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We calculate theOðαsÞ QCD corrections to the inclusive h → bb̄ decay rate in the dimension-6 standard
model effective field theory (SMEFT). The QCD corrections multiplying the dimension-6 Wilson
coefficients which alter the hbb̄-vertex at tree-level are proportional to the standard model (SM) ones,
so next-to-leading order results can be obtained through a simple rescaling of the tree-level decay rate. On
the other hand, contributions from the operators QbG and QHG, which alter the gbb̄-vertex and introduce a
hgg-vertex respectively, enter atOðαsÞ and induce sizeable corrections which are unrelated to the SM ones
and cannot be anticipated through a renormalization-group analysis. We present compact analytic results
for these contributions, which we recommend to be included in future phenomenological studies.
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I. INTRODUCTION

The precise determination of the properties of the Higgs-
like particle discovered during Run-I of the LHC [1,2] is a
main focus of the Run-II physics program. Within the
current experimental precision, the coupling strengths of
this particle appear to be consistent with the standard
model (SM) Higgs boson [3–7]. With both theoretical and
experimental developments, a significant improvement in
the precision of the determination of the Higgs couplings is
expected at the LHC during the high luminosity (HL)
phase [8].
The determination of the Higgs couplings which enter

both production and decay processes is achieved by
performing a (global) fit to σ · BRðH → XÞ data of the
observable final states. This is necessary since a direct
measurement of the SM Higgs boson width is not feasible
at the LHC (or at proposed future colliders) since the
expected value of ≈4 MeV [9] is orders of magnitude
smaller than the mass resolution of the detectors. The
importance of a precision measurement of the h → bb̄
partial width cannot be overstated, since this constitutes
the dominant decay channel for the SM Higgs boson
(≈60% [9]). Consequently, a modification of the Higgs
coupling to b-quarks can have a sizeable impact on the
extraction of all other Higgs couplings as the Higgs
production rate and all branching fractions are modified
by a shift in the total decay width Γh.
Unfortunately, precision extractions of the h → bb̄

partial and total width at the LHC are challenging. A
measurement of the h → bb̄ partial width is ultimately
limited at the LHC, since knowledge of both the shape and
normalization of the contributing QCD backgrounds must

be known to high accuracy [10,11]. Current projections for
a measurement of the h → bb̄ signal strength indicate that
precision ≃ð5–7Þ% may be achievable in the HL phase of
the LHC [8]. An extraction of the total width from
experimental data (under minimal assumptions) through
interference effects [12–16] is possible, and additional
information can also be gained by including LEP data
[17]. However, the current constraint from this technique is
approximately Γh < 5ΓSM

h [18,19]. A precise model inde-
pendent measurement of both these quantities requires
input from a dedicated “Higgs machine”.
There are several design proposals for a collider with

such capabilities, such as a linear/circular eþe− machine
[20,21], muon-collider [22,23], or γγ machine [24,25].
Although the proposed physics programs are different in
each case, the common goal is to achieve Oð%Þ level
precision on the measurement of Higgs couplings. For
example, through a combination of a Higgs recoil meas-
urement and an exclusive measurement of h → VV, better
than 10% precision on the total width can be expected [26].
In the case of the h → bb̄ branching fraction, better than
Oð%Þ precision is expected in some cases—see Table 2.3
of [26]. In such a scenario, precision calculations are also
required to interpret the data. In this work, we focus on
the QCD corrections to the Higgs decay to b-quarks in
the framework of the standard model effective field
theory (SMEFT).
In the SMEFT framework, the effects of physics beyond

the SM are parametrized by a set of nonvanishing Wilson
coefficients of higher-dimensional operators. Practically,
the usual dimension-4 SM Lagrangian is extended to
include operators of mass-dimension n > 4, which are
constructed from gauge-invariant combinations of SM
fields and multiplied by Wilson coefficients of mass
dimension (4 − n). These operators effectively describe
the interactions of new physics particles with those present
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in the SM, an approach which may be justified if the energy
scale of these new particles ΛNP greatly exceeds the
electroweak scale. One of the main benefits of this
approach is that new physics effects can be characterized
without specifying a particular UV complete model of
physics beyond-the-SM (BSM). The interpretation of data
in terms of nonvanishing Wilson coefficients is therefore
performed in a model-independent fashion. In the absence
of any direct evidence for new particle states during Run-I
of the LHC, we believe this approach to be both justified
and well motivated.
During Run-I, the interpretation of Higgs measurements

