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ABSTRACT

Aims. Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are
twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing)
and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more
complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological
changes. Additionally, we investigate the influence of the background field within which the rope is embedded.
Methods. A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I
of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free
background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These
embedded flux ropes are then evolved using a 3D MHD code.
Results. Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we
find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux
rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases
a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality – a phenomenon previously observed
in cylindrical configurations.
Conclusions. Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological
changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background
magnetic field can significantly affect the changing morphology of a flux rope.
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1. Introduction

The presence of complex magnetic field line topologies
in the corona is now well established. There is now al-
most overwhelming evidence that bundles (ropes) of twisted
magnetic field lines play a central role in the formation
of coronal eruptions and coronal mass ejections (CMEs;
Schmieder et al. 2013; Cheng et al. 2013). These flux ropes
could emerge from below the photosphere (Okamoto et al. 2008;
MacTaggart & Hood 2009b; Hood et al. 2012; Archontis et al.
2014), or be formed in the corona through shearing motions
at the photosphere and/or the reconnection of neighbouring
fields (Mackay & Van Ballegooijen 2006; Aulanier et al. 2010;
Cheng et al. 2011). Once established, there are also several con-
jectured means by which these flux ropes become unstable
and erupt/eject; perhaps the most popular mechanisms are the
torus and kink instabilities (Schmieder et al. 2013). The torus
instability concerns the expansion of a toroidal current ring
(a twisted flux rope) embedded in background potential mag-
netic field (see e.g. Kliem & Török 2006). If the background
field decays sufficiently rapidly then the expansion loses con-
trol. Simulations of twisted magnetic fields embedded in dipo-
lar background fields have found that if the torus instability
condition holds then the fields can erupt, while if not then the
expansion is confined (van Ballegooijen & Martens 1989; Liu
2008; Aulanier et al. 2010; Démoulin & Aulanier 2010). The

kink instability of straight and toroidal flux ropes occurs when
the internal twisting of the rope reaches a critical threshold
and the rope kinks, taking a more complex axial shape in or-
der to partially relieve the energy associated with twisting (e.g.
Török & Kliem 2005; Liu 2008; Kliem et al. 2010, 2012). This
rotation can then often lead to significant reconnection, releas-
ing the plasma associated with the rope as a CME (Kliem et al.
2010). Typically it is found that eruptions only occur when
the conditions required for the torus instability are satisfied
(Schmieder et al. 2013; Kliem et al. 2012; Liu et al. 2016).

Significant attention has also been paid to the possibility of
braiding of the coronal field, often motivated by attempts to un-
derstand coronal heating. The term braiding in this context is not
necessarily precise, but is generally understood to mean fields
whose field lines are entangled such that there will be multi-
ple regions interspersed by sharp magnetic gradients where thin
layers of strong current reside (“current sheets”). In such re-
gions, reconnection – the changing entanglement of the field
lines through ohmic dissipation – is promoted, leading to a rise
in heating (see e.g. Janse et al. 2010). Parker conjectured that
the extremely low resistivity of the corona means field lines
can only initially untangle at a negligible rate, allowing pho-
tospheric footpoint motions to build up the field’s complexity
until a significant number of strong current sheets form, kicking
the reconnection process into action (Parker 1972; Janse et al.
2010). A significant number of studies have attempted
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to test this hypothesis (e.g., Galsgaard & Nordlund 1996;
Craig & Sneyd 2005; Berger & Asgari-Targhi 2009; Ng et al.
2012; Rappazzo & Parker 2013; Yeates et al. 2014; Pontin et al.
2011), though so far there has been no definitive conclusions
drawn. One study in particular, van Ballegooijen et al. (2014),
using more realistic modelling of flux ropes in the transition re-
gion, found braiding to be a dynamic phenomenon with signif-
icant complexity built up in the coronal body of the rope, away
from a static equilibrium.

Studies of braided flux ropes have shown a significant dif-
ference in the evolution of braided and twisted flux ropes (e.g.,
Yeates et al. 2010; Wilmot-Smith et al. 2011; Wyper & Pontin
2014; Yeates et al. 2015; van Ballegooijen et al. 2014). How-
ever, all of the studies mentioned considered the evolution of
the field within a fixed domain (though van Ballegooijen et al.
2014 considered a realistic tube morphology). As discussed in
the first paragraph, studies of twisted flux ropes have shown that
significant internal twisting can lead to dramatic changes in rope
morphology, yet there has been no attempt to test what effect
braiding would have on global flux rope morphology. In Part I
of this study (Prior & Yeates 2016), we proposed to explore the
relationship between the internal structure of a flux rope and
the dynamics of its global morphology. A reliable technique for
generating flux ropes of arbitrary axial geometry and internal
structure was developed, and tentative initial simulations demon-
strated that the behaviour of a sigmoidal braided flux rope was
significantly different from that of a twisted flux rope with the
same axial geometry. However, both flux ropes were fairly sta-
ble in the sense that there was no major (further) kinking of the
ropes. It is possible that this was a result of the background field
preventing the rope from further kinking. A second possible fac-
tor was the initial choice of a constant density distribution. Stud-
ies of twisted flux ropes have found that starting simulations with
initial density distributions which decay in some way propor-
tionally to the background field leads to far more significant ex-
pansion of the flux rope, and possibly eruption (Török & Kliem
2003, 2005; Aulanier et al. 2010). In this study we include flux
ropes embedded in a background dipolar potential field, a situa-
tion in which it is known that twisted flux ropes are kink unstable
given sufficient internal twist (Török & Kliem 2005; Kliem et al.
2010, 2012).

There is some reason to think that the interplay between the
global sigmoidal geometry of the tube and its internal topology
might lead to differing behaviour of internally braided and inter-
nally twisted flux ropes, as we now explain. A key aspect of the
active region studies such as Fan & Gibson (2007), Kliem et al.
(2004, 2010, 2012), Leake et al. (2014), is that cylindrical flux
ropes with significant internal twisting become unstable and kink
(writhe) in order to relieve the energy associated with twisting,
by reducing the amount of twisting through counter-rotation (see
Fig. 1). Mathematically one can quantify this exchange through
the Călugăreanu theorem (Berger & Prior 2006). This concerns
the magnetic helicity H of a flux tube, a topological measure
of the flux-weighted inter-winding of its field lines which is
an ideal invariant and approximately conserved in the corona
(Berger 1984). The Călugăreanu theorem shows how the helic-
ity can be linearly decomposed into total twisting T of the field
lines around the tube’s axis and the writheW, a measure of the
non-planar contortion of the tube’s axis and the extent to which
it winds around itself globally, i.e.

H = Φ2(T +W). (1)

Here Φ is the net magnetic flux across the tube’s cross section.

The most common starting configuration in a number of
erupting flux rope studies is a section of a toroidal tube (e.g.
Fan & Gibson 2007; Kliem et al. 2004, 2010, 2012; Leake et al.
2014). In this caseW = 0 and the tube’s helicity is entirely due
to twisting. As the tube kinks, W tends to increase in magni-
tude, so to conserve H the twist T decreases in magnitude, as
shown in Fig. 1a→ b. Figures 1c and d demonstrate that the loss
of twisting is due to the contortion of the flux rope’s axis, pro-
viding a counter-rotation to the twisting. However, for a braided
field such as the pigtail braid superimposed on a kinked flux rope
structure, the total contribution due to the linking perpendicu-
lar to the direction of the tube’s axis (a generalisation of T ) is
zero. This reflects the well-known property of the pigtail braid
that non of its strands are pairwise interlinked (Berger 1991),
so that it adds nothing to the sum H. Thus helicity conservation
prevents the tube from lowering braiding by deforming with an
increase in writhing. Geometrically this represents the fact that
contortion of the tube’s axis can only provide a counter-rotation,
which cannot undo a more intricate braiding pattern in the same
way it can twisted structure. So the path to decreasing energy
through writhing used by the kink instability would not likely be
available for more complex braided flux ropes. This observation
makes it plausible that it might not be energetically beneficial
for a braided tube to kink, and thus that flux tubes with braided
field patterns may well have more stable global morphology than
their twisted counterparts, all else being equal.

