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Abstract

Let Fv and Fe be sets of faulty vertices and faulty edges, respectively, in the folded
hypercube FQn so that |Fv| + |Fe| ≤ n − 2, for n ≥ 2. Choose any fault-free edge
e. If n ≥ 3 then there is a fault-free cycle of length l in FQn containing e, for every
even l ranging from 4 to 2n − 2|Fv|; if n ≥ 2 is even then there is a fault-free cycle of
length l in FQn containing e, for every odd l ranging from n + 1 to 2n − 2|Fv| − 1.
Keywords: interconnection networks; folded hypercubes; edge-pancyclicity;
edge-bipancyclicity; fault-tolerant.

1 Introduction

Choosing an appropriate interconnection network (network for short) is an important inte-
gral part of designing parallel processing and distributed systems. There are a large number
of network topologies that have been proposed. Among the proposed network topologies,
the hypercube [1] is a well-known network model which has several excellent properties,
such as recursive structure, regularity, symmetry, small diameter, short mean internode
distance, low degree, and small edge complexity. Numerous variants of the hypercube have
been proposed in the literature [3, 4, 17]. One variant that has been the focus of a great deal
of research is the folded hypercube, which can be constructed from a hypercube by adding
an edge joining every pair of vertices that are the farthest apart, i.e., two vertices with
complementary addresses. The folded hypercube has been shown to be able to improve a
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system’s performance over a regular hypercube in many measurements, such as diameter,
fault diameter, connectivity, and so on [3, 20].

Since vertices and/or edges in a network may fail accidentally, it is necessary to consider
the fault-tolerance of a network. Hence, the issue of fault-tolerant cycle embedding in an
n-dimensional folded hypercube FQn has been studied in [2, 5, 7, 8, 9, 10, 11, 12, 13, 14,
20, 19]. Embedding cycles in networks is important as many network algorithms utilize
cycles as data structure. In this paper, let Fv and Fe be the sets of faulty vertices and
faulty edges, respectively, in FQn. Choose any fault-free edge e. We prove that if n ≥ 3,
there is a fault-free cycle of length l in FQn containing e, for every even l ranging from 4
to 2n − 2|Fv|; if n ≥ 2 is even then there is a fault-free cycle of length l in FQn containing
e, for every odd l ranging from n + 1 to 2n − 2|Fv| − 1.

Throughout this paper, a number of terms—network and graph, node and vertex, edge
and link—are used interchangeably. The remainder of this paper is organized as follows. In
Section 2, we provide some necessary definitions and notations, and we present our main
result in Section 3. Some concluding remarks are given in Section 4.

2 Basic definitions

A path in a graph G = (V,E) is a sequence of distinct vertices so that any two consecutive
vertices are joined by an edge, and the length of a path is the number of edges in the path.
A cycle is a path of length at least 3 so that there is an edge joining the first and last
vertices of the path, and the length of a cycle is the number of vertices in the cycle. For
any graph G = (V, E) and vertices u, v ∈ V , we denote the length of a shortest path in G

from u to v by dG(u, v) (if there exists no path from u to v in G then dG(u, v) is defined as
∞). If C is a cycle of length c in the graph G containing the edge (x, y) and P is a path
of length p in G from x to y that contains no vertices of C apart from x and y then we say
that the cycle of length c − 1 + p obtained by removing the edge (x, y) and including the
path P is obtained by grafting the path P onto the cycle C. Let X be a set of vertices and
edges of G. We denote the subgraph of G induced by the vertices of X and the vertices
incident with the edges of X by 〈X〉. All other standard graph-theoretic terminology can
be obtained from [21].