by ATLAS and CMS was generally performed in the
“interim” κ and signal strength formalisms—see for exam-
ple the combined Run-I analysis of CMS and ATLAS data
[7]. In Run-II, it is a recommendation of the LHC Higgs
Cross Section Working Group to move toward a more
general EFT framework (see for instance Sec. 10.4 of [9]).
In doing so, it is important to note that the predictions
for observables obtained in SMEFT are not unlike those
obtained in the SM (or UV-completions of the SM for that
matter) where a perturbative expansion has been applied—
higher-order corrections reduce the theoretical uncertainty
of the predictions of observables. Moreover, the next-to-
leading order (NLO) corrections to a given observable
typically depend on Wilson coefficients which are not
present in the tree-level result. It is therefore important to
extend SMEFT analyses to NLO (and beyond), to allow for
a more precise determination of Wilson coefficients (and
allowed ranges) through a comparison with experimental
data, and much recent work has been dedicated to this task
for a wide range of processes [27–53].
At present, it is possible to deduce logarithmically

enhanced NLO corrections appearing in fixed-order
perturbation theory to arbitrary observables using
renormalization-group (RG) equations for the Wilson
coefficients along with the full one-loop anomalous dimen-
sion matrix calculated in [30–32]. However, it is common
practice to use RG-improved perturbation theory to absorb
such logarithmic corrections into the running of the scale-
dependent Wilson coefficients betweenΛNP and the scale at
which the underlying decay or scattering process takes
place (for h → bb̄ decays this is mh). This removes large
logarithms involving ΛNP from effective theory matrix
elements, and allows constraints on Wilson coefficients
obtained at experimentally accessible energy scales to be
interpreted at the scale ΛNP where the effective interactions
are generated. The remaining NLO corrections do not
contain large logarithms involving the scale ΛNP, and
cannot be deduced from an RG analysis. However, these
corrections can still be important numerically because for
the interesting region of ΛNP ∼ 1 TeV the RG-induced
logarithms are not dramatically enhanced.
In this work, we extend our previous calculation of

such NLO SMEFT corrections arising from four-fermion

contributions and the (presumably) numerically dominant
electroweak corrections [45] by computing the OðαsÞ
correction to the h → bb̄ decay rate. We proceed by
introducing the relevant details of the SMEFT framework
for the h → bb̄ decay, and discuss the renormalization
procedure we adopt for performing SMEFT NLO calcu-
lations. We then provide the analytic results, and make
recommendations for their use in phenomenological
studies.

II. CALCULATIONAL SETUP

A. Preliminaries

In the SMEFT, the usual SM Lagrangian is appended
by higher-dimensional operators multiplied by Wilson
coefficients. In the current work we are interested in
dimension-6 operators, and so use a Lagrangian of the form

L ¼ LSM þ Lð6Þ; Lð6Þ ¼
X
i

CiðμÞQiðμÞ: ð1Þ

The operators relevant for this work are listed in Table I.
Note that in our convention the Wilson coefficients of
dimension-6 operators have mass dimension minus two, so
that theCi are suppressed byΛ2

NP, and that we have rescaled
the operatorQdG by a factor of the strong coupling constant
gs with respect to the usual definition. The relevant
interaction Lagrangian for Higgs couplings to down-type
quarks is

LHiggs ¼ −½H†d̄r½Yd�rsqs þ H:c:�
þ ½C�

dH
sr
ðH†HÞH†d̄rqs þ H:c:�: ð2Þ

where ½Yd� and CdH are complex matrices in flavor space.
The Higgs potential is also altered compared to the SM, and
requiring that the kinetic terms are canonically normalized
leads one to write the Higgs doublet in unitary gauge in the
broken phase of the theory as

HðxÞ ¼ 1ffiffiffi
2

p
�

0

½1þ CH;kin�hðxÞ þ vT

�
; ð3Þ

TABLE I. A subset of the 59 independent dimension-6 oper-
ators built from standard model fields which conserve baryon
number relevant for the current calculation, as given in Ref. [54].
The subscripts p, r are flavor indices, and qp and dr are left- and
right-handed fields, respectively.

