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We investigate the ability of the recently developed ring-polymer instanton (RPI) method
[J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 134, 054109 (2011)] to treat tunneling in
water clusters. We show that the RPI method is easy to extend to treat tunneling between more than
two minima, using elementary graph theory. Tests of the method on water dimer and trimer yield a
set of instanton periodic orbits which correspond to all known tunneling pathways in these systems.
Splitting patterns obtained from the orbits are in good overall agreement with experiment. The agree-
ment is closer for the deuterated than for the protonated clusters, almost certainly because the main
approximation in the calculations is neglect of anharmonicity perpendicular to the tunneling path. All
the calculations were performed on a desktop computer, which suggests that similar calculations will
be possible on much larger clusters. © 2011 American Institute of Physics. [doi:10.1063/1.3640429]

I. INTRODUCTION

Tunneling splittings are useful observables in the study
of water clusters.1 The splittings are produced by tunneling
between symmetrically equivalent permutation-inversion iso-
mers of the global minimum.2, 3 They have been measured
for clusters ranging from the dimer to the hexamer,1, 4–18

and some of these measurements have been interpreted by
theory.19−39 It is well known that water molecules behave
rather differently in clusters than in the bulk. However, the
properties of bulk water can often be simulated adequately us-
ing potentials that contain just pairwise and three-body terms,
and the study of water clusters allows these terms to be com-
pared more precisely and directly with experimental data than
is possible in the bulk.40–43 Tunneling splittings are partic-
ularly useful in this regard, as they are sensitive to regions
of the potential energy surface away from the local minima,
and thus give information on, for example, the short-range
anisotropy of the potential.40, 42

The only water cluster for which the quantum dynam-
ics can be computed accurately is the dimer (and even then it
is necessary to freeze19–22 or separate adiabatically23 the ge-
ometries of the monomers). However, there are a variety of
methods for computing tunneling splittings that bypass direct
solution of the Schrödinger equation,24–39, 44–50 some of which
have been applied to water clusters.24–30, 37–39 Some of these
methods are formally exact, and make use of Monte Carlo
techniques;37–39, 44–47 others involve approximations, based on
model Hamiltonians,26, 30 or the Wentzel-Kramers-Brillouin
(WKB) approximation.24–29, 48, 49 The latter approach has the
advantage of yielding the splittings directly from fluctuations
around a single tunneling path, but the disadvantage that the
paths must be specified a priori. This condition requires one
to develop an a priori model of the tunneling, which is possi-
ble for water dimer and trimer,24–29 but more difficult for the
larger clusters.1

a)Author to whom correspondence should be addressed. Electronic mail:
sca10@cam.ac.uk.

An approach similar to WKB, but which does not
require a priori specification of the tunneling path, is
the “instanton” approach.51–66 An instanton is a dominant
tunneling path, obtained by analysis of the path-integral
form of the quantum Boltzmann operator (or by taking
the steepest-descent limit of the flux-side time-correlation
function51, 52). The use of instantons to compute tunneling
splittings has a long history, but practical methods that treat
multi-dimensional systems have been developed only re-
cently, by Mil’nikov and Nakamura,64, 65 and by Richardson
and Althorpe.66 The latter “ring-polymer instanton” (RPI)
method uses the “ring-polymer isomorphism” (encountered
in path-integral simulations44–47 and ring-polymer molecular
dynamics56, 67–69) to convert the abstract mathematics of for-
mal instanton theory into a simple minimization procedure.
Similar work has been done in the application of instanton
theory to compute rates.56–60 The RPI method is approximate,
since it neglects anharmonicity perpendicular to the tunneling
path (as do all instanton methods), and uses Cartesian coor-
dinates, which require one to neglect the dependence of the
splittings on overall rotation. It is therefore suitable for pre-
dicting dominant tunneling paths, and estimating the split-
tings to within an order of magnitude or better for clusters
in which a priori prediction of the tunneling paths is difficult.

Before treating the larger clusters, it is necessary to test
the RPI method on water dimer and trimer, which is the
purpose of this article. We report applications of the RPI
method to these systems, using ab initio two- and three-
body potential energy surfaces recently developed by Bow-
man and co-workers.22, 43, 70, 71 (We also take the opportunity
to test briefly the widely used Thole-type model potential
of Ref. 41.) Water dimer can be considered to be a solved
problem: its tunneling-splitting pattern is completely under-
stood, thanks to a series of experimental measurements4–8

and theoretical analyses.19–26 Water trimer is less well un-
derstood, but a series of pioneering experiments1, 11–18 have
yielded data on the tunneling splittings, and predictions and
interpretations of these have been made by several theoretical
groups.13, 27–30, 37–39
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To apply the RPI method to water dimer and trimer, we
need to extend the theory of Ref. 66 (hereafter referred to as
“Paper I”) to treat tunneling between more than two minima.
In Sec. II, we will show that this can be done in a straightfor-
ward way, using elementary graph theory. The RPI method
then yields tunneling paths between any two permutation-
inversion isomers of any local minimum, as well as the tun-
neling matrix and the complete splitting pattern (including the
symmetry assignment of the energy levels). To our knowledge
this is the first time that instanton theory has been extended in
such a way. The new method is applied to the water dimer in
Sec. III, and to the trimer in Sec. IV. Section V concludes the
article.

II. THE RING-POLYMER INSTANTON METHOD

A. Tunneling between two symmetric wells

The RPI method was developed in Paper I to treat tunnel-
ing between two symmetrically related wells.72 The starting
point is the expression

lim
β→∞

Q(β)

Q0(β)
= cosh

(
β�

2

)
, (1)

where Q(β) is the partition function of the entire system,
Q0(β) is the partition function of the system in the absence
of tunneling, β = 1/kT , and � is the tunneling splitting, with
k the Boltzmann constant.

