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ABSTRACT
We measure the projected two-point correlation function of galaxies in the 180 deg2 equatorial
regions of the GAMA II survey, for four different redshift slices between z = 0.0 and 0.5. To
do this, we further develop the Cole method of producing suitable random catalogues for the
calculation of correlation functions. We find that more r-band luminous, more massive and
redder galaxies are more clustered. We also find that red galaxies have stronger clustering on
scales less than ∼3 h−1 Mpc. We compare to two different versions of the GALFORM galaxy
formation model, Lacey et al. (in preparation) and Gonzalez-Perez et al., and find that the
models reproduce the trend of stronger clustering for more massive galaxies. However, the
models underpredict the clustering of blue galaxies, can incorrectly predict the correlation
function on small scales and underpredict the clustering in our sample of galaxies with
∼3L∗

r . We suggest possible avenues to explore to improve these clustering predictions. The
measurements presented in this paper can be used to test other galaxy formation models, and
we make the measurements available online to facilitate this.

Key words: galaxies: evolution – galaxies: formation – large-scale structure of Universe.

1 IN T RO D U C T I O N

The two-point autocorrelation function is a widely used statistical
description of the spatial distribution of galaxies. In the standard
model of cosmology, the shape of this function is set both by the
mass of dark matter haloes in which a particular galaxy sample
resides, and baryonic processes which can change the spatial dis-
tribution of galaxies on smaller scales. Its dependence on galaxy
properties is well established, at low redshifts, by large-area spec-
troscopic surveys such as SDSS (York et al. 2000; Strauss et al.
2002) and Two Degree Field Galaxy Redshift Survey (2dFGRS;
Colless et al. 2001). The amplitude of the autocorrelation function
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of galaxies is seen to be strongly dependent on luminosity, stellar
mass and colour. At low redshifts, brighter, redder and more mas-
sive galaxies have been observed to be more strongly clustered (e.g.
Norberg et al. 2001, 2002; Zehavi et al. 2002, 2005, 2011; Li et al.
2006; Christodoulou et al. 2012).

In the higher redshift Universe, small (<1 deg2) but deep spec-
troscopic surveys have also measured the clustering of galaxies.
The DEEP2 survey has been used to demonstrate that the colour
dependence of galaxy clustering is already in place at z ∼ 1, whilst
within a red or blue sample of galaxies, clustering is insensitive to
luminosity over the range 20.2 < MB < 21.8 (Coil et al. 2008).
Compared with lower redshift SDSS data, the DEEP2 measure-
ments of the clustering of brighter and more massive galaxies has a
larger amplitude than expected from scaling the low-redshift mea-
surements using linear theory (Coil et al. 2008; Li et al. 2012).
This can be interpreted as evidence of significant bias evolution for
these galaxies (Coil et al. 2008; Li et al. 2012). Another example of
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a small area, deep spectroscopic survey is the VIMOS-VLT Deep
Survey (VVDS), which found a sharp increase in the amplitude of
galaxy clustering around the characteristic magnitude of the sam-
ple’s luminosity function (Pollo et al. 2006). VVDS also found,
in agreement with DEEP2, that the clustering of massive galaxies,
with stellar mass >1010.5 h−2 M�, at z ∼ 1 can only be reconciled
with lower redshift measurements if their bias evolves significantly
(Meneux et al. 2008). Results from another small area, deep survey,
zCOSMOS, show that this is true for galaxies more massive than
>1010 h−2 M� (Meneux et al. 2009). The VIMOS Public Extra-
galactic Redshift Survey (VIPERS) has also found that more lumi-
nous and more massive galaxies are more clustered at redshifts of
0.5 < z < 1.1 than their fainter, less massive counterparts (de la
Torre et al. 2013; Marulli et al. 2013). More recently, the 9 deg2

PRIMUS survey (Coil et al. 2011; Cool et al. 2013) has found red
galaxies that are more clustered than blue galaxies, and the rela-
tionship between clustering amplitude and sample luminosity is in
place in the redshift slices: 0.2 < z < 0.5 and 0.5 < z < 1.0 (Skibba
et al. 2014).

In addition to spectroscopic surveys, surveys relying on pho-
tometric redshifts have also explored the clustering of galaxies.
Galaxies with red colours have been shown to have steeper cor-
relation functions than bluer galaxies at z ∼ 0.5 in the 0.78 deg2

COMBO-17 survey (Phleps et al. 2006), and the 1.5 deg2 Ultra-
VISTA survey demonstrated that more massive galaxies are more
clustered between 0.5 < z < 2.5 (McCracken et al. 2015). Photo-
metric surveys have also studied the evolution of galaxy clustering.
In the 6.96 deg2 Boötes field Brown et al. (2008) found, at 0.2 <

z < 1.0, that red galaxies fainter than MB = 20 − 5 log10 h showed no
luminosity dependence of the amplitude of their clustering, whilst
the converse is true for red galaxies brighter than this. Studies in
the Boötes field also demonstrated luminous red galaxies display
little evolution in the amplitude of their clustering between z = 0.5
and 0.9 (White et al. 2007; Brown et al. 2008). This observation,
which suggests the clustering of these galaxies evolves slower than
the underlying dark matter distribution, can be explained by the
removal of highly biased satellite galaxies by merging or disruption
(White et al. 2007; Brown et al. 2008). Whilst bright, red galaxies
display little evolution in clustering strength with redshift, fainter
galaxies (−22 < MB − 5 logh < −19) have been shown to have
a decreasing clustering amplitude between z = 0.4 and 1.2 in the
CFHTLS photometric redshift survey (McCracken et al. 2008).

The photometric surveys at high redshift are still fairly small
(<10 deg.2). A possible exception to the trade-off between large
area and high redshift is the work of Guo et al. (2014); here, the
authors used the CMASS sample of SDSS to show that clustering
was stronger for brighter and redder galaxies at z ∼ 0.5. However,
the complicated selection of the CMASS sample limits their work
to a very narrow luminosity and redshift range.

The GAMA spectroscopic survey offers a new window on to
the clustering of galaxies and its evolution with redshift. It has a
larger area (the equatorial regions we use total 180 deg2) than the
deep surveys but has spectra of much fainter galaxies (2 mag) than
large-area surveys like SDSS. As such, it complements both types of
survey, by enabling detailed clustering measurements at an interme-
diate epoch. Whilst our redshift range overlaps with the PRIMUS
low-redshift sample, our larger area allows us to split the data into
finer redshift bins and consider brighter, rarer objects. In this paper,
we study the projected two-point correlation function (2PCF) of
galaxies as a function of their luminosity, stellar mass and colour,
in four different redshift bins, in order to fully appreciate any red-
shift evolution. To aid in the physical interpretation of our results,

we compare them to different versions of the semi-analytic galaxy
formation model GALFORM, specifically Gonzalez-Perez et al. (2014,
hereafter G14 model) and Lacey et al. (in preparation, hereafter L14
model). We quantitatively compare the relative merits of the differ-
ent versions of the GALFORM model and discuss the impact of this
on our understanding of galaxy formation. To see a complementary
approach, we refer the reader to Palamara et al. (in preparation),
who fit halo occupation distribution models (HOD models; see e.g.
Zheng et al. 2005) to GAMA.

This paper is organized as follows. Section 2 introduces the
GAMA data and the galaxy formation model we use, along with
details of how we calculate luminosity, mass and rest-frame colour.
Section 3 presents our method of generating a random catalogue and
measuring clustering. In Section 4 we present our results, before dis-
cussing them and concluding in Section 5. We present our results
using units of a fiducial � cold dark matter (�CDM) cosmology
with �m = 0.25, �� = 0.75 and H = 100 h km s−1 Mpc−1.

2 DATA A N D M O D E L S

2.1 The galaxy and mass assembly survey

The GAMA survey is a spectroscopic and multiwavelength survey
of galaxies carried out on the Anglo-Australian telescope (Driver
et al. 2011; Liske et al. 2015). In this work, we utilize the main
r-band limited data from the GAMA II equatorial regions, which
consists of a highly complete (>98 per cent) spectral catalogue of
galaxies selected from the SDSS DR7 (Abazajian et al. 2009) to have
rpetro < 19.8. The older GAMA I survey had a shallower limit of
r < 19.4 in two of the regions. Target fields are repeatedly observed
in a way that removes biases against close pairs (Robotham et al.
2010), avoiding such biases is ideal for clustering measurements.
Star/galaxy separation is based on the difference between an ob-
ject’s model and point spread function magnitudes in SDSS DR7
data and, where UKIRT Infrared Deep Sky Survey photometry is
available, the object’s optical and infrared colours. Further details
of the GAMA survey are given in Baldry et al. (2010), Robotham
et al. (2010), Driver et al. (2011) and Liske et al. (2015). The data
are split over three 12 × 5 deg2 fields centred at 9h (G09), 12h (G12)
and 14.5h (G15) RA and approximately δ = 0◦ declination.

2.1.1 Redshifts

Redshifts for GAMA objects were measured automatically, using
the software AUTOZ as described in Baldry et al. (2014). Liske et al.
(2015) find 0.2 per cent of the sample are expected to have an in-
correct redshift. The median velocity uncertainty of the measured
redshifts is 27 km s−1 (Liske et al. 2015). The redshifts are taken
from a table called DISTANCESFRAMESV12 in a GAMA Data Manage-
ment Unit (DMU). These redshifts have been corrected for the local
flow using the model of Tonry et al. (2000), smoothly tapered to the
cosmic microwave background rest frame for z ≥ 0.03.

2.1.2 Quality cuts

In addition to the redshift quality cut, nQ ≥ 3, we also only consider
galaxies in regions with completeness greater than 80 per cent using
the GAMA angular completeness mask (Driver et al. 2011; Liske
et al. 2015). We additionally only select objects with VIS_CLASS =
0, VIS_CLASS = 1 or VIS_CLASS = 255, which removes objects which
upon visual inspection do not show any evidence of galaxy light or
appear to be part of another galaxy (Baldry et al. 2010).
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2.1.3 Magnitudes

GAMA combines data from a large number of ground and space
based telescopes and so has a very wide wavelength range, from
X-ray to radio. In this work, we use optical photometry from SDSS
DR7 imaging data. To define luminosity samples we use SDSS
Petrosian magnitudes (Petrosian 1976), as the GAMA selection
used Petrosian magnitudes. To define colours, and when estimating
stellar mass, we use SDSS model magnitudes as these are often more
suitable for colour terms (see the SDSS DR7 photometry webpage1).
Following SDSS conventions, we will label model magnitudes using
the letter associated with the bandpass in which the magnitude
was measured. We took these magnitudes from the table called
TILINGCATV42 in a GAMA DMU, where they are replicated.

GAMA also has a set of magnitudes measured in apertures with
a matched size across the different bands (Hill et al. 2011), these
magnitudes have been shown to be superior to model magnitudes
when calculating a galaxy’s stellar mass using spectral energy dis-
tribution (SED) fitting (Taylor et al. 2011). Our adoption of model
magnitudes was in order to avoid the small number of failures whose
spatial positions have not been mapped in the Hill et al. (2011) cat-
alogue. Model magnitudes have been widely used to define colours
in SDSS publications, and should be sufficient to separate red and
blue galaxies in this work.

2.1.4 k-corrections and evolution corrections

To compute Petrosian absolute r-band magnitudes, Mr − 5 log10

h (hereafter Mr,h), from the observed apparent Petrosian r-band
magnitudes, mr, we apply both a k-correction, kr, and a luminosity
evolution correction. The latter correction is necessary in order
to compare a similar population of galaxies across time, as the
luminosity of galaxies evolves. The relation we use is

Mr,h = mr − kr (z) + Q(z − zref ) − 5 log10(DL(z)) − 25, (1)

where Q is the luminosity evolution parameter, DL the luminosity
distance in h−1 Mpc and zref is a reference redshift, for which we
adopt zref = 0.0. The parametrization of luminosity evolution we use
is commonly adopted in the literature (e.g. Lin et al. 1999; Loveday
et al. 2012).

At this stage, we will also introduce a parametrization of density
evolution common to luminosity function studies. The P parameter
(e.g. Lin et al. 1999; Loveday et al. 2012, and references therein)
parameterizes the density evolution of a population of galaxies via

φ∗(z) = φ∗(z = 0)100.4Pz, (2)

where φ∗(z) is the characteristic number density of galaxies at red-
shift z. Loveday et al. (2012) have fit evolving luminosity functions
to a shallower version of the GAMA data, with a limit of rpetro <

19.4 in G09 and G15. They find that Q and P are very degenerate
(see also Farrow 2013). In Loveday et al. (2015) adopting a value of
Q = 1.45 resulted in very little need for density evolution (see also
Farrow 2013). We therefore adopt Q = 1.45, which combined with
our method of generating a random catalogue, removes the need to
correct for density evolution (see Section 3.1). Note that in Loveday
et al. (2015), a different set of parameters are favoured. However in
Appendix A, we show that adopting the parameters P = 1.45 and
Q = 0.81, which we took from an earlier draft of Loveday et al.

1 http://classic.sdss.org/dr7/algorithms/photometry.html, accessed 19/8/14

(2015), affects the correlation function in a way far smaller than the
errors.

The k-corrections are derived from the GAMA DMU
KCORR_Z00V04, which was produced using the method set out in
Loveday et al. (2012). The Loveday et al. (2012) k-corrections are
found by using the code KCORRECT_V4_2 (Blanton & Roweis 2007)
to fit each galaxy’s u, g, r, i, and z-band SDSS model magnitudes
with SED templates. For many applications, the maximum redshift
at which an object fulfils the selection criteria of the survey, zmax,
is needed. For this, the k-correction as a function of redshift is re-
quired for each galaxy. To enable fast computation, Loveday et al.
(2012) fit a fourth-order polynomial to the k-correction of each
galaxy as a function of redshift. The rms difference between the
KCORRECT estimates of k-correction and the polynomial fits to them
is less than 0.01 mag for all bands (Loveday et al. 2012). We further
speed up the k-correction process by using average polynomials
from McNaught-Roberts et al. (2014), who computed the median
of the Loveday et al. (2012) k-correction polynomials for galaxies
in seven, (g − r) rest frame colour bins, hereafter labelled (g −
r)0. The benefit of this is a reduction in noise introduced by fitting
each galaxy with an individual model (McNaught-Roberts et al.
2014). Rest-frame colours are still estimated from the individual
k-corrections of Loveday et al. (2012).