In what follows we test the hypothesis that braided internal
structure could stabilise flux ropes in situations where twisted
fields become unstable, using a number of example fields.

2. Creating the flux ropes

We now briefly review the technique for creating magnetic flux
ropes with arbitrary axial geometry introduced in Part I of this
study (Prior & Yeates 2016). We consider ropes embedded in a
Cartesian coordinate system (x, y, z). The ultimate aim is to de-
fine a tube (of possibly varying radius) whose interior is filled
with a specified set of curves; that is to say, we specify its pre-
cise topology. A divergence-free field B whose field lines have
this exact topology is then created.

The tube’s axis is specified by a curve r(s):[0, L] → R3. A
right-handed moving orthonormal basis (d1, d2, d3) is defined
for r with d3 = r′(s)/|r′(s)| being the unit tangent vector of
r, d1 a vector field always normal to d3 (d1 · d3 = 0) and
d2 = d3 × d1. We shortly give an extra condition to define d1
uniquely. The use of such moving frames is standard in thin rod
and polymer elasticity (Antman 2005). This basis can then be
extended to form a curvilinear coordinate system by defining a
map T (s, ρ, θ):[0, L] × [0, 1] × S1 → R3 as

T (s, ρ, θ) = r(s) + ρR(s)
(
d1(s) cos θ + d2(s) sin θ

)
. (2)

This coordinate system is shown in Fig. 2a. The radius function
R determines the (possibly) varying width of the tube, whilst the
coordinate ρ marks concentric tubular surfaces foliating the do-
main. The evolution of this basis with s, the arclength of r(s), is
determined by the linear ODEs d′1

d′2
d′3

 =

 0 0 −u2
0 0 u1
u2 −u1 0


 d1

d2
d3

 , (3)

where u1 and u2 are functions determining the curvature of r1
about the two orthogonal directions d1 and d2. Equation (3) de-
fines d1 uniquely up to an initial condition. Readers familiar
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(a) (b)

(c) (d)

Fig. 1. Figures depicting the changing internal topology of a flux tube caused by its large scale writhing. Panel a) depicts a twisted bundle of
curves whose axis is a planar curve, while b) depicts the same field after a kinking deformation, showing how a section of the bundle at its apex
has straightened out. Panels c) and d) depict corresponding figures but for an initially untwisted bundle. The apex becomes twisted through the
kinking in d) where twist was reduced in b).

with the differential geometry of tubes will recognise that, for
this choice of basis, d1 is parallel-transported along r (Bishop
1975). The precise means of constructing this basis for a given
curve r was detailed in part I of this study (Prior & Yeates 2016).
This choice of framing means that the curves of fixed coordi-
nates R = const. and θ = const. will follow the shape of the tube
(Fig. 2b), i.e. it is the simplest possibly topology given the tube’s
shape. One can then impart more complex topology on the tube
by specifying functions ρ(s) and θ(s) for each curve of the field,
a simple example being ρ(s) = const. and θ(s) = 2πsT /L for
all curves, which will generate a twisted tube with total twist T
(Fig. 2c).

2.1. Generating the magnetic field

A set of curves determined by the functions ρ(s) and θ(s) deter-
mine a unit tangent field N at all points in the domain T . We turn
this field into a divergence-free field B by writing B = φN and
solving the PDE

∇ · B = ∇φ · N + φ∇ · N = 0, (4)

whose solution via the method of characteristics (integrating
along field lines f (s)) is

B( f (s)) = Nφ0e−
∫ s

0 ∇·Ndl, (5)

where φ0 is the distribution of φ on the surface s = 0. In sum-
mary, to define the flux rope magnetic field we have to specify:

1. The tube’s basic geometry through r(s) and the radius func-
tion R(s), which determines its (possibly) varying thickness.

2. The internal topology, through functions ρ(s) and θ(s) deter-
mining the paths of curves in the domain.

3. The magnetic flux distribution φ0 on one end of the tube.

We then integrate (5) to determine the full field. A further embel-
lishment of this process is to select a finite number of curves ri
from the original tube T and to create smaller tubular fields sur-
rounding each curve ri. In this way, a pigtail braided field with
sigmoidal axis was created in Part I (an example is shown later
in Fig. 5). A second approach to increasing the complexity of
the field is to define fields which partly overlap, creating a com-
posite field with more complex internal topology. This is used
in what follows to develop a version of the braided field used in
Yeates et al. (2010, 2015), Wilmot-Smith et al. (2011).

There are a number of technical issues involved in creating
such fields in practice, particularly with regards to the matter of
sampling the field on a finite grid for numerical simulations and
ensuring it is sufficiently divergence free when discretised. We
refer the reader to Part I for details, it suffices here to say these
issues were surmounted and we have reliable code which creates
the fields. One other issue dealt with in the original study is the
question of how well the tubular co-ordinate system is defined,
which depends on the geometry of the curve r(s). In Part I, spe-
cific conditions for the positive-definiteness of the Jacobian of
the map T were established. The fairly obvious conclusion was
that curves with very high curvature can only support tubes with
a restricted width, in order for this coordinate system to make
sense. For the typical flux ropes seen in the coronal region this is
not generally an issue.

A16, page 3 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201528053&pdf_id=1


A&A 591, A16 (2016)
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d2

d1

d3

ρ(s)

θ(s)

(a) (b) (c)

Fig. 2. Illustrations of the curvilinear geometry used in this study. Panel a): curvilinear coordinate system T (s, ρ, θ); also shown in green is an
example curve as well as the orthonormal basis (d1, d2, d3). Panel b): domain T filled with field lines created by parallel transport, while panel c):
domain T filled with twisted field lines.

2.2. Embedding the rope over a inversion line

In Part I, we demonstrated how to embed the flux rope over the
inversion line of a specified boundary flux distribution, where
filaments are generally observed to form (Mackay et al. 2010).
The basic idea is obtain a smooth 2D curve σ(s) fitted to the
inversion line and then choose so height function z(s) to create a
curve r(s) = (σx(s), σy(s), z(s)) which would then project down
onto the inversion line (some examples are shown in Fig. 3). This
curve can then be used as the axis of the tube T containing the
flux rope.

3. Magnetic fields used in this study

3.1. Background field

We embed our tubular field Bt in a force-free background Bb,
∇ × Bb = αBb, which is an appropriate choice for the low
corona where the magnetic pressure dominates the plasma pres-
sure (e.g. Priest 2003). The tubes are defined in a domain
{−π ≤ x, y ≤ π, 0 ≤ z ≤ 3π}. For simplicity here we choose a lin-
ear force-free field on the volume z > 0, specified by choosing a
constant α and a photospheric (z = 0) flux distribution.

The first field, generated from a dipolar distribu-
tion, is similar to that used in Török & Kliem (2005),
Mackay & Van Ballegooijen (2006), MacTaggart & Hood
(2009b), Kliem et al. (2010), Aulanier et al. (2010), Cheng et al.
(2011), Kliem et al. (2012), Hood et al. (2012), Archontis et al.
(2014). The second, a field generated from a staggered pair
of dipoles, is the type used in Prior & Berger (2012) and in
Part I. The inversion line of the boundary flux has a noticeably
sigmoidal morphology and is dominated by a deformed-arch
topology. In what follows we refer to this field as the “sigmoidal
dipole”. The dipolar field is chosen because the behaviour of
a twisted flux rope embedded in this field is well documented;
in particular, we know it should lead to instability and large
scale rotation, if the flux rope twist exceeds a critical value
(Török & Kliem 2005). The aim will be to see how braided fields

relax in a similar situation. The sigmoidal dipole distribution
is then used to see if the conclusions drawn from the dipolar
case can be generalised. We only actually present results for
α = 0 for the dipolar case and α = 0.5 for the sigmoidal dipole
field (this is the value used in Part I). Though simulations with
differing α values were run, the differences in evolution proved
not to be significant.