Following the derivation of Paper I, we can calculate
Q(β) and Q0(β) by applying the steepest-descent approxi-
mation to the ring-polymer partition function. The latter is
obtained via the well-established route of splitting the exact
partition function

Q(β) = Tr[e−βĤ ] (2)

into N imaginary time intervals of length βN¯, where
βN = β/N . For an f -dimensional system with potential
V (x1, . . . , xf ), this manipulation gives

Q(β) = lim
N→∞

(
1

2πβN¯2

)f N/2 ∫
dx e−βN UN (β,x), (3)

where

UN (β, x) =
N∑

i=1

V (xi,1, . . . , xi,f ) + 1

2(βN¯)2

×
N∑

i=1

f∑
j=1

(xi+1,j − xi,j )2, (4)

and {x1,j , . . . , xN,j } are the mass-weighted polymer beads
(satisfying cyclic boundary conditions) associated with the
classical degree of freedom xj .

Application of the steepest-descent approximation to the
ring-polymer form of Q0(β) gives66

Q0(β) � 2
N∏

i=1

f∏
j=1

1

βN¯
√

ω2
i + ζ 2

j

, (5)

where ωi are the normal mode frequencies of the free ring-
polymer, and ζj are the harmonic frequencies of the potential
energy surface V (x1, . . . , xf ) at the bottom of each of the two
wells, where we define V = 0.

Application of steepest descent to the full system results
in an infinite number of steepest-descent minima on the ring-
polymer potential surface, which correspond to periodic or-
bits on the inverted (molecular) potential surface.61–66 In each
orbit, the system spends most of its time located at either one
or other of the wells, but occasionally passes between them.
Each pass is called a “kink,” and the contribution each orbit
makes to the partition function depends only on the number
of kinks, n. Enumerating all such orbits, we obtain66

Q(β) =
∞∑

n=0,even

2Nn

n!
Qn(β), (6)

where each term Qn(β) represents the contribution from an
orbit with n kinks, and the prefactor is the number of ways
of arranging n kinks in a ring polymer of N beads; only even
values of n are included in the sum, since otherwise the orbit
would not be periodic.

Fortunately, we do not need to calculate the (infinite)
set of Qn(β) terms in Eq. (6), since each term factorises into
a product of contributions made by a single, isolated kink.
The latter representation is obtained by cutting an M-bead
linear polymer out of the N -bead ring polymer, such that
the ends of the linear polymer are located at the bottoms of
the wells at xL and xR. The potential energy surface for this
linear-polymer is66

UM (β, x)=
M∑
i=1

V (xi,1, . . . , xi,f ) + 1

2(βN¯)2

f∑
j=1

[
(x1,j −xLj )2

+
M−1∑
i=1

(xi+1,j − xi,j )2 + (xRj − xM,j )2

]
. (7)

We then obtain a weight θ (β) for the contribution made by a
single kink, which is given by66

θ (β) = βN¯

�

√
Skink

2π¯
e−Skink/¯, (8)

where

Skink = UM (β, x̃)βN¯ (9)

is the classical action evaluated along the kink,

� =
∏Nf

k=2 ηk∏N
i=1

∏f

j=1

√
ω2

i + ζ 2
j

, (10)

and ηk are the frequencies of the normal modes obtained by
diagonalising the Hessian corresponding to Eq. (7). Note that
η1 = 0, and that this frequency is omitted from the product.
Here, ωi are the frequencies of the free linear-polymer
defined by

ωi = 2

βN¯
sin

iπ

2(N + 1)
, (11)
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Equation (6) can then be expressed as

lim
β→∞

Q(β)

Q0(β)
� lim

β→∞

∑
n=0,even

Nn

n!
θ (β)n

= cosh[Nθ (β)], (12)

and the tunneling splitting � is found by comparison with
Eq. (1) to be

� � lim
β→∞

2

βN

θ (β). (13)

The main approximation in � is the neglect of anharmonicity
perpendicular to the tunneling path. If we are to use Cartesian
coordinates (which seems the only practical way of applying
the approach to clusters), then we must also assume that �

depends only weakly on the overall rotation of the system.66

We emphasise that it is only anharmonicity perpendicular
to the instanton tunneling-path that is neglected, and that
tunneling splittings in clusters or large molecules do not
usually depend strongly on the overall rotation (although
there are exceptions—see Sec. III D). The RPI method can
thus be expected to give an estimate of �, that is, good to
within an order of magnitude or better for a given underlying
potential energy surface.

B. Tunneling between more than two wells

We now extend the method of Paper I to treat tunnel-
ing between G degenerate wells. In place of the tunneling
splitting �, we have a set of splittings Eν − E0, where E0

is the zero-point energy in the absence of tunneling, and
ν = 1, 2, . . . , G. Equation (1) generalises to

lim
β→∞

Q(β)

Q0(β)
= 1

G

G∑
ν=1

e−β(Eν−E0). (14)

We can evaluate this expression by steepest descent, to obtain

Q(β) =
∞∑

n=0,even

Nn

n!

G∑
ν=1

Qn,ν(β), (15)

where Qn,ν(β) represents the contributions made from all pe-
riodic orbits formed from a closed sequence of n kinks that
start and finish at well ν, and which have centres located at
one particular set of beads N1 < N2 < . . . < Nn (the factor
of Nn/n! is the number of ways of picking this set). Each se-
quence of kinks joins up a different sequence of wells (starting
and stopping at ν). To count the total number of sequences, we
use the adjacency matrix A, defined such that Aλμ is equal to
the number of possible kinks that connect well λ (directly) to
well μ; when Aλμ > 1, we will assume that these kinks can
be mapped onto one another by symmetry operations.73 From
elementary graph theory, the number of possible sequences of
n kinks that start and end at well ν is equal to (An)νν .