2.1.5 Stellar mass

As well as luminosity and colour, we also want to use GAMA II to
measure clustering as a function of stellar mass. We use the relation
between colour and stellar mass found for GAMA I data by Taylor
et al. (2011), namely

log10M∗(h−2 M�) = 1.15 + 0.7(g − i)0 − 0.4(Mi − 5 log10 h),

(3)

where Mi is the rest-frame i-band absolute model magnitude and
(g − i)0 is the rest-frame colour. This relation was found by Taylor
et al. (2011) from individual estimates of the stellar mass of GAMA
I galaxies, produced by fitting stellar population synthesis (SPS)
models to the optical GAMA data (details in Taylor et al. 2011).
These mass estimates should have a statistical 1σ accuracy of around
0.1 dex (Taylor et al. 2011). The original relation used the GAMA
matched-aperture magnitudes for the colours, whilst we use SDSS
model magnitudes. We have tested that this does not add significant
biases or scatter to our computed stellar masses. The resultant offset
between our mass-to-light ratios and the ones utilizing the GAMA
matched aperture colours with equation (3) is only 0.01 dex with
an interquartile range of 0.1 dex and 10 per cent of outliers with a
difference of >0.14 dex. Note that the problem Taylor et al. (2011)
discovered with masses using model magnitudes arose during full
SED fitting, not using this colour relation, and were reported to be
driven by the u band, which has no influence on equation (3).

2.2 Galaxy formation models & lightcones

2.2.1 The GALFORM model

We compare our observations to a semi-analytic galaxy formation
model called GALFORM. The GALFORM model was first presented in
Cole et al. (2000), but it grew from a number of previous attempts to
model galaxy formation. These models all assume galaxies form in
dark matter haloes, and then use analytical prescriptions to approx-
imate key galaxy formation processes (e.g. White & Rees 1978;
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GAMA: projected galaxy clustering 2123

Table 1. Summary of the different GALFORM models mentioned in this paper.

Model Parent model Cosmology Key features

Baugh et al. (2005) Cole et al. (2000) WMAP1 Different IMFs in starbursting galaxies.
Bower et al. (2006) Cole et al. (2000) WMAP1 AGN feedback in hydrostatic haloes.
Lagos et al. (2012) Bower et al. (2006) WMAP1 New star formation law accounting for

fraction of hydrogen in molecular state.
G14: Gonzalez-Perez et al. (2014) Lagos (2012) WMAP7 Updated cosmology.
L14: Lacey et al. (in preparation) Baugh et al. (2005) & Lagos et al. (2012) WMAP7 Combines varying IMF

and new star formation law.

White & Frenk 1991; Kauffmann, White & Guiderdoni 1993; Cole
et al. 1994). The first GALFORM model has prescriptions for the cool-
ing rate of gas in dark matter haloes, a star formation rate based
on available cold gas content, the attenuation of star formation by
supernovae feedback and the merging of satellite galaxies to the
main galaxy (Cole et al. 2000). Many of these prescriptions have
free parameters, controlling factors like the strength of supernovae
feedback, that account for complicated physics not fully under-
stood or analytically described. These parameters are tuned such
that the model fits a set of observational constraints at low redshift.
None of the models used here were tuned to reproduce clustering
measurements.

The models require the history of when a dark matter halo formed
and merged, sometimes called a halo’s ‘merger tree’ (Lacey & Cole
1993). For this purpose, the models we present here use an N-body
simulation based on the Millennium Simulation (Springel et al.
2005), but run in the more up-to-date WMAP7 cosmology (Komatsu
et al. 2011).

2.2.2 Model lightcones

The positions and velocities of particles in the simulation are output
at epochs spaced in expansion factor, hereafter ‘snapshots’. Mock
catalogues of galaxies from GALFORM runs on the N-body simulation
are produced using the code of Merson et al. (2013). This works by
interpolating between the snapshots to find the positions of galaxies
when they enter the simulated observer’s lightcone, i.e. when the
light from the galaxy reaches the observer.

From the simulations 26 realizations of each model were created
by changing the position and orientation of the virtual observer.2

These multiple realizations allow us to improve our understanding
of sample variance (Section 3.3), and minimize its effect on predic-
tions by plotting mean measurements from the mock realizations
(Section 4). One downside is the simulation used has a limited vol-
ume, 12.5 × 107(Mpc h−1)3, as such the upper-intermediate and
highest redshift slices will oversample, over 26 realizations, the
simulation by at least a factor of 3 and 8. Note this is the total
oversampling when you consider a sum over all the realizations, an
individual realization is much smaller than the simulation box. Also
mitigating this effect is the fact that the location and orientation of
the observer is randomly assigned, in this way repeated structures
will be observed at different redshifts and orientations, and be sam-
pled by different galaxies. In the lower intermediate redshift slice,
the volume of the 26 realizations is only 4 per cent larger than the
simulation, which should result in very little oversampling. How
the oversampling affects results will be discussed in later sections.

2 These mock catalogues will be made available from the VirgoDB:
http://icc.dur.ac.uk/data/ (Lemson & the Virgo Consortium 2006)

The next sections describe the specifics of the two versions of
GALFORM we consider. A summary of the relevant GALFORM models
can be seen in Table 1.

2.2.3 The G14 model

The Gonzalez-Perez et al. (2014, G14) model has the same physical
prescriptions as the Lagos et al. (2012) model, which is itself an
extension of the Bower et al. (2006) model. The Bower et al. (2006)
model added AGN feedback to the Cole et al. (2000) model in order
to better reproduce galaxy colours, and to decrease the number of
galaxies predicted to lie in the bright end of the luminosity function.
The Lagos et al. (2012) model made the star formation rate in the
disc of the galaxy proportional to the fraction of the gas that was
molecular, by using the empirical star formation law of Blitz &
Rosolowsky (2006, see Lagos et al. 2011, 2012 for details).

The update of the G14 model over Lagos et al. (2012) is that it
uses merger trees from WMAP7 cosmology. WMAP7 cosmology
has σ 8 = 0.81, this is smaller than in the WMAP1 cosmology of
Lagos et al. (2012, σ 8 = 0.9), so free parameters in the physical
prescriptions had to be retuned (Gonzalez-Perez et al. 2014). Tun-
able parameters were adjusted in order for the predictions to still
match the rest-frame bJ and K-band luminosity functions at z =
0, and give reasonable evolution of the UV and K-band luminosity
functions (Gonzalez-Perez et al. 2014).

The G14 model converts from star formation history and the
initial mass function (IMF) to an SED using an updated version of
the SPS model from Bruzual & Charlot (1993).

2.2.4 The L14 model

The L14 model also combines the improvements to star formation
rate calculations made in the Lagos et al. (2012) model and the
AGN feedback model of Bower et al. (2006). It was also run on
the new WMAP7 N-body simulation. Another difference of the L14
model is its IMF. The G14 model uses a Kennicutt (1983) IMF for
all stars formed. The L14 model instead adopts a top-heavy IMF
in starbursting galaxies, as developed in, but less extreme than, the
Baugh et al. (2005) model. This change was motivated to bring the
predictions of sub-mm galaxy number counts into closer agreement
with observations (Baugh et al. 2005).

A further difference in the L14 model which could have an im-
pact on clustering predictions is the treatment of merging satellite
galaxies. The models we present here all use an analytic approx-
imation, from Cole et al. (2000), to calculate how long it takes
for an accreted satellite to merge with the central galaxy. This ap-
proximation assumes satellites enter the halo on orbits randomly
selected from the distribution of satellite orbits given in Tormen
(1997), before the orbit decays due to dynamical friction. The Cole
et al. (2000) method calculates the time for the orbit to decay using
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the formula for Chandrasekhar dynamical friction in an isothermal
sphere given in Lacey & Cole (1993). The L14 model, on the other
hand, uses the Jiang et al. (2008), Jiang, Jing & Han (2014) formula
for the time-scale. The formula has been empirically modified using
N-body simulations in order to account for the tidal stripping of the
accreting haloes. Note that Campbell et al. (2015), motivated by the
work of Contreras et al. (2013), additionally develops the model to
track the positions of accreted subhaloes in the simulation, rather
than using an analytic approximation. We do not attempt modifica-
tions to the models in this paper as our focus is on presenting and
interpreting the observations.

A final difference between this model and G14 is the adoption
of the Maraston (2005) SPS model, which differs from the Bruzual
& Charlot (1993) model in its treatment of thermally pulsating
asymptotic giant branch stars (TP-AGB). These stars are important
in the near-IR. The near-IR corresponds to the r and i bands we use
for luminosity and colour measurements (Maraston 2005).

Note that the version of the L14 model we use is slightly different
to more recent versions of the L14 model. The differences are
tiny, however, and should not have any impact at the redshifts we
consider.

2.2.5 Model stellar masses

We take stellar masses from the model, but rescale them by h =
0.702 (the model cosmology) in order to convert the physical units
of the model, M� h−1, to the units of the observations, M� h−2.
Mitchell et al. (2013) demonstrates that applying broad-band SED
fitting to model galaxy photometry can give a biased estimate of the
true model galaxy’s mass. In order to investigate what effect this
may have we show the inferred mass, from equation (3), against
the true model mass in Fig. 1. In G14, the relation between true
and observed mass has a gradient, leading to smaller masses being
systematically underpredicted by the model. Red galaxies in G14
tend to be affected by this more than blue galaxies. In L14, the
differences in mass have a larger scatter, the blue galaxies still show
a gradient but the inferred mass is now generally an overprediction
of the true mass. The scatter between the inferred and true mass
is also larger for the L14 model. Applying the colour relation to
estimate mass, as compared to using the true mass, can cause both
the masses and the typical colours of galaxies to change in the
sample. Campbell et al. (2015) demonstrate these differences can
affect the clustering signal, with the effect being particularly marked
for the L14 model. In this paper, we take the model masses at face
value, except for a small adjustment explained in Section 2.3.3. We
discuss the possible effects of this when interpreting results.

2.2.6 Literature GALFORM comparisons

The GALFORM model has been compared to a variety of observa-
tional measurements, including those made from this GAMA sam-
ple. Indeed several of the GALFORM models were created to address
a disagreement with observations. For example, Kim et al. (2009)
compared the Bower et al. (2006) and Font et al. (2008) models to
2dFGRS data and found that the model predictions for the depen-
dence of clustering on luminosity were not successfully reproduced.
Kim et al. (2009) also found that the model had excess small-scale
clustering. The authors put this down to the Bower et al. (2006)
model having too many satellite galaxies.

In support of this, McNaught-Roberts et al. (2014) compares the
luminosity function as a function of environment of the Bower et al.

Figure 1. The inferred mass, from the Taylor et al. (2011) colour-to-mass
relation, versus the true mass of mock galaxies, for the G14 (top) and L14
(bottom) models. The red and blue points represent red and blue galax-
ies, as selected by our colour cuts (Section 2.3). The contours are spaced
evenly in log-space, between 5 × 104 and 50 × 104 galaxies dex−2. In-
ferring the mass using observational relations, rather than using the true
model mass can make a significant difference and is in this context model
dependent.

(2006) mocks to those of GAMA galaxies, and finds an excess
of faint, red galaxies in the model. Robotham et al. (2011) addi-
tionally found an excess of high-multiplicity (10 or more galaxies)
groups in the Bower et al. (2006) model compared to the GAMA
data.

Campbell et al. (2015) combine SDSS and VIPERS measure-
ments with the ones presented here to compare the clustering of
galaxies as a function of stellar mass to that predicted by a variety
of GALFORM versions, across several different epochs. They find good
agreement between the models and data, but in order to fit small-
scale clustering they have to adopt a new, hybrid model for satellite
orbits. In this model, satellites follow resolved subhaloes and an
analytic merger time-scale is only computed once the subhalo is
lost.

Their paper focuses on how different methods of estimating stel-
lar mass affect clustering measurements; our paper takes the com-
plementary approach of comparing a wider range of galaxy prop-
erties. In addition, our paper utilizes the lightcone modelling of
Merson et al. (2013), whilst Campbell et al. (2015) uses clustering
of galaxies in a single, constant cosmic time, snapshot.
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2.3 Sample selection

2.3.1 Redshift slices

We want to study the evolution of galaxy clustering with luminosity,
mass, colour and redshift. One approach to this is to use volume-
limited samples, which are characterized by a uniform detection
probability across the sample volume. However, volume-limited
samples reduce the amount of data available for the analyses, so we
also consider magnitude-limited samples. In order to do this, we
ensure the survey’s radial selection function is properly dealt with
by the random catalogue (see Section 3.1). Using magnitude-limited
samples means interpreting the results requires consideration of the
selection function, but offers the most powerful test of the model.
We separate all of our mass, luminosity and colour samples into
four redshift bins: low-z, 0.02 < z < 0.14, intermediate-z, 0.14 <

z < 0.24, upper intermediate-z, 0.24 < z < 0.35 and high-z, 0.35 <

z < 0.5. The volumes of these slices are 1.2 × 106 (Mpc h−1)3, 5.0
× 106 (Mpc h−1)3, 1.3 × 107 (Mpc h−1)3 and 3.7 × 107 (Mpc h−1)3,
respectively.

In order to help differentiate between selection effects and galaxy
formation effects, we also produce samples with upper redshift cuts
that have been decreased in order to make the sample essentially
volume-limited (comprise of at least 98 per cent of galaxies with
maximum observable redshifts greater than the sample limit).3

2.3.2 Luminosity, mass and colour cuts

Luminosity samples are produced from equation (1) with the mea-
sured SDSS r-band DR7 Petrosian magnitude used to calculate the
absolute magnitude in the r-band, Mr,h. Loveday et al. (2015) mea-
sures the luminosity function, and finds the characteristic ‘knee’
of the function at M∗

r,h = −20.6; past this magnitude the number
density of galaxies rapidly drops. This characteristic magnitude lies
in our −21.0 < Mr,h < −20.0 sample, and we measure one sample
of galaxies brighter than this and three fainter.

Stellar mass is more complex to compute from observations, but
is less complicated to predict from models. We use mass bins of 0.5
dex in size, except for the lowest mass sample, where we increase
the bin limits to have more galaxies. Baldry et al. (2012) found for
GAMA data at z < 0.06 that the characteristic knee of the mass
function is at M∗ = 1010.35 M� h−2. This characteristic mass falls
into our middle mass bin, we use two samples less massive and two
samples more massive than this.

