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Abstract 

Hollow cylinders often exhibit backward-propagation modes whose group and phase velocities 

have opposite directions, and these exhibit a minimum possible frequency at which the group 

velocity vanishes at a nonzero wavenumber. These zero-group-velocity (ZGV) points are 

associated with resonant conditions in the medium. Based on ZGV resonances, a non-contact and 

laser ultrasound technique has been developed to measure elastic constants of hollow pipes. This 

paper provides a theoretical and numerical investigation of the influence of the contained liquid 

on backward waves and associated ZGV modes, in order to explore whether this ZGV technique 

is suitable for in-service non-destructive evaluations of liquid-filled pipes. Dispersion spectra and 

excitation properties have been analyzed. It is found that the presence of the liquid causes an 

increased number of backward modes and ZGVs which are highly excitable by a point source. In 

addition, several guided modes twice undergo a change of sign in the slopes of their dispersion 

curves, leading to two ZGV points. This phenomenon of double ZGVs in one backward wave, 

which is caused by strong mode repulsions, has not been found in isotropic hollow cylinders, but 

it can be observed in a fluid-filled thin-walled pipe. 

 

PACS number(s): 43.35.Cg, 43.20.Mv, 43.40.Ey    

 

 

 



3 
 

I. INTRODUCTION 

In the frequency-wavenumber ( k  ) spectra, a dispersion curve of a guided wave may 

exhibit a portion of negative slope, where the group and phase velocities are directed in the 

opposite directions. This phenomenon is termed “backward wave propagation”
1-3

 or “negative 

group velocity.”
4-7

A related phenomenon is the zero-group-velocity (ZGV) point where the slope 

changes sign, that is, the group velocity vanishes at a nonzero wavenumber.
8-9

At these ZGV 

points, the acoustic energy of the corresponding ZGV modes is trapped in the source area 

without any transfer to the adjacent medium. The resulting resonance is sensitive to local 

mechanical properties and dimensional changes of isotropic and anisotropic materials.
10-12

 

Recently, laser excitation and detection of such ZGV modes has attracted considerable attention 

with the prospect of the application of this phenomenon to measure elastic constants and 

structural defects of thin plates,
9,12,13-16 

hollow cylinders,
13,17

 solid transversely isotropic (TI) 

cylinder,
18

 and supported thin film structures (i.e. multilayered plane structures).
19-21

  

Liquid-filled pipes used in the civil and energy industries need to be inspected regularly to 

certify their safety and reliability.
22

 For hollow cylinders, a non-contact, laser ultrasonic 

technique based on ZGV Lamb modes has been developed for non-destructive evaluation 

application.
13,17 

The objective of this work is to study the effect of a contained liquid on 

backward waves and the associated ZGV modes, and thereby to investigate whether this ZGV 

technique can be used for in-service inspection of liquid transportation pipelines.  

The existence of backward wave and ZGV points in elastic plates and cylinders has been 

recognized for more than one century. As early as 1904, Lamb
23

 first discussed the possibility of 
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backward-wave propagation. In 1957, Tolstoy and Usdin
24

 predicted the existence of the 

backward mode S2b in a free isotropic plate with Poisson’s ratio of 0.25. The subscript b denotes 

backward wave. Mindlin
8
 and Medick

25
 numerically plotted the complex frequency-wavenumber 

spectra of Lamb waves in plates having Poisson’s ratios less than, equal to, and greater than the 

special case of 1 3  . In these k  spectra, backward-propagation branches with negative 

slopes are clearly identified in the vicinity of wavenumber 0k  . Furthermore, each backward 

branch possesses only one ZGV point that has been observed at the saddle point with a 

horizontal slope.  

In addition, considerable experimental evidence of backward waves and ZGV modes has been 

reported.
 1-5,9-19,21,26,27

 For instance, Zemanek
28

 has made the observation of a ZGV resonance of 

the low-order, longitudinal guided mode in a free rod. Meitzler
1
 reported experimental 

observations of stress pulses travelling in backward elastic-wave motions in cylinders and plates. 

Negishi
4, 29

 reported the “negative group velocity” phenomenon of Lamb waves in S1 and A2 

modes.
 

More recently, it has become possible to use computationally intensive numerical procedures 

to gain an improved understanding of backward waves and ZGVs in various waveguides. Most 

researchers have focused on the discussions of isotropic plates, anisotropic plates, and 

multilayered structures. For the case of an isotropic plate, in 1987 Negishi
30

 revealed that the 

existence of backward wave depends on Poisson’s ratio. In addition, in 2008 Prada et al.
14

 

numerically analyzed the existence conditions of ZGV-Lamb modes as determined by the value 

of Poisson’s ratio, and concluded that all Lamb modes, with the exception of the three lowest 
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ones, can exhibit ZGV modes. Moreover, they found that, a strong repulsion between a pair of 

symmetric (or antisymmetric) Lamb modes having a different parity in the vicinity of their cutoff 

frequencies may cause the existence of a backward wave and the associated ZGV point. In 2009, 

Prada et al.
 12

 expanded their ZGV research to anisotropic material and observed the so called 

S1-ZGV and A2-ZGV modes of a silicon plate with cubic symmetry.
 
