to the sample including
interlopers gives a slope of 27.4 ± 1.1 – far steeper than the naive
expected value of 3. It can be seen that the inclusion of an interloper
population does affect the recovered slope, especially in the lower
mass regime where the ‘clean’ sample diverges significantly from
the interloper contaminated model. However, the clean sample also
appears to approach a slope of 3 at low rrms, equivalent to groups with
r500 
 1 Mpc. Our conclusion is that both interlopers and aperture
effects play a significant role in biasing this relation, with interlopers
dominating at low masses, increasing the rms radius of a group,
whilst the aperture dominates at high masses where it truncates the
galaxy distribution, reducing the rms radius. Ultimately, the derived
radius for the volumetric selection is biased to the point where we
observe a near constant rrms, making it unsuitable for use as a mass
proxy. As an aperture is not used for the FoF sample, interloper
contamination will be the main source of bias at all masses.

5.5 Uncorrected effects

Throughout this section we have discussed mass-dependent biases
that can be introduced by failing to take into account properties of
the sample selection (such as aperture effects) or of the groups them-
selves (such as variation in SFE). We have not, however, discussed
the possible biases introduced by assumptions we have made. The
most important is the implicit assumption, at various points in our
analysis, of a universal galaxy LF within our systems. In practice, it
has been observed (e.g. Hansen et al. 2005; Robotham et al. 2006,
2010; Zandivarez & Martı́nez 2011) that the group LF varies as a
function of halo mass, becoming similar to the global galaxy LF
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Figure 6. Top, upper panel: LFs used for the cluster correction (red curve)
and the global LF (blue curve) with arbitrary normalization. Top, lower
panel: the cumulative number (solid coloured line) and luminosity (dashed
coloured lines) density of the LFs above. The vertical lines illustrate the
magnitude we extrapolate to (Mr = −16.5) and the absolute magnitude
corresponding to the flux limit at z = 0.1, Mr = −20.8. Bottom: the degree to
which a high-mass cluster LF would overcorrect the richness and luminosity
of a low-mass group as a function of redshift. This assumes that low-mass
groups have a LF comparable to a global LF.

at low mass. As we use a single LF for completeness correction,
this has the potential to bias low-mass systems whose LF differs
significantly from the Popesso et al. cluster LF used. This will affect
both luminosity and richness estimators and will be a larger effect
for cases where a significant degree of extrapolation is required,
i.e. at higher redshift. Whilst we do not attempt to correct for this,
under the assumption that low-mass groups more closely resemble
the field (i.e. global) LF of Blanton et al. (2003), we can examine
the degree of overcorrection that extrapolating with an inappropriate
LF can cause as a function of redshift. This is shown in Fig. 6.

These differences are caused by the cluster LF featuring a brighter
turnover magnitude than the field [M∗ − 5log10h =−21.35 (Popesso
et al. 2005) rather than −20.44 (Blanton et al. 2003)] and a steeper
faint-end slope (α = −1.30 compared to −1.05). When little ex-
trapolation is required (at low redshift where only a small portion of
the faint end is lost due to the survey limit), the low luminosities of
galaxies below the survey flux limit result in little discrepancy be-
tween a cluster- and field-based luminosity correction, whilst their
greater abundance in the field results in a cluster based richness
correction underestimating rescale factors by ∼10 per cent. Both
factors converge to no discrepancy at z ≈ 0.015 where the lim-
iting magnitude is comparable to our adopted magnitude limit of
Mr = −16.5. Conversely, at higher redshifts where it is necessary
to extrapolate from near M∗ (Mcut ≈ −20.8 at z = 0.1), the excess
of bright galaxies from the cluster LF cause both the number and
luminosity corrections to rise.

Hence, if our low-mass groups have LFs similar to the field, then
attempting to correct them for incompleteness in faint galaxies using
a cluster LF will have two main effects as a function of redshift. At
low redshift, the degree of overcorrection will be negligible for a
luminosity correction, rising to >20 per cent at z = 0.1. Conversely,
richness corrections will be underestimated by 10–20 per cent until
z ∼ 0.1 at which point they become overestimated and continue
to rise with increasing redshift. Correcting for these effects would
require knowledge of the way in which LFs vary as a function of
system mass. In practice, our fitted mass–proxy relations should
calibrate out this effect, at least for the relaxed X-ray bright groups
which constitute our sample.

Similarly, we have also not discussed the impact of galaxy merg-
ers, which will affect the richness and luminosity estimators, as
richness is reduced and stars are stripped to form the ICL. If these
effects are mass dependent, we assume their average effects can be
calibrated out in our analysis. However, the varying merger histories
of groups will also introduce scatter into the relevant mass–proxy
relations.

It is important to emphasize that this study is based on a low-
redshift sample, and apart from inclusion of the redshift dependence
of ρcrit (which is small over the redshift range of our sample) when
calculating r500 for our systems, we do not take into account the
evolution of mass proxies with redshift. Redshift correction of the
dynamical and radius estimators is straightforward, and follows
directly from the evolution in ρcrit. The same is true of the over-
density estimators, provided that evolution in galaxy luminosities
is the same in clusters as in the field. However, we would expect
the richness and luminosity mass proxies to be strongly dependent
on the evolution of the galaxy LF within galaxy groups and clus-
ters. Recent work implies that there may be little evolution in the
mass–richness proxy (Andreon & Congdon 2014), though as this
work uses a specific subset of galaxies to define richness, the result
cannot necessarily be extrapolated to our richness proxy.

Finally, it should also be noted that our mass–proxy relations
have been derived from an X-ray-selected sample. Since the hot
intergalactic gas responsible for the bulk of the X-ray emission is
heated during the collapse of the group halo, X-ray-bright groups
represent a subset of the broader group population. Groups selected
in this way have the advantage of avoiding the inclusion of spu-
rious groups, arising from line-of-sight superposition of unrelated
galaxies; however, the groups in our sample will be more evolved
and relaxed than many groups in optically selected samples. This is
seen clearly in the studies of Rasmussen et al. (2006) and Balogh
et al. (2011) which found optically selected samples to contain
many groups with little or no X-ray emission. This could result
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Table 4. Spearman rank correlations, with bootstrap errors, for the fractional offsets of masses predicted for (upper triangle)
each volumetric-selected proxy, and (lower triangle) FoF-selected proxy from the X-ray mass.