In addition to luminosity and mass samples, galaxies are divided
into a red population and a blue population. The colour of a galaxy
is often used as a rough proxy for the age of its stellar population,
with galaxies undergoing star formation generally being expected
to be bluer. It is therefore interesting to study how clustering differs
as a function of colour. In Fig. 2, we show the colour–magnitude
diagram for our flux-limited (r < 19.8) sample of galaxies. We use
a sloping cut with a gradient of 0.03, following the typical literature
values (e.g. Bell et al. 2003),

(g − r)0 = −0.030 ∗ (Mr,h − M∗
r,h) + 0.678. (4)

3 Applying the same cuts to the mock catalogues leads to a larger fraction of
some mock samples being magnitude-limited, at worse the volume-limited
fraction is 89 per cent. Clustering from a mock catalogue for samples even
more magnitude-limited than this (as low as 78 per cent) show no significant
differences with the clustering from the same mock with a deeper apparent
magnitude cut (r < 21). We will therefore treat the mock measurements as
volume-limited.

The intercept of this cut is such that there is an equal fraction of
red and blue galaxies. We also show in Fig. 2, a volume-weighted
colour–magnitude diagram. We see that the volume we observe
has an obvious blue cloud, made up of faint galaxies, which is
less apparent in the observed colour–magnitude diagram due to
selection effects. The colour cut also separates the red sequence and
blue cloud in the volume-weighted diagram.

A summary of our cuts and the properties of our samples is given
in Table 2.

2.3.3 Cuts and adjustments to the models

When comparing the actual clustering of galaxies to models we
want to uncover differences in how dark matter haloes are popu-
lated. If we were to apply the same cuts on the models and the data
we may get samples with very different number densities, since
the luminosities or colours may be incorrectly predicted. Such dis-
agreements are better explored by comparison of model predictions
to other observational measurements like stellar mass functions, or
colour distributions. In order to focus on the spatial distribution of
comparable galaxies in the models and simulations, mock galaxy
samples are often selected to have matching number densities to
galaxies in the real comparison sample (e.g. Berlind et al. 2003;
Zheng et al. 2005; Contreras et al. 2013). We therefore adjust the
magnitudes of the mock galaxies in order for the luminosity func-
tions of the mocks and data to match, in each of our four redshift
slices.

First, we estimate the galaxy luminosity function of the r < 21
unaltered mock magnitudes. We then reassign each galaxy in the
mock a magnitude designed to map number densities in the un-
altered mock luminosity function to the appropriate magnitude in
the data luminosity function. We do this by computing the magni-
tude difference between the cumulative mock luminosity function
and the cumulative data luminosity function at the same cumulative
number density. This forces the mock and data luminosity func-
tions to agree. The faint end of the real luminosity functions suffer
from incompleteness, as the different k-corrections of the galaxies
result in a colour dependence on which galaxies reach the apparent
magnitude limit. In order to avoid this, we estimate the complete
luminosity function of real data in the three higher redshift slices by
switching to the low-redshift real luminosity function past the point
where colour-dependent completeness effects become important.
The amplitude of the low-redshift luminosity function is scaled to
ensure a smooth join with the higher redshift one. The mock cata-
logue then has an r < 19.8 apparent magnitude limit applied to the
shifted magnitudes.

We apply the same k-correction polynomials to the mocks, but
adjust the limits of the colour bins. This is to ensure the fraction of
galaxies in each colour bin is the same as in the data. Thanks to this
adjustment, applying the apparent magnitude limit results in a mock
catalogue with close to the same selection function as the real data.
This is important as many of our samples are magnitude-limited.
Unfortunately, unless the mocks have the same colour–magnitude
distribution as the data, it is impossible to perfectly model the
selection function even with this technique of adjusting the mock
k-corrections. This is because the magnitude distribution within a
colour bin varies between real and mock data. The masses of the
mock galaxies are rescaled to preserve the same mass-to-light ratio.
Also note the mock catalogue is fitted with the same P and Q as the
data.

We will now describe the cuts for colour selected samples. In
Fig. 2, we can see that both models reproduce the bimodality of
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Figure 2. A rest-frame colour–magnitude diagram for the real GAMA galaxies and for the mock galaxies, as labelled. The top-right panel gives the volume-
weighted colour–magnitude diagram for the real GAMA galaxies. The red dashed lines shows our cuts to define red and blue samples of galaxies, this cut is
different for each model and the data (see Section 2.3.3). A histogram of colours has been added to the right of each panel. Contour levels are spaced linearly,
the colour scale is the same in each of the colour–magnitude diagrams, except the volume weighted one. The contours were computed from a binned version
of this plot, smoothed with a Gaussian filter.

galaxy colours, but both predict a well-defined blue cloud not seen
in the data. Note that whilst the data is flux-limited, meaning faint
galaxies may be lost, this selection effect is included in the model
lightcone. One suggestion of how to improve the mock galaxy
colours was given in Font et al. (2008); here the authors removed
the unrealistic GALFORM assumption that all gas is removed from
satellites as soon as they accrete on to a halo. By implementing
a more realistic model with more gradual removal of gas by ram
pressure stripping they found satellites could form stars for longer
after being accreted, and ended up with colours between the red and
blue sequence. However, the G14 and L14 models do not include
any gradual ram pressure stripping.

Looking at the models in more detail, we see the L14 has a
redder blue cloud than the G14 model. This is expected as this
model uses the Maraston (2005) SPS model which has stronger

near-IR emission for young stellar populations. We use the same
gradient as the data for the cut, and select the intercept in order to
reproduce the observed fraction of red and blue galaxies. For the
L14 model this intercept is 0.548, for the G14 model it is 0.498.
From Fig. 2, we can see that the cut applied to the models clearly
separates the red sequence from the blue-sequence mock galaxies.

In Tables B2 and B3 in Appendix B, the sample sizes and prop-
erties for one realization of GAMA are given for the two models.

2.3.4 Comparison samples

In addition to the samples we have described, we also produce a
sample with which to compare our results to Zehavi et al. (2011).
In order to make the comparison samples as similar as possible,
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Table 2. Different galaxy samples, sample sizes and median properties. The subscript ‘med’ indicates the values are medians. Samples with redshift limits
marked with asterisks are magnitude-limited, so should be treated with careful consideration of the GAMA selection function. In samples without an asterisk
at least 98 per cent of the members are volume-limited. Values in brackets are rms scatter.

Sample zmin zmax Ngals zmed Mmed log10(M∗/M� h−2)med (g − r)0,med

−18.00 < Mr,h < −17.00 0.02 0.07 2089 0.05 −17.46 (0.28) 8.62 (0.29) 0.42 (0.20)
0.02 0.14* 5666 0.08 −17.62 (0.27) 8.67 (0.33) 0.41 (0.19)

−19.00 < Mr,h < −18.00 0.02 0.11 6950 0.09 −18.47 (0.29) 9.13 (0.31) 0.47 (0.21)
0.02 0.14* 13149 0.11 −18.54 (0.27) 9.15 (0.31) 0.47 (0.19)
0.14 0.24* 3307 0.15 −18.85 (0.13) 9.26 (0.28) 0.46 (0.16)

−20.00 < Mr,h < −19.00 0.02 0.14 11741 0.11 −19.47 (0.29) 9.74 (0.29) 0.62 (0.17)
0.14 0.17 7801 0.16 −19.46 (0.29) 9.74 (0.31) 0.60 (0.22)
0.14 0.24* 27755 0.18 −19.59 (0.27) 9.79 (0.32) 0.59 (0.20)
0.24 0.35* 2834 0.26 −19.90 (0.10) 9.81 (0.38) 0.45 (0.18)

−21.00 < Mr,h < −20.00 0.02 0.14 6945 0.11 −20.40 (0.28) 10.24 (0.25) 0.71 (0.15)
0.14 0.24 22327 0.20 −20.39 (0.28) 10.27 (0.28) 0.70 (0.15)
0.24 0.35* 37541 0.28 −20.55 (0.27) 10.39 (0.28) 0.68 (0.17)
0.35 0.50* 3593 0.37 −20.86 (0.14) 10.42 (0.28) 0.55 (0.16)

−22.00 < Mr,h < −21.00 0.02 0.14 1843 0.12 −21.27 (0.25) 10.67 (0.19) 0.74 (0.11)
0.14 0.24 5865 0.20 −21.28 (0.25) 10.70 (0.21) 0.74 (0.13)
0.24 0.35 15353 0.30 −21.29 (0.25) 10.78 (0.23) 0.74 (0.17)
0.35 0.37 3168 0.36 −21.28 (0.25) 10.82 (0.23) 0.74 (0.14)
0.35 0.50* 16114 0.40 −21.42 (0.27) 10.86 (0.28) 0.73 (0.22)

−23.00 < M0.1
r,h < −22.00 0.01 0.50 2273 0.37 −22.25 (0.19) 11.26 (0.28) 0.79 (0.18)

−22.00 < M0.1
r,h < −21.00 0.01 0.38 23746 0.29 −21.36 (0.25) 10.79 (0.23) 0.74 (0.15)

−21.00 < M0.1
r,h < −20.00 0.01 0.26 33965 0.20 −20.47 (0.28) 10.31 (0.28) 0.71 (0.16)

−20.00 < M0.1
r,h < −19.00 0.01 0.18 22487 0.14 −19.53 (0.29) 9.78 (0.31) 0.62 (0.19)

−19.00 < M0.1
r,h < −18.00 0.01 0.12 8129 0.09 −18.52 (0.29) 9.16 (0.31) 0.48 (0.21)

8.50 < log10 M∗/M� h−2 < 9.5 0.02 0.05 1049 0.04 −17.95 (0.72) 8.88 (0.28) 0.46 (0.15)
0.02 0.14* 18533 0.10 −18.42 (0.59) 9.07 (0.27) 0.44 (0.13)
0.14 0.24* 8472 0.17 −19.19 (0.33) 9.32 (0.16) 0.39 (0.10)

9.50 < log10 M∗/M� h−2 < 10.00 0.02 0.14 10053 0.11 −19.43 (0.47) 9.74 (0.14) 0.66 (0.12)
0.14 0.24* 19173 0.18 −19.64 (0.37) 9.79 (0.14) 0.56 (0.12)
0.24 0.35* 5331 0.27 −20.11 (0.25) 9.84 (0.13) 0.41 (0.11)

10.00 < log10 M∗/M� h−2 < 10.50 0.02 0.14 7385 0.11 −20.28 (0.44) 10.21 (0.14) 0.73 (0.12)
0.14 0.18 7749 0.16 −20.25 (0.43) 10.21 (0.14) 0.73 (0.09)
0.14 0.24* 23216 0.20 −20.24 (0.40) 10.22 (0.14) 0.72 (0.10)
0.24 0.35* 23584 0.28 −20.48 (0.29) 10.32 (0.14) 0.63 (0.12)
0.35 0.50* 3132 0.38 −20.92 (0.26) 10.36 (0.13) 0.48 (0.10)

10.50 < log10 M∗/M� h−2 < 11.00 0.02 0.14 2189 0.12 −21.15 (0.38) 10.65 (0.12) 0.76 (0.10)
0.14 0.24 8018 0.20 −21.10 (0.38) 10.65 (0.13) 0.76 (0.09)
0.24 0.29 9968 0.27 −21.00 (0.38) 10.66 (0.13) 0.76 (0.09)
0.24 0.35* 24416 0.30 −21.02 (0.35) 10.68 (0.13) 0.75 (0.09)
0.35 0.50* 11800 0.38 −21.31 (0.26) 10.78 (0.14) 0.69 (0.12)

11.00 < log10 M∗/M� h−2 < 11.50 0.24 0.35 2572 0.31 −21.86 (0.38) 11.10 (0.10) 0.80 (0.15)
0.35 0.37 698 0.36 −21.74 (0.35) 11.11 (0.11) 0.82 (0.12)
0.35 0.50* 5962 0.41 −21.81 (0.29) 11.14 (0.12) 0.82 (0.11)

Red 0.02 0.14* 15842 0.11 −19.61 (1.12) 9.98 (0.54) 0.73 (0.17)
(g − r)0 + 0.03(Mr,h − M∗

r,h) > 0.678 0.14 0.24* 29686 0.19 −20.16 (0.70) 10.26 (0.35) 0.75 (0.14)
0.24 0.35* 30465 0.29 −20.81 (0.50) 10.62 (0.29) 0.76 (0.15)
0.35 0.50* 11461 0.39 −21.51 (0.39) 11.00 (0.29) 0.80 (0.23)

Blue 0.02 0.14* 26437 0.10 −18.61 (1.21) 9.11 (0.62) 0.44 (0.12)
(g − r)0 + 0.03(Mr,h − M∗

r,h) < 0.678 0.14 0.24* 29906 0.19 −19.77 (0.67) 9.74 (0.42) 0.51 (0.11)
0.24 0.35* 26227 0.29 −20.56 (0.49) 10.26 (0.35) 0.56 (0.12)
0.35 0.50* 10122 0.39 −21.22 (0.39) 10.61 (0.30) 0.58 (0.12)

we use magnitudes corrected to zref = 0.1 and use the redshift cuts
stipulated in Zehavi et al. (2011). These magnitudes will be labelled
with the superscript ‘0.1’. Unfortunately, the Zehavi et al. (2011)
redshift cuts greatly restrict the volume of our survey. As such, only
two of the Zehavi et al. (2011) magnitude bin samples, −22.0 <

M0.1
r,h < −21.0 and −23.0 < M0.1

r,h < −22.0 have a large enough
volume in GAMA for worthwhile comparison, having volumes of
6.2 × 106 (Mpc h−1)−3 and 1.6 × 106 (Mpc h−1)−3, respectively.
The redshift cuts for the fainter magnitude bins result in extremely
small volumes in GAMA [less than 1.1 × 105 (Mpc h−1)−3].
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We also produce a series of volume-limited samples with which to
compare to SDSS, using deeper redshift cuts appropriate to GAMA’s
fainter selection limit. These samples are included in Table 2.

3 M E T H O D O L O G Y

In this section, we will introduce our method to produce random
catalogues, before explaining how we compute the 2PCF, wp(rp).