Following the arguments given in Paper I, we can fac-
torise the contribution to Qn,ν(β) made by each n-kink orbit
into a product of n weights, θλμ(β), each associated with a
different kink in the sequence. The θλμ(β) are defined analo-
gously to θ (β) in Eq. (8), such that the action Skink(β) is eval-
uated along the kink joining λ to μ and the ratio � is obtained

from the normal mode frequencies of the linear polymer rep-
resenting this kink, as described by Eq. (10). To obtain the to-
tal weight associated with all the n-kink orbits that contribute
to Qn,ν(β), we define the tunneling matrix W to be

Wλμ = Aλμhλμ, (16)

where

hλμ = − lim
β→∞

1

βN

θλμ(β). (17)

It then follows that

lim
β→∞

Qn,ν(β)

Q0(β)
= 1

G
[(−βNW)n]νν (18)

since the adjacency matrix element Aλμ in Wλμ ensures that
the quantity [(−βNW)n]νν is the sum over the weights asso-
ciated with all orbits contributing to Qn,ν(β). We thus obtain

lim
β→∞

Q(β)

Q0(β)
= 1

G

∞∑
n=0,even

Nn

n!

G∑
ν=1

[(−βNW)n]νν

= 1

G
Tr[e−βW]. (19)

Comparison with Eq. (14) shows that the eigenvalues of
W are the desired approximations to the energy splittings
Eν − E0.

We can check that Eq. (19) is consistent with Eq. (12) by
considering a G = 2 system with

A =
(

0 1
1 0

)
, (20)

and

W = −θ (β)

βN

A. (21)

Substitution into Eq. (19) then yields Eq. (12), since
Tr(A2n) = 2, and � = E2 − E1. The eigenvectors of W are
(1,±1)/

√
2, demonstrating that the wells contribute symmet-

rically in the lower state, and antisymmetrically in the upper
state (as expected).

For a system with G > 2 wells corresponding to
permutation-inversion isomers, the elements of W related by
symmetry are identical. An important first step in the appli-
cation of Eq. (19) is therefore to identify the molecular sym-
metry group2, 3 of the system. The symmetry also determines
the adjacency matrix A (if we assume that each element of
the matrix is equal to the number of symmetrically equivalent
kinks between the same pair of wells). Illustrations of these
uses of symmetry are given in Secs. III and IV. A further use
of symmetry is that the eigenvectors of W span the same irre-
ducible representations as the corresponding wave functions
(since they give the signs and magnitudes of the contributions
made by the various wells), and can hence be used to assign
the symmetry labels to the energy levels Eν .

This completes the extension of the ring-polymer instan-
ton method of Paper I to treat tunneling between more than
two wells. The method is similar to the WKB approach, ex-
cept for the crucial difference that the WKB approach obtains
W from a set of a priori tunneling paths,25–29 whereas the RPI
method obtains W completely from first principles, and thus
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FIG. 1. Diagram showing the geometry for the local minimum correspond-
ing to permutation-inversion isomer 1 in water dimer. The labels are used
to identify the elements of the molecular symmetry group that permute the
nuclei into the other seven minima. For example, (34) denotes a swap of the
hydrogen atoms labelled 3 and 4, which changes the structure into that of
well number 4. The water molecule containing atom “A” is referred to as the
“donor;” the other water molecule is referred to as the “acceptor.”

does not require an a priori model of the tunneling. To our
knowledge, this is the first time that the instanton approach (in
either its functional determinant61–63 or ring-polymer66 form)
has been generalised to treat tunneling splittings in systems
with more than two wells.

III. APPLICATION TO WATER DIMER

The newly extended RPI approach was applied to (H2O)2

and (D2O)2, using the recently developed HBB2 potential en-
ergy surface70 (where HBB stands for Huang, Braams, and
Bowman). Water dimer is an ideal test case, as the splitting
pattern is non-trivial but well understood,19–26 and the vari-
ous tunneling splittings span four orders of magnitude. Also,
quantum calculations on the HBB1 surface22 (of which HBB2
is a refinement) give splitting patterns in close agreement with
experiment.

A. Details of the calculation

The molecular symmetry group of water dimer74 predicts
that W has just five independent elements (see Sec. III B). We
therefore searched for kinks between just five pairs of wells.
It was straightforward to find the kinks using the technique
of Paper I, whereby the linear polymer is allowed to move
freely (i.e., the ends are not fixed to the wells). This approach
is used because the system will typically rotate a little along
the kink trajectory, and it is therefore difficult to predict a pri-
ori the precise start and end geometries that are joined by the
kink. The initial position of the polymer was taken to be the
minimum-energy path between the wells, except for one case
(the 1–3 path, see below), in which the polymer was placed

with half of its beads in each of the wells. In all five cases,
the free polymer correctly relaxed to the kink joining the two
wells in question: it was never necessary to fix the ends of the
polymer to prevent it from relaxing to a kink joining a differ-
ent pair of wells.

We started the searches for the kinks at relatively high
temperatures (typically β = 10000 a.u.), with a relatively
small number of beads (typically M = 32), and then in-
creased β and M until a table of the weights θλμ versus M

and β was numerically converged along the diagonal (see
Paper I for examples of such tables illustrating convergence
along the diagonal); β was increased in steps of 5000 a.u., and
M by factors of 2, starting from M = 32 and finishing with
M = 4096. When increasing M , the search was started from
the geometry obtained by interpolating M beads into the min-
imum geometry found in the previous M/2 run. These values
of M are typical for a system in which the tunneling does not
involve a significant amount of skeletal rearrangement (and
hence does not require very large numbers of beads to de-
scribe slow motion along the instanton path in the vicinity of
the potential wells). All minimizations were carried out using
the slightly modified L-BFGS algorithm75, 76 in OPTIM.77 This
approach has the advantage that only one matrix diagonalisa-
tion needs to be carried out per kink (in order to determine the
ratio of eigenvalues �). Symmetry labels were assigned to the
energy levels by inspecting the components of the eigenfunc-
tions of W.