QH□ ðH†HÞ□ðH†HÞ
QHD ðH†DμHÞ�ðH†DμHÞ
QdH ðH†HÞðq̄pdrHÞ
QHG H†HGA

μνGAμν

QH ~G H†H ~GA
μνGAμν

QdG gsðq̄pσμνTAdrÞHGA
μν
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where

CH;kin ≡
�
CH□ −

1

4
CHD

�
v2T; ð4Þ

and the vacuum expectation value vT ≈ ð ffiffiffi
2

p
GFÞ−1

2, withGF
the Fermi constant. It should be noted that although CH;kin

is dimensionless, due to the presence of v2T in its definition,
it is still understood to be implicitly suppressed by Λ2

NP.
Throughout this work, we are concerned with the flavor

conserving process h → bb̄. However, the matrices ½Yd�
and CdH appearing in Eq. (2) are in general not simulta-
neously diagonalizable, leading to flavor violating effects
which are not present in the SM. The running of CdH also
introduces further flavor violating effects which should
be considered [32,55]. We follow the procedure taken in
previous work [45], imposing a minimal flavor violation
(MFV) scenario [56,57] and setting Vtb ¼ 1 throughout.
The b-quark Yukawa coupling, defined as the coefficient of
the hbb̄-vertex in the mass basis of the broken phase of the
theory, is therefore related to the physical mass according to

yb ¼
ffiffiffi
2

p mb

vT
þ v2T

2
C�
bH: ð5Þ

With these preliminaries in place, it is straightforward to
compute the tree-level amplitude for the process h → bb̄ as

iMtree ¼ −iūðpbÞðMtree
b;LPL þMtree�

b;L PRÞvðpb̄Þ; ð6Þ

where

Mtree
b;L ¼ mb

vT
½1þ CH;kin� −

v2Tffiffiffi
2

p C�
bH: ð7Þ

B. Renormalization procedure

The calculation of the QCD corrections to h → bb̄ in the
SMEFT proceeds much the same way as in the SM. In
addition to calculating the real and virtual contributions to
the NLO matrix elements, which we discuss below, we
must also construct a set of counterterms which render the
virtual corrections UV finite. There is some subtlety in the
construction of such UV counterterms, and we therefore
provide details on the renormalization procedure here.1 In
essence, wave function and parameter/mass renormalisa-
tion is performed in the on-shell scheme, and Wilson
coefficients are renormalized in the MS scheme.
We first discuss the calculation of the renormalization

constants for the external fields and parameters/masses.
This proceeds as in the SM, and a detailed discussion of this
procedure for the SM can be found in [58]. While the full

procedure including also electroweak corrections is rather
involved, for the QCD corrections to h → bb̄ we need only
renormalize the b-quark field and mass. We relate renor-
malized and bare quantities according to

bð0ÞL;R ¼
ffiffiffiffiffiffiffiffiffi
ZL;R
b

q
bL;R ¼

�
1þ 1

2
δZL;R

b

�
bL;R;

mð0Þ
b ¼ mb þ δmb; ð8Þ

where the superscript (0) labels the bare field or mass.
Explicit expressions for the one-loop renormalization con-
stants are obtained from the b-quark two-point function.
When computing the renormalization constants, the diver-
gences are regulated by performing the loop integrals in
d ¼ 4 − 2ϵ dimensions. The relevant one-loop renormali-
zation constants are found to be

δmð6Þ
b

mb
¼ −

αsCF

π

mbvT
2

ffiffiffi
2

p
�
3
Cb
ϵ

ϵ̂
þ 1

�
ðCbG þ C�

bGÞ;

δZð6Þ;L
b ¼ αsCF

π

m2
bvT

4
ffiffiffi
2

p
�
3
Cb
ϵ

ϵ̂
þ 1

�
ðCbG − 3C�

bGÞ;

δZð6Þ;R
b ¼ −

αsCF

π

m2
bvT

4
ffiffiffi
2

p
�
3
Cb
ϵ

ϵ̂
þ 1

�
ðCbG þ C�

bGÞ;

δmð4Þ
b

mb
¼ −

αsCF

π

�
3

4

Cb
ϵ

ϵ̂
þ 1

�
;

δZð4Þ;L
b ¼ δZð4Þ;R

b ¼ δZð4Þ;L�
b ¼ δZð4Þ;R�

b ;

