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The experimental situation of dark matter direct detection has reached an exciting crossroads, with
potential hints of a discovery of dark matter (DM) from the CDMS, CoGeNT, CRESST-II and DAMA
experiments in tension with null results from xenon-based experiments such as XENON100 and LUX.
Given the present controversial experimental status, it is important that the analytical method used to search
for DM in direct detection experiments is both robust and flexible enough to deal with data for which the
distinction between signal and background points is difficult, and hence where the choice between setting a
limit or defining a discovery region is debatable. In this article we propose a novel (Bayesian) analytical
method, which can be applied to all direct detection experiments and which extracts the maximum amount
of information from the data. We apply our method to the XENON100 experiment data as a worked
example, and show that firstly our exclusion limit at 90% confidence is in agreement with their own for the
225 live days data, but is several times stronger for the 100 live days data. Secondly we find that, due to the
two points at low values of S1 and S2 in the 225 days data set, our analysis points to either weak
consistency with low-mass dark matter or the possible presence of an unknown background. Given the null
result from LUX, the latter scenario seems the more plausible.
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I. INTRODUCTION

Despite convincing gravitational evidence for the exist-
ence of dark matter (DM) in our Universe (from galactic to
cluster scales) its nature remains a mystery. Yet great
progress has been made. In particular direct detection
experiments have set progressively stronger limits on the
properties of dark matter [1,2], gaining several orders of
magnitude in less than a decade for masses in the 10 GeV to
TeV range.
Several direct detection experiments have reported dark

matter–like events in their data (e.g. CoGeNT [3],
CRESST-II [4] and DAMA [5]), with the most recent
positive result coming from the CDMS-Si experiment [6].
Such hints are in tension with the limits published by the
LUX [7] and XENON100 [8] collaborations. However
several authors have claimed that the systematic uncertain-
ties inherent in their analysis may provide a way of
reducing such tension [9–11]. In addition if one moves
beyond the most basic model of DM-quark scattering and
considers e.g. inelastic scattering or isospin-violating DM,
where the coupling to neutrons and protons is different,
then such tension can also be greatly reduced [12–16].
Given the present situation, it is essential to exploit all

the information contained in the data. In this article we
propose a Bayesian approach, based on the information
Hamiltonian, with a view to providing the community with
a a novel and robust interpretation of these conflicting
experimental signals. This is not the first Bayesian analysis

of direct detection data [17]; however our method is distinct
in that it extracts the maximum amount of information from
the available data, by exploiting the differences between
expected signal and background events. For the purpose of
illustration, we will make use of data from the XENON100
calibration [8,18]. This is an independent analysis of
XENON100 data, and will enable us to check and also
confront our new method with the collaboration’s
approach. This example is also highly relevant for the
LUX experiment, which works under a similar principle.
As we will show for the case where there are signallike

points1 in the data our method is particularly powerful,
since one can simultaneously set an exclusion limit and
define a potential signal region using Bayesian regions of
credibility. This is in contrast to current analytical ap-
proaches, which usually involve methods designed only to
set limits, such as the pmax method [19], or the profile
likelihood analysis with the CLs method [20]. We do not
claim that our method is technically superior for all cases;
however our approach is particularly transparent and easily
generalized to many different data sets.
In Sec. II we first introduce our method and show how to

apply it to direct detection experimental data in general; this

1We define “signallike” data as those consistent with a signal
from DM; however we do not wish to make any explicit claim as
to their origin, since they may also be consistent with a back-
ground interpretation.
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includes a discussion of when to set limits or claim
discovery. In Sec. III we apply our method to data from
the XENON100 experiment [8,18] as a worked example
and conclude in Sec. IV.

II. INFORMATION THEORY

Our method is inspired from information theory, in the
sense that it employs Bayesian techniques (see [21] for a
review) with the aim to fully exploit the different expected
distributions of signal and background events. Ultimately
this should either enhance the characteristics of a potential
signal (and therefore the evidence for a dark matter
discovery), or place stringent bounds on dark matter
models.
Before proceeding, we would like to clarify the dis-

tinction between this approach, and the profile likelihood
method used by e.g. the LUX [7] and XENON100 [8]
collaborations to set upper limits on the DM-nucleon cross
section (and also by CDMS to fit to their data [22]). The
major difference is that our approach is Bayesian and the
profile likelihood is frequentist, and hence for example both
methods have different ways of dealing with nuisance
parameters. However, in most cases, with the same like-
lihood function the Bayesian and profile likelihood results
should agree, and each can provide an important cross-
check of the other.
In Sec. III we discuss the XENON100 experiment as a

worked example, and when referring to the profile like-
lihood in this context we mean specifically the likelihood
used by the XENON100 Collaboration [8,18] to analyze
their data. Indeed, as an alternative, the LUX Collaboration
[7] also use a profile likelihood method, but not necessarily
the same likelihood function as XENON100.2 In the
absence of any nuisance parameters, a profile likelihood
analysis performed with our likelihood function should
give similar limits to those derived in this work using a
Bayesian approach. Even so, the two approaches are
distinct and should be considered complementary to each
other.