3.1 Random catalogues

3.1.1 The Cole (2011) method

To measure clustering, one needs a random set of points with the
same radial and angular selection function as the data. We generate
catalogues of random positions using the method set out in Cole
(2011), which generates random catalogues from the real data in
a way that removes the effects of the large-scale structure. We use
the Cole (2011) method without the complications of the extended
method designed to fit a parametrized evolution model to the galax-
ies. For each galaxy in the catalogue, the maximum volume of space
over which it could be observed, Vmax, is calculated by finding zmin

and zmax, the redshift where a galaxy meets the bright and faint mag-
nitude limits of GAMA II. In addition to Vmax, a density weighted
maximum volume, Vmax,dc, is calculated as

Vmax,dc =
∫ zmax

zmin

�(z)
dV

dz
dz, (5)

where �(z) is the overdensity as a function of redshift and dV/dz

is the comoving volume element per redshift element. Given these
volumes, every real galaxy in the catalogue is cloned n times, where
n is given by

n = nclones
Vmax

Vmax,dc
(6)

with nclones being the total number of randoms divided by the number
of galaxies in the sample. Our default random catalogues have
nclones = 400. When cloning the galaxy, all of the intrinsic galaxy
properties are also cloned, so that the random points have a stellar
mass, an absolute magnitude and a colour. The cloned galaxies are
randomly distributed within the real galaxy’s Vmax, with the GAMA
angular mask used to ensure the angular selection function of the
cloned galaxies matches that of the real galaxies.

This method requires the estimation of �(z), which is done using
an iterative method. Initially, it is assumed �(z) = 1 everywhere
such that each galaxy is cloned the same number of times. From this
random catalogue, �(z) is estimated from the redshift distribution
of the randoms, nr(z), and the data, ng(z), using

�(z) = nclones
ng(z)

nr(z)
. (7)

A new random catalogue is then produced with this new estimate
of �(z), and the whole process repeated until �(z) converges. We
iterate 15 times, and find this is more than enough iterations for the
process to converge.

An added bonus of this method is that the Vmax,dc can be used
to easily estimate the luminosity function (Cole 2011). We use this
technique when estimating luminosity functions for the purpose of
adjusting mock galaxy magnitudes to match the abundance of real
galaxies. A study of the luminosity functions of GAMA galaxies
from this estimator is given in Loveday et al. (2015).

3.1.2 Windowed clones

As previously mentioned, the creation of this random catalogue re-
quires that one adopt a certain value of Q (equation 1). Additionally,
our choice of Q is motivated by our decision not to consider evo-
lution in the overall number density of galaxies. It may be the case
that our chosen Q is not true to the data, or some density evolution
is present in the sample. To mitigate possible effects from this, we
add a new technique to the Cole (2011) method.

The key idea of this method is to restrict the redshift of cloned
galaxies to some window function around the redshift of the original
galaxy. Evolution is therefore included naturally in the random
catalogue, as cloned galaxies are kept close to their original redshift.
Hence, the error introduced by the inadequacy of the adopted P
and Q model is limited. We choose to define our window as a
function of volume, W(V); this is because volume is most closely
related to the expected fluctuations in the galaxy �(z). With a
window defined in terms of volume, the n(z) is smeared out more
in the sample variance prone, low-redshift part of the n(z) and less
at higher redshift. We adopt a Gaussian window function, with
σ = 3.5 × 106(Mpc h)−3, truncated at 2σ . We found this to be
a good compromise between limiting the effects of evolution and
smoothing out large-scale structure. We also include this window
in the computation of Vmax and Vmax,dc, by weighting volume slices
by the window when numerically computing the integral. When the
window function reaches a boundary, either the Vmax of an object
or the limit of the survey, it is reflected from that boundary in
order to ensure the randoms are scattered symmetrically across the
volume. Simply truncating the window at a redshift limit would
result in randoms being artificially more likely to be moved away
from the limit. This method will be further explored, along with
the choices of σ , in a future paper. We will, however, demonstrate
one success of the method here empirically. In Fig. 3, we show the
redshift distribution of GAMA cloned galaxies, for different bins of
the original galaxy redshift. In the top panel of Fig. 3, we can see
that cloned galaxies are spread widely across the full redshift range
of the survey. In the bottom panel of Fig. 3, we can see that the
addition of a window function has limited the redshift range over
which a cloned galaxy can move. As such it has limited the effects
of deviations of the evolution away from the description given by
the adopted values of P and Q.

This windowing method requires further testing and tuning, to see
how successful it is in removing the effects on the random catalogue
from unmodelled galaxy evolution. However, for this work we show
in Appendix A that the windowing affects our results much less than
sample variance.

3.1.3 The resultant catalogue

We show in Fig. 4 (top) the redshift distribution of the data and the
randoms for different iterations of this process. We see that using
the density-corrected maximum volume (olive and blue dashed line)
only introduces subtle differences into the nr(z) of the randoms, as
compared to simply using Vmax (red dashed line). The twelfth iter-
ation (blue) and the fifteenth iteration (olive) agree; this indicates
the process has converged. The nr(z) of the randoms is a good fit
to the ng(z) of the total sample; later we will check the random
nr(z) is appropriate for galaxies split into magnitude, colour and
mass samples. Note that it does appear that the random catalogue
slightly follows the underdensity at z ∼ 0.22; we found this was
not the case when not using the window function and as such claim
this is an unfortunate side effect of the modification to the method
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Figure 3. The distribution of the final redshifts of the random points, in
bins of their initial redshift, for a random catalogue for the real GAMA data,
generated without (top) and with (bottom) the window function update. The
window function update acts to limit how far a cloned galaxy can move from
its initial position. This in turn limits the effects of any unmodelled galaxy
evolution on the random catalogue.

(Farrow 2013). We have, however, tested our clustering results us-
ing randoms from the old and new methods, and only find small
differences that are at large scales. These differences are a fraction
of the error bars, and as such our results will not be significantly
affected.

In Fig. 4 (Bottom), we plot the overdensity estimate, equation
(7), for successive iterations of our random catalogue generating
method. As expected, the iterations act to slightly increase the over-
density estimates, as the Cole (2011) method acts to remove their
effect from the random catalogue. This method of generating ran-
doms ameliorates the effects of large-scale structure on the gen-
eration of a random catalogue, as overrepresented galaxies from
overdense regions are cloned fewer times whilst underrepresented
galaxies are cloned more times. Cole (2011) demonstrates how this
scheme can produce a random catalogue unbiased by large-scale
structure. A strength of this approach to generating randoms is that

the random catalogue comes with all of the properties of the galaxy
catalogue. One can then apply the same selection to the random
catalogues and the galaxy catalogues so that the random catalogue
has the correct angular and radial distribution. We intend to make
these random catalogues available to the GAMA community via a
DMU, which we also intend to distribute to the larger astronomical
community once the GAMA data become public.

In Fig. 5, we show the redshift distribution of the randoms and
GAMA data, split into samples. We see for the luminosity, mass
and colour samples we study the random redshift distribution is an
excellent fit to the data.

3.1.4 Randoms for the mocks

We apply the same techniques to generate randoms for the mock
catalogues. This technique is applied first to the original mock
catalogue with unadjusted magnitudes and r < 21.0, in order to
estimate the mock luminosity function. The technique is applied
again to the mock catalogue with adjusted magnitudes and r <

19.8, to yield the final random catalogue. We find that the resultant
n(z) of the randoms are a good fit to the mock catalogues.

3.2 Projected clustering

We measure the 2PCF of galaxies using pairs of galaxies and ran-
doms with the Hamilton (1993) estimator. Following the standard
approach adopted in the literature (e.g. Coil et al. 2008), we mea-
sure pair separations parallel, π , and transverse, rp, to the line of
sight for each pair. These are computed by first converting the an-
gular position and redshift of each object to a vector, r . We then
define a line-of-sight direction to a pair as l = (r1 + r2)/2, where
r1 and r2 are the positions of the two pair members. The parallel
to the line-of-sight distance, π , is the projection of the separation,
s = r2 − r1, on to the line of sight

π = s · l
|l| . (8)

The separation transverse to the line of sight is then

rp =
√

|s|2 − π2. (9)

Pairs are binned on to a grid of π and rp. In order to maximize
signal-to-noise ratio, we use a mixed linear and logarithmic bin-
ning scheme. Bins are linear with 0.0625 h−1 Mpc width up to
0.3 h−1 Mpc, and are 0.12 dex in size for bins larger than that.
Whilst, we generate 400 times as many random points as the data,
when computing clustering we use between nclones = 32 and nclones

= 200 times more randoms than data, the number varies in order
to maintain good statistics for the samples where the galaxies only
sparsely populate the volume.

It is well known that the measured correlation function is distorted
by the peculiar velocities of galaxies. On larger scales, the infall of
galaxies squash the observed correlation function in the line-of-
sight direction (Kaiser 1987). On small scales, the virial motions of
galaxies within clusters can elongate the correlation function along
the line of sight (Jackson 1972). These distortions have been studied
in the GAMA data by Loveday et al (in preparation) and Blake et al.
(2013); in this work, we focus instead on the projected correlation
function, wp(rp). The projected correlation function is a standard
approach for dealing with redshift space distortions, which involves
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Figure 4. Top: the redshift distribution of GAMA II galaxies (solid) and our randoms (dashed) for multiple iterations of the Cole (2011) random catalogue
generating approach (see legend), combined with our window function modifications, as explained in Section 4.3.2. The redshift distribution of the randoms is a
good match to the data. Bottom: our estimates of the galaxy overdensity as a function of redshift, from the ratio of the galaxy and random redshift distributions.
The error bars are from the rms scatter of the 26 mock realizations, as such they account for the large-scale structure variations. Note these error bars may be
underestimates, as the mock realizations oversample the simulation volume at high redshifts.

integrating ξ (rp, π ) along the π direction to minimize their effects,
thus

wp(rp) = 2
∫ πmax

0
ξ (rp, π )dπ. (10)

In practice, this integral is carried out numerically using our ξ (rp, π )
grid. The choice of πmax warrants careful consideration. Ideally, one
would use the largest possible value of πmax to include most of the
2D clustering signal, and because theoretically the effects of redshift
space distortions are only removed if you integrate out to infinity.
Unfortunately, in real surveys noise affects the measurements, and
measurements for large values of πmax can be particularly noisy.
We adopt a value of πmax = 41 Mpc h−1 for our measurements,
which is a reasonable πmax value to consider for the scales analysed
(see e.g. fig. 1 of Norberg et al. 2009). For the Zehavi et al. (2011)
comparison sample, we use πmax = 60 Mpc h−1, which makes our
measurements noisier but matches the Zehavi et al. (2011) πmax.

The results of equation (10), with πmax = ∞, can be calculated
analytically for a spherically symmetric power-law correlation func-
tion, ξ (rp) = (rp/r0)−γ , where r0 and γ are constants. The result
is

wp(rp) = rp

(
r0

rp

)γ
�(1/2)�((γ − 1)/2)

�(γ /2)
, (11)

where � is the Gamma Function. We will fit equation (11) to some
of our samples in Section 5 in order to measure correlation lengths,
r0. As a power law is not a good fit over the whole 2PCF, we restrict
the fit to the scales 0.2 Mpc h−1 < rp < 9.0 Mpc h−1. To fit, we adopt
a least-squares minimization method using the diagonal terms of the
covariance matrix. To check how the variation of γ could influence
the derived value of r0, we also fit power laws with a fixed γ = −1.8.
All of the measured values are given in the appendix in Table B1.
We see only a small difference between the best-fitting r0 values
where γ is free to vary and where γ = −1.8. The difference is not
large enough to affect our conclusions.

When plotting clustering, we often include a reference power-
law line or divide through by this reference power law, wref, to
allow easier comparison between plots. We use the Zehavi et al.
(2011) power-law fit to their −21.0 < M0.1

r,h < −20.0 sample for
this purpose, which has r0 = 5.33h−1 Mpc and γ = −1.81.

The clustering results in this paper have been cross-checked
numerous times to great accuracy against independent clustering
analyses.

3.3 Error estimates

To compute error bars on our clustering measurements for GAMA
data, nine jack-knife samples (e.g. Zehavi et al. 2002), three per
region, are formed by rejecting roughly equal-area regions of data.
From this method, the covariance matrix Cij, is calculated, the
square-root of the diagonal terms of which give the error bars. Work
such as Guo et al. (2014) show that with large surveys like SDSS,
a large number of jack-knife resamplings (∼100) can give reliable
estimates of the covariance matrix. Our smaller area, necessitating
a smaller number of jack-knife regions, means we should further
test our covariance matrix estimates.

We also test how unbiased using jack-knife errors is for our
sample. For this, we utilize the 26 realizations of each model, created
by considering different lightcones through the simulation. These
estimates of the error should be more realistic, as they are built
from a series of lightcones which together sample a larger volume
than the GAMA data, even though they are drawn from a single
simulation. This latter fact implies that the mock errors shown are
likely underestimates of the true sample variance, as estimated from
an series of lightcones constructed from independent simulations.
We computed the jack-knife errors, for a single mock, and the root
mean square (rms) scatter between the different realizations for
all of the samples selected on mass. In Fig. 6, we show the ratio
of the two error estimates as a function of projected separation.
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Figure 5. The redshift distribution of the data (solid lines) compared to
the redshift distribution of the randoms (dashed lines), for different samples
as indicated in the legend. Vertical dotted lines mark the positions of our
redshift cuts. The randoms provide an excellent description of the data.

Different colours are from the different models, as indicated. The
dashed and solid lines represent two different realizations of the
model, encompassing different volumes of the simulation. These
two volumes are the same for both models, in order to disentangle
the effects of sample variance and galaxy formation.

In the highest redshift slices, the error estimates converge, how-
ever note that this convergence could be due to the two realizations
sampling some of the same volume of the N-body simulation (see
Section 2.2.2). In the two lower redshift slices, the realizations
should be nearly independent. We can see that for some redshift
and mass ranges, the jack-knife errors give the same uncertainty as
the model, whilst for others the errors disagree. In particular, the
low-redshift jack-knife errors give a lower estimate in the first vol-
ume. This suggests that for our samples jack-knife errors could be
underestimates at low redshift. As expected, we only see a small dif-
ference between the ratios for the two models in the same volume,
as such it appears that the ratio is most sensitive to sample variance.
Despite the limitations of the jack-knife error estimates with our
samples, we use them with the data as it has the advantage of not
being model dependent, nor sensitive to how accurately the models
reproduce the observed GAMA clustering. However, for the mock
predictions we will always plot the error computed from the scatter
between the mocks. This is not only true for the clustering measure-
ment, but also for the errors on the parameters of our power-law
fits. When we plot the mean correlation functions of our 26 mock
realizations, we do not divide our error estimates by

√
26, such that

the errors reflect the scatter expected on an individual realization of
the GAMA survey. Again recall these errors are underestimates in
the two higher redshift slices due to the overlap between lightcones
of different realizations in the simulation.