For the dipolar case we choose the boundary flux to take the
form

Bz0(x, y) = exp
(
−5((x + 0.6π)2 + (y + 0.6π)2)

)
− exp

(
−5((x − 0.6π)2 + (y − 0.6π)2)

)
. (6)

This distribution and its inversion line are shown in Figs. 3a
and b, along with the flux rope domain T in which we embed
our fields. Note that the flux rope itself will generate two addi-
tional sources to the boundary flux distribution. The sigmoidal
dipole background is given by

Bz0(x, y) = exp
(
−5((x + 0.68π)2 + (y + 0.3π)2)

)
+ exp

(
−5((x + 0.2π)2 + (y − 0.5π)2)

)
− exp

(
−5((x − 0.3π)2 + (y + 0.5π)2)

)
− exp

(
−5((x − 0.7π)2 + (y − 0.4π)2)

)
. (7)

The distribution and its inversion line are shown in Figs. 3c
and d, along with the flux rope domain T in which we embed
our fields. The inversion line has has a z-shaped morphology
meaning when we insert our flux rope it will have a sigmoidal
morphology at the start of the simulation. In both cases we then
generate the linear force-free field in z > 0 using the method
detailed in Prior & Berger (2012). Example field lines for both
cases can be seen in Fig. 4: in both cases there is a clear arcade
of field lines looping over the inversion line.
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(a) (b)

(c) (d)

Fig. 3. Boundary flux distributions for the background field in this study, and their associated tubular domains T . Panels a) and b): dipolar flux
distribution, with the straight inversion line shown in red. Panels c) and d): sigmoidal dipole distribution, with Z-shaped inversion line.

3.2. Internal rope topologies

In this paper, we consider four different internal structures for
the flux rope, each embedded in the same tube T (as shown in
Fig. 3).

3.2.1. Uniform twist

As mentioned above, the choices R = const. and θ(s) = 2πsT /L
define a field with uniform twist and a total rotation of 2πT ra-
dians. In the flux rope simulations of Török & Kliem (2005),
a (part) toroidal tube embedded in a dipolar potential, a value
of T = 5 was found to be the threshold twist above which the
tube was kink unstable. In both cases we chose values above this
threshold leading the ropes to kink. The tube R is 0.5.

3.2.2. Pigtail braid

The pigtail braid, shown in Fig. 5 is made up of three flux ropes
ri which interlink within a tube T , whose axis r has the mor-
phology of the inversion line. The axes of the three sub-tubes are

defined by the functions

ρi(s) = 0.5
√

sin(2πs/L + di)2 + cos(4πs/L + di)2,

θi(s) = arctan
(

cos(4πs/L + di)
sin(2πs/L + di)

)
, d1 = 0, d2 = 1/3, d3 = 2/3.

(8)

We then create tubular fields Bi in tubes Ti of fixed radius Ri =
0.2 around each of these axes (Fig. 5). In this study we choose
the fields to have no internal twisting.

3.2.3. B4 braid

This is based on the numerical experiments of
Wilmot-Smith et al. (2009, 2011), Russell et al. (2015),
where a family of braided magnetic fields were created using
series of n opposing pairs of rotations through an angle π rad
at staggered distances along the tube’s length. In this case we
use 4 pairs of opposing twist so this would be a B4 field (in
the notation of Wilmot-Smith et al. (2009) this would be an E4
field, but we prefer “B” to indicate “braided”). In this study we
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(a) (b)

Fig. 4. Magnetic field lines of the background fields used in this study: a) dipolar, and b) sigmoidal dipole.

(a)

Fig. 5. Field lines of the pigtail field used in this study.

once again define a curve r which follows the inversion line of
the tube. We then define two curves ri, i = 1, 2 as

ri = r + ρid1 cos(θi), θi = 0, π, (9)

with d1 the parallel-transported vector field, defined by the so-
lution to (3). These curves are then used to define two tubes
Ti, i ∈ 1, 2. The values of ρi and the tube radii Ri are chosen
so that the tubes have significant overlap (Figs. 6a and b). For
the dipolar case we choose Ri = 0.4 and ρi = 0.3, and for the
sigmoidal dipole case Ri = 0.5 and ρi = 0.35. We then define the
fields within the tubes with the following topology functions:

ρ1/2 = const., θ1(s) =

4∑
k=1

π

1 − exp(−a(s − b1k))
,

θ2(s) =

4∑
k=1

σπ

1 − exp(−a(s − b2k))
, (10)

with σ = −1 and b11 < b21 < b12 < b22 < b13 < b23 < b14 < b24.
This creates a series of staggered half twists of the field, with
the twist occurring sequentially in tube T1 then T2 then T1 again
etc. The choice σ = −1 means that the rotations have opposing
chirality. In practice the values of b1i, b2i and a are chosen so that
there is no overlap (when one tube has twisted field lines, the
field lines of tube 2 are created by parallel transport). It can be
seen in Fig. 6c that a subset of the curves are then braided. These
two prescriptions of θ1/2 can be used to make fields B1 and B2;
the B4 field is their sum BB4 = B1 + B2. If the tube axis is a
straight line (the tube a cylinder), then the helicity of BB4 is zero
(Wilmot-Smith et al. 2009). In our more general tube geometries
there may be a non zero helicity due to the writhe of the tube axis
(see Berger & Prior 2006; Prior & Yeates 2014).

In Wilmot-Smith et al. (2011) a similar field, embedded in
a cylindrical tube, was shown to split into two force-free flux
ropes of opposing twist through reconnection, entirely contrary
to the Taylor relaxation hypothesis. An explanation for this phe-
nomenon was proposed recently by Russell et al. (2015) though
it is beyond the scope of the discussion here.

3.2.4. T4 field

The T4 field is the same as the B4 field given by Eq. (10) but
with σ = 1, so that the sequential twists applied to each tube
have the same sign. Even when the axis curve r is straight this
field has a net helicity as it has a net sense of rotation (Fig. 6d).
As the notation T4 indicates, this is a twisted field, though the
twisting is non-uniform. In Wilmot-Smith et al. (2011) a similar
field embedded in a cylindrical tube was shown to merge into a
single force-free flux rope.

3.3. Boundary flux

For each field we must specify a boundary flux distribution
φ0(ρ, θ) at one end of the tube. As in Part I, we choose a radially-
symmetric distribution φ0(ρ, θ) = 0.5φc(cos(πρ) − 1), with φc a
constant determining the maximum strength of the field. In our
simulations the maximum strength of the background field is 1,
so choosing the value φc dictates the field strength of the tubular
field relative to the background. We ran simulations with values
of 1, 3 and 6. The larger the relative strength of the flux tube,
the less its motion was constrained by the background field, but
in general there were no significant differences in the evolution
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(a) (b)

(c) (d)

Fig. 6. Visualisations of the B4 and T4 fields. Panels a) and b): overlapping tubular domains in the dipolar and sigmoidal dipole backgrounds
respectively. Panels c) and d): magnetic field lines of the corresponding field. In B4 c) the sequentially applied twists have opposing chirality and
field lines are braided, whilst in T4 d) the twists have the same chirality and field lines are twisted (non-uniformly).

of the fields that merited presenting the results for each choice
of φc. In what follows we present (primarily) the results for
φc = 3.

4. Numerical simulations

The superpositions Bt + Bb for each of the fields described
in Sect. 3 define a set of initial configurations for our mag-
netic field. These fields will not generally be in equilibrium,
unlike the toroidal twisted fields used in Fan & Gibson (2007),
Kliem et al. (2004, 2010, 2012), Leake et al. (2014), for which
an equilibrium within the background dipole field can be
found (Titov & Démoulin 1999; Titov et al. 2014). The rela-
tive complexity of the combinations of our background field,
tube morphology, and internal structure make finding an an-
alytical equilibrium unfeasible. There is evidence that braid-
ing is a dynamic phenomenon (van Ballegooijen et al. 2014),
and it is reasonable that we might see complex internal struc-
tures built up relatively quickly in the corona. In this paper, we

investigate whether these configurations would either relax to a
configuration whose global morphology is similar to the origi-
nal configuration, or if they undergo significant large-scale mo-
tions (like the kink instability). Our prediction is that braided
flux ropes (the pigtail and B4 fields) will experience significantly
less change in axis geometry (global morphology) than their
twisted counter parts (the uniform twist and T4 fields), though
both might experience significant changes in internal structure.
To keep things simple, we avoid boundary motions. This allows
us to focus on the questions of how the processes of ideal evolu-
tion and resistive reconnection alter the field.