A. Dividing the data space into a grid

Our general strategy is to treat any 2D data set effectively
as an image, which we pixelate and exploit using pattern
recognition. Said differently, we map the data contained in
a 2D plot onto a 2D data space Ω. A point x in this space is
identified by its two coordinates α and β, the coordinates of
the initial plot and in fact the discrimination parameters
used to identify events (e.g. scintillation intensity, ionisa-
tion, phonon signals).3

The next key step is to then grid the data space by
pixelating it into M two-dimensional bins of equal size in
α-β given by Δxj ¼ ðΔα;ΔβÞ and labeled with the index j.
If such 2D bins are chosen to be small enough, the ability of
the analysis to discriminate between signal and background
will be maximized. Within a pixel j at position xj ¼
ðαj; βjÞ in the α-β plane there will be a certain number nj of
experimental data points, each of which are identified by
their coordinates xdatai (with i running from 0 to N, the total
number of data points in the whole space). For the same
pixel, the theoretically expected number of points is given
by λj ¼ λðxjÞΔxj. Hence we can compare nj to λj given
fluctuations in the latter, which we assume obey Poisson
statistics. The function λðxjÞ is the expected distribution of
events, which constitutes the theoretical expectation of both
the background and possible signal in a pixel xj.

4

B. Defining a likelihood and posterior

We can now analyze the data using the method described
above. The main issue is to find for which theoretical
parameters λj is closest to nj for all pixels j, within Poisson
fluctuations. If there is no DM signal in the data, one
expects that for the configuration where λj is closest to nj
that the former is equal to the theoretically expected
number of background events in each pixel.
For this purpose, we will define a Poisson likelihood to

describe the theoretical number of background and signal-
like events in each pixel j. Here λj represents the mean
expectation value of the number of points expected in each
pixel j. Such a likelihood is given by

PðdjsÞ ¼
YM
j¼1

λ
nj
j e

−λj
nj!

: (1)

In this expression, d represents the data and s the signal.
To make the interpretation easier, we decompose λðxjÞ

into a DM component F ðxjÞ composed entirely of nuclear
recoils (NR) and a background component bðxjÞ [domi-
nantly electronic recoils (ERs), but with a possible NR
component], leading to λðxjÞ ¼ F ðxjÞ þ bðxjÞ. The pre-
dominance of the signal F ðxjÞ over the background bðxjÞ
essentially depends on the number of signal events with
respect to that from the background, at a given location in
the data space xj. Since both the number of events and the
location are important, and since the location depends on
the DMmass (i.e. can be computed once for each mass), we
have explicitly separated out these two contributions. Our
calculations are therefore significantly speeded up by using
the decomposition:

λðxjÞ ¼ fðxjÞrþ bðxjÞ (2)2We do not have enough information to make a statement
about the likelihood function used by the LUX Collaboration.

3We have chosen a two-dimensional data space here; however
our method is easily extended to data with only one parameter or
several.

4The experimental data can be thought of as a discrete sample
of the theoretical distribution λðxÞ.
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where the term fðxjÞ represents the signal position (or
shape) in the data space and r its magnitude (or intensity).
For the standard picture of a nonrelativistic Weakly
Interacting Massive Particle (WIMP), the interaction rate
depends linearly on cross section σ, and hence r ∝ σ.
The number of events is governed by the interaction

cross section σ between the dark matter and the nucleons of
the detector. If the shape of the signal matches that of the
data points (above background), then an inspection of the
number of events should reveal the value of the cross
section, and therefore the strength of the DM interactions.
On the other hand, if the shape does not match the data-

point distribution, one can set a limit on the DM interaction
cross section. In practice the finite experimental sensitivity
means we can only exclude values of σ which would lead to
too large a signal. Hence it is convenient to start with a
value that is already excluded from previous experimental
searches, namely σ ¼ σ0, and decrease it until one reaches
the experimental sensitivity. For this reason we will work
with the ratio r≡ σ=σ0 where σ0 ≫ σ, so that r≡ σ=σ0
provides us with a direct measurement of the intensity of
the signal. An exclusion limit is then set by determining the
smallest r ¼ rlimit value that still leads to too many signal-
like events, so that all r > rlimit are excluded, while keeping
values of r which the experiment is not sensitive to.
The number of expected signal events in a pixel at xj is

therefore given by fjr ¼ fðxjÞrΔxj.5 To proceed, we must
now define a prior for r. We have no theoretical prejudice
on its value and therefore consider a flat prior i.e. assign to
all possible cross section values r ∈ ½0; 1� the same a priori
probability density function PðsðrÞÞ ¼ const:6

We can now combine the likelihood PðdjsÞ and prior
PðsÞ into the joint data and signal probability
Pðd; sÞ ¼ PðdjsÞPðsÞ. We will work with the information
Hamiltonian,