If a graph G = (V,E) contains cycles of every length from 3 to |V |, then it is pancyclic,
and it is bipancyclic if it contains a cycle of every even length from 4 to |V |, where |V |
denotes the number of vertices in G1. The pancyclicity is an important measurement of
whether a network is suitable for an application inquiring cycles of any length within the
network [6]. In a heterogeneous computing system, each edge and each vertex may be
assigned with distinct computing power and distinct bandwidth, respectively [18]. Thus, it
is worthwhile to extend pancyclicity to edge-pancyclicity and vertex-pancyclicity. If every
edge (or vertex) of G lies on a cycle of every length from 3 to |V | then G is said to be edge-
pancyclic (or vertex-pancyclic), and G is edge-bipancyclic (or vertex-bipancyclic) if every
edge (or vertex) lies on a cycle of every even length from 4 to |V |.

1The size of any set X of vertices and edges in a graph is denoted |X|.
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We study graphs G = (V, E) which model interconnection networks in which there
might be faulty nodes or faulty links. Such faults are modelled by faulty vertices in V , the
set of which we denote by Fv, and faulty edges in E, the set of which we denote by Fe.
Every vertex of V \Fv is called fault-free and every edge of E \Fe that is not incident with
any vertex of Fv is called fault-free (so, any fault-free edge is, by definition, incident only
with fault-free vertices). If H is a subgraph of G then (Fv ∪ Fe) ∩ H denotes the set of
vertices of Fv and edges of Fe that lie in H. We say that a cycle or a path in G is fault-free
if every vertex and edge that lies on the cycle or path is fault-free.

The hypercube Qn has {0, 1}n as its vertex set and there is an edge joining two vertices
if the vertex names differ in exactly one bit. The folded hypercube of dimension n, FQn,
also has {0, 1}n as its vertex set. In FQn, there is an edge joining two vertices if the vertex
names differ in exactly one bit or in every bit. If an edge is such that the two incident
vertices differ in only the ith bit, for some i ∈ {1, 2, . . . , n}, then we say that this edge lies
in dimension i, with the neighbour of a vertex x where the edge lies in dimension i denoted
x(i) (this applies to both Qn and FQn); and if an edge is such that the two incident vertices
differ in every bit then the edge is called a complementary edge, with the neighbour of a
vertex x where the edge is a complementary edge denoted x (this applies only in FQn).
Note that it makes sense to write, for example, x(i,j), to denote the vertex obtained by
flipping the ith and jth bits of the name of x, and to write, for example, x(i) to denote the
vertex obtained by flipping every bit of the name of x except the ith. Consequently, the
folded hypercube FQn is simply the hypercube Qn with the addition of the complementary
edges.

For FQn, we can choose some i ∈ {1, 2, . . . , n} and partition the folded hypercube over
dimension i by separating the vertices whose ith component of their names is 0 from those
whose ith component is 1. This results in two hypercubes of dimension n−1, denoted Q0,i

n−1

and Q1,i
n−1, induced by the vertices whose ith bits are 0 and 1, respectively. We suppress the

superscript i if the partition dimension is understood. Of course, the complementary edges
of FQn form a perfect matching, each incident with exactly one vertex in each hypercube,
as do the edges of FQn lying in dimension i.

The folded hypercube FQn is clearly regular of degree n+1 and is known to be (n+1)-
connected, vertex-transitive and edge-transitive [16, 19]. Both Qn and FQn have been
extensively studied. In particular, we shall use the following results.

Lemma 1 ([15]). Let n ≥ 3. Let Fv and Fe be sets of faulty vertices and faulty edges,
respectively, in the hypercube Qn so that |Fv|+ |Fe| ≤ n−2. Let u and v be any two distinct
fault-free vertices in Qn. There is a fault-free path of length l in Qn joining u and v, for
every l ranging from dQn(u, v) + 2 to 2n − 2|Fv| − 1 where l − dQn(u, v) is even.

Lemma 2 ([6]). Let n ≥ 3. Let Fv and Fe be sets of faulty vertices and faulty edges,
respectively, in the hypercube Qn so that |Fv|+ |Fe| ≤ n− 2. Choose any fault-free edge e.
There is a fault-free cycle of length l in Qn containing e, for every even l ranging from 4
to 2n − 2|Fv|.
Lemma 3 ([19]). Let n ≥ 2. Let Fe be a set of faulty edges in the folded hypercube FQn

so that |Fe| ≤ n− 1. Choose any fault-free edge e. If n ≥ 3 then there is a fault-free cycle
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of length l in FQn containing e, for every even l ranging from 4 to 2n. If n ≥ 2 is even
then there is a fault-free cycle of length l in FQn containing e, for every odd l ranging from
n + 1 to 2n − 1.