B. Instanton tunneling paths and adjacency matrix

It is well known26 that water dimer has G = 8 wells (be-
tween which it can tunnel without breaking covalent bonds).
These permutation-inversion isomers are usually labelled
1–8, with the geometry of well 1 taken to be that of Fig-
ure 1. The water molecule whose hydrogen forms a hydrogen
bond is called the “donor” monomer; the other monomer is
the “acceptor.” The geometries of the other seven wells can
be generated from the geometry of well 1 by applying el-
ements of the molecular symmetry group.2, 3 The symmetry
group also predicts that there are only five independent ele-
ments of the tunneling matrix W, which, by convention,26 are
taken to correspond to tunneling between wells 1→ i, with
i = 2, 3, 4, 5, 7. We located a kink connecting each of these
pairs of wells, following the procedure described above. Some
properties of the kinks, including the computed values of h1i

(obtained from the linear polymers as described in Sec. II B)
are given in Tables I and II. Animations, showing the motion

TABLE I. Instanton tunneling pathways (kinks) located on the HBB2 potential surface for (H2O)2. The numbers 1–8 label the eight symmetry-related wells.
The permutations are defined with respect to the labels in Fig. 1. The saddle points are those that lie closest to the corresponding instanton kinks. The actions
Skink, eigenvalue ratios �, and tunneling matrix elements h1i were calculated from the kinks as described in the text.

−hij /(cm−1)

Pathway i → j Permutation Saddle Skink/(¯) �/(a.u.) Instanton Expt.a

Acceptor tunneling 1→4 (34) Cs 5.74 120 5.5 2.3
Geared interchange 1→5 (AB)(1324) Ci 7.48 720 0.19 0.18
Bifurcation tunneling 1→2 (12)(34) C2v 12.04 51 0.035 0.023
Anti-geared interchange 1→7 (AB)(14)(23) C2 11.17 140 0.029 0.013
Donor exchange 1→3 (12) none 15.94 18 2.3(−3) · · ·
aReference 6.
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TABLE II. Same as Table I for (D2O)2.

−hij /(cm−1)

Pathway i → j Skink/(¯) �/(a.u.) Instanton Expt.a

Acceptor tunneling 1→4 7.75 170 0.60 0.45
Geared interchange 1→5 10.44 900 9(−3) 9.4(−3)
Bifurcation tunneling 1→2 16.82 67 2.7(−4) 2.3(−4)
Anti-geared interchange 1→7 15.54 170 4(−4) 3.7(−4)
Donor exchange 1→3 22.22 24 4(−6) · · ·
aReference 5, 7, and 8.

in imaginary time of the system along each kink, are given as
supplementary material.78

The 1–4 path is referred to as “acceptor switching” and
corresponds to an exchange of atoms 3 and 4 (in the notation
of Fig. 1). Previous work24, 79, 80 found that this motion does
not correspond to a simple internal rotation of the acceptor
water but rather to a concerted twist of the donor monomer
and wag of the acceptor. The computed 1–4 kink is entirely
consistent with this type of motion, as can be seen from the
animation. The kink differs from the minimum-energy path
(used in previous WKB calculations24–26) in that it passes
close to the second-order Cs saddle point (see Fig. 2) instead
of the first-order C1 saddle point (see Fig. 2). One effect of
this difference is that there are two symmetrically equivalent
kinks (between wells 1 and 4), but four symmetrically equiva-
lent minimum-energy paths. As a result, the instanton calcula-
tions find that A14 = 2, whereas Refs. 24 and 25 use A14 = 4.
This difference is only minor, because the symmetry of the Cs

saddle means that the instanton paths have twice the volume
in which to fluctuate about the kink, and hence the factor of
two difference in A14 is compensated by the eigenvalue ratio
� of Eq. (10).

The instanton predictions for the 1–5, 1–2, and 1–7 tun-
neling paths agree with previous work,24, 25 both in terms
of the adjacency matrix (for which A15 = A12 = A17 = 1),
and in terms of the tunneling dynamics along the paths
(see the animations showing motion along the 1–5, 1–2, and
1–7 kinks). The most important of these paths is the 1–5 path,
which corresponds to a geared interchange of the acceptor

FIG. 2. Key saddle-point geometries on the HBB2 potential energy surface
(Ref. 70) for water dimer. Note that the Cs saddle point is of the second order
(and the others are of first order).

and donor monomers (see the animation). Unlike the mini-
mum energy paths that were obtained in the previous work,
the instanton paths for 1–5, 1–2, and 1–7 do not pass directly
through the various saddles identified in Fig. 2, but do pass
close to them.

The remaining 1–3 path has been little studied in the liter-
ature, and is thought to contribute only a small amount to the
tunneling pattern.26 No transition state leading to wells 1 and
3 exists and so the corresponding minimum-energy path must
be defined differently. Nevertheless, we were able to find an
instanton kink describing this path, and obtained an adjacency
matrix element A13 = 4. Unlike the other four paths, the
1–3 kink does not pass through a point with symmetry (see
the animation for a visualisation of this path).

C. Tunneling matrix elements and splitting pattern

The adjacency matrix obtained from the kinks gives rise
to the following tunneling matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h12 4h13 2h14 h15 h15 h17 h17

h12 0 2h14 4h13 h15 h15 h17 h17

4h13 2h14 0 h12 h17 h17 h15 h15

2h14 4h13 h12 0 h17 h17 h15 h15

h15 h15 h17 h17 0 h12 4h13 2h14

h15 h15 h17 h17 h12 0 2h14 4h13

h17 h17 h15 h15 4h13 2h14 0 h12

h17 h17 h15 h15 2h14 4h13 h12 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)

This matrix has exactly the same form as a tunneling ma-
trix first derived by Coudert and Hougen on the basis of a
minimum-energy-path analysis,26 and which has been widely
used for describing tunneling in water dimer.81 The minimum
energy paths of Coudert and Hougen gave rise to the same
adjacency matrix as the instanton kinks because they pass
through the Cs saddle point, which was thought at the time
to be first order. We emphasise that no reference was made to
the Coudert and Hougen model when constructing W, which
was done entirely using the symmetry of the wells and kinks.

