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We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R.
Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer
instanton approach. This gives equations which can be used to compute the rates of electron-transfer
reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approxima-
tion. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimi-
zation of the action. In this form, comparison with Wolynes’ quantum instanton method [P. G.
Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach
is the steepest-descent limit of this method. We discuss advantages and disadvantages of both
methods and give examples of where the new approach is more accurate. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4932362]

I. INTRODUCTION

In the previous paper, henceforth referred to as Paper I,1

we outlined a derivation of a golden-rule instanton theory for
computing electron-transfer rates in the nonadiabatic limit.
This was based on a time-independent methodology using
Fermi’s golden rule, which is correct in the limit that the
electronic coupling is weak. In these equations, we substituted
the semiclassical limit of the Green’s functions describing
nuclear dynamics on one of two potential-energy surfaces at
a given energy. A number of steepest-descent integrations led
to a formula which defines the rate in terms of the action of an
imaginary-time periodic orbit, known as the instanton.

In this paper, we show how this approximate formulation
of the rate can be evaluated numerically to treat electron trans-
fer in large complex systems. We describe how the golden-
rule instanton trajectory can be discretized, allowing it to be
located efficiently using multidimensional optimization tech-
niques. This is done using a ring-polymer instanton approach
similar to that used by related methods employing a single
Born-Oppenheimer surface, including the adiabatic rate2–9 as
well as tunnelling splitting calculations.10–13

In contrast, early applications of instanton approaches
employed a method known as “shooting” to locate the required
instanton trajectory. This method ran classical dynamics on
the inverted potential-energy surface and attempted to choose
the correct initial conditions such that the trajectory is closed
into a periodic orbit.14 Because the trajectories are unstable,
this approach is inefficient and in general limited to treating
systems of very few dimensions.15

Many alternative methods exist for computing nonadia-
batic rate constants based on a time-dependent formulation.
These include exact wave-function calculations16,17 and real-
time path-integral calculations for system-bath models.18–21

For more general systems, approximate trajectory-based

a)Electronic mail: jeremy.richardson@fau.de

methods have been developed22–27 including extensions of
ring-polymer molecular dynamics.28–31

There are some difficulties with time-dependent methods
however, as the flux correlation functions32 can become very
oscillatory when describing electron transfer.22 Some work
towards avoiding these problems has been achieved by modi-
fying the correlation function formalism to remove the oscil-
lations, although without affecting the long-time limit which
defines the exact rate.33 This simplification was achieved in
part by considering a time-independent picture, as we have also
done in the derivation of the golden-rule instanton method.1

Although the derivation is very different, we also show
how our result can be related to Wolynes’ quantum instanton
method.34 This approach uses an approximation based on the
short-time behaviour of the flux correlation function in the
nonadiabatic (golden-rule) limit and is evaluated using path-
integral Monte Carlo simulation. The method has been applied
to study electron transfers in chemically and biologically rele-
vant systems.35,36 Our new derivation of a golden-rule rate
offers more insight into the approximations made by such
methods and is in some cases more accurate.

An outline of the paper is as follows. The main results from
Paper I are summarized in Sec. II, and we show how the action
integral is discretized and its derivatives are obtained in Sec. III
and the Appendix. We thus obtain a ring-polymer instanton
formulation for the electron-transfer rate, which is related to
Wolynes’ quantum instanton approach in Sec. IV. Suggestions
for how the instanton approach could be applied numerically
to complex systems are presented in Sec. V, which introduces
an efficient algorithm for locating the instanton trajectories.
This is applied to an example system in Sec. VI to analyse its
convergence properties, and Sec. VII concludes the article.

II. SUMMARY OF THE GOLDEN-RULE
INSTANTON APPROACH

It was shown in Paper I that the instanton relevant to
the electron-transfer problem is an imaginary-time periodic
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orbit. This is formed of two trajectories which travel on the
upside-down reactant, V0(x), or product, V1(x), f -dimensional
potential-energy surfaces. They each bounce once and join
smoothly together at a point, x‡, found on the crossing seam,
defined by V0(x) = V1(x).

In this paper, we deal only with imaginary-time trajec-
tories and thus depart from the notation of Paper I by dropping
the bar over imaginary properties. The Euclidean action along
one trajectory, either on the reactant (n = 0) or product (n = 1)
surface, is37,38

Sn ≡ Sn(x′,x′′, τn) =
 τn

0


1
2 m

�����
∂x(τ)
∂τ

�����

2

+ Vn

�
x(τ)�


dτ, (1)

where the trajectory, x(τ), travels through the classically
forbidden region from x(0) = x′ to x(τn) = x′′, or equivalently
in the opposite direction. A complete periodic orbit which runs
in imaginary time β~ has the action

S(x′,x′′, τ) = S0(x′,x′′, β~ − τ) + S1(x′′,x′, τ), (2)

where τ ∈ [0, β~]. The particular periodic orbit required is that
which is stationary in x′, x′′, and τ. In the following, all terms
are evaluated at this stationary point, at which x′ = x′′ = x‡.