4.1. Magnetohydrodynamic (MHD) equations

We evolve the initial field Bt + Bb using the Lare3D Lagrangian-
remap code (Arber et al. 2001) to solve the resistive-MHD equa-
tions on a Cartesian box {−π ≤ x, y ≤ π, 0 ≤ z ≤ 3π}, at resolu-
tion 264 × 264 × 396. The initial tube’s maximum height is less
than 4 so this gives room for any reasonable vertical expansion,
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which we expect from kink (and or torus) unstable flux ropes in
at least one case. On the z = 0 boundary we use line-tied bound-
ary conditions, while on all other boundaries we use Lare’s open
boundary conditions, based on a simplified Riemann character-
istic model. This allows waves to exit the system, a feature not
present in the simulations of Part I which used line-tied condi-
tions on all boundaries. The code solves the following equations:

∂ρd

∂t
= −∇ · (ρdu), (11)

ρd
du
dt

= j × B − ∇p + ∇ · σ, (12)

∂B
∂t

= ∇ × (u × B) − ∇ × (η j), (13)

ρd
∂ε

∂t
= −p∇ · u + η j2 + e:σ, (14)

p = ρdε(γ − 1), (15)
µ0 j = ∇ × B. (16)

Here ρd is the mass density, u the plasma velocity, B the magnetic
field, j the current density, p the plasma pressure, σ the stress
tensor, ε the specific internal energy, η the resistivity, e the strain
tensor, and γ = 5/3. The equations are non-dimensionalised in
Lare by setting a length scale L0, magnetic field strength B0
and density ρ0; we chose L0 = B0 = ρ0 = 1. In these units,
one unit of time is equal to the time taken by an Alfvén wave
with B = ρ = 1 to move a unit distance in the box. The vis-
cous term ∇ · σ in Eq. (12) has a shock viscosity to prevent un-
physical oscillations and approximate the jump in entropy across
shocks. In addition we used a background viscosity of 0.01 as
an aid to numerical stability. Whilst in practice we would ex-
pect little viscosity in the corona, this value was used to re-
duce the computational time so that significant evolution of the
fields could be observed. This approach is consistent with other
studies (e.g. Fan & Gibson 2007; Kliem et al. 2004, 2010, 2012;
MacTaggart & Hood 2009b; Hood et al. 2012). The shock vis-
cosity takes the form given in Bareford et al. (2013), and we use
the same successful parameter values ν1 = 0.1, ν2 = 0.5. There
is a corresponding heating term e:σ in Eq. (14). The simula-
tions presented here use a uniform resistivity of 5×10−4 (a value
found by experience to be similar to the numerical resistivity for
the grid we employ). The initial velocity is assumed to vanish
everywhere so that any motion will result from the field attempt-
ing to relax to equilibrium. Finally we initialise with ε = 0.01
and ρd = 0.2 + B2

b, i.e. a mass density that decays with the back-
ground field. In Part I, constant values of ρd = 1 and ε = 0.01
were used; the only other difference in the system and its pa-
rameters from those used in Part I is the addition of a non-zero
background viscosity as discussed above. We adopt the vary-
ing density here as it was shown in Török & Kliem (2003) to
produce a much more significant flux rope eruption than a con-
stant initial distribution. Since the aim is to compare the differ-
ence in behaviour of the rope’s global morphology we would
like to promote such changes as much as possible. Finally with
the non-dimensionalisation used in Lare the plasma beta can be
shown to be 2ρε(γ − 1)/B2, which for our choice of density is
2(0.2+B2

b)ε(γ−1) (Arber et al. 2001). In regions originally occu-
pied by only the background field (strength 1 at the z = 0 bound-
ary) this is ≈0.016. The typical strength of the initial rope field
is 3 and we have placed it in a region where the background field
is weak to negligible (the inversion line). so the plasma beta is
approximately 0.014. Both values are reasonable for the corona
(Priest 2003).

The simulations were run until the time step (imposed by
the CFL condition) became impracticably small. This was likely
the result of a build up of significant small scale flows through
reconnection, as well as the possibility of boundary effects (it is
hard to avoid some degree of wave reflection in such simulations;
see the discussion in Hood et al. 2012). As we shall see, there
was a significant drop in the Lorentz force for each simulation
and the magnetic energies were found to approach asymptoptic
limits.

4.2. Diagnostics

We follow the same approach to analyse the changing flux tube
geometry as adopted in Part I. Firstly we plot magnetic field lines
anchored at the initial base of the tubular field Bt at t = 0, the
points on z = 0 at which Bz > 0. In what follows we refer to the
field lines emanating from this subdomain as the “core” field.
The likely occurrence of reconnection with the background field
means some of these field lines may not end up being part of
the rope, and other field lines not initially forming part of the
rope may reconnect to join the rope’s bulk. That said, we feel
this is a sensible means of gauging the changing geometry of the
rope, an assumption justified by the plots detailed in what fol-
lows. In panels a−c of Figs. 7, 9, 10, 12 and 15 these curves are
shown embedded in the background field to display their effect
on this field. The three strands of the pigtail field are given differ-
ent colours in an attempt to observe the reconnection-led mixing
of the strands. In addition, we plot the core field as seen in pro-
jection from above (panels d−f of Figs. 7, 9, 10, 12 and 15).
This is done in order to observe the rotation (or lack thereof)
of the core. We also plot contours of a fixed current density in
order to observe the changing current structure of the fields (pan-
els g−i Figs. 7, 9, 10, 12 and 15). A value | j| = 1 was chosen as it
was found to have significant representative structure across the
timescale of all simulations.

4.2.1. Emission proxy E

Given a point P in the domain, we trace the field line pass-
ing through it. We then integrate the square of the current den-
sity along this field line and average. We label this quantity
J̄2(x, y, z); the emission proxy is then an attempt to imitate the
line-of-sight viewpoint by integrating in z

E(x, y) =

∫ zmax

0
J̄2(x, y, z)dz. (17)

This is not intended to be a direct prediction of how the rope
would be observed at a particular wavelength in coronal obser-
vations, as that would require inclusion of more detailed ther-
modynamics in the model (e.g. thermal conduction). It is rather
a first order approximation accounting for only ohmic heating
and assuming that heat conduction is much faster along mag-
netic field lines than across them. This proxy has been used in
previous studies of non-linear coronal field models where accu-
rate density and temperature distributions are not available (e.g.
Cheung & DeRosa 2012). We calculate this quantity across the
whole plane z = 0 (panels j−l of Figs. 7, 9, 10, 12 and 15).