δZð4Þ
b ¼ 2δZð4Þ;L

b ¼ −
αsCF

π

�
3

2

Cb
ϵ

ϵ̂
þ 2

�
; ð9Þ

where Nc ¼ 3 is the number of colors in QCD,
CF ¼ ðN2

c − 1Þ=ð2NcÞ, and

Cb
ϵ ¼ 1þ ϵ ln

�
μ2

m2
b

�
;

1

ϵ̂
≡ 1

ϵ
− γE þ lnð4πÞ: ð10Þ

The SM and dimension-6 contributions are distinguished
through the superscript (4) and (6) respectively. It is worth
noting that we follow the convention of [59] by requiring
δZR

b to be real.
We must also include counterterms related to operator

renormalization. These counterterms are generated from the
operators whose Wilson coefficients appear in the tree-level
expression in Eq. (7), and are in fact simple to construct
using that expression as a starting point. We do this by
interpreting those as bare Wilson coefficients, and replace
them in the MS scheme by renormalized coefficients
according to

Cð0Þ
i ¼ CiðμÞ þ δCiðμÞ ¼ CiðμÞ þ

1

2ϵ̂

_CiðμÞ
ð4πÞ2 ; ð11Þ1The reader is directed to a previous publication [45] for a

more extensive discussion.
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where

_CiðμÞ
ð4πÞ2 ≡ μ

d
dμ

CiðμÞ: ð12Þ

Explicit expressions for the δCi can be obtained from the
one-loop anomalous dimension calculation in the unbroken
phase of the theory performed in [30–32]. Where necessary,
these results are converted into the broken phase using the
tree-level SM relations, a procedure which is consistent to
OðΛ−2

NPÞ. Extracting only the relevant results for the QCD
corrections, we find

δCbH¼αsCF

π

3

v2T

1

ϵ̂

�
2m2

bCbGþvT

� ffiffiffi
2

p
mbCHG−

vT
4
CbH

��
:

ð13Þ

The corresponding counterterm for CH;kin at OðαsÞ is zero.
Moreover, we have omitted a term proportional to CH ~G,
which contributes to the counterterm amplitude but not to
the decay rate at OðαsΛ−2

NPÞ .
Having provided all the necessary renormalization con-

stants, the counterterm amplitude can be constructed, and is
generally written as

MC:T:ðh → bb̄Þ ¼ −ūðpbÞðδMLPL þ δM�
LPRÞvðpb̄Þ:

ð14Þ

The expression for the (real) SM counterterm is

δMð4Þ
L ¼ mb

vT

�
δmð4Þ

b

mb
þ δZð4Þ

b

�
; ð15Þ

and the corresponding dimension-6 counterterm is

δMð6Þ
L ¼

�
mb

vT
CH;kin

��
δmð4Þ

b

mb
þ δZð4Þ

b

�

−
v2Tffiffiffi
2

p ðδC�
bH þ C�

bHδZ
ð4Þ
b Þ

þmb

vT

�
δmð6Þ

b

mb
þ 1

2
δZð6Þ;L

b þ 1

2
δZð6Þ;R�

b

�
: ð16Þ

III. RESULTS FOR DECAY RATE

The differential decay rate to NLO is obtained by
evaluating the expression

dΓ ¼ dϕ2

2mh

X
jMh→bb̄j2 þ

dϕ3

2mh

X
jMh→bb̄gj2; ð17Þ

where dϕi is the i-body differential phase-space factor. The
UV finite two-body contribution is defined by

Mh→bb̄ ¼ Mone-loop þMC:T: þMtree; ð18Þ

and the three-body term Mh→bb̄g is the real emission
amplitude.
To compute real and virtual amplitudes (squared), the

SM and the relevant dimension-6 Lagrangian have been
implemented in FEYNRULES [60]. The contributing
Feynman diagrams are subsequently generated and com-
puted with FEYNARTS [61] and FORMCALC [62]. We show
the Feynman diagrams contributing to the real emission
amplitude and to the one-loop virtual correction in Fig. 1.
We regularize IR divergences which are present individu-
ally in both two- and three-body contributions to the decay
rate by performing loop integrals and phase-space integrals
in d ¼ 4 − 2ϵ dimensions. It is an important check on our
calculation that these IR divergences cancel at the level of
the decay rate, while UV divergences are removed by the
counterterms. A further check is that we reproduce the
known SM results as a part of the full SMEFT calculation.
We write the result for the NLO decay rate in the SMEFT

in the form

Γ ¼ Γð4;0Þ þ Γð4;1Þ þ Γð6;0Þ þ Γð6;1Þ; ð19Þ

where the first superscript differentiates between the SM
and dimension-6 contributions, and the second between
powers of αs. We provide results for the decay rate toOðαsÞ
as an expansion in Λ−2