Richness Luminosity Overdensity Overdensity Dynamical Dynamical Radius
(N) (L) (rrmsσ

2) (σ 3)

Richness – 0.78+0.14
−0.09 0.86+0.09

−0.04 0.81+0.11
−0.06 0.69+0.17

−0.13 0.71+0.16
−0.11 0.24+0.25

−0.22

Luminosity 0.91+0.09
−0.05 – 0.60+0.18

−0.13 0.65+0.18
−0.13 0.68+0.19

−0.12 0.64+0.20
−0.14 0.56+0.20

−0.15

Overdensity (N) 0.55+0.21
−0.17 0.53+0.21

−0.16 – 0.89+0.10
−0.05 0.59+0.21

−0.19 0.64+0.19
−0.16 −0.03+0.25

−0.26

Overdensity (L) 0.56+0.20
−0.15 0.66+0.19

−0.13 0.89+0.08
−0.04 – 0.60+0.22

−0.18 0.65+0.20
−0.15 −0.03+0.26

−0.25

Dynamical (rrmsσ
2) 0.84+0.12

−0.08 0.80+0.11
−0.06 0.46+0.23

−0.20 0.46+0.22
−0.18 – 0.98+0.03

−0.01 0.49+0.22
−0.17

Dynamical (σ 3) 0.66+0.19
−0.15 0.64+0.18

−0.13 0.52+0.20
−0.18 0.54+0.19

−0.18 0.90+0.10
−0.07 – 0.37+0.24

−0.19

Radius 0.91+0.08
−0.03 0.78+0.15

−0.10 0.32+0.26
−0.22 0.28+0.24

−0.21 0.42+0.22
−0.18 0.31+0.24

−0.20 –

from lack of virialization, or from the effects of strong feedback
raising the gas entropy (e.g. Voit & Bryan 2001). Such effects could
potentially impact on some of our mass proxies. For example, un-
virialized systems cannot be expected to provide reliable dynamical
mass estimates. This emphasises the value of employing a number
of mass estimators, rather than relying on a single method.

5.6 Discussion

In general, the majority of our proxies exhibit mass–proxy relations
that are either consistent with theoretical expectations, or for which
any discrepancy can be plausibly explained. The steepened slopes
of volumetric aperture richness, luminosity and rms radius proxies
are consistent with the expected effects of imposing an aperture,
and the behaviour of richness, luminosity and overdensity proxies
are also influenced by known variations in SFE. Our approach is
to calibrate out these effects in deriving our proxy–mass scaling
relations.

What do our results suggest is the best mass proxy from the set we
have studied? One reasonable definition of ‘best’ is the proxy which
has the smallest systematic error (arising from intrinsic population
scatter and calibration error). Reference to the values of σ log M, sys

listed in Table 3 indicates that the volumetric overdensity mass
proxies constitute our best mass proxies. These proxies may be
the most reliable estimators when they can be measured to high
precision, but it can be seen from the same table that they also have
the largest statistical errors (σ log x, stat) of any of our proxies.

In the absence of a high-quality galaxy surface density profile,
we find that a simple richness estimator provides the most reliable
result, with ∼0.2 dex (i.e. ∼50 per cent) systematic scatter and rel-
atively small statistical errors for galaxy samples of the size (�15)
used in this study. This is true for both volumetric and FoF selection
methods.

However, we believe that there is substantial benefit in employing
not just a single mass estimator, but a basket of them. We will return
to this point in Section 8, but an indication of the extra information
provided by using different mass proxies in conjunction can be
gleaned by examining the residuals about our regression fits for the
different proxies. Specifically, we look for evidence of correlations
between residuals of different proxies, which might, for example,
imply that if a group’s mass is overpredicted by one proxy it will
also be overpredicted by another.

Of course, it is self-evident that some proxies will be intrinsi-
cally correlated. For example, richness and luminosity, or the two
dynamical estimators. However, others – such as luminosity and
σ 3 – would appear to be quite independent of one another, apart
from the relationship of both to system mass. We define residuals

Figure 7. Fractional residuals about the regression lines for the FoF
richness and σ 3 dynamical estimators defined as R = log10(M500(x)) −
log10(M500, X). Bold, solid lines: the 1σ range due to statistical errors on the
measured X-ray masses. Dotted lines: 1σ range due to the statistical errors
on the mass proxies, intrinsic scatter in the relation and calibration errors
added in quadrature. Each data point is coloured according to its X-ray mass,
with blue ∼1013 M� and red ∼1015 M�.

as the log-space difference between a mass predicted by the proxy
(x) and the ‘true’ X-ray mass, Rx = log10(M500(x)) − log10(M500, X),
and test for correlation between residuals from the different mass
proxies using the Spearman rank statistic. The results are shown in
Table 4 for both selection methods with errors derived from boot-
strap resampling our residual estimates. Note however that the rms
radius proxy is intrinsically flawed for volumetric selection.

Surprisingly, the residuals are positively correlated in most cases.
To consider what this means, we focus on the correlation between
the richness and σ 3 mass estimators. The residuals for these two are
correlated with ρ = 0.66+0.19

−0.15 and 0.71+0.16
−0.11 for the FoF and volu-

metric samples, both of which are significant at >95 per cent with
errors, again, from a bootstrap analysis. We plot the residuals from
the fitted, FoF mass–proxy relations for these two mass estimators
in Fig. 7. Here a group which lies on both calibration relations
would lie at the origin.

The clear correlation between the residuals indicates that for a
group in which the richness proxy produces a mass overestimate
(relative to its measured X-ray mass), the same tends to be true
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for the dynamical mass estimator, and similarly for underestimates.
The colour coding in the figure indicates the temperature of each
system, and no correlation between this and location on the plot
is apparent. There are two possibilities: either perturbations from
the mean mass relations in richness and dynamics are related in
some way, or there are errors in the X-ray masses. The latter would
induce correlated offsets of the type we observe – a group with
an overestimated X-ray mass would fall in the lower-left quadrant,
whilst an X-ray underestimate would move it towards the top right.

The fact that the vast majority of our varied mass estimators show
positively correlated residuals (see Table 4) suggests strongly that
the X-ray masses are at fault. The alternative would be some sort
of conspiracy between the whole set of mass proxies to perturb
together. Of course there are statistical errors on the X-ray mass
measurements, and the effect of these is shown (diagonal bars) in the
figure. These would introduce some elongation of the distribution
in the direction observed, but it is clear that in about a third of
the systems these statistical errors cannot explain the magnitude of
their offset from the centre. So, there is evidence here for errors in
the X-ray-derived masses, over and above the estimated statistical
errors, in a significant subset of our group sample. For the worst
cases, errors in the X-ray mass of a factor of 2 or more (in both
directions) are implied.