The golden-rule instanton method derived in Paper I gives
a semiclassical approximation to the rate in terms of the actions
along these trajectories. Two equivalent formulae are

kSCZ0 =
√

2π~
∆2

~2


C0C1

−Σ
e−S/~ (3)

=
√

2π~
∆2

~2


C0C1

C

(
−d2S

dτ2

)− 1
2

e−S/~, (4)

where the van Vleck prefactor for a trajectory is given by

Cn =
�����
− ∂2Sn
∂x′∂x′′

�����
(5)

and the other prefactors are

C =

���������

∂2S
∂x′∂x′

∂2S
∂x′∂x′′

∂2S
∂x′′∂x′

∂2S
∂x′′∂x′′

���������

, (6)

Σ =

��������������

∂2S
∂x′∂x′

∂2S
∂x′∂x′′

∂2S
∂x′∂τ

∂2S
∂x′′∂x′

∂2S
∂x′′∂x′′

∂2S
∂x′′∂τ

∂2S
∂τ∂x′

∂2S
∂τ∂x′′

∂2S
∂τ2

��������������

. (7)

These formulae for the golden-rule instanton method were
used in Paper I to obtain the rate of electron transfer in a few
special systems for which the bounce trajectories and corre-
sponding action are known analytically. In order to apply the
method to more general problems with anharmonic potentials,
numerical methods are required which are able to locate the
instanton trajectory and evaluate the action and its derivatives.
This is the topic addressed in this paper.

III. DISCRETIZATION SCHEME

In this section, we show how the action integral, Eq. (1),
can be defined from a discretized form of an imaginary-time

trajectory. This is based on the ring-polymer instanton meth-
od,2 which has been successfully used in adiabatic, single-
surface, rate calculations,3,6 as well as the evaluation of tunnel-
ling splittings.10–12 It relies on the fact that a classical trajectory
is known to give a stationary value of the action, with respect
to any deviation along its length except at the end points.39,40

In the Appendix, we also describe how second deriva-
tives of the action can be evaluated directly without resort-
ing to taking finite differences between instantons optimized
under various conditions. The approach we use for this fol-
lows closely the method of implicit differentiation described in
Ref. 8, which we extend to obtain all the derivatives required
for the golden-rule instanton method.

According to our golden-rule approach,1 we only need to
study the dynamics on one of the two potential-energy surfaces
at any time. This section and the Appendix would thus also
be directly applicable to single-surface reactions, simply by
dropping the subscript n.

We consider an imaginary-time pathway of length τn be-
tween the points x′ ≡ x0 and x′′ ≡ xNn. It passes through the
intermediate points {x1, . . . ,xNn−1} at a set of discrete times,
where the imaginary-time intervals between each point are
δτi = ϵ iτn, with i ∈ {1, . . . ,Nn} such that each ϵ i ∈ [(0,1] andNn

i=1 ϵ i = 1. The velocity along a given pathway at these times
is given by |xi − xi−1|/ϵ iτn and the action by

Sn(x0, . . . ,xNn; τn) =
Nn
i=1

m|xi − xi−1|2
2ϵ iτn

+

Nn
i=1

ϵ iτn
Vn(xi−1) + Vn(xi)

2
, (8)

where the first term originates from a trapezium-rule integra-
tion of the kinetic energy along the pathway, and the second
of the potential energy. This is the general form allowing
for uneven imaginary time intervals7 and would simplify to
the usual case with ϵ i = 1/Nn. Note that here an open-ended
pathway is described such that no cyclic indices are implied.

The points x̃i for i ∈ {1, . . . ,Nn − 1}, which give the coor-
dinates along the classical trajectory, are those which give a
stationary value of Sn, i.e., those which solve

x̃i − x̃i−1

ϵ i
+

x̃i − x̃i+1

ϵ i+1
+
(ϵ i + ϵ i+1)τ2

n

2m
∂Vn

∂x̃i

= 0. (9)

The action along the trajectory is therefore Sn(x′,x′′, τn)
≡ limNn→∞ S̃n(x′,x′′, τn), where S̃n(x′,x′′, τn) = Sn(x̃0, x̃1, . . . ,
x̃Nn; τn) and x̃0 ≡ x′, x̃Nn ≡ x′′.

In fact, the dominant classical trajectory between two end
points in a given imaginary time will be the global mini-
mum of Eq. (8) with respect to the intermediate points. This
can be obtained by employing a multidimensional optimiza-
tion routine such as the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (l-BFGS) algorithm41 in the same way as is
done for tunnelling splitting calculations.10,11 However, the end
points, x‡, required for the instanton method are not in general
known a priori, so the instanton trajectories cannot be obtained
in this way. We discuss optimization methods which do not
require knowledge of the end points in Sec. IV.