NP, keeping only the leading terms of
OðΛ−2

NPÞ. The dimension-6 contributions to observables
thus appear through the interference of diagrams containing
one dimension-6 operator with purely SM diagrams.2

In writing the results we shall make use of the shorthand
notation

β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
b

m2
h

s
; x¼ 1−β

1þβ
; y¼ 1−β2

4
¼m2

b

m2
h

: ð20Þ

Although the computation is performed with complex
Wilson coefficients, the result for the decay rate depends
only on the real parts of CbH and CbG. To avoid cluttering
the notation we do not write out, for instance, ReðCbHÞ, but
this is to be understood in all the equations which follow.
The tree-level results for the decay rate are

Γð4;0Þ ¼ Ncmhm2
bβ

3

8πv2T
;

Γð6;0Þ ¼
�
2CH;kin −

ffiffiffi
2

p
v3T

mb
CbH

�
Γð4;0Þ: ð21Þ

2Additional effects which may appear at OðΛ−4
NPÞ, through

interference of dimension-6 contributions or the introduction of
dimension-8 operators should be investigated if evidence for
nonvanishing Wilson coefficients is observed at OðΛ−2

NPÞ.
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The QCD corrections for Higgs boson decays to massive quarks within the SM have been known for a long time [63–67].
The result is

Γð4;1Þ ¼ Γð4;0Þ αsCF

π

AðβÞ
β3

; ð22Þ

where the kinematic function AðβÞ is given by

AðβÞ ¼ 3β

8
ð−1þ 7β2Þ þ β3ð3 ln½y� − 4 ln½β�Þ þ ln½x�

�
1

16
ð−3 − 34β2 þ 13β4Þ þ β2ð1þ β2Þ

�
−
3

2
ln½y� þ 2 ln½β�

��

þ β2ð1þ β2Þ
�
3

2
ln2½x� þ 2Li2½x� þ Li2½x2�

�
: ð23Þ

The result for the OðαsÞ correction to the decay rate in the SMEFT is a function of the Wilson coefficients
fCbH; CH;kin; CHG; CbGg. The first two appear at tree-level as in Eq. (21), and the latter two contribute for the first
time at OðαsÞ. The result is

Γð6;1Þ ¼ CbG
αsCF

π

Ncm3
hmb

8
ffiffiffi
2

p
πvT

�
β

8
ð15þ 28β2 − 35β4Þ− 3

16
ð−5þ 3β2 − 15β4 þ 17β6Þ ln½x�− 3β3ð1− β2Þ ln½y�

�

þCHG
αsCF

π

Ncm2
hmb

ffiffiffi
y

p
2π

�
β

8
ð15− 2π2βþ 23β2Þ− 3

4
β2ln2½x�− 3

2
β3 ln½y� þ ln½x�

�
1

16
ð15þ 2β2 þ 7β4Þ þ β2 ln½y�

�

þ 3β2
�
Li2½x�−

1

2
Li2½x2�

��
þ 2Γð4;1ÞCH;kin −CbH

αsCF

π

NcmhmbvT
4

ffiffiffi
2

p
π

�
AðβÞ þ β3 −

3

4
β3 ln½y�

�

þΓð4;0Þ v3Tffiffiffi
2

p
mb

_CbH

ð4πÞ2 ln
�
μ2

m2
H

�
; ð24Þ

where the OðαsÞ contributions to _CbH can be deduced from Eq. (13).

The expressions above are a main result of this work. We
have written the results such that the explicit powers of mb

correspond to those generated by the Yukawa coupling
appearing in hbb̄-vertex, while implicit powers (through,
e.g., y) are generated through phase-space factors or through
propagators. This will prove convenient when discussing
results in the MS scheme for the b-quark mass in the next
section. We note that the QCD corrections involving CbH do

not factorize explicitly in the above expression, that is, they
are not proportional to the SMones. This is a consequence of
renormalizing the b-quark mass and the Wilson coefficients
in different schemes, as we shall see below.