In 2012, Hussain and 

Ahmad
31

 reported the multiple ZGV points of Lamb modes in an orthotropic plate (iodic acid). 

For multilayered structures, Maznev and Every
19,20

 analyzed the existence of backward 

propagating acoustic waves in supported layers, and experimentally proved that the lowest mode 

of a supported thin film structure could exhibit the phenomenon of “negative group velocity” and 

double ZGV points. Furthermore, in 2012 Kausel
32

 theoretically analyzed the number and 

location of ZGV modes in horizontally layered media bounded by any arbitrary combination of 

external boundaries, and concluded that the effective number of ZGVs is small and decreases as 

Poisson’s ratio increases. 

Guided elastic waves in cylindrical structures also exhibit backward waves and ZGVs. 

Marston
33,34

 discussed the effect of backward wave propagation on the scattering of sound by 

shells. Ces et al.
 17

 investigated the ZGV resonances in a Zircaloy hollow cylinder by laser based 

ultrasonic techniques, in order to deduce the elastic constants. For elastic plates, backward Lamb 

waves depend only on Poisson’s ratio;
 14

 while, for hollow pipes, backward waves also depend 

on the ratio of the inner to the outer radius.
35

 Cui et al.
 35

 numerically studied the influence of the 

radius ratio on group velocities of backward waves in hollow cylinders.  

As reviewed in the above paragraphs, the existence conditions and dispersion properties of 
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backward waves and the associated ZGVs in plates, hollow cylinders, and multilayered 

structures have been extensively investigated. There are also a lot of works about the propagation 

of guided waves in liquid-filled pipes.
22,36,37

 However, it seems that the dispersion and excitation 

properties of backward waves and ZGVs in liquid-filled pipes have not been reported.  

In this paper, theoretical and numerical results for liquid-filled pipes are presented with 

specific attention paid to the excitation characteristics of ZGV modes. Dispersion curves and 

amplitude spectra have been analyzed in order to study the influence of the contained liquid on 

backward waves and ZGVs in pipes with different ratios of the inner to the outer radius. 

Moreover, it is shown that, in addition to the backward modes with a single ZGV point, there are 

several modes which possess two ZGV points. This phenomenon of multiple ZGVs has been 

reported only in three kinds of waveguides, i.e. supported thin film structures,
19

 orthotropic 

plates,
31

 and multilayered pipes.
38

 We introduce a mode coupling effect to interpret the existence 

of the double-ZGVs.  

II. THEORY 

A. Dispersion equation for axisymmetric modes 

In this section, a brief review of the development of the dispersion equation for axisymmetric 

modes with the circumferential number n = 0 in a liquid-filled pipe is summarized.
39-42

 The 

considered model of interest is a circular pipe filled with an inviscid liquid in the cylindrical 

coordinates ( , , )r z  , where the z-axis is along the symmetric axis of the pipe. The length of the 

pipe is assumed to be infinite, and the internal and external radii of the pipe are denoted a and b, 

respectively. The wall-thickness of the pipe is d b a  . The longitudinal bulk velocity and 
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density of the liquid are denoted fV  and 1 , while the longitudinal and shear bulk velocities 

and density of the solid pipe are denoted , ,L TV V  and 2 , respectively.  

In the frequency-wavenumber ( )k  domain, in the absence of body forces, the 

displacement potential function of the compressional wave in the liquid contained in the cylinder 

can be expressed as
43

 

1 1 0 1= ( ),A I r                               (1) 

where the (exponential) propagative term, exp( )ikz i t , is omitted for convenience in the scalar 

and the vector potentials (fluid and solid). Displacement potential functions of the compressional 

(P), shear vertical (SV), and shear horizontal (SH) waves in the pipe are
43

 

2 2 0 2 2 0 2

2 2 0 2 2 0 2

2

( ) ( ),

( ) ( ),

=0,

A I r B K r

C I r D K r

  

  



 

                      (2) 

where 0( )I x and 0( )K x are modified Bessel functions of the first and second kind, and 

1 2 2 2 2, , , ,A A B C D are the unknown coefficients to be determined by consideration of the 

boundary conditions. The other parameters in equations (1) and (2) are 

2 2 2 2 2 2

1 2 2, , ,f L Tk k k k k k                          (3) 

where wavenumbers of longitudinal and shear bulk waves in the liquid and pipe are 

, , ,f f L L T Tk V k V k V                          (4) 

and the wavenumber of the guided wave propagating along the z-axis is 

,k V                                 (5) 

where is the angular frequency, and V is the phase velocity of the guided wave.  
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The modified Bessel functions 0( )I x and 0( )K x in the displacement potentials (1) and (2) are 

replaced by the unmodified Bessel functions 0 ( )J ix and 0 ( )Y ix when the argument x is purely 

imaginary. This choice of Bessel functions leads to a more stable solution of the dispersion 

equation.
44,45

 Two functions 0 ( )P x and 0 ( )Q x are employed in the rest of the derivation to represent 