Partial derivatives of Sn are approximated by the formulae
in the Appendix, which become exact in the Nn → ∞ limit.
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Assuming that the instanton trajectories have already been
found, these derivatives can be applied in the prefactor of
Eq. (3), using Eqs. (7) and (2), to give the golden-rule instanton
rate.

IV. RING-POLYMER INSTANTON FORMULATION

So far, we have only dealt with open-ended trajectories,
whose end points are as yet unknown. In this section, we extend
this methodology to obtain the pathway for the total periodic
orbit. This orbit is simply the combination of a trajectory on
the reactant surface with another on the product surface and
has total imaginary time β~.

We divide up the total orbit into N segments, with the first
N0 on |0⟩ and the remaining N1 = N − N0 on |1⟩ as in Fig. 1.
Equal time-step intervals, ϵ i = 1/Nn, will be assumed here but
other choices may slightly improve efficiency.7

There is a special case that the time intervals on both
trajectories are equal, all with length βN~, where βN = β/N .
This can only be obtained in practice if the imaginary times
along each trajectory, τn = Nn βN~, are known a priori. Such
cases arise, for example, if the reaction is symmetric, where the
stationary value is known to be τ = β~/2, or if the instanton has
already been obtained by an alternative method, such as those
introduced in Sec. V.

In this case, we have a formulation similar to path-inte-
gral42 and ring-polymer molecular dynamics,2,43 which were
obtained from a discretization of the quantum Boltzmann oper-
ator. The resulting set of N coordinates are called beads and,
via a quantum-classical correspondence,44 are equivalent to
a ring polymer of classical particles connected together by
harmonic springs.

It is a good idea to use the N-bead steepest-descent
approximation to the reactant partition function,45

Z0 =

f
j=1


2 sinh

β~ω̃ j

2

−1

, (10)

ω̃ j =
2

βN~
sinh−1 βN~ω j

2
, (11)

as this is known to benefit from a cancellation of errors with
the N-bead instanton calculation and improve convergence of
the rate.3 Here, ω j are the normal-mode frequencies at the
minimum of V0(x); if there are translation or rotational modes,
the formula should be modified appropriately.

The total action along the two joined pathways is given by

βNUN(x) = S0(xN ,x1, . . . ,xN0; N0βN~)
+ S1(xN0, . . . ,xN ; N1βN~), (12)

FIG. 1. Schematic showing the ring-polymer beads which discretize the
instanton for the case of N0= 6 and N1= 4. Those on the left coloured in
blue have the electronic configuration of the reactant state |0⟩ and those on
the right in red of the product |1⟩. Beads N0 and N are located at the hopping
point x‡ and contribute to the action of both trajectories.

such that the N-bead ring-polymer potential is

UN(x) =
N
i=1

m
2β2

N~
2
|xi+1 − xi |2

+ 1
2V0(xN) +

N0−1
i=1

V0(xi) + 1
2V0(xN0)

+ 1
2V1(xN0) +

N−1
i=N0+1

V1(xi) + 1
2V1(xN). (13)

The positions of each bead are given by x = {x1, . . . ,xN}, and
cyclic indices are implied such that x0 ≡ xN . This function can
be minimized with respect to the positions of all beads to obtain
the coordinates x̃ = {x̃1, . . . , x̃N} along both trajectories simul-
taneously. The hopping point is then identified as x‡ = x̃N0
= x̃N and the action as S̃ = βNŨN , where ŨN = UN(x̃). How-
ever, τ, or equivalently the ratio N0/N1, is yet to be specified.
It will therefore be necessary to compute the instanton for
numerous values of τ to find the stationary point of ŨN with
respect to τ.

We now introduce the quantum instanton approach of
Wolynes.34 This method was derived using a steepest-descent
evaluation of the time integral over the exact flux-flux correla-
tion function within the golden-rule approximation and gives

kQIZ0 =
√

2π~
∆2

~2

(
−d2φ

dτ2

)− 1
2
e−φ(τ)/~, (14)

e−φ(τ)/~ = Λ−N f


e−βNUN (x) dx, (15)

where the prefactor is Λ =


2π βN~2/m. It is here assumed
for simplicity that the electronic coupling, ∆, is approxi-
mately constant, although the formulation could be generalized
without affecting our findings. In practice, the integrals are
computed using a discrete path-integral Monte Carlo simula-
tion, and τ = N1βN~ is chosen in the range [0, β~] such that
dφ
dτ = 0. Taking the second derivative of Eq. (15) gives46

− 1
~

d2φ

dτ2 e−φ(τ)/~ =
Λ−N f

~2


V−(x′)V−(x′′) e−βNUN (x) dx,

(16)

where V−(x) = V0(x) − V1(x). The second derivative of φ is
negative and thus corresponds to a stationary point which is
a maximum along τ.