H ¼ − lnPðd; sÞ ¼
X
pixelj

ðλj − nj ln λjÞ þ � � � ; (3)

where the ::::: indicates signal-independent terms, which do
not contribute to the determination of the ratio r. Inserting
our decomposition for λðxjÞ [cf. Eq. (2)] and rearranging
we obtain

H ¼
X
pixelj

�
fjr − nj ln

�
1þ fjr

bj

��
þ � � � (4)

The limit can now be taken where Δxj → 0, so that each
pixel can only contain either 1 or 0 data points. Hence in
this limit nj tends to a delta function and the Hamiltonian
becomes

H ¼
Z
Ω
dx

�
fðxÞr − ln

�
1þ fðxÞr

bðxÞ
�
δNðx − xdatai Þ

�
þ � � �

(5)

where the δ function picks out the positions of the N data
points xdatai . We define F ¼ R

Ω dxfðxÞ, the total number of
reference signal (nuclear recoil from dark matter) events in
the data space calculated at σ0.

C. Setting limits and signal regions

With this likelihood we are ready to look for a dark
matter signal in our data and we now outline this process
explicitly (see also [23]).
As with standard χ2 methods, we seek to minimize the

Hamiltonian. There is a positive identification of a DM
signal in the experimental data only when the Hamiltonian
possesses a minimum. In this case the shape of the signal
fðxÞ matches the distribution of the data points, in
some region of data space where bðxÞ is expected to be
small. The strength of the DM-nucleon interaction is
given by the intensity of the signal, rbest, corresponding to∂rHðd; sbestÞ ¼ 0, with sbest representing the properties of
the signal that fit the data best.
To define the goodness of the fit in the standard

approach, one would then consider all r (or equivalently
σ) values leading to χ2 ¼ χ2best þ δ where δ is fixed by the
confidence level that one wants to have. Here we shall
proceed slightly differently (but ultimately this is
equivalent): we define the significance of the signal by
integrating the posterior distribution

PðsjdÞ ¼ Pðd; sÞ
PðdÞ ¼f:p:PðdjsÞ; (6)

over r, retaining in particular r values around rbest.
Note that the last equality holds only for flat priors

(f.p.’s), and assuming that PðdÞ ¼ PðsÞ. However, in the
following we will take out the normalization of PðdjsÞ
explicitly, such that

PðsjdÞ ¼ PðdjsÞR
drPðdjsÞ : (7)

Hence in our case a discovery will be established at a
confidence level X by using the definition,

Z
rbest

rlow

drPðsðrÞjdÞ ¼
Z

rup

rbest

drPðsðrÞjdÞ ¼ X=2; (8)

where the discovery region is bounded from below by rlow
and from above by rup. Such a region is therefore a

5We will assume here that the overall normalization for the
background is known. However in cases where this is not true one
can parametrize the unknown normalization with a nuisance
parameter and associated prior, and then marginalize over it.

6If we had absolutely no prejudice on the prior value of σ, we
would have to take σ0 → ∞. However in practice we can take σ0
to be very large but finite, such that we are confident that the
probability of finding DM with this interaction strength is
vanishingly small, given previous experimental knowledge.
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two-sided region of credibility, while an exclusion limit by
contrast is said to be one-sided. One could also relate our
two-sided Bayesian region of credibility to a frequentist
confidence interval with a certain number of “sigmas,”
though this is only strictly possible for a Gaussian
likelihood and posterior.7

However one may find that the Hamiltonian possesses no
minimum. In this case there is no value of r for which the
data is compatible with the signal distribution, no matter
how intense this distribution becomes. One cannot com-
pletely rule out dark matter however, since we know that
our experiment has finite sensitivity, but we can set a limit,
hereafter referred to as rlimit, on the DM interactions.
Since the experiment is not sensitive to DM cross section

values smaller than σlimit ¼ rlimit × σ0, all r values below
rlimit are equally good (or equally bad). Hence there is a
region of the parameter space corresponding to r < rlimit
where the Posterior probability PðsjdÞ is practically con-
stant, as the experiment cannot discriminate between these
values of the cross section (for a given exposure).
The allowed region below rlimit is thus characterized by

PðsjdÞ ¼ cst while the excluded region above rlimit (where
one expects too much signal) is identified by a sharp cutoff
in the posterior probability. To determine the exclusion
limit (i.e. rlimit), we thus seek to quantify this cutoff. We
have some freedom in choosing its value: it will depend on
the confidence with which we set out limit. For example to
set an exclusion limit at a confidence of Y (e.g. for 90%
confidence we take Y ¼ 0.9), we define rlimit analogously
with our best-fit region, as

Z
rlimit

0

drPðsðrÞjdÞ ¼ Y: (9)

By integrating the constant region of the posterior prob-
ability until the integration reaches the value that we set, we
identify rlimit and the cutoff.
Note also that for ease of calculation we tend to use the

Hamiltonian in the form of

H ¼ Fr −XN
i¼1

ln ð1þ wirÞ; (10)

where i sums over all N data points at positions xi and wi
are data weights with wi ¼ fðxiÞ=bðxiÞ. For setting a limit
the first term in Eq. (10) Fr is data independent and gives
the absolute limit in the case where no signallike events are
observed in the data, while the second term accounts for
potential signallike events present in the data, and weakens
the limit.