Bessel functions, which are
 

0

0

0

( ),         for real 
( )

( ),      for imaginary 

I x x
P x

J ix x


 


 

0

0

0

( ),         for real 
( )

( ),      for imaginary 

K x x
Q x

Y ix x


 
                        

(6) 

The liquid-solid interface conditions are that the radial displacement and normal stress 

components at the boundary are continuous, and the shear stress components are zero at the 

interface. That is, the boundary conditions at r = a are  

,1 ,2

,1 ,2

,2

,

,

0.

r rr a r a

rr rrr a r a

rz r a

u u

 



 

 









                          (7) 

It is further assumed that the pipe is surrounded by a vacuum. Thus, on the outer surface of the 

pipe is traction free, i.e. the boundary conditions at r = b can be written as 

,2 ,2 0,rr rzr b r b
 

 
                            (8) 

  The Helmholtz decomposition is applied. The displacement and stress components in the 

liquid and the pipe can be obtained by substituting the displacement potentials (1) and (2) into 

the constitutive equations, respectively. Then, application of the boundary conditions (7) and (8) 

yields five homogeneous equations with five unknown coefficients. The determinant of the 
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matrix expressing these equations must vanish for a nontrivial solution to exist. This produces 

the dispersion equation in the form of 

11 12 13 14 15

21 22 23 24 25

32 33 34 35

42 43 44 45

52 53 54 55

1 2(

0

, , , , , , ) 0, ( , 1,2,...,

0

,

0

5)ij f L TM V V

M M M M M

M M M M M

M M M M

M M M M

M M M M

V k i j  

 

  

           (9) 

where the matrix elements are given in Appendix A. The bisection technique
45 

has been used to 

numerically solve the transcendental equation (9) to yield the real roots of the dispersion 

equation (i.e. phase velocities of non-leaky guided modes). The bisection technique is good at 

robustly finding the real branches of the dispersion equation without initial-guess of the root. 

And it is stable when two roots are in close proximity.
45

 However, it converges slower compared 

to Newton-Raphson or Muller zero-finding algorithm.
46

 For large radius pipes (i.e. the large fd 

problem), it is recommended using Newton-Raphson method or Muller zero-finding algorithm. 

B. Mode coupling 

The dispersion equation (9) of axisymmetric guided modes in the liquid-filled pipe can be 

expressed as the superposition of two terms, 

22 32 42 52 12 32 42 52

23 33 43 53 13 33 43 53

11 21

24 34 44 54 14 34 44 54

25 35 45 55 15 35 45 55

,

M M M M M M M M

M M M M M M M M
M M

M M M M M M M M

M M M M M M M M

            (10) 

where the matrix element
2 2 2

1 0 11 22 ( ) .TM a P a V     If the value of the second term of 

equation (10) is much smaller than that of the first term, the dispersion equation can be 
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simplified. For instance, when the ratio of the density of the liquid to that of the pipe is small 

enough (i.e. 1 2 0   ), the element 21M and the second term both tend to zero. In this case, the 

dispersion equation (10) can be simplified as 

22 32 42 52

23 33 43 53

11

24 34 44 54

25 35 45 55

.

M M M M

M M M M
M

M M M M

M M M M

                      (11) 

This simplification shows that guided modes in the liquid-filled pipe can be viewed as the 

outcome of mode coupling between two groups of guided modes propagating in two models, 

respectively. These two models are two parts of the liquid-filled pipe, i.e. one model is the 

hypothetical liquid-cylinder with a rigid wall at r = a, and the other is the hollow pipe in vacuum. 

The reason for this conclusion is explained below. 

  For the hypothetical liquid-cylinder of radius a with a rigid wall at r =a, the boundary 

condition is that the radial component of velocity must vanish at the wall.
47

 The dispersion 

equation of axisymmetric guided modes in this model is
47

 

11( , , ) 0.l fV k M                            (12) 

For a hollow pipe of inner and external radii a and b respectively in vacuum, the boundary 

conditions are that all the stress components are equal to zero on the inner and outer surfaces of 

the pipe. The dispersion equation of axisymmetric guided modes can be written as
48

 

22 32 42 52

23 33 43 53

24 34 44 54

25 35 45 55

( , , , ) 0.p L T

M M M M

M M M M
V V k

M M M M

M M M M

                   (13) 

Hence, the simplified dispersion equation (11) of guided modes in a liquid-filled pipe can be 
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expressed as the product of two dispersion equations (12) and (13) governing guided modes in 

the liquid cylinder and in the hollow pipe, respectively. That is, 

( , , ) ( , , , ).l f p L TV k V V k                         (14) 

This decoupling means that guided modes in the liquid-filled pipe can be decoupled into guided 

modes propagating in the liquid and in the pipe, respectively. 