When assessing the goodness-of-fit of the mock predictions to the
data, or our data to literature data, we will use the covariance matrix.
For the comparisons of our GAMA observations to the literature,
we use the covariance matrix from the jack-knife resampling. As
we compare to the SDSS measurements of Zehavi et al. (2011),
we can disregard the contribution of the errors on the literature
measurements to the goodness of fit as they come from a much larger
volume than our GAMA samples. When comparing the mocks to
the data, we use the covariance matrix computed from the 26 mock
realizations. This tests the hypothesis that the data is a realization of
the mock. As with the SDSS measurements, the error on the mean
measurements from the 26 mocks are small compared the real data
uncertainties and are therefore disregarded.

The computation of the inverse of the covariance matrix, C−1
ij , can

cause problems as our estimates of the covariance, from a limited
number of resamplings or realizations, can be noisy. Our method to
correct for this follows Gaztañaga & Scoccimarro (2005) and Marı́n
et al. (2013). We first compute the correlation matrix,

C̃ij = Cij√
σiσj

(12)

where σ i is the standard deviation of the ith 2PCF measurement and
i and j are indices running over all of the 2PCF measurements. We
then carry out a singular value decomposition (SVD) of it, yielding
C̃ = UC̃SVDUT, where U and UT are rotation matrices and C̃SVD is
a diagonal matrix with elements λ2

ij δij . The rotation matrix acts to
transform the data points into a coordinate system where they are
no longer correlated. The basis of this new coordinate system are
the eigenvectors of the covariance matrix, given by the columns of
the matrix U, which have λ2

ij δij as their eigenvalues. As explained
in Gaztañaga & Scoccimarro (2005) the eigenmodes of the data
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Figure 6. The ratio of error computed from the scatter between 26 mock realizations, and jack-knife error estimates from two different realizations. Red lines
are from the L14 model whilst blue lines are from the G14 model. We can see the error estimates from jack-knife resampling can be very different to those
from the mock realizations.

expressed in this basis should be uncorrelated, Gaussian distributed
and given by

Ŵ (i) = �jUji

W (j )

σj

, (13)

where W(j) are elements of a vector of the 2PCF measurements, and
Ŵ (i) are the new eigenmodes. As we have a noisy estimate of the
covariance matrix, from a limited number of jack-knife samples or
mock realizations, some of the eigenvectors will be poorly estimated
and using them would bias the estimated χ2. We would expect the
modes which contribute least to the variance to be most likely to
suffer from this problem; these modes have small eigenvalues.

We experimented with applying the Gaztañaga & Scoccimarro
(2005) cut of λij >

√
2/Nmock,jk where Nmock,jk is either the number

of mock realizations for the χ2 tests of the model (Nmock,jk = 26), or
the number of jack-knife resamplings for the χ2 tests of whether our
results agree with Zehavi et al. (2011, Nmock,jk = 9). However, we
found that this could, counter intuitively, lead to noisier data sets or
data sets with fewer reliable measurements having more accepted
modes. We therefore adopted the approach of only taking the four
largest modes, which for our data is slightly more conservative than
applying the Gaztañaga & Scoccimarro (2005) cuts.

To invert C̃SVD, we simply take 1/λij for each element, this is
correct as the matrix is diagonal. We set 1/λij = 0 for eigenvalues
failing the cuts. Setting values to zero in this way means some

possible degrees of freedom are removed. We compute χ2 using the
deviations divided by their associated errors, i.e.

χ2 = �i,j

(W (i)data − W (i)ref)

σi

C̃−1
SVD,ij

(W (j )data − W (j )ref)

σj

. (14)

Here, the ‘data’ measurements are the measured GAMA 2PCF and
the ‘ref’ measurements are either literature data or the 2PCF predic-
tion from the combined mock catalogues. As our χ2 values are still
likely to be somewhat inaccurate, we will only indicate whether
the cumulative χ2 distribution for four degrees of freedom sug-
gests a probability of a certain measurement is less than 2 per cent,
demonstrating it shows highly statistically significant differences.

4 R ESULTS

4.1 Comparison to literature results

In this section, we compare our measurements to those of Zehavi
et al. (2011), which come from the SDSS. This comparison acts
as a test that our methods for k-correcting galaxies, producing ran-
doms and measuring clustering give reasonable results. We can also
use the large area of the SDSS to gauge if the GAMA volume is
particularly underdense or overdense.

In Fig. 7, we show our measurements (blue) against those of
Zehavi et al. (2011) (black), both for the same redshift cuts. We also
show, in red, our measurements for deeper volume-limited samples
using the GAMA apparent magnitude limit in Fig. 7.
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Figure 7. Clustering measurements from Zehavi et al. (2011, black), along with our measurement of clustering for the same magnitude and redshift cuts (blue)
and for our, deeper volume-limited samples (red). Error bars are from jack-knife resamplings of the data. As GAMA has a smaller area than SDSS, applying
the same magnitude and redshift cuts as Zehavi et al. (2011) resulted in the fainter samples being too small to measure clustering. Where the probability of
our data being a realization of the Zehavi et al. (2011) data falls to less than 2 per cent, this is indicated on the panel with the label P(χ2) < 2 per cent, colour
coded by the sample tested. The measurements using the same redshift limits as Zehavi et al (2011) all pass this criteria.

When the probability of the hypothesis that these measurements
agree with Zehavi et al. (2011) falls below 2 per cent, it is indi-
cated on the panel. As a simplification, we do not use the Zehavi
et al. (2011) error estimates in this calculation, as our errors are
the dominant source of uncertainty. The samples with the SDSS
redshift limits show good agreement with the SDSS measurements,
suggesting the GAMA volume is not particularly unusual in the
redshift ranges probed by these samples.

The majority of our deeper, GAMA volume-limited samples
agree with the Zehavi et al. (2011) measurements. The brightest
however shows a significant variation compared to the lower red-
shift Zehavi et al. (2011) measurements. Note, however, that the
jack-knife covariance matrices may not be accurate for a sample
with such a small size and large Poisson errors. The faintest sam-
ple also appears to have a highly statistically significant difference
compared to the Zehavi et al. (2011) measurement. Specifically, the
clustering signal has a lower amplitude. Note, however, the volume
of this sample is even smaller than our low-z slice, for which Fig. 6
demonstrates the jack-knife errors can be underestimates by a factor
of ∼3. In support of this being just being due to sample variance,
Driver et al. (2011) find that the GAMA survey is 15 per cent un-
derdense compared to SDSS DR7 up to z = 0.1, and the median
redshift of this sample is z = 0.09.

4.2 Stellar mass dependent clustering

4.2.1 The full shape of the correlation functions

We will now begin to study clustering as a function of a quantity
that requires less modelling in the mocks but more modelling in the
data: stellar mass. In Fig. 8, we show the clustering of galaxies as a
function of mass, divided by our reference power law. Dividing by a
reference power law in this way means our measurements show the
square of the galaxy bias, relative to the fiducial power law. Note
that not all of the samples are volume-limited, so one should be
careful to use Table 2 to characterize the typical masses, luminosities
and colours of the samples. Samples that are volume-limited are
indicated by a star in Table 2. Samples which are more effected by
the magnitude selection are expected to have less clustering than
volume-limited samples (Meneux et al. 2008), and are expected to
be bluer due to our colour-dependent k-corrections. This can be
seen in Table 2, where the higher redshift, more magnitude-limited,
samples of a particular magnitude or mass range tend to have bluer
median colours. The mocks have been constructed to have the same
selection function, so it is fair to compare directly.

In all the redshift slices, we observe more clustering in the more
massive galaxy samples. This is only seen in Fig. 8 with volume-
limited samples in the lowest redshift slice. However, in the two
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Figure 8. The projected 2PCF of real GAMA (black), G14 model (red) and L14 model (blue) galaxies as a function of redshift (different columns) and stellar
mass (different rows). The measurements are divided by the reference power law defined in Section 3.2. Error bars are from jack-knife resamplings for the
real GAMA data and the scatter between the mock realizations for the mocks. Marked with P < 2 per cent are samples for which the hypothesis that the data
is a realization of the model has less than a 2 per cent probability, colour coded according to the model. Despite clustering measurements not being used when
creating the models, they reproduce the same trends with mass and redshift as the data. Some samples, however, do show significant differences, particularly
on small scales.

highest redshift slices the median colours and magnitudes of the
second most massive sample, which is magnitude-limited, are fairly
similar to those of the low-redshift volume-limited sample (Table 2).
This similarity suggests that the large change in clustering amplitude
seen between the 10.5 < log10 M∗/M� h−2 < 11.0 sample and the
11.0 < log10 M∗/M� h−2 < 11.5 sample is real, even though the
less massive of these samples is magnitude-limited. In the redshift
slices, we also see the small-scale clustering (around <3 h−1 Mpc),
relative to the large-scale clustering, increases with mass. This could
be interpreted as an increasing fraction of satellite galaxies in the
higher mass samples, or it could be a result of fainter, redder satellite
galaxies being lost in the more magnitude-limited samples.

The mock predictions for the two models are fairly similar to one
another. This similarity suggests the adoption of the Jiang et al.
(2008, 2014) approach to computing satellite merger times has
only a small effect on the clustering. The general trend of more
massive galaxies being more clustered is reproduced. In a �CDM
cosmology, this implies in both the model and the data more massive
galaxies reside in more massive dark matter haloes. As discussed,
some of this effect may also be due to using magnitude-limited
rather than volume-limited samples. While the amplitude of the
clustering in the models is generally an acceptable match to the
data, the small-scale clustering is often incorrectly predicted.

For the two slices below z = 0.24, galaxy samples in the
10.0 < log10 M∗/M� h−2 < 10.5 mass range appear, by eye, to
have too high small-scale clustering. This discrepancy is borne out
statistically, with values less than 2 per cent probability of this data
being a realization of the model. For the G14 model, this over-
prediction of small-scale clustering persists to higher redshift. The
mock predictions for the 10.0 < log10 M∗/M� h−2 < 10.5 sample
at 0.35 < z < 0.5 also show a significant discrepancy, which does
not appear to be restricted to small scales. However recall that the
covariance matrices derived from the mocks are underestimates of
the true error in the high redshift slice, due to the oversampling of
the N-body simulation.

Additionally, the 8.5 < log10 M∗/M� h−2 < 9.5 sample in the
0.14 < z < 0.24 slice and the 9.5 < log10 M∗/M� h−2 < 10 in the
0.24 < z < 0.35 slice has a clustering signal on scales less than a
few Mpcs that is significantly too small compared to the GAMA
data. This is true even for the latter of those samples, where the data
error bars might suggest the model is a good fit. This is because the
error bars are much smaller in the mock predictions than in the real
data, as the mock number densities are much larger for this sample
(recall only the luminosity functions were forced to match).

In Fig. 9, we plot samples which have had their upper redshift
limits adjusted in order to make them volume-limited. In general,
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Figure 9. The projected 2PCF of real GAMA (black), G14 model (red) and L14 model (blue) galaxies as a function of stellar mass for different approximately
volume-limited redshift slices. The real GAMA samples consist of at least 98 per cent volume-limited galaxies, the mocks 89 per cent. The measurements are
divided by the reference power law defined in Section 3.2. Error bars are from jack-knife resamplings for the real GAMA data and the scatter between the
mock realizations for the mocks. Marked with P < 2 per cent are samples for which the hypothesis that the data is a realization of the model has less than a
2 per cent probability, colour coded according to the model.

they imply the same conclusions as we drew from the flux-limited
samples. We again see that the more massive galaxy samples are
more clustered. Several of the mock samples have too much cluster-
ing on small scales. Seeing this effect in the volume-limited samples
means it is not related to the modelling of the selection function.

4.2.2 Results from power-law fits

To further investigate the redshift and mass evolution of the clus-
tering, we show in Fig. 10 the r0 values from the power-law fits
to the measurements, as a function of the ratio of the median sam-
ple mass to the characteristic mass of the stellar mass function at
z = 0.0, 1010.35 M� h−2 (Baldry et al. 2012). Samples consisting
of 95 per cent or more volume-limited galaxies are indicated by a
star, magnitude-limited samples are indicated by a triangle. We see
very similar dependence of clustering on mass in both the GAMA
data and the models. Also, in the magnitude-limited samples of the
data and the models, the increase in clustering strength as a function
of stellar mass is faster for the higher redshift samples. This effect
is also seen in the mock catalogues. This can also be viewed as
less massive samples evolving faster with redshift than more mas-
sive ones. However, note this effect is not seen when considering
the volume-limited samples, which only show weak evidence of
redshift evolution.

In order to further explore possible redshift evolution, in Fig. 10
we plot the bias versus mass relation of Li et al. (2006) as dashed
lines, colour-coded according to redshift. We convert this relation
into r0 values assuming a power-law correlation function, and cal-
culating the r0 of dark matter using the bias and r0 of the galaxy
sample containing M∗, i.e. r0,dm = r0(M∗)b(M∗)−2/γ . We can then
use the relation r0(M) = (b(M))2/γ r0,dm. We use our own power-
law fit to the published Li et al. (2006) sample containing M∗ for
r0(M∗). A corresponding bias, b(M∗), is taken directly from the Li
et al. (2006) fitting formula. The dashed lines at different redshifts
are calculated using the passive evolution model of Fry (1996) to
evolve the bias values, and using the growth factor D(z) to evolve
the dark matter r0 as r0,dm(z) = r0,dm(z′)(D(z)/D(z′))2/γ . Such a
model gives the expected evolution of r0 for a model where galax-
ies formed in some density field before moving along trajectories at
a velocity defined by their local gravitational potential. The growth
factor was calculated for our cosmology from the approximate for-
mula of Carroll, Press & Turner (1992). We assume γ = 1.8 for the
power laws, whilst in reality our value of γ is allowed to vary in the
fits. However, we show in Table B1 that using a fixed γ = 1.8 only
has a small effect on our r0 values.