The values of the elements h1i , computed from the ac-
tions Skink(β) and eigenvalue ratios �(β) are given in Tables I
and II. These elements span four orders of magnitude, and it
is clear that the instanton calculation has correctly predicted
each of these magnitudes. Since the form of the tunneling
matrix W is correct, it follows that instanton calculations are
likely to predict the correct splitting pattern (obtained by di-
agonalising W). Figure 3 and Tables III and IV show that the
instanton splitting patterns agree well with experiment. Also,
the symmetries of the energy levels shown in Fig. 3 (which
were obtained by inspecting the eigenvectors of W as de-
scribed above) agree with the results of variational basis set
calculations.

D. Quantitative comparison with quantum results and
experiment

We do not expect the RPI method to give quantitative
agreement with experiment, because, as mentioned above, the
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FIG. 3. Water dimer tunneling-splitting pattern, obtained by diagonalising
the instanton tunneling matrix W of Eq. (22). The values of the tunneling
elements h1i and of the splittings are given in Tables I–IV.

method neglects anharmonicity perpendicular to the tunneling
path, and assumes that the splittings depend only weakly on
the rotational quantum numbers. Nevertheless, the agreement
of the instanton results with experiment and with the quan-
tum results of Ref. 22 is within a factor of two for (H2O)2,
and even closer for (D2O)2 (although the accuracy of the lat-
ter is almost “too good” and is probably caused by fortuitous
cancellation of errors).

Two pieces of evidence suggest that most of the quan-
titative errors in the instanton splittings result from the ne-
glect of anharmonicity. First, the errors are a lot smaller for
(D2O)2 than for (H2O)2, which are consistent with the expec-
tation that deuteration reduces the fluctuations of the poly-
mers around the steepest-descent minima. Second, the inter-
change splittings (those involving mostly h15) agree much
better with experiment than do the acceptor splittings. Now,
the barrier height (210 cm−1) along the acceptor path is close
to the change in harmonic zero-point energy (204 cm−1). Cal-
culations on model systems with similarly low barriers66 have
shown that the fluctuations of a linear polymer with both ends
fixed in the same well are large enough for some of the beads
to access the barrier or even “visit” the other well. In such
cases, Q0(β) is “contaminated” by tunneling, and the valid-

TABLE III. Tunneling splittings (cm−1) for (H2O)2 obtained from the in-
stanton calculations on the HBB2 surface, compared with quantum results
and with experiment. See Fig. 3 for a diagram of the overall splitting pattern.

Splitting Instanton Quantum a Expt.b

Acceptor 4|h14v | 22 13 9.4
Interchange (lower) 4|h15 + h17| 0.86 0.75 0.75
Interchange (upper) 4|h15 − h17| 0.63 0.65 0.65
Bifurcation (lower) |h12 + 4h13| 0.044 · · · 0.02
Bifurcation (upper) |h12 − 4h13| 0.026 · · · 0.02

aReference 22.
bReference 6.

TABLE IV. Same as Table III for (D2O)2.

Splitting Instanton Quantum a Expt.b

Acceptor 4|h14| 2.4 2.4 1.8
Interchange (lower) 4|h15 + h17| 0.037 0.040 0.039
Interchange (upper) 4|h15 − h17| 0.035 0.036 0.036
Bifurcation (lower) |h12 + 4h13| 2.8(−4) · · · 2.3(−4)
Bifurcation (upper) |h12 − 4h13| 2.5(−4) · · · 2.2(−4)

aReference 22.
bReferences 5, 7, and 8.

ity of Eq. (1) starts to break down. This effect is almost cer-
tainly why the instanton acceptor splitting is a factor of two
too large in (H2O)2. Evidently this error is much smaller in
(D2O)2, which is again consistent with model calculations,66

which show a similar reduction in error on deuteration.
The instanton prediction for the acceptor splitting of

(D2O)2 agrees to within 2% of the quantum result for the
HBB2 potential. While this extremely close agreement is
probably fortuitous, it is not unreasonable that these two re-
sults should be close. In the quantum calculations, the OH
bond lengths were held fixed at their monomer equilibrium
geometries, and this constraint (rather than deficiencies in the
potential surface) is thought to explain the deviation from
experiment.22 The instanton calculations allow the system to
relax, such that the OD distances vary correctly along the in-
stanton path. However, Huang et al.22 argue that the main er-
ror produced by fixing the OD bonds (in the quantum cal-
culation) is neglect of zero-point energy along the tunneling
path. Effectively, the instanton calculations are also neglect-
ing a large proportion of this zero-point energy difference,
through their neglect of anharmonicity. Hence both calcula-
tions make a similar approximation, and it is not surprising
that the results are very close.

The values of h1i are known to depend only weakly on ro-
tational quantum numbers, except for h14.22, 26 The 1–4 path
involves an effective (though not actual, see above) inter-
nal twist of the two monomers, which causes h14 to depend
strongly on the rotational quantum number K (the projection
of the total rotational quantum number J onto the intermolec-
ular axis). In Tables I and II, we have quoted the K = 0 ex-
perimental values for h14. The instanton results may therefore
include errors resulting from “contamination” from K �= 0.
We will not attempt to analyse these errors here, which, from
the discussion above, would seem to be minor in comparison
with the errors caused by the neglect of anharmonicity.

IV. APPLICATION TO WATER TRIMER

The RPI method was applied to (H2O)3 and (D2O)3, us-
ing the HBB2 potential surface70 for two-body interactions,
combined with a three-body potential;71 [we will refer to this
combination as “PES(1,2,3)”]. We also took the opportunity
to test two less accurate but computationally less expensive
surfaces.