The statistical treatment is largely similar for setting
limits or claiming discovery, and our method provides a
natural transition between the two, though the approach to
how one thinks about regions of credibility is different in
either case. Indeed both a signal region and an exclusion
limit are equally valid regions of credibility, and so one may
wish to highlight both if there is a hint of signal present in
the data, but one wishes to remain conservative as to its
interpretation.

III. WORKED EXAMPLE: XENON100 DATA

The strongest limits (for m > 10 GeV) on the spin-
independent cross section for dark matter elastic scattering
with nuclei have been set by xenon-based experiments i.e.
XENON100 and LUX [7]. We focus on the XENON100
experiment [8,18,24] as a worked example, which operates
using both liquid and gaseous xenon with a fiducial mass of
34 kg (for the most recent data set [8]). The XENON100
detector identifies events by using two distinct signals [25]:
primary (S1) and secondary (S2) scintillation, the former of
which is due to scintillation light originating from the liquid
part of the detector, while the latter comes from ionized
electrons, which drift to the gaseous part of the detector
under an electric field. The LUX detector [7] operates on a
similar principle, but with a larger fiducial mass. The LUX
Collaboration also employs different cuts (e.g. a cut at
S1 ¼ 2 PE, instead of 3 PE) and potentially a different
likelihood function for their own analysis. Otherwise, the
following discussion should be interesting for an under-
standing of the analysis of LUX data, as well as
XENON100.
In order to derive limits on the spin-independent cross

section as a function of dark matter mass, the XENON100
Collaboration employs a profile likelihood approach
[20,26]. Such a method takes advantage of the distinct
signatures in S1-S2 of electronic and nuclear recoils by
splitting the data space into a number of bands (23 in [20]
and 12 in [26]). We can contrast this approach with our
method, where the data space is split into a grid of
rectangular pixels, which are associated with a point in
the data space x ¼ ðα; βÞ. Hence, we expect our gridded
approach to perform better than this method of bands used
by the XENON100 Collaboration, since we can exploit the
difference between signal and background to the maximum
amount, while they are limited by the rather coarse-grained
resolution of their bands.8 This application should serve as
a clear demonstration of the advantages to any direct
detection experiment of using our method.

7In such a case the size of a the region between rlow and
rup could be directly related to the distance from the best-fit
point rbest in units of the Gaussian variance i.e. a number of
sigmas.

8The likelihood used by the XENON100 Collaboration is
claimed to be able to exploit the spectra of events within each
band using a separate term in the likelihood [20,26]. However in
practice it is not clear how effective this actually is, and we do not
believe it exploits the difference between signal and background
as well as our gridded method.
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We can identify S1 and S2 with our discrimination
parameters α and β from Sec. II A, though here we choose
instead to take α ¼ S1, β ¼ LogðS2=S1Þ, to match more
closely the method used by the XENON100 Collaboration
themselves (and also the LUX Collaboration [7]). We will
proceed first to discuss the determination of the signal fðxÞ
and background bðxÞ distributions for the XENON100
experiment, before applying our method to data, both the
more recent 225 live days data (225LD) [8] and the older
100 live days data set (100LD) [18].

A. Signal distribution

1. WIMP recoil spectrum

Potential WIMP events are characterized by their recoil
spectra dR

dE, parametrized as [27,28],

dR
dE

¼ σðEÞ
2mμ2

ρηðEÞ; (11)

where σðEÞ is the WIMP-nucleus cross section as a
function of energy E, μ is the WIMP-nucleus reduced
mass, ρ ¼ 0.3 GeVcm−3 is the local dark matter density

and ηðEÞ ¼ R
∞
vmin

d3v fðvþueÞ
v is the WIMP mean velocity.

The mean velocity is integrated over the distribution of
WIMP velocities in the galaxy fðvÞ boosted into the
reference frame of the Earth by ue. The lower limit of
the integration is vminðEÞ, which is the minimum WIMP
velocity required to induce a recoil of energy E. We assume
the standard halo model such that fðvÞ is given by a
Maxwell-Boltzmann distribution cut off at an escape
velocity of vesc ¼ 544 kms−1.
We assume that WIMPs interact identically with protons

and neutrons9 giving σðEÞ ¼ σð μ
μp
Þ2A2F2ðEÞ, where σ is

the zero-momentum WIMP-nucleon cross section, A is the
atomic mass of xenon, μp is the WIMP-proton reduced
mass and FðEÞ is the Helm nuclear form factor [27]. For
225LD (100LD) we use a value of 224.6 days (100.9 days)
for the exposure and 34 kg (48 kg) for the target mass.