One clear observation is that in both the volume-limited and
magnitude-limited lowest mass sample, the measured amplitude
is much lower than the Li et al. (2006) relation. As previously
mentioned, GAMA is unusually underdense at low redshifts, and
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Figure 10. The r0 of our power-law fits to the range 0.2 Mpc h−1 < rp < 9.0 h−1Mpc as a function of the median stellar mass of the sample divided by the
characteristic mass of the stellar mass function (at z = 0). The errors come from fitting to the multiple jack-knife regions, or from the scatter from fitting
to multiple mocks. Different panels give the GAMA measurements, the L14 model and the G14 model (left to right). Points have been colour coded by
median redshift, with samples defined by the same redshift cuts connected by lines. The dashed coloured lines gives the bias fitting formula of Li et al. (2006),
converted from bias to r0 assuming a power-law correlation function with γ = 1.8 and evolved to different redshifts using the passive evolution model of Fry
(1996), more details are given in the text. More massive galaxies are more clustered, a trend qualitatively reproduced by the models. Volume-limited samples
are marked with a star, magnitude-limited samples are marked with a triangle. Note the magnitude-limited samples are likely to give lower values of r0 than
the corresponding volume-limited sample. As such the strong trend with redshift for the low-mass samples should not be interpreted as clear evidence of real
redshift evolution. This selection effect is accounted for when constructing the model catalogues, so the models and data can be fairly compared.

the jack-knife error bars can considerably underestimate the true
uncertainty at low redshift. The very low amplitude in the least
massive samples is therefore likely sample variance.

It appears at lower masses the dependence on r0 with mass is
stronger in our data than the fitting formulae. Some of this may be
sample variance, but note this strong trend is not seen when only
considering volume-limited samples. Indeed the volume-limited
samples follow the expected dependence of clustering amplitude
with mass. Another likely selection effect is that there is more red-
shift evolution in the magnitude-limited samples than expected from
the passive evolution model. In Fig. 10, we help to mitigate the effect
of the GAMA r-band magnitude selection on our results by plotting
r0 against the median mass of the sample. None the less, higher
redshift samples will be biased towards different galaxies. As men-
tioned, more magnitude-limited samples will have lower clustering
than volume-limited samples (e.g. Meneux et al. 2008). As such
the redshift evolution in clustering amplitude observed in the less
massive galaxies may be down to these observational effects. Tests
we conducted comparing clustering measurements from r < 19.8
and r < 21 versions of the mock catalogues support this idea (these
samples have a much larger fraction of magnitude-limited galaxies
than the samples where we found no significant differences between
the original and deeper catalogues).

At higher masses, our measurements are not precise enough to
determine if the galaxy clustering is evolving passively or not. It is
likely that mass samples in these data can be used to probe redshift
evolution, but this may be better done using more sophisticated
modelling such as HOD fitting. We leave this to the HOD fitting
of Palamara et al. (in preparation), while we focus on comparison
to the models which have selection effects included via the use of
lightcone.

Returning to the model comparisons then, we see the r0 values
of each model are very similar to one another, except in the high-
redshift slice where the L14 model has stronger clustering than the
G14 model. The trends seen in the data are also reproduced by both
models. In general, the increase of r0 with magnitude is slightly

steeper in the model than the data. The steep increase of clustering
with mass, at low masses, is expected to be related to the GAMA
selection function. As this trend is qualitatively reproduced by the
models, the models have some success in assigning the correct
luminosities or colours to the sample galaxies.

4.2.3 Summary of model comparisons for mass samples

To summarize, the most obvious problems with the model predic-
tions as a function of stellar mass are in the one-halo term regime,
this points towards the physics of satellite galaxies being a weakness
in the model. As mentioned, in Campbell et al. (2015) instead of
using the true model masses, they estimate the model masses from
the predicted broad-band photometry. They find that this does affect
the clustering as a function of mass. The effect is much stronger
for the L14 model than the G14 model, and brings the small-scale
clustering into better agreement with the data. They still find that
even by estimating the masses in this way, the models predict too
much small-scale clustering. Also note that the typically redder and
fainter satellite galaxies are more sensitive to the r-band apparent
magnitude cut (i.e. selection effects), so it may also be related to the
model assigning wrong colours or luminosities to satellite galaxies.
This is also a possible explanation for the steeper increase in r0 with
mass compared to real data.

4.3 Luminosity dependent clustering

4.3.1 The full shape of the correlation functions

In Fig. 11, we show the clustering of galaxies as a function of
luminosity and redshift, in Fig. 12 we show the corresponding
volume-limited samples. For all of the redshift intervals, we no-
tice segregation between the faint and bright samples, with brighter
galaxies being more clustered. This trend is not seen in the mocks,
indeed the clustering of the L14 mock decreases slightly between
−21.0 < Mr,h < −20.0 and −22.0 < Mr,h < −21.0. Because of this
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Figure 11. The projected 2PCF of real (black) and G14 model (red) and L14 model (blue) galaxies as a function of redshift(different columns) and luminosity
(different rows). The measurements are divided by the reference power law defined in Section 3.2. Error bars are from jack-knife resamplings for the GAMA
data, and from the scatter between realizations in the mock. Marked with P < 2 per cent are samples for which the hypothesis that the data is a realization of
the model has less than a 2 per cent probability, colour coded according to the model. The clustering of faint galaxies is successfully reproduced in the L14
model for the majority of samples. However, the models do not show as much clustering evolution with luminosity as the data, and are particularly discrepant
for the brightest sample and on small scales.

lack of dependence on luminosity, the mocks brighter than our sam-
ple −21.0 < Mr,h < −20.0 (which contains M∗

r,h) all disagree very
significantly with the data. For these bright galaxies, the G14 model
is closer to the data than the L14 model, but still very discrepant.

For bins fainter than M∗
r,h, we see good agreement for many of

the L14 model samples, in particular for samples fainter than Mr,h =
−20. In contrast, some of the G14 model predictions for fainter lu-
minosity samples show too much clustering on small scales (less
than ∼3 h−1 Mpc). At 0.24 < z < 0.35 and −21.0 < Mr,h < −20.0,
the L14 model predicts too little small-scale clustering. Addition-
ally, the most luminous mock samples underpredict the clustering,
particularly on small scales (<3h−1 Mpc) at z > 0.14. Apart from
this most luminous sample, the small-scale clustering predictions of
the mocks are more successful here than in the mass samples. The
volume-limited samples in Fig. 12 all show reasonable agreement,
given the errors, with the model except the most luminous sample.
In this sample, as with the magnitude-limited sample around this
redshift, the models underpredict the clustering.

4.3.2 Results from power-law fits

In Fig. 13, we plot the r0 of our luminosity samples, as a func-
tion of the ratio of the median sample luminosity to M∗

r,h = −20.6
(Loveday et al. 2015). Taking this ratio is useful as it removes a

dependence on how magnitudes are converted to luminosities. We
see less variation in the clustering properties over this range than
we did with mass. Volume-limited samples are plotted with a star,
magnitude-limited samples are plotted with a triangle. In Fig. 10,
we plot the Zehavi et al. (2011) bias versus luminosity fitting for-
mula as a dashed line, colour coded according to what redshift the
relation has been passively evolved. Following Section 4.2.2, to de-
termine the r0,dm needed to convert galaxy biases from the Zehavi
et al. (2011) formula to r0 values, we use the quoted r0 value from
the Zehavi et al. (2011) power-law fit to their sample containing L∗

r

as a reference.
Before interpreting these data, we must once more consider

the selection effects of the magnitude-limited samples. For these
samples the effect is smaller, as the luminosity range is limited
in the sample. None the less, because of the colour-dependent k-
corrections the colours of the samples can change due to the magni-
tude selection. As before the selection effects may act to artificially
enhance any redshift or luminosity trends, by making the clustering
of fainter and more distant galaxies appear weaker than it would
in a volume-limited sample. This certainly seems to be the case
for the most luminous sample in the highest redshift range, where
the volume-limited sample has a much larger amplitude than the
magnitude limited one at the same redshift. Note the redshift range
of the volume-limited sample is very small, and as such it is likely
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Figure 12. The projected 2PCF of real (black) and G14 model (red) and L14 model (blue) galaxies for different volume-limited luminosity samples. The
measurements are divided by the reference power law defined in Section 3.2. Error bars are from jack-knife resamplings for the GAMA data, and from the
scatter between realizations in the mock. Marked with P < 2 per cent are samples for which the hypothesis that the data is a realization of the model has less
than a 2 per cent probability, colour coded according to the model.

Figure 13. The r0 of our power-law fits to the range 0.2 < rp < 9.0 h−1 Mpc as a function of the median luminosity of the sample, divided by the characteristic
luminosity of the data at z = 0. Pure luminosity evolution has been accounted for with Q = 1.45. The error bars give the error from fitting to the multiple
jack-knife regions. Different panels give the GAMA measurements, the G14 model and the L14 model (left to right). Points have been colour coded by
median redshift, with samples defined by the same redshift cuts connected by lines. Volume-limited samples are plotted as stars, magnitude-limited samples
as triangles. The dashed coloured lines gives the bias fitting formula of Zehavi et al. (2011) with σ 0.8 = 0.8, converted from bias to r0 assuming a power-law
correlation function with γ = 1.8 and evolved to different redshifts using the passive evolution model of Fry (1996), more details are given in the text. The
Zehavi et al. (2011) fitting formula is only derived from the range 0.16 < Lr/L

∗
r < 6.3 (Zehavi et al. 2011), but the disagreement at low luminosity is more

likely to be down to sample variance underestimated in the jack-knife errors. Brighter galaxies are more clustered in the data, a trend not reproduced in the
models. Note the magnitude-limited samples are likely to be underestimates of the true r0. As such the trends with redshift for the low-luminosity samples
should be interpreted with caution (see the text). In the highest luminosity samples, three volume-limited samples demonstrate that r0 is evolving slower than
the passive evolution model (i.e. the bias is evolving faster).
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to suffer from sample variance. The r0 values of the other volume-
limited samples seems to roughly agree with the magnitude-limited
sample, but note this is for the subset of samples where producing
a volume-limited version was possible. It was not possible to con-
struct volume-limited samples for samples with very high fractions
of magnitude-limited members, where selection effects are likely to
be largest.

The data show an increase in clustering with luminosity in all
of the redshift slices. This is seen in many of the volume-limited
samples, and so cannot solely be down to selection effects. Unfor-
tunately, as with the mass samples, this trend cannot be confirmed
in the two highest redshift slices with volume-limited samples. Ex-
cept for the lowest luminosity sample, our measurements from real
GAMA data agree with the Zehavi et al. (2011) relation in the low-
est redshift slice, which is close to the redshift at which the relation
was measured. Our lowest luminosity measurement falls well below
the Zehavi et al. (2011) relation. As with the lowest mass sample,
because we know GAMA is underdense at z < 0.1 (Driver et al.
2011, which is above the median redshift of the faintest sample), a
far more likely explanation is sample variance unaccounted for by
the jack-knife errors.

Except for the brightest sample, the r0 values seem to roughly
follow the expectations of passive evolution. Of course, however,
one has to worry about the selection effects. Using the volume-
limited samples alone only gives some weak evidence of redshift
evolution in r0 between the lowest and second lowest redshift slices.

The highest luminosity sample shows some evidence of not fol-
lowing the passive evolution model. The volume-limited sample in
particular shows stronger than expected clustering from a passive
evolution model. However, given the size of the uncertainties the
measurements are only 1σ–2σ away from the passive evolution
model. A lack of evolution, compared to that expected from passive
evolution, would suggest fast bias evolution. This would be con-
sistent with many other observations of more massive and brighter
galaxies showing little evolution in clustering with redshift (e.g.
White et al. 2007; Brown et al. 2008; Coil et al. 2008; Meneux et al.
2008).

Moving back to our focus of model comparisons, the models
show little dependence on clustering amplitude and luminosity. Both
models predict a similar trend of r0 versus luminosity. This lack of
luminosity dependence is also in agreement with the Zehavi et al.
(2011) bias fitting formula, up to the brightest sample where the
L14 model r0 values falls below the fitting formula. The models
both predict much smaller r0 values than the data in the highest
luminosity bin, the models, unlike the data, also show evidence of
evolution in the clustering with redshift in this sample.

4.3.3 Summary of model comparisons for luminosity samples

The models do a reasonable job at reproducing the amplitude of
clustering as a function of luminosity for the samples fainter than
L∗

r , and the L14 model is a good fit to many of the fainter samples.
However, the models fail to reproduce the amplitude of our bright-
est sample. This underprediction particularly affects small-scale
clustering. Also, recall Kim et al. (2009) found the dependence on
luminosity was not correct for the Bower et al. (2006) model. Note
that semi-analytic models have been shown to have a dependence on
clustering with luminosity, but this evolution only starts to become
apparent at the highest luminosity probed here (see e.g. Norberg
et al. 2001). Again, the disagreements are particularly large at small

scales, suggesting the modelling of satellite galaxies needs to be
improved in the models.

4.4 Colour dependent clustering

Fig. 14 shows the clustering of our samples of red and blue GAMA
galaxies (in black). In all redshift intervals we probe, red galaxies
are more clustered than blue galaxies. We also note that the red
galaxy correlation functions have their strongest clustering, relative
to the reference line, at scales less than around 2 h−1 Mpc. This can
be interpreted as red galaxies predominantly being in larger haloes
with more satellite galaxies. The blue galaxy samples also show a
relative increase in clustering on very small scales (<0.3 h−1 Mpc),
but note that their clustering is still weaker than the reference power
law.

In each panel of Fig. 14, we indicate the absolute magnitude
range enclosing the central 68 per cent of the data. From Fig. 14,
we can draw the following natural conclusions. First, for a given
redshift slice, red galaxies are typically brighter than blue ones. Ad-
ditionally, the absolute magnitude range of the central 68-percentile
reduces with redshift and gets brighter with redshift. Finally, at fixed
redshift, the change in clustering between red and blue galaxies is
significantly larger than can be explained by any luminosity (or
stellar mass) dependence of clustering alone. The models also show
red galaxy samples have a larger amplitude and steeper 2PCFs than
blue galaxies. At low redshifts (z < 0.24), the L14 model agrees
with the measurements whilst the G14 model has too much small-
scale clustering. In contrast, the G14 model shows better agreement
in the two high-redshift slices, whilst the L14 model now has too
little small-scale clustering.

The blue mock galaxy samples all have too low an amplitude,
particularly at small scales. The size of the χ2 values can leave us in
no doubt that neither model successfully reproduces the clustering
of blue galaxies. As the small-scale measurements are particularly
discrepant, it is possible that too few satellite galaxies are blue.
As these samples are magnitude-limited, another possibility is the
model predicts blue satellites that are too faint. The predictions for
blue galaxies being incorrect may not be too surprising, when one
considers that the models predict a clear sequence of blue galaxies
not seen in the data (Fig. 2). The models also do not reproduce
the increase in clustering relative to the power law seen at very
small scales (<0.3 h−1 Mpc). This could relate to an increase in star
formation rate for close pairs of galaxies. This possibility will be
explored in a future paper using star formation rate selected samples
of GAMA galaxies (Gunawardhana et al. in preparation).