Lemma 4 ([2]). Let n ≥ 2. Let Fv be a set of faulty vertices in the folded hypercube FQn

so that |Fv| ≤ n− 2. Choose any fault-free edge e. If n ≥ 3 then there is a fault-free cycle
in FQn containing e of length l, for every even l ranging from 4 to 2n − 2|Fv|. If n ≥ 2 is
even then there is a fault-free cycle in FQn containing e of length l, for every odd l ranging
from n + 1 to 2n − 2|Fv| − 1.

Lemma 5 ([19]). Let n ≥ 2 and choose any edge e in FQn. The edge e lies on n cycles of
length n + 1 where the only edge appearing on more than one of these cycles is e.

3 Main results

Proposition 6. Let n ≥ 3. Let Fv and Fe be sets of faulty vertices and faulty edges,
respectively, in the folded hypercube FQn so that |Fv|+ |Fe| ≤ n− 2. Choose any fault-free
edge e. There is a fault-free cycle of length l in FQn containing e, for every even l ranging
from 4 to 2n − 2|Fv|.
Proof. If either Fv = ∅ or Fe = ∅ then the result follows by either Lemma 3 or Lemma 4,
respectively. When n = 3, at least one of these conditions holds and so we are done.
Henceforth, we assume that n ≥ 4, 1 ≤ |Fv| ≤ n− 3 and 1 ≤ |Fe| ≤ n− 3.

Let e = (u, v) be a fault-free edge. By [16, 19], FQn is edge-transitive and so w.l.o.g. we
may assume that u is named 0 . . . 0000 and v is named 0 . . . 0001 (that is, e lies in dimension
n). Partition over some dimension that contains at least one edge of Fe; consequently, we
obtain two hypercubes Q0

n−1 and Q1
n−1 where |(Fv∪Fe)∩Qi

n−1| ≤ n−3, for i = 0, 1. Define
F i

v = Qi
n−1 ∩ Fv, for i = 0, 1. There are two cases: (1) the dimension we partition over

is different to n; and (2) all faulty edges of Fe lie in dimension n and we partition over
dimension n.

Case 1: W.l.o.g. we may assume that we have partitioned over dimension n − 1. By
Lemma 1, there is a fault-free cycle of length l in Q0

n−1 containing e, for every even l ranging
from 4 to 2n−1 − 2|F 0

v |. Choose such a cycle C of length 2n−1 − 2|F 0
v |. As 2n−1 − 2|F 0

v | ≥
2n−1− 2(n− 3) ≥ 2(n− 2) + 2, there is an edge (x, y) of C such that (x, y) 6= e and all the
edges of {(x, x(n−1)), (x(n−1), y(n−1)), (y, y(n−1))} are fault-free. Grafting the fault-free path
〈x, x(n−1), y(n−1), y〉 onto C yields a cycle C ′ of length 2n−1− 2|F 0

v |+2. By Lemma 1, there
is a fault-free path in Q1

n−1 joining x(n−1) and y(n−1) of length l′, for every odd l′ ranging
from 3 to 2n−1 − 2|F 1

v | − 1. Grafting the appropriate path onto C ′ yields the result.

Case 2: There exists a neighbour x of u in Q0
n−1 so that the path 〈u, x, x(n), v〉 is fault-free.

This yields a fault-free cycle C containing e of length 4. By Lemma 1 applied to the edge
(u, x) in Q0

n−1 and also to the edge (v, x(n)) in Q1
n−1, we can graft appropriate paths onto

C so as to obtain the result.
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Figure 1: The folded hypercube FQ4.