The derivation is similar in spirit to that used to obtain the
quantum instanton approach for Born-Oppenheimer systems
described in Ref. 47, as it also employs a steepest-descent inte-
gration along the real-time coordinate of a flux-flux correlation
function. The single-surface quantum instanton approach is
however not a semiclassical approximation in the sense that it
gives the correct leading order of ~. This is most easily seen
from the fact that although it computes the correct value of
the correlation function at t = 0, it does not reproduce cor-
rect results for a free-particle or in the classical limit due
to the short-time Gaussian approximation of the correlation
function.48 Wolynes’ formula, Eq. (14), is also not exact in
the high-temperature limit in general. However, it is known
that it reproduces the stationary-phase approximation49 for the
golden-rule rate of a spin-boson system and hence also Marcus
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theory,50 which is the correct result for this system in the
classical limit.

To show the link between the quantum and semiclassical
instanton methods, we perform a steepest-descent approxima-
tion to Eq. (15) in two steps, reserving the integrals over beads
assigned to x′ and x′′ until after all others. This gives

e−φ(τ)/~ ≈ Λ−2 f


1

|J0∥J1|

×


SD
e−S̃0(x′,x′′, β~−τ)/~−S̃1(x′′,x′,τ)/~ dx′dx′′ (17)

=


C0C1

C
e−S̃/~, (18)

where Jn is defined in Eq. (A2) with ϵ i = 1/Nn and we have
used the following result from Ref. 8:

Cn =

(
m
βN~

) f

|Jn|−1. (19)

Also, within the steepest-descent approximation, d2φ

dτ2 ≈ d2S̃
dτ2

and therefore, taking these semiclassical limits in Wolynes’
formula, Eq. (14), reproduces the golden-rule instanton rate,
Eq. (4). This shows a strong link between the semiclassical in-
stanton theory presented in this paper and the quantum instan-
ton approach—the former is a steepest-descent approximation
to the latter. The quantum instanton approach has a great
advantage over the semiclassical instanton method, which is
that it includes the exact quantum Boltzmann operator and can
therefore also treat liquid systems, where many minima exist
on the ring-polymer potential surface.

Note however that Wolynes’ quantum instanton is not
always more accurate than the semiclassical instanton. In the
high-temperature limit, the ring-polymer beads collapse and
Eq. (15) reduces to give an integral over the centroid mode,

lim
β→0

e−φ(τ)/~ =
(

m
2π β~2

) f 
e−[(β~−τ)V0(x)+τV1(x)]/~ dx. (20)

Using this definition of φ(τ) in Eq. (14) gives a rate which is
not in general equal to that of classical golden-rule transition-
state theory.33 This is most easily seen from the example of the
transfer from a harmonic oscillator to an anharmonic product
state, such as the system discussed in Ref. 33. As shown in
Paper I, the high-temperature golden-rule instanton rate gives
the exact classical golden-rule transition-state theory limit for
this one-dimensional system,

kcl,TSTZ0 =
∆2

~2


2πm
β


e−βV0(x) δ

�
V0(x) − V1(x)� dx, (21)

whereas Eq. (20) noticeably does not include a delta function
constraining the integral to the crossing seam and thus gives an
incorrect result.

This is at first sight surprising, as one would naively
assume that the steepest-descent approximation reduces the
accuracy of the result. The reason for the discrepancy is that
the two methods are based on different approximations. This
example makes it clear that at least for certain problems, a more
accurate quantum rate theory is obtained from semiclassical

considerations than from Gaussian approximations to the flux
correlation function.

The link between the semiclassical and quantum instanton
approaches also suggests that another method could be used
to compute the golden-rule instanton rate, where the steepest-
descent integration is taken over all ring-polymer beads simul-
taneously giving

e−φ(τ)/~ ≈
������

β2
N~

2

m
∇

2ŨN

������

− 1
2

e−βNŨN , (22)

where ∇2ŨN is the Hessian matrix found by differentiating
Eq. (13) by all bead positions xi and is evaluated at the instan-
ton geometry, x̃.

Because the steepest-descent integrals are evaluated at the
hopping point where V−(x‡) = 0, we have to consider a higher-
order term for our semiclassical approximation of Eq. (16).51

This is

− 1
~

d2φ

dτ2 e−φ(τ)/~ ≈ Λ
−N f

~2


SD


∂V−(x‡)
∂x‡ · (x′ − x‡)



×

∂V−(x‡)
∂x‡ · (x′′ − x‡)



× e−βNUN (x) dx. (23)

The integral is evaluated using a second-order expansion of
UN(x) about the ring-polymer instanton orbit, which gives

d2S̃
dτ2 = −

1
~

∂V−(x‡)
∂x‡ · [βN∇

2ŨN]−1
N0,N
· ∂V−(x‡)

∂x‡ , (24)

where only the f × f block corresponding to rows for bead N0
and columns for bead N is required from the inverse of the full
Hessian. The golden-rule instanton rate in ring-polymer form
is thus

kSCZ0 =
√

2π~
∆2

~2

������

β2
N~

2

m
∇

2ŨN

������

− 1
2 (
−d2S̃

dτ2

)− 1
2
e−βNŨN . (25)

This formula gives the same result as Eqs. (3) and (4) in the
N → ∞ limit.