A. Locating the kinks

There are 96 permutation-inversion isomers for the wa-
ter trimer if covalent bonds are conserved.14, 27, 28, 82 Figure 4
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FIG. 4. Diagram showing one of the 96 minimum-energy geometries of the
water trimer. The labels are used to describe operations of the G96 molecular
symmetry group (see Ref. 14).

illustrates the geometry at the bottom of one of these wells.
Each monomer acts as a single hydrogen-bond donor and sin-
gle acceptor in a cyclic arrangement. The dangling hydrogens
on two of the monomers point up (u) relative to the plane:
these are called the “majority” monomers, and are referred to
individually as the “acceptor” and the “donor,” depending on
their relation to the remaining “minority” monomer, in which
the loose hydrogen points down (d). There are also wells with
uuu and ddd geometries, but these have only a minor effect
on the tunneling-splitting pattern,14, 27, 28 which is dominated
by tunneling between the uud wells (and the equivalent ddu,
udu, etc. wells).

The permutation-inversion isomers transform into one
another under operations of the G96 molecular symmetry
group.14, 27 We ran preliminary calculations with 32 beads,
at a temperature of β = 15000 a.u., to obtain a preliminary
estimate of the relative importance of different kinks to the
tunneling-splitting pattern. We found that many of the kinks
were unimportant, because they gave tunneling matrix ele-
ments which were too small to affect the splitting pattern
significantly. We identified a total of six kinks per well that
made a significant contribution. These turned out to repli-
cate qualitatively six of the major tunneling pathways that
had previously been predicted for water trimer in WKB
calculations.25, 27, 28 These kinks were then located precisely
using M = 512 and β = 20000 a.u. (following very similar
procedures to those described in Sec. III A), and the tunneling
splitting patterns were calculated using Eq. (19). The symme-
try labels were very useful in assigning the levels, and were
obtained by inspecting the symmetry of the eigenfunctions of
W.

B. Properties of the instanton tunneling paths

Various properties of the kinks are summarised in Ta-
ble V, using the notation of Ref. 27. Conflated series of snap-
shots, showing the motion along each of the kinks, are shown
in Fig. 5. The tunneling paths described by the kinks are qual-
itatively the same as those previously identified in the WKB
calculations of Refs. 27 and 28 (which is why we are able to
use the same notation). However, we emphasise that no prior
assumptions were made about the nature of the kinks, which
were found by minimizing the linear-polymer potential en-
ergy surface as described above. The resulting tunneling ma-
trix elements for (H2O)3 and (D2O)3 are given in Table VI,
and the splitting patterns in Figs. 6 and 7.

TABLE V. Instanton tunneling pathways (kinks) located on the PES(1,2,3)
potential surface (Refs. 70 and 71) for (H2O)3. Properties of the kinks are
summarised in the first column, using the notation of Ref. 27 for the bifur-
cations (min = minority monomer, don = donor monomer, acc = acceptor
monomer, with the backslash separating the forward and reverse paths where
these differ). The actions Skink and eigenvalue ratios � were calculated from
the kinks as described in the text.

Pathway Shorthand Skink/¯ �/a.u.

Flip Flip 2.35 300
Min + acc flip/don + min flip A1 13.44 100
Min + don flip/acc + min flip A2 14.85 11
Don + no flips/acc + no flips A3 12.92 130
Min + double flip B1 14.99 9
[Don + double flip B2 16.13 . . .]
Acc + double flip B3 16.57 2
Clockwise-counterclockwise cwccw 42.93 3

1. The flip pseudorotation

Figures 6 and 7 show that the instanton splitting pattern
has an overall quartet structure. This result agrees with pre-
vious experimental and theoretical studies of the trimer, in
which this pattern has been shown to result from the flipping
of one of the dangling hydrogens. The kink that gives rise to
the overall quartet describes the flipping motion, and is shown
in Fig. 5(a).

Interestingly, the flip does not involve tunneling, since
the zero-point energy in the wells is slightly greater (by
27 cm−1) than the barrier height. For this reason, the flip
is often regarded as a torsional vibration,14 and is assigned
pseudorotational quantum numbers k = 0,±1,±2, 3. Nev-
ertheless, the instanton splitting agrees with experiment to
within a factor of 2.3 for (H2O)3 and 1.8 for (D2O)3. This
relatively good agreement should come as no surprise, since
Eq. (14) is clearly applicable to the flipping motion, provided
one can define a Q0(β) from which paths that flip onto or
over the barrier are excluded. The ability of the instanton
approach to describe the flip is thus very similar to its ability
to describe the acceptor tunneling in water dimer (see Sec. III
D), for which the zero-point energy of the wells is slightly
below the barrier. In fact, there is no clear distinction between
these two types of process: they will both contain significant
errors arising from the neglect of anharmonicity, because
paths that have both ends fixed in one well can describe
fluctuations onto or over the barrier. The relatively good

TABLE VI. Instanton tunneling elements −hij (cm−1), calculated for
(H2O)3 and (D2O)3 using the PES(1,2,3) (Refs. 70 and 71), PES(1,2,KS/WB)
(Ref. 43) and TTM3-F (Ref. 41) surfaces.