2. Calculation of S1 and S2 for nuclear recoils

At a given nuclear-recoil energy E the expected primary
(S1exp) and secondary (S2exp) scintillation signals are
obtained from the following formulas [10,26,31,32]:

S1exp ¼ P

�
E · LeffðEÞ · Ly ·

Sn
Se

�
(12)

S2exp ¼ Y · PðE ·QyðEÞÞ; (13)

where PðxÞ represents a Poisson distribution with
expectation value x, Ly ¼ 2.20� 0.09 PE keV−1, Sn

Se
¼

0.95=0.58, Y is a Gaussian-distributed value with mean
19.5 PE per electron and width σ ¼ 6.7 PE=e− [33],
LeffðEÞ is the relative scintillation efficiency and QyðEÞ
is the ionization yield. For Qy there is a degree of
uncertainty on its functional form [33]; we use the model
of [32] in this work; however we have obtained similar
results with the best-fit curve from [33]. Leff is obtained
from a cubic spline fit to data from [34–37].
To obtain the S1obs and S2obs signals observed in the

detector, we must include the finite detector resolution and
the cuts imposed by the XENON100 Collaboration on the
data [18,26,33]. Both S1exp and S2exp are blurred with a
Gaussian of width 0.5

ffiffiffi
n

p
for n photoelectrons (PEs) to take

account of the finite photomultiplier (PMT) resolution [20].
The effect of cuts is then implemented using the cut-
acceptance curve as a function of S1 [26,33] after applying
the resolution effect. Additionally an S2 threshold cut is
applied before Gaussian blurring, cutting away all points
with S1 < 1 PE [8].

3. Expected dark matter signal in XENON100

The expected signal distribution for a given WIMP mass
in the data space fðxÞ can now be calculated using dR=dE
of Sec. III A 1, at a value of the reference cross section
σ0 ¼ 10−35 cm2 (or 10−34 cm2 for m < 10 GeV). The
energy range between 1 keV and 60 keV is separated into
bins of size ΔE ¼ 0.01 keV. For each binned energy Erec
we calculate S1obs and S2obs a total of Nrec times,
where Nrec ¼ dR

dE ðσ0; ErecÞΔE, to obtain the full signal
distribution as expected in XENON100. The result is
shown for two different masses in Fig. 1. Similar simu-
lations of the signal distribution expected from
XENON100 have been performed in [11,33,38]; however
our method goes further and directly links these to the
analysis through the weight function wðxÞ ¼ fðxÞ=bðxÞ, as
shown in Fig. 1.

B. Background distribution in XENON100

The expected distribution of electronic-recoil back-
ground events bERðxÞ is determined from fits to 60Co
calibration data,10 as is done in [18,20]. Although the
electronic recoil events appear mostly Gaussian distributed,
the XENON100 Collaboration noticed the presence of an

9We take a simple model of DM-nucleon elastic scattering here
for convenience; however our method is easily generalized to
more complicated models (e.g. [14–16,29,30]) by replacing σðEÞ
and dR=dE.

10Our determination of bERðxÞ would improve were we to use
the 232Th calibration data (especially for the anomalous compo-
nent), collected by the XENON100 Collaboration for their most
recent analysis [8]; however this is not currently publicly
available.

NEW METHOD FOR ANALYZING DARK MATTER DIRECT … PHYSICAL REVIEW D 89, 043505 (2014)

043505-5



anomalous (non-Gaussian) background component [18].
This could be due to double-scatter gamma events, where
only one of the gammas contributes to the S2 signal. Both
such components of the ER background are included;
indeed the anomalous component can be seen in Fig. 1
predominantly at low S1. The distribution is normalized by
the total number of expected background events, whose
rate takes the constant value of 0.0053 counts per day per
kg per keVee [8,39]. For 100LD the background is

larger due to krypton contamination in the experimental
apparatus, taking a value of 0.022 counts per day per kg per
keVee [18].
We also model the nuclear-recoil background due to

neutrons bNRðxÞ. The distribution is calculated as for
the signal distribution, but replacing dR=dE with the
expected energy spectrum of neutron scatters in the
detector [40]. Hence the total background distribution
is bðxÞ ¼ bERðxÞ þ bNRðxÞ.

FIG. 1 (color online). The upper four panels show the 225 live days data set [8], while the lower two display the data for 100 live days
of the XENON100 experiment [18]. The left panels show the expected signal fðxÞ and background bðxÞ distributions used for our
analysis. For the signal distribution, each contour is 1.2 times less than the previous, from light to dark blue, while for the background the
ratio is 1.5 from orange to red. The data are shown as black circles. Note that only the ER background is shown here for convenience,
where one can also see the anomalous background component at low S1, as discussed in Sec. III B. For the 225 live days data, the two
most signallike points have been highlighted with yellow stars and are referred to as “hint” points in the text. In the right panels we show
the function Lnð1þ wðxÞ · sÞ, where s ¼ 10−8 here and wðxÞ ¼ fðxÞ=bðxÞ, the weight distribution of Eq. (10). We bin wðxÞ in units of
ΔS1 ¼ 0.5 and ΔLogðS2=S1Þ ¼ 0.01, and interpolate between these bins for the analysis. The y axis is shifted by the mean of the
electronic-recoil band, as shown by “ER Mean.” For the 225 live days data we make use of two sets of cuts on the data space: the first is
to consider only points between S1up ¼ 3 PE and S1up ¼ 30 PE, while the second moves the lower cut to S1low ¼ 4 PE. The former is
referred to as the full data set in the text, while the latter removes the hint points and is referred to as the hint-removed data set. For the
100 live days data S1low ¼ 4 PE and S1up ¼ 30 PE. Additionally the 225 live days data is bounded from below by S2 ¼ 150 PE, while
for 100 live days this moves to 300 PE.
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C. Example exclusion limits and posterior scans