Note that all eigenvalues of the Hessian are positive. This
is therefore a more straightforward derivation than is achieved
using the Im F approach,2,46 where the instanton has a negative
eigenvalue, which has its sign reversed, and a zero-mode which
has to be integrated out analytically.

As in the adiabatic, single-surface, case,2 this ring-
polymer instanton approach provides a computationally trac-
table way to obtain the reaction rate of a multidimensional
system. However, it would be necessary in general to optimize
Eq. (13) many times to find the value of τ which gives a
maximum value of ŨN . In Sec. V, we shall propose alternative
methods which obtain τ automatically from a single optimiza-
tion and may therefore be found to be more efficient in practical
applications.

V. NUMERICAL EVALUATION

In this section, we present two methods which we suggest
could be used to evaluate semiclassical golden-rule rates in
complex multidimensional systems. It may also be possible
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to implement similar schemes for locating other instantons
more efficiently, including those for adiabatic rate theory2

and tunnelling splitting calculations.10,11 Applications of the
methods to such systems will be explored in future work.

In Sec. IV, we discussed an approach similar to that used
for adiabatic instantons, where the imaginary time of each
trajectory is chosen before the ring-polymer instanton is opti-
mized. Here, we present two alternative methods which opti-
mize all unknown variables simultaneously. The first is based
on a Lagrangian formalism with equal time steps and the sec-
ond uses the Hamilton-Jacobi abbreviated action with evenly
spaced ring-polymer beads.

Note that the symmetry of the instanton pathway can be
used to reduce the number of independent coordinates to N/2
+ 1.3 It is known that the instanton must follow the same
pathway in both directions of its periodic orbit, such that we
only need to optimize two shorter open-ended trajectories,
each with one end at the hopping point and the other at a turning
point. In both cases, we will employ the bead ordering given
in Fig. 1 and assume that N0 and N1 are always chosen to be
even. There is a symmetry equivalence between the top and
bottom rows such that when the pathway is optimized, x̃N0/2−i
= x̃N0/2+i for i ∈ {1, . . . ,N0/2} and x̃N0+N1/2+i = x̃N0+N1/2−i
for i ∈ {1, . . . ,N1/2}. The beads at the turning points, x̃N0/2
and x̃N0+N1/2, are independent.

A. Lagrangian formalism

The Lagrangian formalism defines classical trajectories
according to the elapsed time. It was used to define the standard
ring-polymer instanton approach for single-surface systems
with equal time steps.2,10,11 As in Sec. IV, we again separate
each trajectory into Nn equal imaginary-time intervals, i.e.,
with ϵ i = 1/Nn. However, in contrast to the previous approach,
Eq. (12), the reactant trajectory may have a different time step
from the product trajectory. The total discretized action is

S(x, τ) = 2S0
�
xN0/2, . . . ,xN0;

1
2 (β~ − τ)�

+ 2S1
�
xN0, . . . ,xN0+N1/2; 1

2 τ
�
, (26)

where due to the forementioned symmetry we have taken
twice the action along each pathway from the turning point
to the hopping point in half the imaginary time. The clas-
sical imaginary-time periodic orbit can be found as the first-
order saddle point of this function with respect to the indepen-
dent bead coordinates x = {xN0/2, . . . ,xN0+N1/2} and τ simul-
taneously. The other half of the instanton orbit is given by
symmetry.

Saddle-point optimization algorithms have been well stud-
ied in the pursuit of locating instantons,6,52 in most cases, a
Hessian-based quasi-Newton method being appropriate. The
value of the optimized function gives the required total ac-
tion S̃ in the N-bead approximation and the imaginary times
τ0 = β~ − τ and τ1 = τ. In the N → ∞ limit, this result is in
principle independent of the choice of the ratio N0/N1, although
an intelligent suggestion would be τ0/N0 ≈ τ1/N1 to make all
time steps approximately equal.

In this way, it is possible to evaluate Eq. (3) numerically
using this ring-polymer instanton approach and converge the
results obtained with respect to N . We identify x′ ≡ x̃N and

x′′ ≡ x̃N0, both of whose optimized positions tend to x‡ in the
N → ∞ limit. The hopping point, x‡, obtained in this way will
automatically locate itself on the crossing seam. This occurs
without any prior knowledge of the shape of the multidimen-
sional surface.

Derivatives of the total action S̃ are given as sums or differ-
ences of the derivatives of S̃0 and S̃1 defined in the Appendix.
Note that here the full trajectory, from x′ to x′′, is required and
not just the trajectory to the turning point.

However, this approach requires a saddle-point optimi-
zation which is often more difficult than a minimization. In
Sec. V B, we describe an alternative method to locate the
instanton trajectories and evaluate their actions based on a
potentially simpler algorithm.