4.2.2. Local twist distribution Lf

A quantitative measure of the field’s internal geometry which we
measure is the average local twisting of each field line. For a field
line f (l) of arclength L whose footpoint coordinates are (xf , yf),
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(a) t=0 (b) t=4.75 (c) t=9.5

(d) t=0 (e) t=4.75 (f) t=9.5

(g) t=0 (h) t=4.75 (i) t=9.5

(j) t=0 (k) t=4.75 (l) t=9.5

(m) t=0 (n) t=4.75 (o) t=9.5

Fig. 7. Figures depicting the evolution of the uniform twist field embedded in a dipolar background field. The three times used are t = 0, 4.75, 9.5
shown from left to right respectively. Panels a)−c): core embedded in the background field. Panels d)−f): core from above. Panels g)−i): current
contours of the field. Panels j)−l): emission proxy E(x, y). Panels m)−o): local twisting distribution Lf(x, y).
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(a) (b)

Fig. 8. Visualisations of the internal structure which develops in the uniform twist field, showing a) the core field at t = 9.5; and b) a subset of
radius 0.1 whose structure is significantly more kinked than the morphology visible in a).

we define the integrated quantity

Lf( f (l)) =
1
L

∫ L

0

j · B
B · B

dl =
1
L

∫ L

0

B · ∇ × B
B · B

dl, (18)

which represents the mean rotation of the local field lines around
f (l). It is not quite the same as the twist which appears in the
Călugăreanu theorem, but it is a reasonable measure of the ef-
fective twisting of local field lines (Liu et al. 2016). For a linear
force-free field, j · B = αB · B and Lf is just the linear force-free
parameter α, which would be constant throughout the domain.
This quantity was calculated for relaxing braided and twisted
cylindrical fields in Wilmot-Smith et al. (2011), Yeates et al.
(2015). These authors found that a twisted field relaxed to a
force-free state with a single sign of α within the tube, although
the surrounding background field prevented it from reaching the
spatially constant α predicted by the Taylor relaxation hypothe-
sis. By contrast, they found braided tubes to relax to form two
force-free flux tubes with equal α values but opposite sign, en-
tirely contrary to the Taylor hypothesis. Similar findings were
observed in Part I. Here we consider the distribution Lf(x, y) of
average local twisting for each field line anchored at points (x, y)
(panels m−o of Figs. 7, 9, 10, 12 and 15 ). Since we are really
interested in the flux rope core we restrict this measure to the
(x, y) coordinates of the fields core (this is a disjoint domain for
the pigtail field).

5. Results: dipolar background

5.1. Uniform twist

As is clear in the field line plots Figs. 7a−f, the field has under-
gone the expected kink instability with a significant S -shaped
morphology developing. The current contours, Figs. 7g−i, and
emission proxy E(x, y), Figs. 7j−l, reflect this kinking. Previ-
ous simulations (Fan & Gibson 2007; Kliem et al. 2004, 2010,
2012) indicate that the evolution would have to be followed for
a significant time in order to observe whether the rope erupts or
not. However, in this study we would like to compare a number
of different fields, and we judged the significant extra computa-
tional time to be unnecessary given that the eventual evolution
has been studied in significant detail previously.

The local twist distribution Lf(x, y), Figs. 7m−o, is initially
dominated by a significant domain of constant negative value,

consistent with the uniform twist specified in the initial field.
By t = 4.9 this core has shrunken significantly. At t = 9.5 the
core is relatively small; it is also surrounded by a thin positive
ring and then a second negative ring. This indicates that a rope
has developed in the centre of the core which has a different
morphology from the outer structure seen in Figs. 7a−f. This
is confirmed in Fig. 8 where the core field is plotted, first with
a radius 0.5 at t = 9.5, the radius of the initial core (panel a),
and second with a radius of 0.1 at the same time (panel b). The
morphology of the inner core b is significantly more kinked than
the outer core a, though the chirality of this kinking is the same
for both fields (both are S-shaped).

5.2. Pigtail braid

The field line evolution of the pigtail field, represented in
Figs. 9a−f, is somewhat difficult to interpret. The initial con-
figuration (a and d) is significantly affected by the background
field (through the sum Bt + Bb), as evidenced by a number of
field lines which peel off the initial braided structure. (The pig-
tail nature of the initial field is clearer in the current contour plot
of Fig. 9g.) By contrast to the twisted field (Fig. 7), there is no
obvious global rotation of the structure, but it does expand sig-
nificantly. It appears that there are still collections of field lines
of the same colour in panels b and c of Figs. 9, indicating some
of the braided structure is preserved. Aside from this observation
it is hard to draw any clear conclusions regarding the geometry
of this field’s evolution from these figures.

The current contours shown in Figs. 9g−i show that the
braided structure evolves into a significantly fractured structure,
with a single large twisted sheet between the core and the back-
ground arcade. By comparison the twisted flux rope maintains
its tubular structure and has an untwisted current sheet covering
the internal structure (Figs. 7g−i). One can view this sheet as the
edge of the core field, while the more complex sheet structure for
the pigtail case reflects how this field maintains some separation
of the original three strands present in Fig. 9a. This is consistent
with the observation that the fields lines of differing colours still
show significant organisation (panels b and c of Figs. 9).

The emission proxy E(x, y) initially indicates the braided
structure, as well as having a significant contribution from the
field lines peeling off the braid (Fig. 9j). By t = 4.5, Fig. 9k, the
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(a) t=0 (b) t=4.75 (c) t=9.5

(d) t=0 (e) t=4.75 (f) t=9.5

(g) t=0 (h) t=4.75 (i) t=9.5

(j) t=0 (k) t=4.75 (l) t=9.5

(m) t=0 (n) t=4.75 (o) t=9.5

Fig. 9. Figures depicting the evolution of the pigtail field embedded in a dipolar background field. The three times used are t = 0, 4.75, 9.5 shown
from left to right respectively. Panels a)−c): core embedded in the background field. Panels d)−f): core from above. Panels g)−i): current contours
of the field. Panels j)−l): emission proxy E(x, y). Panels m)−o): local twisting distribution Lf(x, y).
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(a) t=0 (b) t=2.25 (c) t=4.5

(d) t=0 (e) t=2.25 (f) t=4.5

(g) t=0 (h) t=2.25 (i) t=4.5

(j) t=0 (k) t=2.25 (l) t=4.5

(m) t=0 (n) t=2.25 (o) t=4.5

Fig. 10. Figures depicting the evolution of the B4 field embedded in a dipolar background field. The three times used are t = 0, 2.25, 4.5 shown
from left to right respectively. Panels a)−c): core embedded in the background field. Panels d)−f): core from above. Panels g)−i): current contours
of the field. Panels j)−l): emission proxy E(x, y). Panels m)−o): local twisting distribution Lf(x, y).
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emission has dispersed significantly though there remains some
trace of the initial pigtail structure over the inversion line. In l,
t = 9.5, we see regions of relatively high E values either side of
the inversion line (top left and bottom right), representing field
lines that have reconnected with the background field. There is
also still a faint trace of the initial pigtail structure.

The t = 0 local twisting distribution Lf(x, y) is mostly zero
inside the braid footpoints (Fig. 9m), as the field lines inside the
sub-tubes have no twist. There are some thinner domains of posi-
tive and negative twisting on the boundary, which result from the
influence of the background field in the sum Bb + Bt. At t = 4.75
(Fig. 9n) and t = 9.5 (Fig. 9o), the field has significant internal
twisting structure. There are regions for which Lf has both pos-
itive and negative signs, and there is a good degree of mixing
of these regions. It is hard to draw any simple conclusions other
than the fact that the internal topology of the field is still signif-
icantly complex and far from the uniform Lf value one would
expect for a linear force-free flux rope (the core has not reached
the Taylor state).

5.3. B4 braid

The field line evolution of the B4 field is represented in snap-
shots at t = 0, 2.25, 4.5 in Figs. 10a−f. There appears to be little
change in global morphology of the field’s core (rotation), al-
though we shall see shortly that there is a significant change in
the internal structure. It is also clear that there is a significant de-
gree of reconnection with the background field. The current con-
tours evolve to develop multiple smaller current structures in the
core’s interior (Fig. 10g−i), in addition to a larger sheet structure
which encases the core field. The formation of small scale struc-
tures is consistent with the B4 cylindrical braiding experiments
of Wilmot-Smith et al. (2011), though the larger encasing cur-
rent sheet is unique to this simulation, resulting from the back-
ground field.

The emission proxy E(x, y) is shown in Fig. 10j−l at t =
0, 2.25, 4.5. The pattern remains consistent, save a drop in peak
value. There is a clear contribution from the core’s axis at the
centre of the distribution – this is directly above the inversion
line of the photospheric flux distribution. In addition, there are
contributions on either side of the main axis from field lines that
connect between the background field and the B4 field, visible
in Figs. 10a−f. The distribution is similar to that of the pigtail
field (Figs. 9j−l), except the emission above the inversion line is
much more significant for the B4 field (relative), consistent with
the relative lack of expansion shown by this field by comparison
to the pigtail field.