1. Signals and limits from XENON100 data

Now that we know how to calculate the expected signal
and background distributions fðxÞ and bðxÞ, we are ready
to apply our method to the data from the XENON100
experiment. All relevant ingredients are displayed in Fig. 1;
the left panels show the regions where the expected signal
and background are expected to be largest, while the right
panels show plots of Lnð1þ wðxÞ · sÞ as used directly for
our analysis. The discrimination between signal and back-
ground is maximized provided the two-dimensional bins
for wðxÞ ¼ fðxÞ=bðxÞ are small enough: data points where
wðxÞ is large are more likely to be due to signal than
background, while the opposite is true for points located
where wðxÞ is small. This is then fed directly into our
analysis; hence Fig. 1 contains all of the main ingredients of
our method.
Shown in Fig. 2 are the results of applying our method to

the data. In order to understand the effect of data points
consistent with a signal interpretation, we have performed
the analysis with both the full data set (with a lower cut on
S1 at S1low ¼ 3 PE), and with a reduced data set, where the
two hint data points (i.e. the starred points in Fig. 1) have
been removed by cutting away the data space below

S1low ¼ 4 PE.11 The former is displayed in the left panel
of Fig. 2, while the results for the reduced data set are
shown on the central panel. Results from the 100LD data
are shown on the right.
As discussed in Sec. II C we can define regions of

credibility (either exclusion limits or potential discovery
regions) by integrating under the normalized posterior
PðsjdÞ. Hence in the lower panels of Fig. 2 we show
exclusion limits for various levels of confidence, between
20% and 90%, calculated by integrating the posterior from
s ¼ 0 up to the limiting value of s. One can equivalently
consider the parameter space between these limits as a
region of 70% credibility. The 90% limit for the full 225LD
data set can be compared with the result from [8], while the
shaded band represents how the limit changes with differ-
ent confidence.
The upper panels show the dependence of the likelihood

PðdjsÞ as a function of σ for various WIMP masses. One
can see directly that for the full 225LD data set the
likelihood function has a maximum (corresponding to a
minimum in the Hamiltonian), indicating a preference for

FIG. 2 (color online). Plots showing exclusion limits and regions of credibility, derived from applying our analysis to data from the
XENON100 experiment [8]. For the leftmost 225LD analysis, there is a weak preference for low-mass DM, which vanishes under more
stringent cuts (central) or with the 100LD data (right). The upper panels show examples of the (un-normalized) likelihood function
PðdjsÞ for various WIMP masses, while the lower panels show the result of integrating the posterior from s ¼ 0 up to some limiting
value, in order to define an exclusion limit for a given significance. The region between the two dashed lines shows exclusion curves
with significance increasing linearly from darker to lighter shading. One can indeed consider this region as one of 70% significance. For
the left panels we have used the full 225LD data set (all points between S1low ¼ 3 PE and S1up ¼ 30 PE), while for the central panels
the analysis has been performed with the two most signallike (labeled as “hint”) data points removed by cutting off the data space below
S1low ¼ 4 PE. The rightmost panels show results for the 100LD data.

11We could instead have moved the low-S2 cut from 150 to
300 PE, as for the 100LD data set, which would remove one of
these points.
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the data of a particular value of σ, which is strongest for
lighter WIMPs. Indeed this can also be observed in the
exclusion curve as we change the significance value:
particularly for lighter WIMPs the region of credibility
between the 20% and 90% limits is denser as compared to
heavier DM. This is due directly to the presence of a
maximum in the posterior and likelihood.
This is particularly interesting in the context of the

potential hints of light DM in CDMS [6] and CoGeNT [3]
(and to some extent DAMA). However the significance
of such a hint is weak. Indeed the 50% credible region
for an 8 GeV WIMP lies between 6.15 × 10−44 and
2.15 × 10−43 cm2, with a best-fit cross section at
1.40 × 10−43 cm2. Of course the cross section is still
inconsistent with the best-fit region from CDMS [6], unless
one changes the systematic parameters to a rather extreme
degree [11] or considers less standard interactions [12].
Claims that these points are consistent with a DM signal