Lemma 7. Let Fv and Fe be sets of faulty vertices and faulty edges, respectively, in the
folded hypercube FQ4 so that |Fv|+ |Fe| ≤ 2. Choose any fault-free edge in FQ4. There is a
fault-free cycle of length l in FQ4 containing e, for every odd l ranging from 5 to 15−2|Fv|.
Proof. If Fv = ∅ (resp. Fe = ∅) then the result holds by Lemma 3 (resp. Lemma 4). So,
suppose henceforth that |Fv| = |Fe| = 1.

Let e = (u, v) be a fault-free edge. By Lemma 5, we obtain a cycle as required of
length 5. By [16, 19], FQn is edge-transitive and so w.l.o.g. we may assume that u = 0000
and v = 0001. Partition over the dimension that contains the edge of Fe; consequently,
we obtain two hypercubes Q0

3 and Q1
3 where one of the hypercubes contains the vertex of

Fv and otherwise there are no faults in either hypercube. There are three cases: (1) Q0
3

contains the edge e and the vertex of Fv; (2) Q0
3 contains the edge e but not the vertex of

Fv; and (3) neither Q0
3 nor Q1

3 contains the edge e.

Case 1: Suppose that Q0
3 contains the edge e and the vertex of Fv. W.l.o.g., we may

assume that we have partitioned over dimension 3 in order to get Q0
3 and Q1

3. The edge e

lies on a fault-free cycle of length 4 in Q0
3 and so, w.l.o.g., we may assume that 0100 and

0101 are fault-free. Also, either both edges of {(0000, 0010), (0100, 1011)} are fault-free or
both edges of {(0000, 1111), (0100, 0110)} are fault-free; w.l.o.g. suppose that the edges of
{(0000, 0010), (0100, 1011)} are fault-free (the alternative yields an identical configuration).
Hence, we have a fault-free path of length 5 from 0010 to 1011 that contains e. This path can
be visualized in Fig. 1 (not all dimension-3 and complementary edges are shown). Hence,
by choosing appropriate paths in (the fault-free) Q1

3, we can clearly obtain fault-free cycles
of lengths 7, 9 and 11 in FQ4 containing e.

Let C11 be the cycle of length 11 constructed above. If 1101 ∈ Fv then we can replace
the sub-path 〈0100, 0101, 0001〉 of C11 with the fault-free path 〈0100, 1100, 1000, 1001, 0001〉
to obtain a fault-free cycle containing e of length 13. If 1101 is fault-free then either the
path 〈0100, 1100, 1101, 0101〉 is fault-free or the path 〈0101, 1101, 1001, 0001〉 is fault-free.
Whichever is the case, we can graft the appropriate path onto C11 to obtain a fault-free
cycle containing e of length 13.

Case 2: Suppose that Q0
3 contains the edge e and Q1

3 contains the vertex of Fv. W.l.o.g., we
may assume that we have partitioned over dimension 3 in order to get Q0

3 and Q1
3. At least

one of the following sets of edges contains only fault-free edges: {(0100, 1011), (0000, 0010)};
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{(0100, 0110), (0000, 1111)}; {(0101, 1010), (0001, 0011)}; and {(0101, 0111), (0001, 1110)}.
W.l.o.g. suppose that the edges of {(0100, 1011), (0000, 0010} are fault-free (the alternatives
yield identical configurations). No matter which of the vertices of Q1

3 is the vertex of Fv,
we can easily obtain fault-free paths of lengths 2 and 4 from 1011 to 0010 in Q1

3. By
augmenting these paths with the edges of {(0100, 1011), (0000, 0010} and the edge e, and
then further augmenting these paths to build cycles using paths in (the fault-free) Q0

3, we
can clearly build fault-free cycles of lengths 7, 9, 11 and 13 in FQ4 containing e.