The dotted error bars on the plot, in the x and y directions represent
estimates of the error on the proxy mass arising from a combination
of the measurement error in the proxy quantity, the calibration error
in converting it to a mass and our estimate of the intrinsic scatter
in the proxy value across the population (see Section 4.2). It is
immediately apparent that these error bars are far too large – i.e.
they are inconsistent with the observed scatter in the data. Table 3
shows that this error bar is dominated by the estimated contribution
(σ log M, int) from scatter in the population. This in turn has been
estimated (equation 17) by subtracting the expected X-ray mass
error and the propagated error in the proxy measurement from the
observed scatter in mass about the regression relation. If there are
offsets in the X-ray masses over and above their statistical errors,
which it appears that there are, then σ log M, int will be overestimated.
It seems clear that this is the case.

Our analysis thus far has made use of X-ray masses derived from a
hydrostatic mass analysis. However, a simpler X-ray mass estimate
can be derived from the mean X-ray temperature, using a mass–
temperature relation. We have checked that the overall picture seen
in Fig. 7 remains unchanged if such temperature-based masses are
used. The most discrepant groups in the figure, remain similarly
offset with the alternative X-ray masses.

6 MO C K G RO U PS

The results presented above are derived from a sample of relaxed
X-ray bright systems. In practice, it would be very useful to have
mass estimates for a wider range of groups, such as that generated
by optical selection from a galaxy redshift survey. However, we
have no such optically selected group sample for which robust mass
estimates are available against which to compare our mass proxies.
We therefore turn to simulations.

Applying our mass proxies to a set of groups and clusters gener-
ated from simulations, we have the advantage of a known halo mass
that is independent of any X-ray selection biases. An additional
advantage is the availability of a larger sample size. On the other
hand, conclusions drawn from simulated systems may be strongly
affected by the assumptions and tuning which are incorporated into
the simulated galaxy/group population.

For this study, we make use of the mock galaxy catalogues gen-
erated for use by the GAMA consortium. The Galaxy And Mass
Assembly (GAMA; Driver et al. 2011; Robotham et al. 2011;
Merson et al. 2013) project aims to use a broad range of mul-
tiwavelength observations to study cosmology and the formation
and evolution of galaxies. The optical component of this project is
a medium-deep galaxy redshift survey conducted by AAOmega
multi-object spectrograph at the Anglo-Australian Observatory.
Covering ∼250 deg2 of the sky, the GAMA project has spectroscopy
for over 300 000 galaxies to mr < 19.8.

An FoF analysis was conducted by Robotham et al. (2011) to
identify galaxy groups within the survey. To support this analysis,
a series of mock light cones (Merson et al. 2013) were generated
using the Millennium simulation (Springel et al. 2005) populated
with a semi-analytic galaxy formation model (Bower et al. 2006).
The galaxy LFs of the mocks were adjusted to precisely mimic the
observed r-band redshift-dependent GAMA galaxy LF of Loveday
et al. (2012). These mocks cover ∼144 deg2 in three 4 × 12 deg2

regions, mimicking the original GAMA-I equatorial fields (Driver
et al. 2011).

From these light cones, we select group galaxies using the
methodology described in Section 2.2.1. We cut the initial galaxy
catalogue to mr ≤ 17.5 to match our observational sample. Our volu-
metric group sample is then extracted from this catalogue, centring
each extracted cylinder at the position of the original Robotham
et al. (2011) GAMA FoF groups containing 10 or more galaxies.
In addition, we run our implementation of the E04 FoF algorithm
on the mock galaxy catalogue to construct an FoF group sample,
retaining only groups with at least 10 members. We define the dom-
inant group halo as the dark matter halo that contributes the most
galaxies to either the initial GAMA FoF group (in the case of the
volumetric sample) or to our FoF group for the FoF group sample.
The mass of this halo is taken to be the true mass of the group. These
masses, originally MDhalo (Jiang et al. 2014), have been converted
to our cosmology and to M500 using a mass-dependent scaling of
M500 = 100.34M0.96

Dhalo. This conversion was derived from a set of me-
dian halo masses at z = 0 for the Millennium-I cosmology (Jiang
et al. 2014). To be comparable to our observational sample, we re-
strict the redshift range of the mock sample to 0.01 ≤ z ≤ 0.1 and
only consider groups with M500 ≥ 1013 M�. The final simulated
volumetric and FoF group samples consist of 179 and 313 groups,
respectively, across 9 mock realisations, a significant improvement
in sample size relative to our observational sample.

The larger number of FoF groups, compared to volumetric ones,
results from the fact that our FoF algorithm is more generous in
linking galaxies than that of Robotham et al. (2011), as discussed
below. These mock groups have halo M500 ranging from ∼1013 to
∼4 × 1014 M�. This upper mass is considerably lower than the
highest mass cluster in the observational sample (Abell 2142 with
M500 ∼ 1.3 × 1015 M�) due to the larger volume probed by the
X-ray + SDSS sample, compared to the GAMA mocks.

Considering briefly the performance of our FoF algorithm, it
is clear that it recovers a greater number of FoF groups than the
GAMA algorithm. As we discussed in Section 2.2.1, our algorithm
is essentially that developed by Eke et al. (2004) to generate the
2PIGG group catalogue from the 2dF galaxy redshift survey. Con-
versely, the GAMA FoF algorithm has been carefully tuned on
the GAMA mocks to optimize the fidelity of the grouping. The
performance of the 2PIGG algorithm was examined by Robotham
et al. (2010) finding that the 2PIGG algorithm was generous in
terms of linking together subgroups. By application to the GAMA
mocks, we similarly find that the 2PIGG algorithm generously links
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Table 5. BCES regression results for the mock group sample corresponding to the best-fitting regression lines in Fig. 8.