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have studied the projected 2PCF of galaxies in GAMA. To
do this, we used a modified version of the Cole (2011) approach
to generate random catalogues; this method resulted in a set of
random points with all of the properties of the real galaxies. The
Cole (2011) approach allows sample selection cuts to be applied to
both the data and the random catalogue, allowing the measurement
of galaxy clustering as a function of diverse galaxy properties.
Our modification, the inclusion of a window to limit the difference
between the initial and cloned redshift, has the potential to limit
the effects of galaxy evolution on random catalogues. This method
should be followed up in later work, to test how effective it is on a
wider selection of galaxy samples (e.g. not just selected on optical
photometry) and to optimize the size of window used.
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Figure 14. The projected correlation function of red galaxies (top) and blue galaxies (bottom) in different redshift slices. Also shown is the clustering of mock
galaxies for the L14 model (blue) and the G14 model (red). The results have been divided by the reference power law defined in Section 3.2. Marked with P <

2 per cent are samples for which the hypothesis that the data is a realization of the model has less than a 2 per cent probability, colour coded according to the
model.

We compared volume-limited samples from SDSS of Zehavi et al.
(2011) to volume-limited samples in GAMA, both with the redshift
cuts of SDSS and with redshift cuts appropriate for the deeper,
GAMA magnitude limit. We find good agreement with SDSS for
our samples using the SDSS redshift limits. In our −23.0 < M0.1

r,h <

−22.0 sample and in our faintest sample, −19.0 < M0.1
r,h < −18.0,

both with the GAMA redshift limits, we find some disagreement
between SDSS and GAMA. Given the expected uncertainties in
our jack-knife covariance matrices, this could indicate the errors
were underestimated. Our faintest sample, −19.0 < M0.1

r,h < −18.0,
shows less clustering than the SDSS data. Particularly relevant for
this sample is the Driver et al. (2011) observation that GAMA is
underdense at z < 0.1, which would indeed lead to lower clustering.

We have observed that more luminous, more massive and redder
galaxies are more strongly clustered, in redshift slices between
z = 0 and 0.5. Though in the two highest redshift slices, the GAMA
selection function complicates the interpretation of this trend. More
massive and luminous galaxies being more clustered is in agreement
with previous measurements that show these trends exist at lower
and higher redshift ranges (e.g. Zehavi et al. 2011; Christodoulou
et al. 2012; Li et al. 2012; de la Torre et al. 2013; Marulli et al. 2013;
Guo et al. 2014), and in a broad redshift bin encompassing all of
our slices (Skibba et al. 2014). We also find that red galaxies have
steeper correlation functions than blue galaxies in these redshift
slices, again in agreement with clustering measured at higher (e.g.
Coil et al. 2008; Guo et al. 2014) and lower (e.g. Zehavi et al. 2011)
redshifts.

We fit power laws to our measurements and see an evolution
in the apparent clustering strength of galaxies with redshift for
samples less massive than 1010.5M�h−2. We also evidence of this
occurring for galaxies less luminous than around L∗. The evolution
is in the direction of higher redshift galaxies being less clustered.
Note however, many of our samples are not volume-limited and so
will be affected by selection effects that are very likely to mimic
this evolution. The volume-limited samples alone do show some
evidence of higher redshift samples of the same luminosity or mass
being less clustered, but this evidence is rather weak considering
the size of the uncertainties.

In our most luminous sample (∼3L∗), which is volume-limited
in three of the redshift slices, we see little evolution in clustering
amplitude between samples with median redshifts of z ∼ 0.1 and
z ∼ 0.4. Given our uncertainties, there is some weak evidence that
this is less evolution than that expected from a simple, passive
evolution model.

A lack of evolution in the clustering amplitude of brighter and
more massive galaxies has been observed by other authors, and
taken as evidence of a fast evolution of the bias of these objects
(White et al. 2007; Brown et al. 2008; Meneux et al. 2008, 2009).
This fast bias evolution has been connected to the merging and
disruption of satellites (White et al. 2007; Brown et al. 2008).

Whilst the interpretation of these measurements is complicated
by selection effects in the magnitude-limited samples, the strength
and focus of this work is model comparisons. We use a model that
utilizes a lightcone, and assign k-corrections to the model galaxies
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in such a way to mimic the selections function of the survey. We
find that the L14 and G14 semi-analytic models successfully predict
the trends of clustering as a function of stellar mass. Both models
have similar predictions for this trend, suggesting it is insensitive to
differences in the adopted physics. In detail, there are places where
the models disagree with the data, often in the regime of the one-
halo term, which is too strong. Campbell et al. (2015) notes that
estimating model masses from the colours, rather than taking them
from the model, helps alleviate this problem for the L14 model.

We find the increase of clustering seen between our samples
−21.0 < Mr,h < −20.0 and −22.0 < Mr,h < −21.0 is not repro-
duced by the models. This discrepancy is present in both models,
but is a bigger problem for the L14 model. For the highest lumi-
nosity sample (∼3L∗

r ), the models also predict too little small-scale
clustering. The clustering of fainter galaxies is better modelled in
the data, with the L14 model being particularly successful at repro-
ducing the clustering of the Mr,h > −20 galaxy samples.

We have also shown that the trends of redshift evolution with mass
and luminosity are qualitatively reproduced by the models (Figs 10
and 13), in that the more massive and more luminous samples show
less redshift evolution. The redshift trends are most likely success-
fully reproduced thanks to the modelling of the GAMA apparent
magnitude limit, showing the importance of applying observational
effects when comparing galaxy formation models to data.

The clustering of red galaxies on large scales is successfully
reproduced by the models. At z > 0.35, the L14 model underpredicts
the clustering on small scales and at z < 0.35 the G14 model
overpredicts clustering on small scales. Both models underpredict
the clustering of blue galaxies, particularly on scales less than a
few Mpc. The colour–magnitude diagram of the models is also very
different to that of the data, the models have a much more clearly
bimodal colour distribution.

These models give different predictions from one another for
samples defined by mass, photometric properties and colour. This
highlights the importance of testing the clustering of models using
a variety of properties for sample selection, or, as Campbell et al.
(2015) suggests, inferring the mass of the model galaxies from their
photometric properties.

The models struggle to reproduce the clustering at small scales.
Therefore, a suggested route to improvement is modifying the
physics affecting satellite galaxies. Several authors have experi-
mented with adding processes which remove satellite galaxies, or
modify their luminosity or colour (e.g Font et al. 2008; Kim et al.
2009; Contreras et al. 2013). Kim et al. (2009) additionally found
that processes affecting satellite galaxies can also change the de-
pendence of clustering on luminosity. Modifying the satellite galaxy
physics could also have an impact of the colour distribution and im-
prove the clustering predictions of blue galaxies. Indeed, Font et al.
(2008) found bluer satellites when applying a more realistic model
of the stripping of gas from infalling satellite galaxies. Modifications
to the satellite galaxy physics could also affect the overabundance of
faint red galaxies in the models noted by McNaught-Roberts et al.
(2014), or the excess of high-multiplicity groups of galaxies ob-
served by Robotham et al. (2011). Finally, changing the colours of
satellite galaxies can have knock-on effects for magnitude-limited
samples, as model galaxies with red SEDs are k-corrected out of
these samples at lower redshifts than blue galaxies. Such modifi-
cations should also be tested to see if they reproduce the lack of
redshift evolution in the brightest samples where the physics affect-
ing satellites galaxies is expected to play a role (White et al. 2007;
Brown et al. 2008).

In conclusion, the G14 and L14 models reproduce the trends
of clustering with mass and successfully predict the amplitude of

clustering for galaxies fainter than L∗
r . They do, however, need im-

provement at small scales – in particular blue galaxies need stronger
small-scale clustering. They also need to be improved in order to
reproduce the clustering of galaxies slightly brighter than L∗

r , i.e. for
our samples with median r-band magnitudes around Mr,h ∼ 21.3.
When these measurements are compared to models one must be
careful to account for the selection effects in the magnitude-limited
samples, for a realistic mock catalogue this could be as simple as
applying an r < 19.8 apparent magnitude cut. An alternative is to
choose the samples which are volume-limited. Indeed, in a future
GAMA paper we intend to use the methodology here to produce
volume-limited magnitude and mass threshold selected samples and
carry out an HOD analysis on them (Palamara in preparation). In
order to facilitate further model tests against these measurements,
our results will be made available online at publication.4
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A P P E N D I X A : T H E E F F E C T O F P, Q A N D
W I N D OW E D R A N D O M S O N T H E
C O R R E L AT I O N F U N C T I O N

In this paper, we utilize a random catalogue generated using a new,
windowed approach. We also use a different combination of the
luminosity function evolution parameters Q = 1.45, P = 0.0 to a
different set of parameters taken from an earlier draft of Loveday
et al. (2015): Q = 0.81, P = 1.45. To test for any biases introduced by
this, we compare results of using three different random catalogues:
the randoms used in our measurements, the same P and Q as our

Figure A1. The projected 2PCF of 10.00 < log10 M∗/M� h−2 < 10.50
galaxies in two different redshift slices, as indicated. The different lines
represent different methods of generating a random catalogue with which
to measure clustering, each is labelled in the legend. It can be seen that the
our choice of random catalogue does not have a significant effect on our
measurements.
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random catalogue but without the window function and a different
P and Q with and without the window function. For this purpose,
we use a mass selected sample, as this avoids changes in the sample
definition arising due to a different value of Q. We choose the
10.00 < log10 M∗/M� h−2 < 10.50 mass bin, and use the redshift
ranges 0.14 < z < 0.24 and 0.24 < z < 0.35. These redshift slices
encompass a large underdensity in the n(z), where one might expect
to see the largest differences between the random catalogues.

In Fig. A1, we show the results. The most difference appears at
large scales; with the measurements using the windowed catalogue
showing a lower clustering amplitude than the results from the
two random catalogues without windowing. The two unwindowed
results also show some deviation on large scales. Note, however,
that the differences are much smaller than the error bars for both of
the samples, so much so that the conclusions of this paper will not
be affected.

APPENDI X B: POW ER-LAW FI T TABLES AND
MOCK SAMPLE PROPERTI ES

In Table B1, we show the results from our power-law fits to our
samples of GAMA galaxies. Uncertainties are given in brackets, and
were derived from fitting power laws to each jack-knife realization
separately. Also given are the r0 values found from fixing the slope
of the power law, γ , rather than allow it to vary freely. The difference
in the recovered r0 values is small.

Tables B2 and B3 give the sample properties, and standard devi-
ations (in brackets) of one realization of the G14 and L14 models,
respectively. The magnitudes have been adjusted in order to match
their luminosity functions to the real GAMA data (see Section
2.3.3), as such the sample sizes are much more similar to the real
data for luminosity-defined samples than mass- or colour-defined
samples.

Table B1. The recovered values from power-law fits to the clustering, r0,γ fixed are the results of fitting the data with a fixed value of γ = 1.8. Jack-knife errors
are given in brackets. We see red galaxies have steeper 2PCFs, and that the amplitude of the 2PCF increases with magnitude and mass, regardless as to whether
γ is also fit or not. Samples marked with asterisks are magnitude limited, so should be treated with careful consideration of the GAMA selection function.
Samples without asterisks are volume-limited, and can be treated at face value.

Sample zmin zmax r0 γ r0,γ fixed

−18.00 < Mr,h < −17.00 0.02 0.14* 3.68 (0.31) 1.81 (0.09) 3.69 (0.27)

−19.00 < Mr,h < −18.00 0.02 0.14* 4.57 (0.37) 1.74 (0.06) 4.44 (0.26)
0.14 0.24* 4.51 (0.69) 1.84 (0.05) 4.52 (0.70)

−20.00 < Mr,h < −19.00 0.02 0.14 5.35 (0.51) 1.70 (0.07) 5.07 (0.36)
0.14 0.24* 4.91 (0.22) 1.78 (0.03) 4.86 (0.17)
0.24 0.35* 4.05 (0.17) 1.69 (0.05) 4.09 (0.18)

−21.00 < Mr,h < −20.00 0.02 0.14 5.58 (0.75) 1.76 (0.07) 5.45 (0.53)
0.14 0.24 5.39 (0.28) 1.78 (0.04) 5.33 (0.19)
0.24 0.35* 5.04 (0.09) 1.76 (0.02) 4.98 (0.07)
0.35 0.50* 4.82 (0.27) 1.62 (0.06) 4.84 (0.26)

−22.00 < Mr,h < −21.00 0.02 0.14 6.59 (0.58) 1.77 (0.08) 6.49 (0.44)
0.14 0.24 6.12 (0.32) 1.87 (0.05) 6.30 (0.25)
0.24 0.35 6.47 (0.18) 1.79 (0.02) 6.45 (0.16)
0.35 0.50* 6.38 (0.25) 1.81 (0.03) 6.40 (0.20)

−23.00 < M0.1
r,h < −22.00 0.01 0.50 9.39 (0.50) 1.99 (0.10) 9.56 (0.44)

−22.00 < M0.1
r,h < −21.00 0.01 0.38 6.65 (0.10) 1.77 (0.01) 6.60 (0.09)

−21.00 < M0.1
r,h < −20.00 0.01 0.26 5.72 (0.28) 1.75 (0.03) 5.55 (0.20)

−20.00 < M0.1
r,h < −19.00 0.01 0.18 5.27 (0.42) 1.74 (0.04) 5.08 (0.31)

−19.00 < M0.1
r,h < −18.00 0.01 0.12 3.97 (0.33) 1.87 (0.06) 4.09 (0.27)

8.50 < log10 M∗/M� h−2 < 9.50 0.02 0.05 3.28 (0.42) 2.24 (0.21) 4.86 (0.38)
0.02 0.14* 4.00 (0.22) 1.73 (0.05) 3.95 (0.21)
0.14 0.24* 3.70 (0.19) 1.66 (0.03) 3.65 (0.17)

9.50 < log10 M∗/M� h−2 < 10.00 0.02 0.14 5.84 (0.64) 1.77 (0.07) 5.72 (0.37)
0.14 0.24* 4.81 (0.24) 1.77 (0.03) 4.75 (0.20)
0.24 0.35* 3.44 (0.11) 1.64 (0.05) 3.64 (0.09)

10.00 < log10 M∗/M� h−2 < 10.50 0.02 0.14 5.93 (0.71) 1.82 (0.07) 6.01 (0.54)
0.14 0.18 5.94 (0.46) 1.86 (0.05) 6.35 (0.36)
0.14 0.24* 5.67 (0.27) 1.85 (0.04) 5.86 (0.17)
0.24 0.35* 4.81 (0.13) 1.73 (0.02) 4.71 (0.11)
0.35 0.50* 4.49 (0.20) 1.69 (0.04) 4.65 (0.19)

10.50 < log10 M∗/M� h−2 < 11.00 0.02 0.14 6.84 (0.62) 1.75 (0.09) 6.69 (0.47)
0.14 0.24 6.37 (0.34) 1.93 (0.04) 6.78 (0.30)
0.24 0.29 5.76 (0.28) 1.93 (0.03) 6.65 (0.24)
0.24 0.35* 6.37 (0.20) 1.84 (0.02) 6.50 (0.17)
0.35 0.50* 6.15 (0.22) 1.78 (0.03) 6.10 (0.16)

11.00 < log10 M∗/M� h−2 < 11.50 0.24 0.35 8.42 (0.37) 1.76 (0.03) 8.33 (0.34)
0.35 0.37 8.06 (1.33) 2.14 (0.11) 10.88 (1.19)
0.35 0.50* 8.17 (0.47) 1.88 (0.05) 8.38 (0.44)

MNRAS 454, 2120–2145 (2015)

 at U
niversity of D

urham
 on February 10, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2144 D. J. Farrow et al.