Case 3: Suppose that neither Q0
3 nor Q1

3 contains the edge e; that is, we have partitioned
over dimension 4 in order to get Q0

3 and Q1
3. W.l.o.g. we may assume that Q0

3 is fault-free.
At least one neighbour of 0000 is such that its incident complementary edge is fault-free;
w.l.o.g. suppose that (0010, 1101) is fault-free. No matter where the vertex of Fv lies in
Q1

3, we can find fault-free paths of lengths 2 and 4 from 0001 to 1101 in Q1
3. Thus, this

yields fault-free cycles of lengths 5 and 7 containing e. By grafting appropriate fault-free
paths from 0000 to 0010 in Q0

3 of lengths 3, 5 and 7 onto these cycles we obtain fault-free
cycles of the required lengths containing e.

Proposition 8. Let n ≥ 2 be even. Let Fv and Fe be sets of faulty vertices and faulty
edges, respectively, in the folded hypercube FQn so that |Fv| + |Fe| ≤ n − 2. Choose any
fault-free edge e. There is a fault-free cycle of length l in FQn containing e, for every odd
l ranging from n + 1 to 2n − 2|Fv| − 1.

Proof. It is trivial to check that the result holds for n = 2, and, by Lemma 7, the result
holds for n = 4. If Fv = ∅ (resp. Fe = ∅) then the result follows by Lemma 3 (resp.
Lemma 4). So, suppose henceforth that n ≥ 6, 1 ≤ |Fv| ≤ n− 3 and 1 ≤ |Fe| ≤ n− 3.

Let e = (u, v) be a fault-free edge. By Lemma 5, we obtain a cycle as required of length
n + 1; so we only have to worry about finding the required cycles of odd length ranging
from n + 3 to 2n − 2|Fv| − 1. By [16, 19], FQn is edge-transitive and so w.l.o.g. we may
assume that u = 0 . . . 0000 and v = 0 . . . 0001. Partition over some dimension that contains
at least one edge of Fe; consequently, we obtain two hypercubes Q0

n−1 and Q1
n−1 where

|(Fv ∪ Fe)∩Qi
n−1| ≤ n− 3, for i = 0, 1. Define F i

v = Qi
n−1 ∩ Fv, for i = 0, 1. There are two

cases: (1) the dimension we partition over is different to n; and (2) all faults of Fe lie in
dimension n and we partition over dimension n.

Case 1: W.l.o.g. we may assume that we have partitioned over dimension n− 1. Note that
both u and v are incident with n− 2 edges in Q0

n−1 apart from e. For i ∈ {1, 2, . . . , n− 2},
define

• Sn−1
i = {(u, u(i)), (u(i), u(i,n−1))}

• Si = {(u, u(i)), (u(i), u(i))}
• T n−1

i = {(v, v(i)), (v(i), v(i,n−1))}
• Ti = {(v, v(i)), (v(i), v(i))}.

Note that because n ≥ 6, Sn−1
i ∪ Si and T n−1

j ∪ Tj have no vertex nor edge in common, for
any i, j ∈ {1, 2, . . . , n− 2} (even if i = j).
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As there are at most n − 2 faulty vertices or edges in total and at least one faulty
edge, w.l.o.g. we may assume that the edges of Sn−1

i ∪ Tj are fault-free, for some i, j ∈
{1, 2, . . . , n− 2} with i 6= j. Note that dQ1

n−1
(u(i,n−1), v(j)) = n− 4 ≥ 2. By Lemma 1, there

is a fault-free path of length l in Q1
n−1 joining u(i,n−1) and v(j), for every even l ranging

from n− 2 to 2n−1 − 2|F 1
v | − 2. Hence, by augmenting any such path with the (fault-free)

path 〈u(i,n−1), u(i), u, v, v(j), v(j)〉, we obtain a cycle of length l containing e, for every odd l

ranging from n + 3 to 2n−1 − 2|F 1
v |+ 3.