A. Results in the MS scheme and the massless limit

The results presented in the previous section are valid in
the on-shell scheme for the masses, and the MS scheme for

FIG. 1. Feynman diagrams contributing to both real (top) and virtual (bottom) OðαsÞ corrections to the h → bb̄ decay rate. The real
corrections labeled 3 and 4 are generated byQHG andQbG operators, respectively. Similarly, the virtual corrections labeled 2 and 3,4 are
generated by QHG and QbG operators, respectively.
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the Wilson coefficients. In the presence of a large separa-
tion between the scales mb and mh, the fixed-order
predictions become inappropriate for phenomenology
due the appearance of large logarithms of mh=mb which
deteriorate the convergence of the perturbative series in αs.
To overcome this, the decay rate predictions can be

converted into the MS scheme for the b-quark mass (we
refer to such predictions as being in the MS scheme for the
decay rate). In this scheme, the dominant large logarithmic
corrections are resummed into RG evolution factors relat-
ing the value of the running b-quark mass at different
energy scales. Mass renormalization in the MS scheme is
achieved by dropping the finite contributions to the b-quark
mass counterterm in Eq. (9). This implies that the relation
between the b-quark pole mass and MS mass is

mb ¼ m̄bðμÞð1 − δmðμÞÞ; ð25Þ

where the SM and dimension-6 contributions to δmðμÞ are

δð4Þm ðμÞ ¼ −
αsCF

π

�
1þ 3

4
ln

�
μ2

m̄2
b

��
;

δð6Þm ðμÞ ¼ −
αsCF

π

vTm̄bffiffiffi
2

p CbG

�
1þ 3 ln

�
μ2

m̄2
b

��
: ð26Þ

We can then define tree-level results in the MS scheme as3

Γ̄ð4;0Þ ¼ Ncmhm̄2
bβ

3

8πv2T
;

Γ̄ð6;0Þ ¼
�
2CH;kin −

ffiffiffi
2

p
v3T

m̄b
CbH

�
Γ̄ð4;0Þ: ð27Þ

The corresponding results for the decay rate in the MS
scheme are therefore

Γ̄ð4;1Þ ¼ Γð4;1Þ − 2δð4Þm ðμÞΓ̄ð4;0Þ;

Γ̄ð6;1Þ ¼ Γð6;1Þ − 2δð6Þm ðμÞΓ̄ð4;0Þ

− 2δð4Þm ðμÞ
�
2CH;kin −

v3Tffiffiffi
2

p
m̄b

CbH

�
Γ̄ð4;0Þ; ð28Þ

where it is understood thatmb → m̄b in the first term on the
right-hand side of each of the above equations. To obtain
the leading-logarithmic (LL) solution for the running mass,

both SM and dimension-6 corrections to the b-quark mass
must be taken into account. By inspecting Eq. (25), the
following differential equation should be solved

dm̄b

d lnðμÞ¼−
αsCF

π

3

2
m̄bð1þ2

ffiffiffi
2

p
vTm̄bCbGÞþOðα2sÞ: ð29Þ

This can be achieved analytically by first finding the LL
solution for the running of CbGðμÞ, and in addition the

running b-quark mass in the SM—which we label as m̄ð4Þ
b .

In doing so we adopt the following convention for the QCD
β-function

d
d lnðμÞ

αsðμÞ
π

¼ −2β0
�
αsðμÞ
π

�
2

þ � � � ; ð30Þ

where the ellipses refer to higher-order terms in αs and Λ−2
NP,

and β0 ¼ ð11Nc − 2nfÞ=12, with nf ¼ 5 the number of
active flavours. A solution for CbGðμÞ can easily be
obtained when taking into account only the numerically
important self-mixing contribution [32]. This is achieved
by solving the equation

dCbGðμÞ
d lnðμÞ ¼ −2

αsðμÞ
π

γ0CCbGðμÞ: ð31Þ

We find

CbGðμÞ ¼ CbGðμ0Þ
�
αsðμÞ
αsðμ0Þ

�γ0
C
β0 ; γ0C ¼ −

5CF − 2Nc

4
:

ð32Þ

Note that our result for γ0C differs with respect to that
presented in [32], since our operator definition in Table I
implies CbG ¼ C̄bG=gs, where C̄bG is the definition used
in [32]. Writing

m̄ð4Þ
b ðμÞ ¼ m̄bðμ0Þ

�
αsðμÞ
αsðμ0Þ

�γ0m
β0 ; γ0m ¼ 3

4
CF; ð33Þ

a solution for m̄b to OðΛ−2
NPÞ can then be obtained as

m̄bðμÞ ¼ m̄bðμ0Þ
�
αsðμÞ
αsðμ0Þ

�γ0m
β0

�
1þ 2

ffiffiffi
2

p
vT

γ0m þ γ0c

× ½m̄ð4Þ
b ðμÞCbGðμÞ − m̄ð4Þ

b ðμ0ÞCbGðμ0Þ�
�
: ð34Þ

The motivation for using the MS scheme for the b-quark
mass is to resum large logarithms introduced by the scale
ratio mb=mh ≪ 1. Under such circumstances, it also makes
sense to consider the massless limit of the decay rate,
obtained as β → 1, which as we will show below is an

3Note that we have not used the MS mass in the β3 terms,
which are related to phase-space factors for on-shell quark
production rather than the Yukawa coupling of the Higgs. If
themb appearing in β were also converted, one would need to add
extra terms to Eq. (28). However, we have checked that the
numerical results obtained in that way are nearly identical to
those given below, so we have opted for the more streamlined
(and physically motivated) version where the phase-space factor
is kept in the on-shell scheme.
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excellent approximation numerically. Keeping the first
nonvanishing terms in the SM and for each Wilson
coefficient in the SMEFT, we find

Γ̄ð4;0Þ
β→1 ¼ Ncmhm̄2

b

8πv2T
;

Γ̄ð4;1Þ
β→1 ¼ αsCF

π

1

4

�
17þ 6 ln

�
μ2

m2
h

��
Γ̄ð4;0Þ
β→1 ;

Γ̄ð6;0Þ
β→1 ¼

�
2CH;kin −

ffiffiffi
2

p
v3T

m̄b
CbH

�
Γ̄ð4;0Þ
β→1 ;

Γ̄ð6;1Þ
β→1 ¼

�
2CH;kin −

ffiffiffi
2

p
v3T

m̄b
CbH

�
Γ̄ð4;1Þ
β→1

þ αsCF

π

Ncm3
hm̄b

8
ffiffiffi
2

p
πvT

CbG þ αsCF

π

Ncmhm̄2
b

8π
CHG

×

�
19 − π2 þ ln2

�
m̄2

b

m2
h

�
þ 6 ln

�
μ2

m2
h

��
; ð35Þ

where we have used

Aðβ → 1Þ ¼ 9

4
þ 3

2
ln

�
m2

b

m2
h

�
: ð36Þ

Furthermore, in the massless limit the dimension-6 correc-
tions from CbG to the running mass in Eq. (34) vanish. It is
worth mentioning that even though the phase-space factor
multiplying CHG vanishes asmb → 0 [because of the factor
of

ffiffiffi
y

p
in Eq. (24)], it is multiplied by a large logarithm in

the ratio ofmb=mh, which is not removed by the conversion
to the MS scheme. Finally, in the MS scheme the
coefficients CbH and CH;kin, which first appear at tree
level, receive NLO QCD corrections proportional to the
SM ones, while the coefficients CHG and CbG do not.
To test the validity of the massless approximation, we

compare numerically the predictions for the total decay rate
in the massless limit with the full result. Specifically, we
compare

Γ̄ ¼ Γ̄ð4;0Þ þ Γ̄ð4;1Þ þ Γ̄ð6;0Þ þ Γ̄ð6;1Þ; Γ̄β→1: ð37Þ

The following set of inputs are used: αsðmZÞ ¼ 0.1184,
mZ ¼ 91.1876GeV, m̄bðm̄bÞ¼ 4.18GeV, mt ¼ 173.0GeV
andmh ¼ 125.0 GeV. The replacement vT → ð ffiffiffi

2
p

GFÞ−1
2 is

made with GF ¼ 1.16637 × 10−5 GeV−2 for numerical
evaluation, though the results are presented with an explicit
factor of vT ≈ 246 GeV in order compare their size
relative to the electroweak scale. We also introduce the
dimensionless Wilson coefficients ~C ¼ Λ2

NPC, except for
CH;kin where we also extract the factor of v2T and write
~CH;kin ¼ ðΛNP=vTÞ2CH;kin. At the scale μ ¼ mh, and using
Eqs. (30), (32) and (34) to run the various parameters, we
obtain