are likely to be overly optimistic. The significance of the
signal is comparable to a 1σ fluctuation,12 and hence
these data points may just be events from the non-Gaussian
ER background, which we already model. We can addi-
tionally compute the Bayes factor B [41] for e.g. an 8 GeV
WIMP, by calculating the ratio of the joint signal and data
probability Pðd; sÞ integrated over all r, to Pðd; sðr ¼ 0ÞÞ
i.e. the no-DM scenario, where σ ¼ 0. Hence the size of B
should tell us to what degree a positive signal of DM is
preferred, relative to the scenario where no signal is present
(see [41] for details). We calculate B ¼ 3.18, which is just
on the boundary of being a positive result. Hence, again we
can conclude there is only a weak hint of signal for a low-
mass WIMP. There are also systematic uncertainties from
Leff and Qy, though they are unlikely to result in a
significant enhancement of the signal significance.
Indeed, as can be seen from 1 if one attributes these

points to aWIMP signal, one must also explain why no data
is seen where the signal from DM is expected to be even
larger, at lower values of S1 for example. Even so, the
presence of consistency with signal, however weak, indi-
cates some sort of new phenomenon may be present: either
DM or an unknown (or possibly misunderstood) back-
ground. Hence an interpretation of these points in terms of
dark matter is possible but premature; however they are
instructive as an example of the effect of signallike points
on our ability to set limits on light DM.

By contrast when the two hint data points are removed
from the analysis by the more stringent low-S1 cut (see
Fig. 1 for details), there is no maximum in the likelihood
and posterior for any WIMP mass, as one would expect
since all points are in a region where the weight wðxÞ ¼
fðxÞ=bðxÞ is small. Indeed the density of the posterior is
now less for all masses than for the full data set, with the
contrast particularly stark for lighter DM. The same is seen
for 100LD, for which no hint of signal is present. In
addition, the limits without the hint points are stronger
since the data are now almost completely consistent with a
negative result. If the XENON100 Collaboration were to
observe additional signallike points in their data, one would
expect the density of the posterior to increase around the
best-fit region.
In any case this demonstrates the ability of our method to

accurately set limits or define potential discovery regions.
All of the relevant information is contained within the
posterior PðsjdÞ, which can be integrated over to define the
degree of belief that a given region of parameter space is
consistent with the data.

2. Comparison with results from XENON100

Before forming any firm conclusions on the efficacy of
our method in searching for dark matter signals in direct
detection data, we must compare our results to those

FIG. 3 (color online). A comparison of various limits set with
either 225 live days [8] or 100 live days [18] of XENON100 data.
Limits from information theory refer to those derived using the
method presented in this work. For the 100 live days data we also
compare the result of a profile likelihood analysis performed by
the XENON100 Collaboration with that from an analysis we have
done using the same profile likelihood method, but where the
inputs are identical to those for our Bayesian method, such as
fNRðxÞ and bðxÞ. The limit from our Bayesian information theory
method agrees with the XENON100 published limit for 225LD,
but is several times stronger for 100LD.

12Since our method is Bayesian, a comparison with frequentist
confidence intervals is not directly possible. However if one
considers a 1σ confidence interval as (roughly) comparable to a
68% region of credibility, then we actually find the significance to
be a bit less than 1σ. Indeed our choice of 50% was motivated by
the fact that it is close to the largest two-sided interval we could
set around the maximum-likelihood value of the cross section.
The sigma level is only approximate though, as our likelihood is
non-Gaussian (see Fig. 2).

DAVIS, ENSSLIN, AND BOEHM PHYSICAL REVIEW D 89, 043505 (2014)

043505-8



previously found by the XENON100 Collaboration. Shown
in Fig. 3 is our 90% confidence limit (identical to the one in
Fig. 2), compared with the limit derived by the XENON100
Collaboration with the same 225 live days data set [8], but
their own profile likelihood analysis [20]. Uncertainties due
to the relative scintillation efficiency Leff are shown as a
shaded region around our limit (see e.g. [9,10] for a
review).
In addition, in the lower panel of Fig. 3 we also show the

results of applying our method to the 100 live days data set,
along with the limit from the XENON100 Collaboration
using their profile likelihood method, and a limit we have
independently derived using the same method, but with
identical inputs to our information theory analysis.
The exclusion limit derived with our information

Hamiltonian method agrees with that derived by the
XENON100 Collaboration for the 225 live days data set
for large masses. For lighter WIMPs our limit is stronger,
though this is likely due to uncertainty in the low-energy
extrapolation of Leff [9]. Indeed the XENON100
Collaboration employs the most conservative approach
and cuts Leff to zero below 3 keVnr, where no data are
available [8]. Our limit is derived using a constant extrapo-
lation instead, though the uncertainty band shows the limit
under different parametrizations of Leff [9]. Hence one can
consider our result as an independent cross-check of the
limit published by the XENON100 Collaboration.
There are undoubtedly other small differences between

our inputs and those used by the XENON100 Collaboration;
however the agreement of both limits indicates that our
method does indeed perform correctly when analyzing
direct detection data. Note also that for the hint-removed
data set, where the low-S1 cut is moved to S1low ¼ 4 PE,
the limit is stronger for heavy WIMPs due to the removal of
the signallike points by the cut. This is not so for lighter
WIMPs, since much of the region where one expects to see
signal is cut away in addition to the hint points.
We note however that when applying our method to the