This mode-coupling concept is helpful for understanding the existence and dispersion 

properties of backward waves and ZGV modes in a liquid-filled pipe. Firstly, in a hypothetical 

liquid cylinder, only compressional waves exist. Since there is no repulsion between two 

compressional waves, neither a backward wave nor a ZGV mode exists in a liquid cylinder. 

Hence, all the guided modes are forward-propagating modes in a liquid cylinder. Secondly, in a 

hollow pipe, it has been known that the strong repulsion between two neighboring compressional 

and shear waves may generate a backward wave which possesses only one ZGV point at the 

lowest frequency of the backward wave.
35

 The existence condition and dispersion properties of 

backward waves and ZGVs are determined by the value of Poisson’s ratio and the ratio of the 

inner to the outer radius of the hollow pipe.
 13,17,35

 Moreover, all the longitudinal modes, with the 

exception of the lowest one, can exhibit backward waves and ZGVs.
35

 For further information on 

the properties of backward waves and ZGVs in a hollow pipe, the reader is referred to existing 

literature.
13,17,33-35

 In section III A, the coupling effect between the forward-propagating waves in 

a liquid cylinder and the backward-propagating waves in a hollow pipe is analyzed to study the 

generation of backward waves and ZGVs in a liquid-filled pipe.  

C. Point source excitation 
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A point source is introduced in order to simulate the excitation of guided modes in the 

liquid-filled pipe system. We apply a spherically symmetric excitation source acting at the origin 

of the cylindrical coordinates, so that only longitudinal modes are excited. In the 

frequency-wavenumber domain, the displacement potential of the compressional wave excited 

by the point source is
49

 

0 1 0 12 2

1

( )
( , , ) ( ) ( ) ( ),

4

X
r k K r S K r


    

 
                   (15) 

where X(ω) is the point source function. ( )S  is introduced to simplify the expressions,   

2 2

1

( )
( ) .

4

X
S




  
                             (16) 

D. Displacement component expressions 

As is shown in the above section, suppose the acoustic point-source at the origin of the 

coordinates, the compressional displacement potential function in the liquid is
49

 

1 1 0 1 0 1( ) ( ) ( ).A P r S K r                           (17) 

Substituting equations (2) and (17) into equations (7) and (8), yields a system of linear 

non-homogeneous equations, i.e. 

11 12 13 14 15 1 1

21 22 23 24 25 2 2

32 33 34 35 2 2

42 43 44 45 2

52 53 54 55 2 2

0 ,0

0 0

0 0

M M M M M A a H

M M M M M A a H

M M M M i C a

M M M M B a

M M M M i D a





     
     
     
      
     
     
         

             (18) 

where elements 

2 2

0 1 1 0 1
1 2

2

( ) ( ) ( )
( ) , ,

dK r S a K r
H S H

dr

    



    and the other matrix 

elements 11 55,...,M M are listed in Appendix A. 
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The linear system (18) has a unique solution if and only if the determinant of the coefficient 

matrix of the left hand side of equation (18) is nontrivial, i.e. 0  . In this case, by applying 

Cramer’s rule, the coefficients used in the expressions for displacement potentials are found to be 

3 51 2 4
1 2 2 2 2

2 2

, , , , ,
a aa a a

A A C B D
i i 

   
    

    
             (19) 

where is the secular equation, and l (l = 1,2,3,4,5) denote the determinants of the matrices 

obtained by replacing the l
th

 column with the column 1 2( , ,0,0,0)TH H on the right hand side of 

equation (18).  

Since the displacement potentials and their coefficient equation (19) are determined, by using 

the displacement potential equation
50

 

( ),  
z

U e                       (20) 

the solutions of the displacement components in the frequency domain is obtained. For instance, 

it can be shown that radial and axial displacement components ,1 ,1,r zu u  in the inner liquid are 

0 1 1 0 1
,1 1

( ) ( ) ( )
( , , ) [ ]exp( ) ,r

P r S K r
u r z a ikz dk

  
 





   


           (21) 

0 1 1 0 1
,1

( ) ( ) ( )
( , , ) [ ]exp( ) ,z

P r S K r
u r z ika ikz dk

  






  
 

          (22) 

and the radial and axial displacement components, ,2 ,2,r zu u , in the pipe are 

,2 , ,

32
, 2 0 2 0 2

54
, 2 0 2 0 2

( , , ) [ ]exp( ) ,

( ) ( ) ,

( ) ( ) ,

r I r K r

I r

K r

u r z T T ikz dk

T aP r kaP r

T aQ r kaQ r



  

  




 


  

 


  

 



                (23) 
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,2 , ,

32
, 0 2 2 0 2

54
, 0 2 2 0 2

( , , ) [ ]exp( ) ,

( ) ( ) ,

( ) ( ) ,

z I z K z

I z

K z

u r z i T T ikz dk

T kaP r aP r

T kaQ r aQ r



  

  




  


 

 


 

 



              (24) 

where
0 ( )P x and

0 ( )Q x are the first derivative of the modified (or unmodified) Bessel functions of 

the first and second kind of order n = 0, respectively, which can be determined by using the 

recurrence relations. For longitudinal modes with n = 0, the circumferential displacement 

component sinu u n  is equal to zero. 