Volumetric selection
Method α β log10(x0) ρa σ log M, tot

b σ log M, int
b,c σ log M, cal

b σ log M, sys
b,d

Richness 1.49+0.10
−0.11 −0.10+0.02

−0.02 2.10 0.79 0.23 0.19+0.03
−0.02 0.03+0.00

−0.00 0.19+0.03
−0.02

Luminosity 1.41+0.13
−0.16 −0.06+0.02

−0.03 11.80 0.68 0.34 0.29+0.04
−0.04 0.05+0.01

−0.01 0.30+0.04
−0.04

Overdensity (N) 0.87+0.08
−0.10 0.01+0.03

−0.03 14.27 0.67 0.36 0.31+0.04
−0.03 0.05+0.01

−0.01 0.32+0.04
−0.03

Overdensity (L) 0.82+0.09
−0.11 0.03+0.03

−0.03 14.31 0.62 0.42 0.38+0.05
−0.04 0.07+0.01

−0.01 0.38+0.05
−0.04

Dynamical (rrmsσ
2) 1.24+0.11

−0.14 −0.01+0.03
−0.03 8.14 0.62 0.37 0.34+0.05

−0.05 0.05+0.01
−0.01 0.34+0.05

−0.05

Dynamical (σ 3) 0.87+0.07
−0.08 0.05+0.03

−0.03 8.23 0.64 0.34 0.31+0.04
−0.04 0.05+0.01

−0.01 0.32+0.04
−0.04

Radius 25.40+970
−968 0.01+8.60

−9.55 2.70 0.07 (66%) 2.25 2.08+66.5
−78.2 1.28+38700

−41900 2.44+38700
−41900

FoF selection

Richness 1.35+0.07
−0.07 −0.17+0.02

−0.02 2.17 0.70 0.31 0.29+0.03
−0.02 0.03+0.00

−0.00 0.29+0.03
−0.02

Luminosity 1.28+0.08
−0.09 −0.13+0.02

−0.03 11.86 0.64 0.41 0.38+0.04
−0.04 0.04+0.01

−0.01 0.39+0.04
−0.04

Overdensity (N) 0.76+0.05
−0.06 −0.04+0.03

−0.03 14.14 0.66 0.45 0.42+0.04
−0.04 0.05+0.01

−0.01 0.43+0.04
−0.04

Overdensity (L) 0.71+0.05
−0.06 0.00+0.03

−0.04 14.18 0.63 0.52 0.50+0.07
−0.06 0.05+0.01

−0.01 0.50+0.07
−0.07

Dynamical (rrmsσ
2) 1.08+0.06

−0.07 −0.10+0.02
−0.02 8.17 0.66 0.36 0.34+0.03

−0.03 0.04+0.00
−0.00 0.34+0.03

−0.03

Dynamical (σ 3) 0.89+0.05
−0.06 −0.07+0.02

−0.02 8.00 0.68 0.35 0.33+0.03
−0.02 0.03+0.00

−0.00 0.33+0.03
−0.02

Radius 5.90+0.94
−1.41 −0.13+0.06

−0.08 2.86 0.27 1.01 0.98+0.16
−0.24 0.19+0.07

−0.11 1.00+0.17
−0.25

Notes. aSpearman rank correlation. Unless shown in parentheses, all results have >95 per cent significance.
bEstimated fractional scatters in mass in dex.
cIntrinsic scatter in mass accounting for statistical scatter in the proxy (see equation 17). Statistical fractional scatter in mass and proxy are
assumed to be equivalent to the mean fractional error from the observational sample reported in Table 3.
dThe systematic scatter in mass, σ 2

log M,sys = σ 2
log M,int + σ 2

log M,int.

together neighbouring structures. Indeed, 18 per cent of groups have
more than 50 per cent contamination (i.e. of the linked members,
less than half belong to the dominant halo), whereas this figure is
only 10 per cent for GAMA FoF groups. As the 2PIGG algorithm is
more generous, we find it recovers a high fraction of true members,
where 64 per cent of our groups link together more than 90 per cent
of the dominant halo’s galaxies, compared to only 10 per cent of the
GAMA FoF groups.

In summary, our algorithm will link most of the true member
galaxies, but will also include a larger interloper fraction. Given
that the GAMA galaxy LF at low redshift is similar to that of
SDSS (Loveday et al. 2012), it is likely that these conclusions are
also applicable to the use of our algorithm on our SDSS-based
observational sample.

In the light of these differences in FoF performance, we have
also examined the performance of our mass proxies on the origi-
nal GAMA mock FoF catalogue (cut to our mass, magnitude and
redshift range). We find little significant difference to the results
with our own FoF groups, the most notable difference being that
the richness overdensity and σ 3 proxies perform closer to theoreti-
cal expectations. For consistency with the observational sample, we
proceed using our own FoF selection, with reference to the original
GAMA FoF selection where differences are significant.

7 C O M PA R I N G R E S U LT S FO R O B S E RV E D
A N D M O C K G RO U P S

In this section, we discuss the results from the mock groups. We
calibrate each mass–proxy relation, again using BCES (X|Y) regres-
sion, with the intention of examining whether they are consistent
with observations. We do not attempt to bootstrap proxy errors for
the mock groups. Instead, as we have selected mock groups to be
comparable to our observational sample, we approximate the frac-
tional statistical error in proxy and mass for all mock groups as the

root-mean-square fractional statistical error in mass and proxy from
the observational sample. Our analysis here is otherwise identical
to that of the observational sample in Section 5.

The figures in this section follow those of Section 5, except that,
for comparison to the observational sample, we overplot the mock
mass–proxy data with the observational calibration line and error
region. To aid in readability and highlight any trend, we addition-
ally bin our mock group’s data. To avoid any biases introduced by
the richness cut in the original GAMA catalogue this binning is
performed horizontally, in log10(M500) slices.

7.1 Richness and luminosity

With Table 5 and the top row of Fig. 8 we find that these GAMA
mocks produce a mass–aperture richness relation that is in good
agreement with observations, whilst the mass–aperture luminosity
relation is shallower, but marginally consistent within the lower
bound of the observational result. In general terms, these slopes
are also consistent with the effect of an aperture, though not both
an aperture and SFE variation. Conversely, the FoF richness and
luminosity estimators give results discrepant with the observational
sample, both being significantly steeper.