Table B1 – continued.

Sample zmin zmax r0 γ r0,γ fixed

Red 0.02 0.14* 6.25 (0.53) 2.03 (0.07) 7.13 (0.45)
0.14 0.24* 6.37 (0.31) 1.96 (0.03) 7.04 (0.25)
0.24 0.35* 6.49 (0.15) 1.90 (0.01) 6.79 (0.14)
0.35 0.50* 7.50 (0.29) 1.89 (0.02) 7.82 (0.25)

Blue 0.02 0.14* 3.34 (0.14) 1.52 (0.02) 3.03 (0.10)
0.14 0.24* 3.89 (0.14) 1.63 (0.03) 3.63 (0.10)
0.24 0.35* 4.09 (0.11) 1.64 (0.02) 4.00 (0.10)
0.35 0.50* 4.80 (0.10) 1.69 (0.03) 4.85 (0.10)

Table B2. Different mock galaxy samples, sample sizes and median properties for one G14 model realization of GAMA. The subscript ‘med’ indicates the
values are medians. Where maximum redshift has an asterisk, the sample is not volume limited. In samples without an asterisk at least 95 per cent of the
members are volume limited. Values in brackets are rms scatter.

Sample zmin zmax Ngals zmed Mmed log10(M∗/M� h−2)med (g − r)0,med

−18.00 < Mr,h < −17.00 0.02 0.07 2965 0.05 −17.46 (0.28) 8.83 (0.26) 0.29 (0.17)
0.02 0.14* 5907 0.07 −17.59 (0.27) 8.83 (0.25) 0.27 (0.17)

−19.00 < Mr,h < −18.00 0.02 0.11 7402 0.08 −18.48 (0.29) 9.20 (0.30) 0.30 (0.18)
0.02 0.14* 12979 0.10 −18.55 (0.27) 9.21 (0.30) 0.29 (0.18)
0.14 0.24* 2894 0.15 −18.85 (0.12) 9.28 (0.33) 0.30 (0.19)

−20.00 < Mr,h < −19.00 0.02 0.14 11689 0.11 −19.47 (0.29) 9.71 (0.37) 0.43 (0.20)
0.14 0.17 7029 0.15 −19.45 (0.28) 9.75 (0.39) 0.51 (0.20)
0.14 0.24* 26387 0.19 −19.61 (0.27) 9.78 (0.39) 0.49 (0.21)
0.24 0.35* 2343 0.25 −19.91 (0.09) 9.65 (0.29) 0.27 (0.17)

−21.00 < Mr,h < −20.00 0.02 0.14 6968 0.11 −20.40 (0.28) 10.26 (0.36) 0.61 (0.21)
0.14 0.24 22285 0.20 −20.39 (0.28) 10.28 (0.35) 0.61 (0.21)
0.24 0.35* 35746 0.28 −20.56 (0.26) 10.24 (0.36) 0.50 (0.21)
0.35 0.50* 3644 0.37 −20.87 (0.14) 10.05 (0.28) 0.27 (0.17)

−22.00 < Mr,h < −21.00 0.02 0.14 1835 0.11 −21.28 (0.25) 10.72 (0.32) 0.70 (0.20)
0.14 0.24 5838 0.20 −21.28 (0.25) 10.73 (0.32) 0.70 (0.20)
0.24 0.35 15354 0.30 −21.29 (0.25) 10.72 (0.32) 0.66 (0.20)
0.35 0.37 3316 0.36 −21.29 (0.26) 10.72 (0.32) 0.64 (0.20)
0.35 0.50* 17073 0.40 −21.41 (0.26) 10.64 (0.35) 0.48 (0.21)

8.50 < M∗ < 9.50 0.02 0.05 3066 0.04 −17.49 (0.89) 8.92 (0.28) 0.43 (0.16)
0.02 0.14* 20046 0.09 −18.34 (0.76) 9.11 (0.26) 0.27 (0.14)
0.14 0.24* 7525 0.17 −19.23 (0.30) 9.37 (0.12) 0.25 (0.07)

9.50 < M∗ < 10.00 0.02 0.14* 10713 0.11 −19.44 (0.63) 9.73 (0.14) 0.54 (0.16)
0.14 0.24* 19616 0.19 −19.79 (0.47) 9.77 (0.14) 0.35 (0.15)
0.24 0.35* 12697 0.28 −20.34 (0.28) 9.84 (0.12) 0.27 (0.08)

10.00 < M∗ < 10.50 0.02 0.14 5746 0.11 −20.18 (0.58) 10.20 (0.14) 0.66 (0.15)
0.14 0.18 5155 0.16 −20.14 (0.57) 10.20 (0.14) 0.66 (0.15)
0.14 0.24* 18085 0.20 −20.17 (0.53) 10.22 (0.14) 0.65 (0.15)
0.24 0.35* 19509 0.28 −20.72 (0.42) 10.25 (0.15) 0.44 (0.16)
0.35 0.50* 8752 0.40 −21.23 (0.30) 10.24 (0.14) 0.29 (0.09)

10.50 < M∗ < 11.00 0.02 0.14 3455 0.11 −20.71 (0.69) 10.73 (0.14) 0.76 (0.11)
0.14 0.24* 11227 0.20 −20.69 (0.61) 10.71 (0.14) 0.75 (0.11)
0.24 0.29* 8747 0.27 −20.83 (0.43) 10.71 (0.14) 0.72 (0.11)
0.24 0.35* 18649 0.29 −20.94 (0.40) 10.72 (0.14) 0.71 (0.11)
0.35 0.50* 7885 0.39 −21.39 (0.33) 10.80 (0.15) 0.67 (0.16)

11.00 < M∗ < 11.50 0.24 0.35* 3114 0.30 −21.75 (0.50) 11.09 (0.09) 0.75 (0.05)
0.35 0.37 609 0.36 −21.79 (0.32) 11.10 (0.09) 0.74 (0.05)
0.35 0.50* 4377 0.41 −21.84 (0.28) 11.11 (0.09) 0.73 (0.05)

Red 0.02 0.14* 19247 0.10 −19.23 (1.37) 9.87 (0.65) 0.63 (0.10)
(g − r)0 + 0.03(Mr,h − M∗

r,h) > 0.498 0.14 0.24* 31606 0.19 −20.07 (0.70) 10.35 (0.38) 0.69 (0.09)
0.24 0.35* 28164 0.28 −20.80 (0.51) 10.67 (0.28) 0.71 (0.08)
0.35 0.50* 10034 0.39 −21.53 (0.38) 10.97 (0.21) 0.72 (0.06)

Blue 0.02 0.14* 24008 0.09 −18.72 (1.27) 9.18 (0.53) 0.26 (0.07)
(g − r)0 + 0.03(Mr,h − M∗

r,h) < 0.498 0.14 0.24* 26135 0.19 −19.88 (0.70) 9.68 (0.34) 0.30 (0.08)
0.24 0.35* 26245 0.29 −20.63 (0.49) 10.01 (0.28) 0.30 (0.09)
0.35 0.50* 12622 0.40 −21.25 (0.40) 10.26 (0.26) 0.29 (0.10)
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Table B3. Different mock galaxy samples, sample sizes and median properties for one L14 model realization of GAMA. The subscript ‘med’ indicates the
values are medians. Where maximum redshift has an asterisk, the sample is not volume-limited. In samples without an asterisk at least 95 per cent of the
members are volume-limited. Values in brackets are rms scatter.

Sample zmin zmax Ngals zmed Mmed log10(M∗/M� h−2)med (g − r)0,med

−18.00 < Mr,h < −17.00 0.02 0.07 2982 0.05 −17.46 (0.28) 8.82 (0.30) 0.41 (0.15)
0.02 0.14* 5922 0.07 −17.59 (0.27) 8.82 (0.29) 0.39 (0.15)

−19.00 < Mr,h < −18.00 0.02 0.11 7348 0.08 −18.49 (0.29) 9.21 (0.31) 0.42 (0.15)
0.02 0.14* 12815 0.10 −18.55 (0.27) 9.22 (0.31) 0.41 (0.15)
0.14 0.24* 2887 0.15 −18.85 (0.12) 9.27 (0.30) 0.41 (0.16)

−20.00 < Mr,h < −19.00 0.02 0.14 11665 0.11 −19.47 (0.29) 9.65 (0.35) 0.51 (0.16)
0.14 0.17 7242 0.15 −19.45 (0.29) 9.67 (0.37) 0.53 (0.17)
0.14 0.24* 26443 0.19 −19.61 (0.27) 9.70 (0.38) 0.53 (0.17)
0.24 0.35* 2560 0.25 −19.91 (0.09) 9.62 (0.26) 0.36 (0.15)

−21.00 < Mr,h < −20.00 0.02 0.14 6934 0.11 −20.41 (0.28) 10.18 (0.40) 0.62 (0.18)
0.14 0.24 22310 0.20 −20.40 (0.28) 10.22 (0.40) 0.63 (0.18)
0.24 0.35* 35739 0.28 −20.56 (0.27) 10.16 (0.41) 0.56 (0.19)
0.35 0.50* 3563 0.37 −20.86 (0.15) 10.00 (0.31) 0.37 (0.16)

−22.00 < Mr,h < −21.00 0.02 0.14 1833 0.11 −21.28 (0.25) 10.63 (0.39) 0.65 (0.18)
0.14 0.24 5843 0.20 −21.28 (0.25) 10.65 (0.38) 0.64 (0.18)
0.24 0.35 15349 0.30 −21.28 (0.25) 10.63 (0.38) 0.61 (0.18)
0.35 0.37 3399 0.36 −21.29 (0.26) 10.64 (0.38) 0.59 (0.17)
0.35 0.50* 17320 0.40 −21.42 (0.26) 10.47 (0.39) 0.49 (0.18)

8.50 < M∗ < 9.50 0.02 0.05* 3077 0.04 −17.46 (0.94) 8.92 (0.28) 0.55 (0.14)
0.02 0.14* 19994 0.09 −18.36 (0.80) 9.12 (0.26) 0.38 (0.12)
0.14 0.24* 9080 0.17 −19.29 (0.31) 9.36 (0.12) 0.36 (0.08)

9.50 < M∗ < 10.00 0.02 0.14* 11290 0.11 −19.45 (0.71) 9.72 (0.14) 0.58 (0.13)
0.14 0.24* 20525 0.19 −19.86 (0.50) 9.76 (0.14) 0.44 (0.12)
0.24 0.35* 15610 0.28 −20.39 (0.31) 9.82 (0.12) 0.38 (0.09)

10.00 < M∗ < 10.50 0.02 0.14 5550 0.11 −20.09 (0.66) 10.19 (0.14) 0.68 (0.11)
0.14 0.18 5102 0.16 −20.06 (0.65) 10.20 (0.14) 0.68 (0.12)
0.14 0.24* 16659 0.20 −20.14 (0.61) 10.21 (0.14) 0.67 (0.12)
0.24 0.35* 18009 0.29 −20.82 (0.47) 10.22 (0.14) 0.53 (0.12)
0.35 0.50* 9983 0.40 −21.33 (0.33) 10.22 (0.14) 0.42 (0.09)

10.50 < M∗ < 11.00 0.02 0.14 2806 0.11 −20.71 (0.58) 10.71 (0.14) 0.78 (0.10)
0.14 0.24* 9615 0.20 −20.66 (0.53) 10.72 (0.14) 0.78 (0.10)
0.24 0.29* 7770 0.27 −20.76 (0.44) 10.72 (0.14) 0.76 (0.10)
0.24 0.35* 16067 0.29 −20.88 (0.42) 10.75 (0.14) 0.75 (0.10)
0.35 0.50* 6316 0.39 −21.47 (0.38) 10.78 (0.15) 0.62 (0.14)

11.00 < M∗ < 11.50 0.24 0.35* 4280 0.30 −21.42 (0.51) 11.09 (0.09) 0.79 (0.07)
0.35 0.37 760 0.36 −21.50 (0.35) 11.10 (0.09) 0.78 (0.06)
0.35 0.50* 3912 0.40 −21.68 (0.35) 11.12 (0.10) 0.77 (0.08)

Red 0.02 0.14* 20986 0.10 −19.07 (1.38) 9.80 (0.65) 0.65 (0.09)
(g − r)0 + 0.03(Mr,h − M∗

r,h) > 0.548 0.14 0.24* 31557 0.19 −20.06 (0.67) 10.29 (0.41) 0.70 (0.09)
0.24 0.35* 27728 0.28 −20.77 (0.47) 10.68 (0.32) 0.73 (0.08)
0.35 0.50* 7944 0.39 −21.46 (0.36) 10.98 (0.24) 0.75 (0.07)

Blue 0.02 0.14* 22218 0.10 −18.80 (1.30) 9.18 (0.53) 0.36 (0.07)
(g − r)0 + 0.03(Mr,h − M∗

r,h) < 0.548 0.14 0.24* 26243 0.19 −19.88 (0.73) 9.62 (0.33) 0.39 (0.08)
0.24 0.35* 26870 0.29 −20.65 (0.54) 9.95 (0.29) 0.40 (0.09)
0.35 0.50* 14824 0.40 −21.34 (0.43) 10.22 (0.29) 0.41 (0.10)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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