We now build a fault-free cycle of length l containing e, for all odd l ranging from
2n−1 − 2|F 1

v | + 5 to 2n − 2|Fv| − 1. By Lemma 2, there is a fault-free cycle of length l′

containing e in Q0
n−1, for every even l′ ranging from 4 to 2n−1−2|F 0

v |. Choose such a cycle C

of length l′ where l′ ≥ n (such a cycle exists as 2n−1−2(n−3) > n when n ≥ 6). There exists
an edge (x, y) on C such that (x, y) 6= e and either (x, x(n−1)) and (y, y) are fault-free edges
or (x, x) and (y, y(n−1)) are fault-free edges. W.l.o.g. suppose that (x, x(n−1)) and (y, y) are
fault-free edges. Note that dQ1

n−1
(x(n−1), y) = n− 2. By Lemma 1, there is a fault-free path

of length l in Q1
n−1 joining x(n−1) and y, for every even l ranging from n to 2n−1−2|F 1

v |−2.
Extend any such path with the edges (x(n−1), x) and (y, y), and graft the resulting path
onto the cycle C. Hence, there is a fault-free cycle of length l′+ l+1 containing e, for every
even l′ ranging from n to 2n−1−2|F 0

v | and for every even l ranging from n to 2n−1−2|F 1
v |−2;

that is, there is a fault-free cycle of length l′′ containing e, for every odd l′′ ranging from
2n + 1 to 2n − 2|Fv| − 1. As 2n−1 − 2|F 1

v |+ 3 ≥ 2n−1 − 2(n− 3) + 3 ≥ 2n + 1 when n ≥ 6,
the result follows.

Case 2: As u is incident with n− 1 edges in Q0
n−1, there is a fault-free neighbour x of u so

that the path 〈u, x, x〉 is fault-free. W.l.o.g. we may assume that (u, x) lies in dimension
n − 1. Note that dQ1

n−1
(x, v) = n − 2. By Lemma 1, there is a fault-free path of length l

in Q1
n−1 joining x and v, for every even l ranging from n to 2n−1 − 2|F 1

v | − 2. Hence, by
augmenting any such path with the (fault-free) path 〈v, u, x, x〉, we obtain a cycle of length
l containing e, for every odd l ranging from n + 3 to 2n−1 − 2|F 1

v |+ 1.
Consider the edge (u, x). By Lemma 2, there is a fault-free path of length l′ in Q0

n−1

joining u and x, for every odd l′ ranging from 3 to 2n−1 − 2|F 0
v | − 1. Hence, by choosing

the cycle of length 2n−1 − 2|F 1
v | + 1 constructed in the previous paragraph and grafting

such a path onto it, we obtain a cycle of length l containing e, for every odd l ranging from
2n−1 − 2|F 1

v |+ 3 to 2n − 2|Fv| − 1. The result follows.

Theorem 9. Let n ≥ 2. Let Fv and Fe be sets of faulty vertices and faulty edges, respec-
tively, in the folded hypercube FQn so that |Fv|+ |Fe| ≤ n− 2. Choose any fault-free edge
e. If n ≥ 3 then there is a fault-free cycle of length l in FQn containing e, for every even
l ranging from 4 to 2n − 2|Fv|. If n ≥ 2 is even then there is a fault-free cycle of length l

in FQn containing e, for every odd l ranging from n + 1 to 2n − 2|Fv| − 1.

4 Concluding Remarks

Fault-tolerance is an increasingly important research topic in the area of the multi-processor
computer systems, and many studies have focused on the vertex fault-tolerant or edge
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fault-tolerant properties of some specific networks. In this paper, let Fv and Fe be sets
of faulty vertices and faulty edges, respectively, in the folded hypercube FQn so that
|Fv|+ |Fe| ≤ n− 2, for n ≥ 2. Choose any fault-free edge e. If n ≥ 3 then there is a fault-
free cycle of length l in FQn containing e, for every even l ranging from 4 to 2n − 2|Fv|;
if n ≥ 2 is even then there is a fault-free cycle of length l in FQn containing e, for every
odd l ranging from n + 1 to 2n− 2|Fv| − 1. Our results strengthen the possibilities of using
folded hypercubes in interconnection networks where fault-tolerance is important.
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