We again consider the richness–luminosity relations, Fig. 9. We
find that the relation, whilst in good agreement with the observations
and expected slope of 1 at high mass, deviates from the power-law
slope at low mass. Specifically, we see an underluminous popula-
tion of mock groups at low mass. This is possibly related to the
galaxy formation models’ implementation of satellite galaxy merg-
ing where a satellite galaxy is not resolved in its subhalo (Robotham
et al. 2011). If assigned too long a merging time, this will result in
an excess of faint satellite galaxies in close orbits of central galaxies
or the centre of the halo. This close satellite excess will also affect
other mass proxies.
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Optical mass estimation for galaxy groups 3099

Figure 8. Mock group halo M500 plotted against each mass proxy with, from left to right, top to bottom, Richness, Luminosity, Number Overdensity,
Luminosity Overdensity, rrmsσ

2 Dynamical, σ 3 Dynamical and rrms radius. Alternating plots show results for the volumetric and FoF sample. Faint red points
show all mock groups whilst the blue points show horizontally binned averages and their standard errors. The red solid lines and shaded regions show the
BCES(X|Y) regressions and a 68 per cent interval drawn from the distribution of bootstrapped fit results for the mock data. The grey dashed lines and shaded
regions show the same for the observational sample shown in Fig. 2.
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Figure 9. As Fig. 8 with top: background-subtracted optical luminosity
against richness within 1 Mpc, and bottom: total FoF luminosity against
FoF richness.

7.2 Overdensity

As shown in Table 5 and the second row of Fig. 8, we find that the
mock groups have a significantly shallower relation for overdensity
masses than that of both the observed groups and the expectation of
unity. This is true regardless of the selection method. In the case of
the observed groups, we concluded that the steeper than unity slopes
could be understood in the light of expected variations in SFE with
halo mass. Another factor here may be the previously mentioned
anomalies in the radial distribution of galaxies within mock groups
(Robotham et al. 2011; Han et al. 2015).

For comparison, the GAMA FoF selection gives a slope of
0.95+0.12

−0.15 for the richness overdensity proxy, consistent with unity.
Luminosity overdensity is also steeper for the GAMA FoF sample

than for ours, though not significantly, and is not consistent with
unity.

7.3 Dynamical

The results of the rrmsσ
2 and σ 3 proxies are also shown in Table 5

and in the third row of Fig. 8. As with the observational sample,
we find that it is difficult to draw conclusions from the volumetric
rrmsσ

2 relation due to the steepness of the rrms relation (see below).
Interestingly, we find that in contrast to the situation with the ob-
served groups, the two σ 3 proxies, are also significantly discrepant
from the expectation of unity slope. For comparison, the GAMA
FoF selection gives a slope for the σ 3 proxy of 0.97+0.09

−0.09, consistent
with unity.

7.4 Radii

Table 5 and the final row of Fig. 8 show the results of the rrms

estimator. We first observe that the total scatter on this proxy is
substantial for both selection methods (2.3 and 1.0 dex for the
volumetric and FoF samples, respectively). This makes it difficult
to reliably constrain any calibration relation. Despite this, we find
that the volumetric sample, which is again subject to interloper
contamination and aperture effects, gives a relation that is steeper
than the already very steep observed relation. The FoF estimator is
also significantly steeper than the observational relation, and also
steeper than the expected slope of 3.

7.5 Summary

In Table 6, we bring together a summary of the comparison between
the mass–proxy relations derived from the observational sample and
the mocks, and a comparison of these with theoretical expectations.
The proxies based on the mocks have relations which differ signif-
icantly from observations, with the exception of the σ 3 dynamical
estimator, which agrees within the errors on the observational result.
We also note that whilst the radius–mass relation is significantly dif-
ferent to the observationally derived relation, due to known issues
with the orbits of satellite galaxies within the mocks (Robotham
et al. 2011; Han et al. 2015), it behaves in a similar fashion, with an
extremely steep relation for the volumetric sample.

The discrepancy for luminosity and overdensity might be ex-
plained by a difference in LF between that assumed by the mocks
and the observations. The semi-analytic galaxies were adjusted to
reproduce a global LF that matches that of the real GAMA fields
(Robotham et al. 2011); however, it does not follow that they will
reproduce the LF within groups and clusters. A study by McNaught-
Roberts et al. (2014) examining the LF of different density envi-
ronments within the real GAMA fields and the GAMA mocks re-
vealed no significant difference between simulations and reality.
We note however that this study looked at the local density of each
galaxy, rather than classifying galaxies as belonging to groups or
the field.

The small difference between the global LFs measured for the
SDSS (Blanton et al. 2003) and GAMA (Loveday et al. 2012) is
unlikely to contribute greatly to the unexpectedly flat slope of the
Moverdensity–Mhalo relations for the mocks. A more likely cause is
the radial distribution of galaxies in the mocks. As discussed in
Han et al. (2015, see also Robotham et al. 2011), who compared
mass-observable relations for the GAMA fields and GAMA mocks,
there is tension between the mocks and real data for the relationship
between mass and r50 (the radius containing 50 per cent of a group’s
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Table 6. Summary – comparison of the performance of the observations and mock results, noting any deviation from theoretical expectations.

Volumetric selection
Method Observational Mocks

Richness Steeper than naive expectation of unity.
Plausibly modified by aperture and SFE. Low
systematic scatter.

Slope steeper than unity. Plausibly modified
by aperture effects. Rough agreement with
observational sample.

Luminosity Steeper than naive expectation of unity.
Plausibly modified by aperture and SFE.

Slope steeper than unity. Plausibly modified
by aperture effects. Rough agreement with
observational sample.

Overdensity (N) Steeper than expected slope of unity. Plausibly
modified by SFE and mass-to-light. Low
systematic scatter, but high statistical scatter.

Shallower than expected slope of unity.

Overdensity (L) Steeper than expected slope of unity. Plausibly
modified by SFE and mass-to-light. Low
systematic scatter, but highest statistical
scatter.

Shallower than expected slope of unity.

Dynamical (rrmsσ
2) Steeper than expected slope of unity. Possibly

unreliable due to poor quality rrms.
Steeper than expected slope of unity. Possibly
unreliable due to poor-quality rrms.

Dynamical (σ 3) Consistent with expected slope of unity. Shallower than expected slope of unity, but
consistent within the errors on the
observational sample.

Radius Slope much steeper than naive expectation of
3. Plausibly modified by aperture effects.
Largest systematic scatter.

Slope much steeper than naive expectation of
3. Plausibly modified by aperture effects.
Large scatter observed in the data.

FoF selection
Richness Consistent with expectations of unity before

and after accounting for SFE. Low systematic
scatter.

Steeper than expected slope of unity.

Luminosity Consistent with expectations of unity before
and after accounting for SFE.

Steeper than expected slope of unity.