Taking the radial displacement component ,1ru  for example, the complex variable Cauchy’s 

integral formula can be applied to evaluate the integral over the wavenumber k in equation 

(21).
49

 As shown in Fig. 1, in the complex plane, a closed contour of integration is constructed. It 

consists of the   to   integration path on the real axis, the vertical branch cuts from 

infinite to each of the branch points , ,L T fk k k , and the semicircular arc of infinite radius in the 

upper half of the complex k plane. The branch points correspond to wavenumbers of longitudinal 

and shear bulk waves in the liquid and the pipe. Since an acoustic source distributes only in a 

finite range, the semicircular arc of infinite radius is trivial to the integral.
49

 Hence, the integral 

in equation (21) can be evaluated as the sum of the contributions due to the branch cuts and the 

poles. Note that the complex poles in the contour, if there exist, are ignored as only the 

propagating modes are taken into account in this case. 

The displacement components of the guided modes can then be evaluated as 2πi times the sum 

of the residues of the enclosed poles.
51

 The integrand of equation (21) can be written as  
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( , )
( , ) .

( , )
p

N k
A k

k








                           (25) 

In equation (25), 
0 1 1 0 1 1( , ) [ ( ) ( ) ( ) ] .N k P r S K r a         The poles of the integrand of 

equation (21) correspond to the roots of the dispersion equation (9). The denominator and 

numerator of equation (25) are both analytic functions, so the residues of the poles could be 

computed using the alternative residue formula
49

 

  
( , )

Residues ,
( , )

pk k

N k

k k







 

                     (26) 

where kp is the p
th

 (p = 1,2,3,…) order root of the dispersion equation (9). 

   Finally, the displacement field in the inner liquid and the pipe due to the contribution of 

axisymmetric guided modes is 

1 0 1 1
,1

( )
2 ,

p

r

p k k

aP r
u i

k

 




 


 
                      (27) 

0 1 1
,1

( )
2 ,

p

z

p k k

kaP r
u

k









 
                       (28) 

2 0 2 2 0 2 3 2 0 2 4 0 2 5
,2

[ ( ) ( ) ( ) ( ) ]
2 ,

p

r

p k k

a P r kP r Q r kQ r
u i

k

     




         


 
     (29) 

0 2 2 2 0 2 3 0 2 4 2 0 2 5
,2

[ ( ) ( ) ( ) ( ) ]
2 ,

p

z

p k k

a kP r P r kQ r Q r
u

k

     




      


 
     (30) 

 

III. NUMERICAL RESULTS AND ANALYSES 

A. Dispersion spectra and mode coupling 

As discussed in section II.B, the coupling between two groups of axisymmetric guided modes 

propagating in the liquid cylinder and hollow pipe, respectively, yields longitudinal modes in the 
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liquid-filled pipe. The effect of mode coupling can be clearly observed from the dispersion 

spectra. Dispersion equations (9), (12), and (13) are numerically calculated, in order to obtain all 

the real roots which correspond to propagating modes. These roots are then traced as a set of 

dispersion curves, e.g. curves in Fig. 2(a). Our numerical results correlate well with the reference 

solutions found in Sinha et al.
37

 Moreover, using the Berliner’s model,
39

 which can be applied for 

isotropic and TI cylinders, to calculate the theoretical dispersion curves obtained in this paper, 

leads to similar results. Same observation can be obtained using the Disperse software.
52 

  

In order to provide an illustrative example, we consider a steel pipe filled with water. The 

longitudinal bulk velocity and density of water are taken to be 1500fV  m/s and 1 1000 

kg/m
3
; for the steel pipe, the longitudinal, shear bulk velocities, and density are 5900LV  m/s, 

3200TV  m/s, and 2 7900  kg/m
3
, and its internal and external radii are a = 8 mm and b = 10 

mm. The density ratio is
1 2 0.13   . Dispersion spectra of longitudinal modes in the liquid 

cylinder, in the hollow pipe, and in the liquid-filled pipe are presented in the three parts of Fig. 

2(a) respectively. 

This paper follows the mode classification by Meitzler
53

 and Marston.
33

 For instance, as 

labeled in Fig. 2, the longitudinal modes which are forward propagating in the liquid cylinder, 

pipe, and liquid-filled pipe are denoted as L(0,m)l, L(0,m)p, and L(0,m)lp, respectively; where L 

represents the axisymmetric longitudinal mode with circumferential order n = 0, the mode order 

m 1,2,3,... , and the subscripts l, p, and pl identify three models. The fundamental modes (i.e. 

those propagating at zero frequency) are given the value by m = 1, and the higher order modes 

are numbered consecutively.  
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As shown in Fig. 2(a), in the dimensionless frequency range 8Td V  , 27 longitudinal modes 

L(0,m)pl (m=1,2,…,27) in the liquid-filled pipe can be decoupled into 22 modes L(0,m)l 

(m=1,2,…,22) in the liquid cylinder and 5 modes L(0,m)p (m=1,2,…,5) in the hollow pipe. The 

dotted lines in Fig. 2 denote the portions of spectra representing backward waves. In the middle 

of Fig. 2(a), there is one backward wave in the hollow pipe, while in the right of Fig. 2(a), there 

are three backward waves in the liquid-filled pipe. Each exists in a narrow frequency range.  