B. Hamilton-Jacobi formalism

A significant feature of the derivation presented in this
paper is that the energy of the two trajectories must be equal.
It would therefore be natural to locate the instanton trajectory
under this constraint rather than directly attempting to find the
stationary value of the imaginary time τ. To this end, we will
employ a Hamilton-Jacobi definition for the action along two
discretized pathways of N0 and N1 ring-polymer beads with the
same energy for each trajectory.

We should take care when computing the discretized
abbreviated action, as a naive implementation using the trape-
zium rule to approximate Wn would give a function with
infinite derivatives at the turning points. We therefore propose
the following functional form to compute the abbreviated
action along one pathway with energy E:

Wn(x0, . . . ,xNn/2; E) = 2
Nn/2
i=1

�����
pn(xi−1)3 − pn(xi)3

3mκi

�����
+ Pn

(27)
pn(x) =


2m|V (x) − E | (28)

κi =
Vn(xi) − Vn(xi−1)

|xi − xi−1| , (29)

where between each bead we have used the analytical expres-
sion for the abbreviated action in a linear potential, and the
factor of two accounts for the return journey of the trajectory.
The absolute value of the momentum is taken such that the
function returns real values even when beads stray into the
classically allowed region. This ensures that the function is
smooth and well-defined everywhere as is required by most
optimization routines. The final optimized pathway should
however lie entirely in the classically forbidden region. This
requirement can be easily checked.

In this formulation, it is necessary to ensure that the beads
remain evenly spaced without biasing the instanton pathway.
The simplest way to achieve this is to include a penalty
function,

Pn = χn

Nn/2
i=1

�
δxi − ⟨δx⟩�2, (30)

δxi = |xi − xi−1|, (31)

⟨δx⟩ = 2
Nn

Nn/2
i=1

δxi. (32)
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This type of approach has been applied successfully to locate
folding pathways in proteins.53 However, alternative methods
based on generalizations of the nudged-elastic-band algorithm
avoid using penalty functions and may be more efficient.54

The value of the scalar χn should not affect the result of
a converged optimization and can be chosen by the user to
maximize efficiency.

As in all optimization problems, a good initial guess is
required to ensure fast convergence to the global minimum.
Instanton optimizations are best performed in stages with
increasing numbers of beads and decreasing temperatures.10

An equally spaced straight line normal to the crossing seam
provides a reasonable starting point at high temperatures.

The imaginary time intervals between each bead are eval-
uated from the derivative of the abbreviated action with respect
to energy as

δτi =
�����
pn(xi−1) − pn(xi)

κi

�����
. (33)

Thus, the total imaginary time along each trajectory is τn
= 2

Nn/2
i=1 δτi and we define τ = β~/(1 + τ0/τ1).

Classical trajectories could be located by optimizing the
abbreviated action Eq. (27) for a given energy. This approach
would give the microcanonical instanton rates discussed in
Paper I. However, it is the thermal rate which is of most interest,
for which the value of E is not known a priori. We therefore
use the value of the full action in the Hamilton-Jacobi picture,

S(x,E) =W0(xN0/2, . . . ,xN0; E)
+W1(xN0, . . . ,xN0+N1/2; E) + βE. (34)

This function is minimized with respect to the independent
beads x = {xN0/2, . . . ,xN0+N1/2} and energy simultaneously
under the constraint that the pathways terminate at a turning
point, i.e., V0(xN0/2) = E and V1(xN0+N1/2) = E. Constrained
optimization methods such as sequential least squares pro-
gramming are ideal for this task.

This Hamilton-Jacobi approach to locating instantons
has significant advantages over the standard ring-polymer
instanton approach, where the beads tend to accumulate near
turning points.7 By forcing the beads to be evenly spaced
along each trajectory, we expect that fewer beads will be
required to converge the action integral. The convergence is
further improved by using the scheme based on the analytic
result for linear potentials. Another advantage is that the stan-
dard instanton-finding methods employ a saddle-point search,2

whereas the new approach requires only a minimization. It is
usually far less computationally demanding to locate the latter
type of stationary point.

However, it is known that the evenly spaced pathway does
not give good estimates for the instanton prefactor,7 even when
N is large enough to converge the action to a high accuracy.
This was also confirmed by our own numerical tests, employ-
ing the formulae in the Appendix with Eq. (33). It seems
that the ring-polymer instanton methods described in Secs. IV
and V A with equal time steps are better for computing the
derivatives, whereas this Hamilton-Jacobi method with evenly
spaced beads is better for estimating the action.

We therefore propose that the following combination of
the methods presented above is used for computing the rate:

• The Hamilton-Jacobi method can be used to locate the
instanton pathway and find the stationary value of τ.
The action, S̃, is also taken from this calculation.

• Using cubic spline interpolation along the imaginary
time coordinate,55 the two trajectories are modified to
give equal time steps along each trajectory, and the
resulting pathway minimized, keeping τ fixed.