Overdensity (N) Steeper than expected slope of unity. Plausibly
modified by SFE and mass-to-light. Low
systematic scatter, but high statistical scatter.

Shallower than expected slope of unity.

Overdensity (L) Steeper than expected slope of unity. Plausibly
modified by SFE and mass-to-light. Low
systematic scatter, but highest statistical
scatter.

Shallower than expected slope of unity.

Dynamical (rrmsσ
2) Consistent with expected slope of unity. Steeper than expected slope of unity.

Dynamical (σ 3) Consistent with expected slope of unity. Shallower than expected slope of unity.
Consistent within the errors on the
observational sample.

Radius Shallower than expected slope of 3. Large
systematic scatter.

Significantly steeper than expected slope of 3.

projected galaxies) which may have its origin in the approximate
treatment of dynamical friction within the semi-analytic model,
and consequent inaccuracies in the rate of orbital decay. This can
be expected to modify the relationship with halo mass for both the
overdensity and radius proxies.

Han et al. (2015) also find a systematic bias in the mass–velocity
dispersion relation for the mocks compared to the real groups, again,
due to known issues with the small-scale dynamics of the GAMA
mocks (Robotham et al. 2011). This may be the cause of the lower
slope in the mock mass–σ 3 relation relative to observation and to
theoretical expectations.

Comparing the residuals of predicted masses with respect to the
halo mass, in a similar fashion to that discussed in Section 5.6, we
find much weaker correlation between unrelated proxies than was
apparent in the observational sample. For example, the richness and
σ 3 estimators show a weak, but still significant (>95 per cent) corre-
lation (ρ = 0.18+0.08

−0.08 and 0.31+0.06
−0.05 for volumetric and FoF samples,

respectively) significantly different to the values of 0.71+0.16
−0.11 and

0.66+0.19
−0.15 seen observationally. The asymmetry in Fig. 10 can be

compared with that in the corresponding observational plot, Fig. 7.
The small error range from the mocks’ bootstrapped correlations
agrees with the high level of significance indicating that the mocks’
residuals behave very differently to those of the observational sam-
ple, supporting the possibility that this effect is due to excess X-ray
mass errors. The non-zero correlation seen for the mocks may arise
from the effects of interlopers enhancing both richness and velocity
dispersion. The fact that it is stronger in the FoF case, where no
correction of richness for background galaxies has been included,
supports this hypothesis.

Comparing Table 5 with Table 3, it can be seen that the total
scatter, σ log M, tot, about the mass–proxy relations for the mocks
are mostly greater than the corresponding scatter for the observa-
tional sample. This suggests that, as expected, we are sampling
a more diverse group population in the mocks, in terms of their
dynamics and evolutionary state, compared to the relaxed X-ray-
bright systems on which our observational sample is based. This
emphasizes the importance of allowing for selection effects in any
study of galaxy groups – samples selected in different ways can
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Figure 10. Fractional residuals about the regression lines for the
mock groups’ FoF richness and σ 3 dynamical estimators defined as
R = log10(M500(x)) − log10(M500, halo). Each data point is coloured ac-
cording to its halo mass, with blue ∼1013 M� and red ∼1015 M�.

be expected to catch a different mix of dynamical and evolutionary
states.

Finally, we comment briefly on the use of these proxies when
the true galaxy membership is known. Thus far we have analysed
the mocks by applying similar selections processes (volumetric and
FoF) to those used on the observational data. Since our mass–proxy
relations have been calibrated on observational data which will in-
evitably be contaminated by interlopers, we can expect to find differ-
ent results for mocks groups if we use the true group membership,
which is available for these simulated systems. Examining mass–
proxy relations using the true galaxy membership can cast light on
the fundamental nature of these proxies. Specifically considering
the mass–richness relation (scaled to Mr < −16.5) and the mass–
σ 3 these fit with BCES (X|Y) slopes of 1.08 ± 0.03 and 0.81 ± 0.05
with systematic scatters of 0.13 ± 0.03 dex and 0.29 ± 0.03 dex,
respectively, again assuming the masses and proxies have statistical
errors comparable to the mean errors from the observational sample.
Interestingly, the first relation, whilst significantly shallower than
the mock mass–richness relations derived earlier, is still steeper
than the expectation of unity by more than 2σ , even in the absence
of aperture effects or FoF selection effects. This is likely related
to the way galaxies populate the haloes within the mocks, and to
their merger history. Conversely, the mass–σ 3 relation is shallower
than unity, as with other mock mass–σ 3 relations, illustrating the
known concerns with the dynamics of the mock haloes (Robotham
et al. 2011; Han et al. 2015). Both relations show smaller system-
atic scatter than the corresponding relations with volumetric of FoF
selection, indicating the scattering effects of interlopers.

8 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have investigated the behaviour of mass proxies
based upon richness, luminosity, galaxy number and luminosity
overdensity, characteristic radii and dynamics. We have applied
these estimators to sets of group galaxies derived in two ways: a

σ -clipped cylindrical volume and an FoF analysis. The mass proxies
have been calibrated using masses derived from the X-ray properties
of the hot intragroup gas, and the resulting calibrations compared
with theoretical expectations. The performance of the same mass
proxies has been assessed on a set of mock groups for which true
halo masses are known. Our findings for each proxy are summarized
in Table 6. We conclude that:

(i) The calibrated relationships between these mass proxies and
the X-ray-derived masses are consistent with theoretical expecta-
tions once aperture effects and the impact of mass-dependent vari-
ations in SFE are allowed for.

(ii) The most reliable mass estimate is provided by modelling the
galaxy overdensity (number or luminosity) within a 5 Mpc cylinder
(i.e. for a volumetric group sample). These mass proxies exhibit
the smallest intrinsic scatter and the least uncertainty introduced
by the calibration, resulting in only 0.14–0.15 dex (≈33 per cent)
systematic uncertainty in any final mass estimate. However, for our
data set these proxies also have the largest statistical scatter, and
are therefore only likely to work well where one has high-quality
galaxy membership data, such that reliable galaxy density profiles
can be fitted.

(iii) Richness, for either volumetric or FoF selection, is the next
best method, and has the merit of being simple to apply, and working
well even for fairly small galaxy samples. Of course, it is essential
that this, and the overdensity and luminosity proxies, should be cor-
rected for any incompleteness in survey coverage or spectroscopic
observations.