For clarity, in Figures 2(b) and 2(c), we present a zoomed view of the relevant portion of the 

spectra, showing dispersion curves in the dimensionless frequency range 5.25 6.5Td V   

and in the Gazis normalized wavenumber range 2 0.4kd   , where d b a   is the wall 

thickness of the pipe. These graphs illustrate the effects of coupling between backward and 

forward modes. Two sets of dispersion curves of guided modes propagating in the liquid cylinder 

and hollow pipe, respectively, are plotted together in Fig. 2(c), and dispersion curves in the 

liquid-filled pipe are drawn in Fig. 2(b) for comparisons. The dotted lines represent backward 

modes, and the green dots denote ZGV points. The ZGV frequencies correspond to the points 

where the slopes of dispersion curves are zero (i.e. zero group-velocity) and the wavenumbers k 

are non-zero. They often appear in the vicinity of k = 0. And they can be estimated from 

dispersion spectra or group velocity dispersion curves.  

The backward mode propagating in the hollow pipe, L(0,5)b,p, is classified as part of the 

L(0,5)p mode, and is indeed connected to the L(0,5)p mode through a small imaginary loop in the 

complex wavenumber space.
1,33

 The subscript b denotes backward wave. Backward modes 

propagating in the liquid-filled pipe are denoted as L(0,19)b,pl, L(0,20)b,pl, and L(0,21)b,pl, 
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respectively. In the real wavenumber plane, the backward L(0,19)b,pl mode is connected with the 

forward L(0,19)pl mode by the ZGV1 point. In this paper, only the propagating modes with real 

wavenumbers are considered. It will be interesting to study the purely imaginary loops of 

dispersion spectra, e.g. by applying the Newton-Raphson method to find imaginary roots of the 

dispersion equation (9). The aim is to clearly understand how the modes are coupled and how to 

classify a backward mode with a proper mode order m. Furthermore, the evanescent branches of 

dispersion spectra could be studied, e.g. by using the Muller method to calculate complex roots 

of the equation (9), to mark the ZGV points.  

For a hollow cylinder, at cutoff frequencies (i.e. the wavenumbe k = 0), guided modes 

decoupled into pure compressional P modes and pure transverse S modes. For the wavenumber

0k  , the coupling between compressional P and transverse S type vibrations, which is caused 

by the boundary conditions, causes repulsions between neighboring dispersion curves of a given 

symmetry (i.e. the same circumferential number n).
35, 54 

The repulsion prevents the neighboring 

dispersion curves from intersecting at 0k  . The strength of repulsion is related to the 

frequency separation at k = 0 between two neighboring modes.
 
The rule is that the smaller the 

frequency separation at k = 0, the stronger the repulsion becomes.
14, 35

 In the vicinity of k = 0, the 

strong repulsion between a pair of adjacent P and S waves may yield a backward wave which 

possesses only one ZGV point.
 14, 35 

For instance, as shown in Fig. 2(c), in the steel pipe, L(0,5)b,p 

is a backward-propagating branch which is caused by the strong coupling between the P and S 

waves, i.e. L(0,4)p and L(0,5)p modes. In the complex wavenumber spectra, the upper threshold 

of the backward L(0,5)b,p mode and the lower threshold of the forward L(0,5)p mode are 
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connected by a loop for which the wavenumber k is purely imaginary.
1 
The dispersion curve of 

L(0,5)b,p starts from its dimensionless cutoff frequency
 
5.806 at which the wavenumber k = 0 and 

the group velocity 0gV  . The dispersion curve proceeds with a negative slope as k increases; 

and it ends at the ZGV point at 5.411 at which the Gazis normalized wavenumber 2 0.27kd  
 

and 0gV  .  

In a liquid cylinder, there will be neither a backward wave nor a ZGV point since only P 

waves exist. For example, as shown in Fig. 2(c), slopes of the three dispersion curves are always 

positive, i.e. L(0,16)l, L(0,17)l, and L(0,18)l modes in the water cylinder are forward modes.  

The coupling effect can be observed. Dispersion spectra in Figures 2(b) and 2(c) are similar. 

The visible difference is that there are two intersections between the two sets of curves at points 

C1 and C2 in Fig. 2(c), while there is no intersection but small gaps next to the near cross-over 

points in Fig. 2(b). Far from the intersection points, the contribution of the second term of the 

dispersion equation (10) is relatively small compared to that of the first term. That is, the 

decoupled dispersion equation (14) is available, which means that the effects of coupling are 

weak. However, in the vicinity of an intersection point, the contribution of the second term could 

not be ignored; in this case, the strong coupling applies.  