(H2O)3 (D2O)3

Pathway PES(1,2,3) PES(1,2,KS/WB) TTM3-F PES(1,2,3)

Flip 50 60 47 18
A1 0.005 0.007 0.0019 2.0(−5)
A2 0.011 0.02 0.0024 3.1(−5)
A3 0.006 0.007 0.0010 3.5(−5)
B1 0.011 0.02 0.0053 3.0(−5)
B3 0.009 0.02 0.0055 1.7(−5)
cwccw 5(−14) 2(−13) 1.1(−13) 5.6(−21)
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FIG. 5. Conflated snapshots of instanton tunneling paths (kinks) obtained using the PES(1,2,3) surface (Refs. 70 and 71) for (H2O)3. The paths shown are (a)
the flip, (b)–(g) the A1, A2, A3, B1, B2, and B3 bifurcations, and (h) the cwccw path. The arrows show the direction of motion of the hydrogen atoms. Note
that the B2 path (f) does not contribute to the tunneling because it is a saddle-point on the linear polymer surface (see text).

agreement of the flip with experiment indicates that only a
small proportion of the paths in Q0(β) manage to reach or
cross the barrier. There would be a larger proportion of such
paths if the flips were more facile, which would lead to a
breakdown of the instanton approximation.

2. Bifurcation tunneling

The more detailed structure in the instanton splitting pat-
terns (Figs. 6 and 7) is produced by the kinks labelled A1, A2,

A3, B1, and B3 (see Fig. 5 and Table V). Each of these kinks
gives the same qualitative description of the tunneling as
one of the paths identified in previous WKB calculations27, 28

(from where we have taken the notation). These paths de-
scribe “bifurcation tunneling,” meaning that the dangling hy-
drogen on one of the monomers swaps roles with the bonding
hydrogen, such that the geometry of the cluster passes through
a bifurcated structure.82 These “bifurcation” paths differ in the
number of accompanying flips (see Fig. 5 and Table V), and in
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FIG. 6. Tunneling-splitting pattern for (H2O)3, obtained by diagonalising the
instanton tunneling matrix W of Eq. (22). The first set of lines is unscaled,
and only the overall quartet splitting produced by the flip is visible. Magnifi-
cation by a factor of 400 produces the second set of lines, which show the bi-
furcation splitting pattern. The values of the tunneling elements h1i are given
in Table VI. There is an accidental degeneracy for the k = 3 levels which
disappears within the numerical errors of the calculation. The energy levels
used to plot this figure are tabulated in the supplementary material (Ref. 78).

whether the path is self-reversible, i.e., whether the monomers
have the same roles within the cluster at the start and finish of
the path (which is true only of the “B” paths).

The contributions of the various bifurcation kinks to the
splitting pattern are difficult to disentangle, and we will not
attempt a detailed analysis here. Tables V and VI show that
the actions of these paths differ significantly, but that these
differences are roughly compensated by changes in the values
of the eigenvalue ratio � of Eq. (10). As a result, the five
bifurcation paths make contributions to the splitting pattern
of roughly equal importance. We will return to this point in
Sec. IV C below.

Previous WKB calculations27, 28 identified an additional
bifurcation path, denoted by B2. There is in fact a station-
ary point corresponding to B2 on the linear polymer surface
(see Fig. 5(f) and Table V), but it is a first-order saddle: lin-
ear polymers set to this geometry relax into combinations of
the flip and the A1 path. As a result, semiclassical tunnel-
ing between the wells connected by the B2 path proceeds via
combinations of the flip and A1; not via B2. We therefore set
the corresponding elements of W to zero. No changes needed
to be made to incorporate the combined flip and A1 paths,
since the flip and A1 are already included individually in W,
and the treatment of Sec. II B ensures that all possible com-
binations of individual paths are included in Q(β). We note
that the other potential energy surfaces tested (see Sec. IV D)

A+
1

A−
1

A+
2

A−
2

E+
1

E−
1

E+
2

E−
2

T+
1

T+
1

T+
1

T−
1

T−
1

T−
1

T+
2

T+
2

T+
2

T−
2

T−
2

T−
2

0

±1

±2

3

FIG. 7. Same as Fig. 6 for (D2O)3. The second set of lines showing the
bifurcation splittings have been magnified by a factor of 40000.

also returned first-order saddles for the linear polymer cor-
responding to B2, so we can be quite confident that the B2
path does not contribute significantly to the splitting pattern
in water trimer.

3. Clockwise-counterclockwise tunneling

No combination of the six instanton paths described
above is able to convert a minimum-energy geometry of
water trimer into the permutation-inversion isomer corre-
sponding to reversal of the hydrogen-bonding pattern in the
ring in Figure 4. The corresponding generator operation is
(35)(46)(BC)∗. As a result, the tunneling can be classified us-
ing the G48 molecular symmetry group instead of G96,27, 82

and the wells split into two sets, which are not coupled by W.
This finding is consistent with all recent studies of the water
trimer,14 in which tunneling between these subsets is thought
not to contribute to the splitting patterns.

Nevertheless, the possibility of a tunneling path cor-
responding to this generator in water trimer has been dis-
cussed in the literature,14, 29 and we thought that it would
be a good test of the instanton method to see whether
it is capable of finding such a path. The corresponding
mechanism is a concerted breaking and reforming of all
three of the hydrogen bonds, in a motion described as
“clockwise-counterclockwise” (cwccw) tunneling.14 It was
straightforward to locate the cwccw kink, which is shown in
Fig. 5(h). As expected, the action of this kink is very large
(Table V), and the tunneling matrix element negligibly small
(Table VI).
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C. Comparison of splitting patterns with experiment

The instanton splitting patterns of Figs. 6 and 7 are in
good overall agreement with the results of experiment,1, 11–18

in which far infrared spectra for (H2O)3 and (D2O)3 have
been interpreted in terms of an overall quartet structure caused
by the flip pseudorotation, each branch of which is fur-
ther split by bifurcation tunneling. The latter gives rise to
quartets in the spectrum, which are either equally spaced
or “anomalous”.13, 14 The former are associated with the
outer k = 0, 3 branches; the latter with the k = ±1,±2 in-
ner branches (for rotational quantum number K = 0). This is
consistent with Figs. 6 and 7, provided one assumes that the
inner sextets give rise to what appear to be unevenly spaced
quartets in the spectrum.