• The remaining beads in the two bounce trajectories
are obtained by symmetry and the derivatives of the
actions, S̃0 and S̃1, computed using the formulae in the
Appendix.

• The rate constant can be then be evaluated using Eq. (3).

In Sec. VI, we apply this combined method and compare
it with the saddle-point search of Sec. V A to a model problem.

VI. APPLICATION TO A MODEL SYSTEM

We consider a numerical application of the golden-rule
instanton method to a spin-boson model of electron trans-
fer.49,56 Note that the methods are also directly applicable to
anharmonic systems, but here we intend to compare with the
exact results, which are easily available only for integrable
systems.

The spin-boson model was defined in Paper I and we use
the same notation here with parameters chosen to describe
condensed-phase electron transfer at typical conditions. The
temperature is T = 300 K, and the spectral density of the
bath has Debye form J(ω) = λ

2
ωωc

ω2+ω2
c
, with the character-

istic frequency ωc = 500 cm−1 and reorganization energy λ
= 40 kcal/mol. The spectral density is discretized with f = 12
bath modes using57,58

ω j = ωc tan

�
j − 1

2

�
π

2 f
, (35)

cj =


λ

2 f
ω j, (36)

where j ∈ {1, . . . , f }. We include a bias to products of ϵ
= 10 kcal/mol.

The electronic coupling, ∆, is constant, but for the pur-
poses of generality, we do not specify its value. It must of
course be small enough that the golden-rule approximation is
valid. Results are presented relative to the classical rate such
that they are dimensionless and do not depend on ∆. It was
found that 12 bath modes are enough to converge the ratio to
less than 2%.

For this model, the classical rate is given by Marcus theory
as50

kcl =
∆2

~


π β

λ
e−β(λ−ϵ)

2/4λ. (37)

Formulae presented in Paper I give the semiclassical golden-
rule rate, kSC, with τ obtained numerically by a one-dimen-
sional maximization, as 36.3 kcl. This is close to the quantum
golden-rule rate, which was found to be 36.6 kcl by numerical
integration. Here, as was also observed in Ref. 35, nuclear
tunnelling has a significant effect on the rate.

The two numerical approaches outlined in Sec. V were
applied to the model for various numbers of ring-polymer
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TABLE I. Results for the two numerical methods, Lagrangian and Hamilton-
Jacobi, described in Secs. V A and V B. In both cases, we take N1/N0≃ 0.3,
although ensuring that N0 and N1 are even. The semiclassical instanton
results are given in the final row, computed using formulae from Paper I.

Lagrangian Hamilton-Jacobi

N S̃/~ τ/β~ kSC/kcl S̃/~ kSC/kcl

8 6.558 0.3248 23.2 6.152 31.1
16 6.179 0.3163 33.4 6.051 36.5
32 6.058 0.3131 36.3 6.020 36.0
64 6.022 0.3119 36.1 6.013 36.2
128 6.013 0.3117 36.2 6.012 36.3
256 6.012 0.3116 36.3 6.011 36.3

∞ 6.011 0.3116 36.3 6.011 36.3

beads. In each case, the starting point for new instanton
searches was given by a spline interpolation55 of the trajec-
tories from previous optimizations with fewer beads. The
results are given in Table I.

As expected, the rates obtained by both numerical
methods tend to the semiclassical results in the large N limit.
The Hamilton-Jacobi formulation is found to give better esti-
mates of S̃ than the Lagrangian formulation for the same
number of beads. Using the combined approach in which
this action is used alongside the derivatives found from an
optimized instanton with equal time steps requires in each
case about half as many beads for the same error in the rate.
This would lead to a significant advantage when treating more
complex systems.

VII. CONCLUSIONS

In this paper, we have described a ring-polymer instanton
formulation of the semiclassical golden-rule approach derived
in Paper I.1 This formulation is amenable to efficient numer-
ical evaluation and we have suggested two methods for its
computation.

The method based on the Hamilton-Jacobi formalism ap-
pears to be more efficient at obtaining the instanton trajectory
and its action. This approach forces the energy along both in-
stanton trajectories to be equal, which is a fundamental aspect
of our time-independent derivation. Similar approaches may
also prove efficient for locating instantons used in other calcu-
lations, such as adiabatic rate theory and tunnelling splitting
calculations.

The ring-polymer instanton was shown to be equivalent to
a steepest-descent evaluation of Wolynes’ quantum instanton
approach,34 thus providing a strong link between the two
methods. Quantum instanton approaches47 employ a Gaussian
approximation to the flux-flux correlation function whose
short-time behaviour is computed using exact path-integral
methods. Notable deviations from Gaussian behaviour occur
even for the simplest problem of free-particle propagation48

and it seems that the flux-flux correlation function cannot be
assumed to be Gaussian if a rate theory is required which
gives a good approximation to the high-temperature limit. The
golden-rule instanton method does not however suffer from
these problems.