The strong coupling between two sets of modes in the liquid cylinder and in the hollow pipe 

respectively causes repulsions between neighboring dispersion curves of modes that prevent 

them from intersecting. There are two types of intersections in Fig. 2(c). One type is that two 

forward modes intersect at the point C1; and the other type is that the intersection between the 

forward and backward modes at point C2. For the first type, considering the intersection between 
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L(0,18)l and L(0,5)p at point C1 in Fig. 2(c), the strong coupling causes a gap between L(0,22)pl 

and L(0,23)pl in Fig. 2(b). These modes are still two forward modes which dispersion curves 

have positive slopes.  

We are interested in the second type that is the intersection between backward and forward 

modes. Next to the intersection point C2 in Fig. 2(c), the strong coupling between the forward 

L(0,16)l and backward L(0,5)b,p modes causes a strong repulsion, which yields a gap between the 

L(0,19)b,pl and L(0,20)b,pl modes. These modes are two backward modes with negative slopes. 

Besides, though there is no intersection between the backward L(0,5)b,p and forward L(0,17)l 

modes, the effect of repulsion on the forward L(0,17)l mode is still strong enough to produce the 

origination of another new backward mode L(0,21)b,pl in the liquid-filled pipe.  

As shown in Fig. 2(b), dispersion spectra of the three backward modes L(0,19)b,pl, L(0,20)b,pl, 

and L(0,21)b,pl all start from the vertical axis (k = 0), and end at zero-group-velocity points ZGV1, 

ZGV2, and ZGV3 at dimensionless frequencies
 
5.427, 5.663, and 6.002, respectively. In the 

hollow pipe, the ZGV point of the L(0,5)b,p mode appear at 5.411. Clearly, the repulsions among 

L(0,5)b,p, L(0,16)l, and L(0,17)l modes also cause shifts of frequencies at which ZGV points 

appear.   

 In general, the major influences of the water contained in this thin-walled pipe with its radius 

ratio a/b = 0.8 are (i) the increased number of backward modes and ZGV points, and (ii) shifts of 

frequencies corresponding to ZGV points. Furthermore, the water also changes the group 

velocity dispersion spectrum and the frequency range of existence of a backward mode in the 

pipe.  
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B. Influence of the pipe’s radius ratio   

According to Cui et al.,
35

 in a hollow pipe, the existence and dispersion property of a 

backward mode depends not only on Poisson’s ratio, but also on the ratio of the inner to the outer 

radius. In a liquid-filled pipe, this radius ratio also affects the number and distributions of 

backward waves and ZGV points.  

In this section, the dispersion properties of backward waves and ZGVs in pipes of different 

radius ratios a/b are considered. The material properties of water and steel pipes are the same as 

those of the example in the above section III.A. The external radius is fixed as b = 10 mm, and 

a/b varies from 0.1 to 0.98. Dispersion spectra of longitudinal modes propagating in the water 

cylinders, hollow steel pipes, and water-filled pipes with a/b = 0.4, 0.5, and 0.9, respectively, are 

displayed in Fig. 3. Only modes in the dimensionless frequency range 5.25 6.5Td V  are 

given in Fig. 3, in order to focus on the illustration of the influence of a/b. 

As shown in Fig. 3, the influence of contained water on the backward modes and ZGVs in a 

thin-walled pipe with a large a/b is demonstrably greater than that in a thick-walled pipe with a 

small a/b. As illustrated in Fig. 3(a), for the thick-walled pipe with a/b = 0.4, there is one 

backward mode L(0,5)b,p and one associated ZGV point at 
Td V  5.565. As shown in Fig. 

3(b), in the water-filled pipe, there is also only one backward mode L(0,7)b,pl which possesses 

one ZGV point at 5.594. Though the L(0,7)b,pl mode in the liquid-filled pipe has a different mode 

order (i.e. m = 7) from that of the L(0,5)b,p mode in the hollow pipe (i.e. m = 5), these two modes 

have similar dispersion properties (e.g. similar cutoff frequencies and similar frequency ranges in 

which the two modes exist). In this thick-walled pipe, the contained water does not change the 
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number of the backward mode and ZGV point exhibiting in the fixed frequency range chosen; 

while it does cause a shift of the frequency corresponding to the ZGV point, which is 
Td V 

0.029. In the case of a/b = 0.5 as in Fig. 3(d), the inclusion of the water generates two backward 

modes L(0,8)b,pl and L(0,9)b,pl and two associated ZGVs. For a/b = 0.9, as shown in Fig. 3(f), the 

inclusion of the water causes the generation of seven backward modes L(0,m)b,pl (m = 37, 

40,…,43) and eight ZGVs. Here, the backward mode L(0,37)b,pl has two ZGV points, ZGV1 and 

ZGV2. At these two ZGV points, the L(0,37)b,pl mode has zero group velocity but non-trivial 

wave-numbers. This interesting phenomenon of double-ZGVs in a single mode is discussed 

further below. 