Γ̄
MeV

¼ κQCD
�
2.22

�
1þ 2

�
vT
ΛNP

�
2
~CH;kin

�

− 258

�
vT
ΛNP

�
2
~CbH

�

þ
�

vT
ΛNP

�
2

ð1.55 ~CbG þ 6.88 ~CHGÞ þ � � � ;

Γ̄β→1

MeV
¼ κQCDβ→1

�
2.23

�
1þ 2

�
vT
ΛNP

�
2
~CH;kin

�

− 257

�
vT
ΛNP

�
2
~CbH

�

þ
�

vT
ΛNP

�
2

ð1.57 ~CbG þ 6.91 ~CHGÞ; ð38Þ

where we have introduced κQCD ≈ κQCDβ→1 ≈ 1.20 to highlight
the impact of the QCD corrections on the tree-level result.
The ellipses denote terms of OðΛ−4

NPÞ which are generated
by the running b-quark mass [see Eq. (34)] and are higher-
order in the power counting. The massless limit is therefore
found to be an extremely good approximation.
We end this section by commenting on the possible

impact of our NLO calculation on global fits to Higgs data.
As a concrete example, consider the scenario where a future
experiment observes a 5% deviation in the partial width
Γh→bb̄ compared to its SM value. Under the assumption that
the Wilson coefficients appearing in Eq. (35) are Oð1Þ, the
contributions involving ~CHG, ~CbG, ~CH;kin can be ignored
and only the Wilson coefficient ~CbH is relevant. The NLO
corrections increase the sensitivity to this coefficient by
about 20% compared to the LO calculation, and such a
measurement on the partial width could be used to probe
scales ΛNP ≈ 10 TeV. However, as discussed in [28], in a
broad range of UV complete models it is expected that the
Wilson coefficient ~CbH scales as ~CMFV

bH ∼ yb ~CbH. In that
case, even though the prefactor multiplying ~CHG is about
45 times smaller than that multiplying ~CbH, the sensitivity
to ~CMFV

bH , ~CHG, and all the other Wilson coefficients is
roughly of the same order since 45yb ∼ 1, and scales ΛNP ≈
2 TeV would be probed. A purely LO calculation would
miss the contributions from ~CHG and ~CbG entirely.

IV. DISCUSSION AND CONCLUSIONS

As discussed in the Introduction, the Higgs boson
couplings are inferred by performing a (global) fit to σ ·
BRðH → XÞ data of the observable final states. Many
groups have now performed dedicated analyses and/or
global fits to the LHC Higgs coupling data in an EFT
framework [27–29,35,43,44,68–89]. It should be noted that
including constraints from precision electroweak and low-
energy observables is also important in a global fit to
Higgs data at NLO, since operators which contribute to
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electroweak precision observables at tree-level can enter the
expressions for NLO Higgs decay rates [34].
An important tool used in several of these global fits is

the package EHDECAY [90,91] which allows the compu-
tation of Higgs boson decay widths and branching ratios
within the SMEFT (implemented in the SILH basis [92]).
This program is an extension of HDECAY [93,94], which
computes these observables within the SM4 In this case, the
expression for the h → bb̄ EFT decay rate is obtained by
applying a scaling of the tree-level prediction. The scaling
factor is the same as that used in the SM, and includes the
massless QCD corrections up toOðα4sÞ [95–103]. This is of
course a reasonable procedure, since the QCD corrections
to the hbb̄-vertex involving CbH and CH;kin factorize, and
the most accurate predictions should be applied wherever
possible. In addition to the scaled tree-level results, we
suggest to include the OðαsÞ contributions involving CbG
and CHG which are currently not included. The relevant
results are provided in Eq. (35). It should be noted that the

dominant contribution from both of these operators arise
from genuine NLO effects, which cannot be predicted by an
RG analysis.
Finally, electroweak corrections are known for the

h → bb̄ decay rate in the SM [104–108]. However, unlike
the QCD corrections involving CbH and CH;kin, these
contributions do not factorize in a straightforward way,
and a scaling by known SM corrections is not appropriate.
A dedicated calculation of the full NLO electroweak
corrections in the SMEFT is in progress. In the mean-
time, we suggest to include the results involving the
one-loop four-fermion and dominant Yukawa correc-
tions which were computed in [45]. In this case, the
running of the b-quark mass receives large logarithmic
corrections involving the scalar four-fermion operators
Qqtqb, and these contributions should be resummed follow-
ing a similar procedure as was taken for QbG in this work.
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