(iv) Dynamical estimators show larger scatter, with a systematic
uncertainty of ≈0.3 dex (≈70 per cent). However, they do have the
attractive feature that they are relatively robust against spectroscopic
incompleteness. They may therefore become the preferred option
for mass estimation where incompleteness is difficult to quantify.
The rrmsσ

2 proxy should be avoided, in favour of σ 3, for volumetric
galaxy samples, due to bias in the estimation of rrms.

(v) An rrms radial estimator should not be used in cases where
a restrictive aperture has been applied, such as our volumetric se-
lection. It is more useful in the case of an FoF sample; however,
the scatter is substantial (0.35 dex, or 81 per cent, systematic uncer-
tainty).

The same set of mass proxies was applied to groups drawn from
the mock galaxy data generated for the GAMA project. We find
that in most cases the mass–proxy relations differ from those for
the observational group sample, and that the scatter of the sample
around the mean relationship is greater. This larger scatter suggests
that our mock sample spans a more diverse collection of galaxy
groups than the relaxed X-ray-bright systems which constitute the
observational sample.

This greater diversity in the population might account for some of
the differences in the mass–proxy relations which we see. However,
the discrepancies between observational and mock samples are most
striking for the overdensity and radius–mass proxies, and these are
affected by the radial distribution of group galaxies. This distribu-
tion is unreliable in the inner regions of the mock groups, due to the
approximate treatment of orbital decay in the semi-analytic model
on which they are based (Robotham et al. 2011; Han et al. 2015).
The richness, luminosity and σ 3 mass proxies are in better agree-
ment for the observational and mock samples, though in general the
fitted relations do not agree within the 1σ range.

The estimated systematic error (σ log M, sys) for each mass proxy,
shown in the last column of Table 3, is an important quantity. This
represents the uncertainty in the log10(mass) which results for each
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mass proxy even when the value of the proxy is precisely known.
The low values of this for the overdensity proxies when applied to
the volumetric sample are the basis for our statement above that this
provides the most reliable single mass estimator where high-quality
galaxy data are available.

However, our estimate of this systematic error is subject to
two opposing biases. As explained in Section 4.2, this quantity is
derived from the observed scatter in mass about the fitted mass–
proxy relation by subtracting the estimated statistical contributions
to this scatter and then adding the variance which arises from uncer-
tainty in the calibrated power-law relation. However, we have seen
(Section 5.6) that for a subset of our observational sample there
appear to be errors in the X-ray-derived masses which exceed their
statistical error estimates. Since we have not allowed for these, this
will have inflated our estimates of σ log M, sys. On the other hand, we
may expect the scatter in intrinsic group properties for a group sam-
ple more diverse than our observational sample to be larger, and this
would naturally lead to larger scatter in the relation between true
mass and proxy-mass estimates, as we see from our mock sample.
On the whole, it is probably best to regard the systematic error esti-
mates for the mass proxies in Table 3 as being a useful indication,
which is likely to be pessimistic for use with relaxed group samples,
but not necessarily when used on a more diverse set of groups.

The diversity in the properties of galaxy groups has been docu-
mented by many authors (e.g. Zabludoff & Mulchaey 1998; Osmond
& Ponman 2004; Rasmussen et al. 2006; Balogh et al. 2011). In the
light of this, there are considerable advantages to employing not just
a single mass proxy, but a whole set of them, since different proxies
will be robust against different effects. For example, mass estimates
based on velocity dispersion are likely to be in error for dynamically
disturbed groups which have recently experienced a major merger,
whilst an estimate based on galaxy richness or luminosity should
be relatively unaffected. On the other hand, variations in SFE, or in
the fraction of stars stripped from galaxies will impact on richness,
luminosity and overdensity estimates, but not on the velocity disper-
sion or radius proxies. The effects of orbital decay and merging in
old groups will impact on the richness and the fitted galaxy profile,
though the impact on the total overdensity within r500 should be
modest. It would be very interesting to compare the performance of
these different mass proxies across a wide range of groups and clus-
ters with high-quality X-ray data and optical photometry to explore
such effects. This would also highlight any differences in behaviour
in our mass proxies between X-ray-selected and optically selected
group and cluster samples.

Finally, we remind the reader that the proxy–mass calibrations
presented here are derived from a low-redshift sample of relaxed
groups and clusters, and should not be used without modification for
systems at significant (z � 0.1) redshifts. In some cases, the nature
of the required modification can be simply predicted theoretically –
for example, the velocity dispersion of a virialized system of given
mass should scale as H(z)1/3, where H(z) is the Hubble parameter at
redshift z – but in others (the effects of galaxy luminosity evolution,
for example) calibration on a high-redshift sample is really required.
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A P P E N D I X A : G E N E R AT I V E M O D E L

We begin by assuming that the physics of group formation pro-
duces physical masses and proxies that follow a (correlated) two-
dimensional lognormal distribution:

log M true
500 , log xtrue ∼ N (μ, �) (A1)

with

μ =
(

μ500

μx

)
(A2)

and

� =
(

�500 �500x

�500x �x

)
. (A3)

We further assume that, conditioned on the true values of M true
500 and

xtrue, the observed masses and proxies follow a lognormal distri-
bution with standard deviation equal to the reported observational
errors

log M500 ∼ N
(
log M true

500 , σ500

)
(A4)

log x ∼ N (log xtrue, σx) . (A5)

Given an observation consisting of d = {log M500, log x, σ 500, σ x},
the likelihood of the observation conditional on the parameters μ

and � can be obtained by integrating over the unobserved M true
500 and

xtrue:

p (d|μ, �) =
∫

dM true
500 dxtrue p

(
d|M true

500 , xtrue

)
×p

(
M true

500 , xtrue|μ, �
) = N

[
μ, �′] (log M500, log x) , (A6)

where

�′ =
(

�500 + σ 2
500 �500x

�500x �x + σ 2
x

)
. (A7)

Given a training set of observations, {d(i)}, we can construct the
posterior distribution on the parameters μ and � implied by these
data via Bayes’ rule:

p
(
μ, �| {d (i)

}) ∝ p (μ, �)
∏

i

p
(
d (i)|μ, �

)
, (A8)

where we are ignoring normalizing constants that are independent
of μ and �, and p(μ, �) is a prior distribution representing our
knowledge of μ and � before observing any of the data. In the limit
where we have a large training set, the prior becomes irrelevant; here
we take the prior to be flat (i.e. constant) in μ and the eigenvalues
of �. The latter ensures that we are a priori agnostic about the
orientation and scale of the error ellipse represented by �.