A more detailed comparison with experiment is diffi-
cult for the trimer, owing to complexities in the rovibra-
tional spectrum caused by, among other things, a dependence
of the k = ±1,±2 bifurcation splitting pattern on Coriolis
coupling.13, 14 As mentioned above, the RPI method assumes
that dependence of the splitting on overall rotation can be ne-
glected. The effects of rotational coupling are much weaker
here than in the water dimer accepter splitting (see Sec. III
D), but details of the k = ±1,±2 bifurcation splitting pattern
are sensitive to small changes in the elements hij , since the
pattern results from the interplay of several competing paths
of roughly equal weight. An attempt to replicate this pattern
in detail would therefore go beyond the capabilities of the in-
stanton method.

One property, however, which the instanton approach
should be able to describe is the overall dependence of the
bifurcation splitting on k. The instanton calculations predict
that this splitting decreases markedly with increase in k (see
Figs. 6 and 7). However, a recent analysis13 of the experimen-
tal spectrum predicts that the bifurcation splitting is roughly
k-independent. This disagreement arises because the instan-
ton calculations predict that all five of the bifurcation tunnel-
ing paths contribute roughly equally to the splitting (see Ta-
ble VI), whereas Ref. 13 finds that the B2 path dominates.
It might be that neglect of anharmonicity causes the instan-
ton method to overestimate the contributions made by some
of the other bifurcation paths, or that alternative analyses of
the experimental data are possible that are consistent with
Figs. 6 and 7. Further work will be needed to resolve this
assignment.

Table VII gives numerical comparisons of the instanton
tunneling splittings with experiment and with the results of

TABLE VII. Tunneling splittings (cm−1), obtained from the instanton cal-
culations, from previous DMC (Ref. 37) and WKB (Ref. 28) calculations,
and from experiment (Refs. 13 and 14). The comparison of the bifurcation
splittings is intended only as a rough guide (see text).

Pathway Instanton DMC WKB Expt.

(H2O)3 flip 100 22 37.93 43.52
(D2O)3 flip 36 9 30.84 20.54
(H2O)3 bifurcation 4.3(−2) 1.7(−2) 6.50(−3) 9.63(−3)
(D2O)3 bifurcation 1.4(−4) 4.0(−3) 2.54(−5) 1.66(−4)

previous Diffusion Monte Carlo (DMC) (Refs. 37 and 38) and
WKB (Ref. 28) calculations. Comparison of the flip splittings
is straightforward, but comparison of the bifurcation splittings
requires us to take into account the variation with k, which is
present in the instanton results but is not found in the analysis
of Ref. 13 (see above). Table VI gives the instanton bifur-
cation splittings corresponding to the k = 0 quartet which is
probably also where the experimental results are measured.
Note that the DMC and WKB results were also obtained un-
der the assumption that the bifurcation splitting does not vary
strongly with k, and used potential energy surfaces that were
not as accurate as PES(1,2,3).

D. Comparison between different potential energy
surfaces

We also took the opportunity to compare tunneling split-
tings obtained from two less accurate (but computationally
cheaper) potential energy surfaces with those obtained using
PES(1,2,3). Table VII gives the values of hij calculated us-
ing the PES(1,2,KS/WB) surface43 and the Thole-type model
TTM3-F surface.41

The PES(1,2,KS/WB) surface includes an efficient three-
body potential, which was obtained by refitting the ab initio
points used to generate PES(1,2,KS/WB) to an approximate
form derived by Kumar and Skinner.83 The PES(1,2,KS/WB)
surface gives an adequate description of the tunneling in water
trimer, yielding values of hij that are within a factor of two of
those obtained using PES(1,2,3).

The TTM3-F surface is designed to be inexpensive to
evaluate the simulations of liquid water, and cannot real-
istically be expected to compete with PES(1,2,3) in accu-
racy. Nevertheless, this surface gives qualitatively the same
prediction of the tunneling dynamics as PES(1,2,3), yield-
ing the same set of instanton paths as those shown in
Fig. 5 (including the B2 path, which is a first-order sad-
dle on the linear polymer surface, as for the other two sur-
faces), and yielding splitting patterns with the same over-
all structure as Figs. 6 and 7. The splittings disagree with
those obtained from PES(1,2,3) by at most a factor of 6
(Table VI).

V. CONCLUSIONS

We have extended the RPI method of Paper I to treat
tunneling between more than two symmetry-related minima,
and have tested the ability of the approach to treat tunneling
in water clusters by applying it to water dimer and trimer.
The results are extremely promising, showing that the instan-
ton method gives a good overall description of the tunneling.
In particular, it was straightforward to locate instanton kinks
(sections of periodic orbits) describing all of the main tunnel-
ing pathways in both the dimer and the trimer. The kinks de-
scribed the same tunneling mechanisms as those obtained in
the previous calculations, and the obtained splitting patterns
are in good overall agreement with the experiment. We should
emphasise that no prior assumptions needed to be made about
the nature of the instanton tunneling paths, which were de-
termined entirely by minimizing linear polymers, using the
technique of Paper I.
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The instanton method is approximate, and it would be un-
wise to expect it to yield quantitative agreement with exper-
iment, or to predict exactly the fine details of complex split-
ting patterns such as the bifurcation splitting in water trimer.
The acceptor splitting in water dimer was overestimated (by
a factor of two), as was the splitting caused by the flip in
water trimer. These errors were almost certainly caused by
the neglect of anharmonicity perpendicular to the tunneling
path. This error is always present in instanton calculations,
although the crucial anharmonicity along the path is included
correctly. As a result, the instanton method can be expected to
yield closer numerical agreement with experiment for a fully
deuterated rather than a fully protonated cluster.

All the calculations reported in this article were carried
out in a few days on a desktop computer. The approach is
easy to parallelise (since the polymer beads can be distributed
onto different computer nodes) and hence should be straight-
forward to scale up to treat tunneling in larger water clusters,
about which much remains to be learnt.
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