All instanton methods will fail when the potential-energy
surfaces exhibit oscillations, as occurs with liquids, such that
many minima appear on the ring-polymer surface. In this case,
the steepest-descent integrals employed in the instanton deri-
vation are not valid and path-integral sampling methods such
as Wolynes’ approach, Eq. (14), are necessary. However, for
systems where the environment is not fluxional, such as in
solids59 or certain gas-phase molecules, the instanton approach
may be more accurate as well as much more efficient.
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APPENDIX: DERIVATIVES OF THE ACTION

Differentiating Eq. (9) by the end points, x′ or x′′, gives
equations which can be written in the following form:

Nn−1
i′=1

f
j′=1

Ji j, i′j′
∂ x̃i′j′

∂x ′
k

=
δi1δ jk

Nnϵ1
, (A1a)

Nn−1
i′=1

f
j′=1

Ji j, i′j′
∂ x̃i′j′

∂x ′′
k

=
δi Nn−1δ jk

NnϵNn

, (A1b)

where the elements of the doubly indexed matrix J are defined
by

Ji j, i′j′ =
δii′ − δi+1 i′

Nnϵ i
δ j j′ +

δii′ − δi−1 i′

Nnϵ i+1
δ j j′

+ δii′
(ϵ i + ϵ i+1)τ2

n

2Nnm
∇2

j j′Vn(x̃i). (A2)

Again the indices are not cyclic, i.e., the matrix is banded with
bandwidth f . This definition is equivalent to that given in Ref. 8
when the time steps are equal. Equation (A1) can be solved
numerically for the derivatives of x̃ using standard linear-
algebra routines. Note that these partial derivatives imply that
τn and one end point are kept fixed, while the rest of the
pathway is allowed to re-optimize itself as the other end point
varies.

Other terms are found by differentiating Eq. (9) by τn to
give

Nn−1
i′=1

f
j′=1

Ji j, i′j′
∂ x̃i′j′

∂τn
= − (ϵ i + ϵ i+1)τn

Nnm
∂Vn

∂ x̃i j

, (A3)

which is solved for ∂x̃i
∂τn

.
Using the fact that S̃n is stationary with respect to differ-

entiation by x̃i gives

∂ S̃n
∂x′ =

m(x′ − x̃1)
ϵ1τn

+
ϵ1τn

2
∇Vn(x′), (A4a)

∂ S̃n
∂x′′ =

m(x′′ − x̃Nn−1)
ϵNnτn

+
ϵNnτn

2
∇Vn(x′′), (A4b)
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∂ S̃n
∂τn
= −

Nn
i=1

m|x̃i − x̃i−1|2
2ϵ iτ2

n

+

Nn
i=1

ϵ i
Vn(x̃i−1) + Vn(x̃i)

2
. (A4c)

Differentiating again, we obtain the second derivatives,

∂2S̃n
∂x ′j∂x ′

k

=
m
ϵ1τn

(
δ jk −

∂ x̃1 j

∂x ′
k

)
+
ϵ1τn

2
∇2

jkVn(x′),
∂2S̃n

∂x ′j∂x ′′
k

=− m
ϵ1τn

∂ x̃1 j

∂x ′′
k

,

∂2S̃n
∂x ′′j ∂x ′′

k

=
m

ϵNnτn

(
δ jk −

∂ x̃Nn−1 j

∂x ′′
k

)
+
ϵNnτn

2
∇2

jkVn(x′′),
∂2S̃n
∂x′∂τn

=−m(x′ − x̃1)
ϵ1τ2

n

− m
ϵ1τn

∂x̃1

∂τn
+
ϵ1

2
∂Vn

∂x′ ,
∂2S̃n

∂x′′∂τn
=−

m(x′′ − x̃Nn−1)
ϵNnτ

2
n

− m
ϵNnτn

∂x̃Nn−1

∂τn
+
ϵNn

2
∂Vn

∂x′′ ,

∂2S̃n
∂τ2

n

=

Nn
i=1

m|x̃i − x̃i−1|2
ϵ iτ

3
n

+

Nn−1
i=1

ϵ i + ϵ i+1

2
∂Vn

∂x̃i

· ∂x̃i

∂τn

−
Nn−1
i=1

m
τ2
n

(
x̃i − x̃i−1

ϵ i
+

x̃i − x̃i+1

ϵ i+1

)
· ∂x̃i

∂τn
.

In contrast to standard approaches where the eigenvalues
of an N f × N f matrix are required to compute the instanton
rate, the most difficult task in this approach is the solution of the
linear equations, Eqs. (A1) and (A3). Because J is the Hessian
matrix about the minimum pathway, it is positive definite,
and the equations can be solved efficiently using a Cholesky
decomposition, taking advantage of the banded nature of the
matrix.55

This approach is not limited to the current application but
may also significantly improve the efficiency of other instanton
methods, for which the diagonalization can be a considerably
time-consuming task for high-dimensional systems. We shall
discuss the use of such an approach to improve the efficiency
of adiabatic rate calculations in a forthcoming paper.
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