We draw samples from the five-dimensional posterior distribution
on μ and � using the EMCEE sampler (Foreman-Mackey et al. 2013).
Given a posterior on �, we can construct a posterior on the directions
of the principal axes of the error ellipse in the M true

500 -xtrue relation fit
by our model; the slope of the long-axis direction is the equivalent of
a regression parameter in traditional models where M500 = αx + β.
We will return to this below, but the best way to use the generative
model is not to regard it a mass–proxy calibration relation, but rather
to use it to generate a Bayesian posterior probability distribution for
the mass, given some proxy measurement.

For a given choice of the parameters μ and �, our model predicts
the joint distribution of M true

500 , xtrue, M500, and x in future observa-
tions:

p
(
M true

500 , xtrue, M500, x|μ, �
) ∝ N

[
M true

500 , σ500

]
(M500)

× N [xtrue, σx] (x) N [μ, �]
(
M true

500 , xtrue

)
, (A9)

where N[m, σ ](y) denotes a normal distribution for y with mean m
and standard deviation σ .

If we have a subsequent observation of only x and σ x, but not
M500 or σ 500, we can integrate over the unobserved data to obtain
the conditional distribution for M true

500 and xtrue under the model:

p
(
M true

500 , xtrue|x, μ, �
)

∝
∫

dM500 p
(
M true

500 , xtrue,M500|x, μ, �
)

∝ N [xtrue, σx] (x) N [μ, �]
(
M true

500 , xtrue

)
. (A10)

Conditional on μ and �, this is a normal distribution with

〈
M true

500

〉 = μ500 + (x − μx) �500x

σ 2
x + �x

, (A11)

〈xtrue〉 = μxσ
2
x + x�x

σ 2
x + �x

, (A12)

var
(
M true

500

) = �500 − �2
500x

�x + σ 2
x

, (A13)

and

var (xtrue) = σ 2
x �x

�x + σ 2
x

. (A14)

Note that these equations exhibit several desirable features:

(i) Equations (A11) and (A12) exhibit a regression to the mean.
Depending on the measurement error, σ x, and the degree of corre-
lation between M500 and x in the model, the predictions for M true

500
and xtrue interpolate between the model averages μ500 and μx and
the measurement and its extrapolation.
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(ii) Equation (A13) results in a posterior variance for M true
500 that

is always smaller than the naive variance of M true
500 under the model.

In the limit that the measurement of the proxy is perfect (σ x → 0),
the reduction in variance is exactly what would be expected by the
correlation coefficient,

R2 ≡ �2
500x

�500�x

. (A15)

(iii) Equation (A14) demonstrates that the posterior variance on
xtrue is always smaller than the measurement variance σ 2

x , because
of the information encoded in the parameters μ and �; the reduction
factor is

1

1 + σ 2
x

�x

. (A16)

Given a posterior distribution on μ and � from a training data
set, we can compute the expected distribution of M true

500 and xtrue after
a subsequent observation of x with error σ x using

p
(
M true

500 , xtrue|x, σx,
{
d (i)

})
=

∫
dμ d� p

(
M true

500 , xtrue|x, σx, μ, �
)

×p
(
μ, �| {d (i)

})
. (A17)

In a similar way, we can compute posterior averages of the quantities
in equations (A11)–(A14).

To demonstrate the performance of this generative model in es-
timating masses, given training set data similar to that available
from the present study, we generate simulated mass–proxy data
sets following a known relation. For this purpose, we assume the
mass–proxy relation given in equation (16) with slope α = 0.8
and intercept β = 5. Each data set consists of 22 groups whose
masses are drawn from a log-uniform distribution in the range
13 � log10(M/M�) � 15. We assume that this mass is the primary
property of a group and invert equation (16), including intrinsic scat-
ter, to determine a ‘proxy’ value. Hence, proxy values are generated
using

log10(x) = 1/α log10(M) − β/α + N (0, σint),

where N(0, σ int) represents intrinsic Gaussian scatter in the proxy
value, and we take σ int = 0.3 dex.

We also include statistical errors on the data points in our syn-
thetic data sets which are comparable to those on the observed data.
To do this, we rank each set of 22 simulated groups by mass, and
hence match them to the observed sample. The statistical errors,
and corresponding scatter, in mass are then taken from the corre-
sponding observational data. For the errors and scatter on the proxy,
we adopt the observational values from the volumetric σ 3 proxy.

We first generate a training data set of 22 systems, which is used,
as described above, to fit the parameters of the generative model.
This model is then used on a further test data set of 22 systems, for
which we estimate masses based on the measured proxy values and
their errors. The posterior probability distributions derived for these
22 test groups are shown, ratioed to their true masses, in Fig. A1, and
are found to give unbiased estimates of M true

500 – that is, over many
synthetic observations of the proxy the average difference between
the M true

500 posterior mean and the actual M true
500 is zero. Note however

that, as shown in Table 2, if one were to apply the generative fit
as a traditional scaling relation (i.e. not recover masses within the
Bayesian framework), one would not recover unbiased masses.

Fig. A2 shows the results of mass prediction using the gener-
ative model. Using a test data set, we plot the measured proxy

Figure A1. The posteriors for M true
500 using the generative model trained on

a synthetic data set as described in Section 4.1 applied to 22 subsequent
proxy observations. For each observation the inferred values of M true

500 have
been normalized by the actual value of M true

500 so that the posteriors can be
overplotted. Typical uncertainties in the inferred M true

500 for the calibration
and observational uncertainties of this synthetic data set are approximately
0.5 dex.

Figure A2. Predictions of M true
500 from observations of the mass proxy and

associated errors for a test data set of 22 systems, after fitting the model to a
similar training data set. Crosses show the measured proxy values and their
errors (horizontally) and the mass estimates, with 1σ error regions, derived
from the calculated posterior distribution for each system. Black stars give
corresponding true masses and proxy values, and the solid line shows the
mean linear relationship between M true

500 and xtrue used to generate the data.
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values (which have been subject to observational error) and the
mass estimates derived from them via the posteriors from the
generative model. These are compared to the values (stars) of
(xtrue,M true

500 ).
Code that implements this generative model can be found under

an MIT license at https://github.com/farr/galmassproxy. The model

has been trained using the group/cluster data set from this paper,
and can be used to generate a posterior mass distribution based on
a measured value of one of the mass proxies we have calibrated.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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