The local twisting distribution Lf(x, y) (Figs. 10m−o) ini-
tially has two islands of strong positive and negative values, in
addition there is a good deal of mixing of thin contorted strips of
positive and negative value. This is reasonably consistent with
the similar distribution of the field used in Wilmot-Smith et al.
(2011) – cf. Fig. 10m with Fig. 11 of Wilmot-Smith et al. (2011),
where Lf is labelled α∗. The mixing is slightly less extreme
our case, which is probably due to the spacing of the twists in
the field. Nonetheless there is still significant mixing indicat-
ing a complex internal topology. The evolution seems to lead
to a decrease in area of the initial positive and negative islands
(Figs. 10n and o).

In Fig. 11a−c, we see the fields of Figs. 10d−e viewed side
on. It is clear the field splits into two distinct flux ropes of op-
posite chirality (as in Wilmot-Smith et al. 2011), however, it is
clear that there are still multiple field lines which cannot be
assigned to either tube. This explains the mixed patterns still

surrounding the flux rope twisting islands seen in Figs. 10n
and o. On this subject, we briefly report on the simulation of
the B4 field with a lower value of the peak flux φc = 1, so that
the background field strength is similar to the strength of the B4
field. In this case the simulation ran for longer, allowing further
reconnection to reduce the mixing of the Lf(x, y) distribution sig-
nificantly (Fig. 11d−e). This corresponds with a much cleaner
separation of the field into two flux ropes (Fig. 11f−h).

5.4. T4 field

The field line evolution of the T4 field is represented at t =
0, 2, 3.9 in Figs. 12a−f. There is little obvious change in global
morphology of the field’s core, similar to the B4 field lines
(Figs. 10a−f), though there is a little more expansion of the core
for the T4 field. At t = 2 a significant current sheet has formed
at the bottom of the core field (Fig. 12h), but unlike the B4
field (Fig. 10g−i) there is no small scale structure. By t = 3.9
(Fig. 12h) this sheet has increased in area.

The evolution of the emission proxy E(x, y) is shown in
Fig. 12j−l. It differs significantly from the B4 fields evolution
(Fig. 10j−l). At t = 0 (Fig. 12j) there is a clear contribution from
the core’s central axis directly above the inversion line of the
photospheric flux distribution, with additional contributions on
either side of the main axis resulting from the field lines which
peel off the structure due to interference of the background field
and the T4 field (see Figs. 12a−f). By t = 2 (Fig. 12k) the central
core distribution appears to have formed a thin S-shaped mor-
phology (which is relatively weak by comparison to the recon-
nected field lines). By t = 3.9 (Fig. 12l) the central core’s contri-
bution has receded to a thin S-shape, the strongest contributions
are from the reconnected field lines.

The local twisting distribution Lf(x, y) is initially dominated
by a large island of positive twisting (Fig. 12), this is to be ex-
pected as the initial twists of the T4 field are all right-handed.
This distribution is qualitatively similar to the initial Lf(x, y) dis-
tribution of the uniform-twist field shown in Fig. 7m−o (swap-
ping blue for red as the earlier field has negative twist). As the
field evolves, the initial island shrinks in relative size indica-
tive of significant reconnection with the backgound field. The
smaller island forms a more uniformly twisted core, as con-
firmed in Fig. 13a−c where we see the field from the side. This
is consistent with the simulations of Wilmot-Smith et al. (2009),
Yeates et al. (2010).

5.5. Comparative conclusions

Comparison of the uniform-twist and pigtail fields suggests that
increased complexity of the rope’s internal structure restricts the
potential for significant global changes in morphology, save ex-
pansion of the tube. This is further reinforced by the fact that the
B4 field shows no significant large scale change in morphology,
rather a significant change in internal topology through splitting.
It is also true that the T4 field does not rotate, despite forming a
flux rope, though it is likely the twist is not sufficient for the kink
instability to occur.

With regard to evolution of the internal structure, the two
“twisted” fields – the uniform-twist and T4 fields – both have
local twisting distributions Lf(x, y) with a dominant sign, in-
dicative of the initial twisting in the fields (negative for the
uniformly-twist field and positive for the T4 field). By contrast,
the pigtail and B4 fields seem to relax to maintain a (rough)
balance of both positive and negative twist. So the initially
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(a) t=0 (b) t=2.75 (c) t=4.5

(d) t=0 (e) t=10 (f) t=20

(g) t=0 (h) t=10 (i) t=20

Fig. 11. Figures depicting the tendency of the B4 field to split into two flux ropes of opposing sign. Panels a)−c) the core field shown in Figs. 10a−f
as viewed from the side. Panels d)−f) local twisting distributions Lf(x, y) of the B4 field for a simulation, whose core field lines are shown in
panels g)−i), and whose maximum field strength is comparable to that of the background field (the flux rope of the field in panels a)−c) is a
factor 3 stronger than in panels g)−i)).

braided fields maintain an internal topology which is topologi-
cally distinct from a single twisted flux rope.

In comparing the two braided fields – the pigtail and B4
fields – we note that the initially complex B4 field develops a
significant degree of organisation through the formation of two
distinct flux ropes. This corresponds to a significant decrease in
the mixing of positive and negative twisting in its Lf(x, y) distri-
bution (Fig. 11g−i). By comparison the pigtail Lf(x, y) distribu-
tion quickly develops a significantly mixed distribution, indica-
tive of a complex internal topology, and this does not seem to
have simplified by the end of the simulation. This is likely due
to the B4 field being a single, well-mixed, tubular field whose in-
ternal topology is changed by internal reconnection, whilst sig-
nificantly altering the topology of the braided field would require
significant reconnection of three distinct fields.

These differences in internal structure might well trans-
late into observable differences; indeed, the emission proxy

distributions E(x, y) for each case differ significantly. The
uniform-twist field starts with a clear emission line which de-
forms to form a very obvious sigmoidal pattern. The pigtail
braid on the other hand evolves into a significantly fractured
emission pattern. Partly this may be because of the interaction
of the background field and the core, which seems to be more
significant than in the uniform-twist case. It is also a result of
the fact that the braid cores are able to expand without signif-
icantly altering the field’s topology (thus reducing the current).
The more complex internal entanglement of the T4 and B4 fields
seems to dramatically inhibit expansion and rotation by compar-
ison. This is reflected in emission patterns which change much
less significantly over time. The B4 field – the most complex
internal topology – leaves a significant trace above the inver-
sion line, much like the twisted field initially, but this line does
not change (save changing emission magnitude), consistent with
the assumption that braiding/complex entanglement can inhibit
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(a) t=0 (b) t=2 (c) t=3.9

(d) t=0 (e) t=2 (f) t=3.9

(g) t=0 (h) t=2 (i) t=3.9

(j) t=0 (k) t=2 (l) t=3.9

(m) t=0 (n) t=2 (o) t=3.9

Fig. 12. Figures depicting the evolution of the T4 field embedded in a dipolar background field. The three times used are t = 0, 2, 3.9 shown from
left to right respectively. Panels a)−c): core embedded in the background field. Panels d)−f): core from above. Panels g)−i): current contours of
the field. Panels j)−l): emission proxy E(x, y). Panels m)−o) the local twisting distribution Lf(x, y).
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(a) t=0 (b) t=2 (c) t=3.9

Fig. 13. Figures depicting the tendency of the T4 field to form a uniformly twisted flux rope.

large scale motion. We also note that the more complex internal
topologies – pigtail, B4 and T4 – tend to interfere with the back-
ground field more than the uniformly twisted field, evidenced by
the number of field lines which peel off the core field structure
in panels a−f of Figs. 9, 10, and 12 and their significant contri-
bution to the emission proxy (panels j−l of Figs. 9, 10, and 12).