100LD data [18] that our information theory limit is
stronger than that derived using the profile likelihood
analysis, both performed directly by the XENON100
Collaboration and from an independent analysis we have
carried out. Since the latter two limits are in agreement, it
would be difficult to blame the inputs of the analysis on this
discrepancy between the limits; hence it is likely that the
coarse-graining13 of the profile likelihood analysis has
resulted in the derivation of an overconservative limit.
To reiterate, we refer specifically to the profile likelihood
analysis used by XENON100 here. The issue is not with the
frequentist method itself, but rather with the choice of

likelihood function used by the collaboration. Hence, our
limit is more accurate because we use a likelihood which
exploits the whole data space, and this should also be
reflected in a profile likelihood analysis which followed the
same principles.
The reason for this discrepancy arising only for the

100LD data set is not entirely clear, though it is likely that
the increased background in this data set relative to that
from 225 live days [8] (due to the krypton leakage) has
effectively fooled the analysis into treating too many points
as potential signal, thereby weakening the limit. Hence we
believe that this demonstrates the robustness of our method
as compared to such a profile likelihood analysis, since it is
less susceptible to leakage of background points into the
signal region.

IV. CONCLUSION

In this work we have introduced a Bayesian method
of analyzing data from dark matter direct detection
experiments. Our method takes as input the data set itself
and the expected signal and background distributions,
defined over the whole data space, which is divided into
a grid of two-dimensional pixels. This enables us to take
full advantage of the distinct expected distributions signal
and background events, and hence to set limits (or
discovery regions) without resorting to conservative
approximations.
Using data from the XENON100 experiment [8] as a

worked example we demonstrated how one would apply
our method to direct detection data. This has direct
relevance also to the LUX experiment [7], and any future
runs of XENON100. We have shown that there is merit in
looking beyond the 90% confidence limit, as hints of signal
may be affecting the structure of the likelihood and
posterior in a nontrivial manner. Indeed an analysis of
the XENON100 data from 225 live days indicates a weak
preference in the data for a light DM particle. At 50%
confidence the best-fit cross section is in between 6.15 ×
10−44 and 2.15 × 10−43 cm2 for an 8 GeVWIMP; the error
bars being relatively large, it is very premature to argue that
this is evidence for dark matter. Similar regions can be
obtained for any dark matter particle with a mass below
∼20 GeV, with a possible evidence for a dark matter signal
in the data vanishing for masses above about 20 GeV. If
indeed these points are due to a detection of dark matter,
more data from the XENON100 experiment should
increase the confidence level and shrink the error bars
on the cross section. Alternatively, these events may be
found to be due to an additional background process or the
anomalous component of the ER background, in which
case the signal significance would vanish with more data.
Considering the recent null result from the LUX experi-
ment [7], the latter would seem to be a more plausible
explanation.

13Specifically we refer to the splitting of the data space into a
finite number of bands for the profile likelihood method used by
the XENON100 Collaboration, which necessarily limits the
amount of information extracted from the data, as opposed to
our method where the data space is pixelated (see Fig. 1).
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We also demonstrated that our new method can produce
a complementary analysis to the one currently used by the
XENON100 Collaboration, where the data are placed into
bands. Indeed our limit and theirs agree for the most recent
225 live days data set [8]; however ours is several times
stronger for the data from 100 live days [18]. The reason for
this disagreement for the older data set is not clear.
However it is possible that since the background was
higher due to krypton contamination, there was a greater
proportion of background events leaking into the region
where signal was expected (i.e. the more signallike bands
of the analysis used by the XENON100 Collaboration),
which may have fooled their analysis into setting too weak
a limit. Additionally our method could be even more
robust, especially if one exploits the full detector volume
(with f and b now depending on physical positions in the
detector).
Our analysis can be seen as an independent analysis of

the XENON100 data, and more importantly could be
employed by any present or forthcoming experimental
collaboration for such a purpose. In particular, our method
can be easily applied to the LUX experiment [7], since it

operates on a similar principle to XENON100. In this case
one should hope to find agreement with our Bayesian
results and the frequentist method used by the LUX
Collaboration, which should provide an important
cross-check of the LUX results. Future experiments such
as XENON1T [42], LZ [43] and SuperCDMS [44] could
also benefit from a Bayesian cross-check.
The use of our formalism should be very convenient to

set limits and potential regions of discovery simultaneously,
allowing scenarios where the presence of a signal is
ambiguous to be studied without bias. Additionally, our
method can be used to go beyond the conservative
approach, and to set the strongest limit possible by
exploiting the different distributions of signal and back-
ground events. With a consistent analytical method used by
all dark matter direct detection experiments, the current
constraints on the WIMP cross section should be both
stronger and clearer.
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