The evolution of the magnetic energy Eb, kinetic energy
Eke and internal energy Eint, for the four fields, is shown in
Fig. 14. The initial magnetic energies of the four fields are:
uniform − twist = 2.18, pigtail braid = 1.861, B4 braid =
3.33914, and T4 Field = 3.33901. In Fig. 14 we rescale all ener-
gies by their initial magnetic energy Eb(0) for relative compar-
ison. We also scale the time by an Alfvén time

√
Eb(0), using

the root of the magnetic energy as a proxy of the mean strength
of each field. The scaled differences Eb(t) − Eb(0) are shown
in Fig. 14. In all cases the magnetic energy is decreasing expo-
nentially, with a rapid loss in energy associated with the field’s
initial expansion. The pigtail, B4, and T4 energies drop by the
largest amount, and the B4 and T4 fields show a sharper ini-
tial fall than the pigtail field. The pigtail, T4 and B4 differences
appear to be plateauing, whilst the uniform-twist field still has
significant gradient at the last point of observation. This is be-
cause the uniform-twist field is still in the process of rising when
the simulation was stopped. The fact that the B4, T4, and pig-
tail fields lose a larger percentage of their initial energy suggests
that the fields are indeed showing a preference for energy reduc-
tion through internal topological changes rather than large scale
morphological changes.

The kinetic energy shows a sharp rise in all cases, due to
the rapid expansion of the tubes, then begins to drop steadily.
The decrease for the B4 and T4 fields is significantly faster. In-
deed for the field shown in Figs. 11d−f, for whom the relative
strength of the field is comparable to the background, the kinetic
energy drops close to 0. The twisted field is still rising so we
should expect its kinetic energy to remain non-zero. None of the
pigtail simulations had vanishing kinetic energy. Further anal-
ysis of these showed that the significant velocities are between
the three pigtail strands, suggesting the continued presence of
significant reconnective activity.

The internal energy of the B4, T4, and pigtail fields shows a
rapid initial increase falling to a less rapid but steady increase.
The twisted field does not show such a rapid initial increase. Fur-
ther analysis showed internal energy to be dominated by viscous
dissipation. It is likely the slower initial increase of the twisted
field is caused by its kinking rather than solely expanding.

As a final note, we observe that the energy plots for the
B4 and T4 fields are remarkably similar, though not identical.
Several factors likely explain this. Firstly, the initial energies
of the two fields are the same and both have the same total
magnitude of twist. Secondly, the bulk change in shape of the
two tubes, namely expansion but no rotation, is very similar.
So changes in the background field would be quite similar (cf.
Figs. 10a−c and 12a−c). We conclude that the energy is domi-
nated by these large scale considerations, i.e., energy totals and
bulk changes in structure. The differences due to local reconnec-
tion inside the tube seem to affect the energy to a lesser degree.

Finally the Lorentz force of all fields shows a significant de-
crease. For the uniform twist field, at t = 0 the maximum value
of J · B/B2 is 42.8251 and the mean value is 0.061. At t = 9.5
the maximum value is 0.912 and the mean value 0.016. For the
pigtail field the t = 0 maximum value is 38.2371 and the mean
value 0.16722, at t = 9.5 the maximum value is 1.694 and the
mean value 0.0161. For the B4 braid the initial maximum value
is 56.2325 and the mean value 0.162003 at t = 4.5 the maximum
is 3.2096 and the mean value 0.02428. For the T4 field the ini-
tial maximum value is 56.6086 and the mean value 0.161798 at
t = 3.9 the maximum is 2.17032 and the mean value 0.021223.
In all cases this reflects significant relaxation towards a force-
free state.

6. Results: sigmoidal dipole background
Simulations with all four internal topologies were also run with
tubes embedded in the sigmoidal dipole background. In general
the results confirmed the observations of the dipolar case. In or-
der to keep this report concise we do not detail the results here,
except for the twisted field, which was the one case in which a
genuinely novel observation was made.

6.1. Uniform twist
The field line evolution is depicted at t = 0,7.5 ,15 in Figs. 15a−f.
Panels a−c indicate expansion of the core and, in addition, a
comparison of c to a and b indicates that the apex of the field
is rising, similar to the dipole case (Fig. 7), though perhaps less
markedly. This expansion is also evident in the current contour
plots of Figs. 15g−i. By contrast to the dipolar case, the rotation
of the field is not of a consistent chirality. The change in mor-
phology evident in Fig. 15d to e, suggests a counter-clockwise
rotation of the apex of the core; whilst the change in morphology
observable in Fig. 15e to f indicates a clockwise rotation. This
observation is confirmed by the emission proxy E(x, y) shown in
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(a) (b)

(c)

Fig. 14. Scaled energy plots for the four field types embedded in a dipolar background with energies scaled by their initial values. Panel a):
difference in (scaled) magnetic energy Eb from the initial value; b): scaled kinetic energy Eke, and c): difference in scaled internal energy Eint from
its initial value.

Figs. 15j−l. As indicated in Figs. 7d−f the expected apex rota-
tion of a flux rope with negative internal twisting is a counter-
clockwise rotation, unless the rope dips, see (e.g. Török et al.
2010). This convention assumes an initially toroidal flux rope so
we should not necessarily have expected it to apply in this ini-
tially sigmoidal case. But it is of interest that the first attempt to
rotate which the core makes follows this pattern. We speculate
that this initial rotation is frustrated by the configuration of the
background field, which provides a repulsive force resisting the
initial kinking motion and the pathway for the field to relax.

The evolution of the local twist distribution Lf(x, y)
(Figs. 15m−o) is very similar to the evolution of the dipole case
(Figs. 7m−o). There is initially a large island of negative Lf rep-
resenting the initial uniformly twisted core of the rope. From
m to n the magnitude and size of this domain decreases as the
rope undergoes expansion and writhing deformations. In n there
is a ring of positive Lf values encircling the twisted sub-core.
From Figs. 15n to o the only significant change is that a sig-
nificant section of the positive ring changes from positive Lf to

negative Lf . This is likely due to reconnection with the back-
ground field.

The main conclusion is that the configuration of the back-
ground can have a significant effect on the evolution of the flux
rope. There is evidence here that the non-linear evolution of the
field resulting from the kink instability is eventually suppressed
by the background field.

7. Conclusions
Using a new technique for generating magnetic flux ropes of ar-
bitrary axial geometry and and internal structure, developed in
Part I of this study (Prior & Yeates 2016), we created a set of
flux ropes embedded in force-free background fields generated
from both dipolar and sigmoidal dipole photospheric flux dis-
tributions. The flux ropes included a uniformly-twisted field, a
pigtail braid field composed of three distinct flux tubes, a single-
tube field whose internal field lines were braided (B4), and a
similar field T4 whose internal field lines were (non-uniformly)
twisted. The last two fields emulate the numerical experiments
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(a) t=0 (b) t=7.5 (c) t=15

(d) t=0 (e) t=7.5 (f) t=15

(g) t=0 (h) t=7.5 (i) t=15

(j) t=0 (k) t=7.5 (l) t=15

(m) t=0 (n) t=7.5 (o) t=15

Fig. 15. Figures depicting the evolution of the uniform twist field embedded in a sigmoidal dipole background field. The three times used are t =
0, 7.5, 15 shown from left to right respectively. Panels a)−c): core embedded in the background field. Panels d)−f): core from above. Panels g)−i):
current contours of the field. Panels j)−l): emission proxy E(x, y). Panels m)−o): local twisting distribution Lf(x, y).
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of Wilmot-Smith et al. (2009), Yeates et al. (2015), Russell et al.
(2015) in a field with realistic coronal tube morphology.

Section 5 reported the results of simulations of flux tubes
with toroidal axial morphology, embedded in a dipolar back-
ground field, with each of the four internal structures. In all
cases, they relaxed to states with significantly reduced Lorentz
force. The uniform twist field underwent the expected kink in-
stability leading to significant global rotation of the structure;
this was reflected in the emission proxy plots which showed a
clear sigmoidal morphology. The pigtail field did not lead to any
large scale motion, only a significant expansion reflected in the
emission proxy plots, which showed dispersion due to expansion
of the pigtail’s core (yielding a significantly fractured emission
pattern). These conclusions are broadly in line with the prelim-
inary results of Part I. Both the B4 and T4 fields – which had
more complex internal field structure – showed significantly less
expansion than either the uniform twist or pigtail fields. Com-
paring the evolution of the B4 and T4 fields, there was notice-
ably less expansion of the B4 field, a fact particularly reflected in
the emission proxy distributions. Both began with a strong line
of emission along the initial axis of the flux rope. This struc-
ture persisted in the B4 field but was reduced to a weak thin
sigmoidal shape in the T4 field. The local twisting distributions
Lf(x, y) in the core of the twisted fields (uniform twist and T4)
tended to have one dominant sign, whilst the braided fields (pig-
tail and B4) developed mixed local twisting distributions with
roughly equal amounts of both positive and negative twisting.
This indicates that the significant difference in initial internal
topology between the twisted and braided fields was maintained
throughout the simulations.

A second observation was that the B4 and T4 fields both
showed the development of significant internal organisation. The
B4 field coalesced to form two flux ropes of opposing sign
(Figs. 11), whilst the T4 formed one flux rope of roughly uni-
form twist (Fig. 13). Similar evolution was observed for the nu-
merical experiments of Wilmot-Smith et al. (2009), Yeates et al.
(2015), Russell et al. (2015) in which the fields were defined in
cylindrical tubes. An explanation for this separation has been
developed in the cylindrical case (Russell et al. 2015); roughly
speaking, fields with zero net initial helicity but a significantly
tangled initial distribution develop into two flux ropes of equal
and opposite twist, thus preserving the net sum helicity, whilst a
field with net helicity will develop into a single flux rope whose
twist matches the initial helicity of the field. Separating positive
and negative regions of twist as in B4 allows efficient minimi-
sation of energy on a short timescale, given that full dissipa-
tion of the entanglement would require a much longer, diffusive,
timescale. The two-tube configuration minimises further recon-
nection as the fields are near-parallel where they meet, and the
tubes repel one another. Our simulations provide some evidence
that this topological rearrangement can occur in more realistic
coronal geometries, even when the tube is given the extra degree
of freedom to change axial morphology.

The overarching conclusion from these results it that the in-
ternal topology of a flux rope can have a significant effect on
the global behaviour of the flux rope. Tangled/braided topologies
will tend to inhibit large scale changes in flux rope morphology
by comparison to simply twisted structures. The significant dif-
ference in emission proxy distributions suggests that the effect
of these differences might be observable. The energy analysis of
the fields show that the B4, T4 and pigtail fields lose a larger per-
centage of their initial magnetic energy (which is significantly
higher for the B4 and T4 fields), further evidence that the internal
topological re-arrangement the fields undergo offers a preferable

path to energy loss than a deformation which promotes writhing
of the tube; this contrasts to the twisted tube which has a sim-
ple internal topology and preferences the loss in energy through
writhing.

Section 6 reported the results of simulations of a uniform
twist flux tube embedded in a sigmoidal dipole background
field, the only internal structure which showed a significant
difference in behaviour in comparison to the dipolar back-
ground. The twisted flux rope initially attempted to rotate with
a counter-clockwise rotation, as expected from the twist-writhe
conversion observed for twisted flux ropes (Török et al. 2010);
however, seemingly frustrated by the background field, it then
reversed this rotation to create a sigmoidal flux rope with a sim-
ilar morphology to the inversion line’s Z-shape. This provides
some evidence that the particular distribution of the background
field might have significant effect on the ensuing morphology of
the flux rope. In Part I, the same simulation was performed with a
constant initial density distribution, whereas here we used a den-
sity decaying with the square of the background field strength.
The second stage of counter-rotation observed was not observed
in the simulation of Part I, indicating that the initial density dis-
tribution can also have a significant effect.

It is hoped that this study provides some insight into the ef-
fect of the internal topology of a flux rope on its ensuing evo-
lution, as well as some information about how the morphology
of the background field might dictate its behaviour. Additionally
through the emission proxy E(x, y) (Sect. 4.2) we have given
some suggestion as to how these differences might be identified
through observation. However, accurate predictions of how these
structures would be observed by specific instruments is beyond
the scope of our study, and would require more realistic treat-
ment of the energy equation (cf. Lionello et al. 2009).

A number of future studies could help build upon these
ideas. One area of significant interest is the emergence of
both twisted and untwisted flux ropes through the photo-
sphere into the lower corona, and how they affect the existing
field in this region (MacTaggart & Hood 2009a,b; Fang et al.
2010; Moreno-Insertis & Galsgaard 2013; MacTaggart 2011).
One might ask whether a braided/tangled flux tube would be able
to emerge from the convection zone? Then, if so, what would its
effect on the surrounding region be? Could we differentiate the
emergence of a tangled field from twisted flux emergence? One
might also inquire whether one could destabilise a braided tan-
gled field with twisting boundary motions (cause it to kink and
erupt), or vice-versa could the input of complex boundary mo-
tions stabilise a twisted flux rope? The ultimate aim of such stud-
ies would be to provide some concrete relationship between (po-
tentially) observable quantities – such as photospheric boundary
motions, the background field, and regions in the field with sig-
nificant current (leading to electromagnetic emission) – and the
resulting behaviour of the flux rope. This could then be used as
a predictive tool for both flux rope behaviour and also the likely
internal topology of ejected flux ropes.

References
Antman, S. S. 2005, Nonlinear problems of elasticity, Applied Mathematical

Sciences, vol. 107 (New York: Springer)
Arber, T., Longbottom, A., Gerrard, C., & Milne, A. 2001, J. Comp. Phys., 171,

151
Archontis, V., Hood, A., & Tsinganos, K. 2014, ApJ, 786, L21
Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. E. 2010, ApJ, 708, 314
Bareford, M., Hood, A., & Browning, P. 2013, A&A, 550, A40
Berger, M. A. 1984, Geophys. Astrophys. Fluid Dyn., 30, 79
Berger, M. A. 1991, J. Phys. A: Math. General, 24, 4027

A16, page 19 of 20

http://linker.aanda.org/10.1051/0004-6361/201528053/2
http://linker.aanda.org/10.1051/0004-6361/201528053/2
http://linker.aanda.org/10.1051/0004-6361/201528053/3
http://linker.aanda.org/10.1051/0004-6361/201528053/4
http://linker.aanda.org/10.1051/0004-6361/201528053/5
http://linker.aanda.org/10.1051/0004-6361/201528053/6
http://linker.aanda.org/10.1051/0004-6361/201528053/7


A&A 591, A16 (2016)

Berger, M. A., & Asgari-Targhi, M. 2009, ApJ, 705, 347
Berger, M. A., & Prior, C. 2006, J. Phys. A: Math. General, 39, 8321
Bishop, R. L. 1975, Am. Math. Monthly, 82, 246
Cheng, X., Zhang, J., Liu, Y., & Ding, M. 2011, ApJ, 732, L25
Cheng, X., Zhang, J., Ding, M., Liu, Y., & Poomvises, W. 2013, ApJ, 763, 43
Cheung, M. C., & DeRosa, M. L. 2012, ApJ, 757, 147
Craig, I., & Sneyd, A. 2005, Sol. Phys., 232, 41
Démoulin, P., & Aulanier, G. 2010, ApJ, 718, 1388
Fan, Y., & Gibson, S. 2007, ApJ, 668, 1232
Fang, F., Manchester, W., Abbett, W. P., & van der Holst, B. 2010, ApJ, 714,

1649
Galsgaard, K., & Nordlund, Å. 1996, J. Geophys. Res.: Space Phys., 101, 13445
Hood, A. W., Archontis, V., & MacTaggart, D. 2012, Sol. Phys., 278, 3
Janse, Å., Low, B., & Parker, E. 2010, Phys. Plasmas, 17, 092901
Kliem, B., & Török, T. 2006, Phys. Rev. Lett., 96, 255002
Kliem, B., Titov, V., & Török, T. 2004, A&A, 413, L23
Kliem, B., Linton, M., Török, T., & Karlickỳ, M. 2010, Sol. Phys., 266, 91
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