 Mode coupling can be used to explain why the contained liquid has a major impact on ZGVs 

in a thin-walled pipe. The coupling strength (i.e. repulsion force) is proportional to the frequency 

gap between the cutoff and ZGV frequencies of dispersion curves for the liquid column and the 

hollow cylinder, respectively. In the dimensionless frequency range 8Td V  , cutoff 

frequencies of longitudinal modes in water columns with radii a = 1, 2,..., 9, and 9.5 mm 

respectively, and ZGV frequencies of backward modes L(0,5)b,p in hollow steel cylinders with 

the same external radius b = 10 mm and varied inner radii a = 1, 2,..., 9, and 9.5 mm respectively, 

are plotted in Fig. 4. As shown in Figures 3(a), 3(c), 3(e), and 4, in the fixed frequency range 

chosen, the number of longitudinal modes L(0,m)l in the water cylinder sharply rises with 

increasing a/b. More intersection points arise and the spacing between the dispersion curves of 

backward L(0,5)b,p and forward L(0,m)l modes is reduced. The coupling is strong when a 

backward mode in the hollow pipe and a forward mode in the liquid cylinder have a narrow 
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frequency-separation, and the strongest coupling corresponds to the case of intersection. The 

effect of strong coupling is the repulsion, which may generate backward modes and ZGVs. With 

increasing a/b, the repulsion becomes stronger, so that more backward modes and even more 

ZGV points appear in the liquid-filled pipe.  

Generally, for a thick-walled pipe, the contained water has only a mild effect on the number of 

backward modes and ZGVs. While in the case of a thin-walled pipe, the presence of water can 

significantly increase the number of backward modes and ZGVs, and notably it may cause the 

phenomenon of double-ZGVs in a single backward mode. 

C. Backward wave with double ZGVs 

In a hollow pipe, one backward mode possesses only one ZGV at the lowest frequency of the 

mode. However, in a pipe filled with liquid, under certain conditions, e.g., if the radius ratio a/b 

of the pipe approaches unity, some backward modes possess double ZGVs. For example, in the 

water-filled pipe with 0.9a b  in Fig. 3(f), the slope of the dispersion curve of the backward 

mode L(0,37)b,pl changes its sign twice at points ZGV1 and ZGV2. 

In fact, it is found that the phenomenon of double ZGVs is not rare. For example, in the 

water-filled pipe with 0.95a b  , the strong repulsion between the backward mode L(0,5)b,p 

in the hollow pipe and the 12 forward modes L(0,66)l,…, L(0,77)l in the water cylinder generates 

12 backward modes and 15 ZGVs. The first three backward modes L(0,72)b,pl, L(0,73)b,pl, and 

L(0,74)b,pl are the double-ZGVs type, as illustrated in Fig. 5. All the other 9 higher order 

backward modes L(0,75)b,pl, …, L(0,83)b,pl belong to the single-ZGV type. Figures 5(a) and 5(b) 

respectively show dispersion spectra and group velocity dispersion curves of the three 
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double-ZGVs backward modes, and the six ZGV points, ZGV1… ZGV6. Dotted lines in Fig. 5 

represent backward waves. The group velocity is calculated using the relation with phase 

velocity, as 1[1 ( )( )] .gV V V dV d   

 

As illustrated in Fig. 5(b), each backward mode exists 

in a narrow frequency range which is bordered by two ZGV points, and it has negative group 

velocities.  

In practice, most pipelines that are transmitting liquid are designed to have large inner radii 

and relatively thin thicknesses for reasons of cost. The existence of backward modes with 

double-ZGVs is common. In order to provide an illustration, we consider a typical oil pipeline of 

internal and external radii 482 and 508 mm respectively. The longitudinal bulk velocity and 

density of the oil are 1290 m/s and 800 kg/m
3
; and the longitudinal and shear bulk velocities, and 

density of the stainless steel pipe are 5980 m/s, 3300 m/s, and 7800 kg/m
3
 respectively. From 

numerical results, it is found that the strong coupling between the backward mode L(0,5)b,p in the 

hollow steel pipe and the 13 forward-propagating longitudinal modes in the oil cylinder produces 

13 backward modes and 17 ZGV points in the oil pipe. Moreover, the first four backward modes 

belong to the double-ZGVs type.  

D. Influence of the density ratio 

  In this section, the influence of the density ratio
1 2  on the coupling strength is investigated. 

Considering the thin-walled steel pipe with 0.9a b   as an illustration, material properties of 

the pipe and the fluid are the same as those in Fig. 3(f), and the only variable is the fluid density. 

The steel density is 
2 = 7900 kg/m

3
, and the fluid density

1 varies from 10 to 11000 kg/m
3
, i.e. 
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the density ratio 
1 2  changes from 0.0013 to 1.39. Dispersion spectra of longitudinal modes 

in fluid columns with different
1 , in the hollow pipe, and in fluid-filled pipes with different 

density ratios
1 2  are numerically simulated, respectively. Typical results are given in Fig. 6. 

  For a fluid column, the secular equation (12), i.e. ( , , )=0,l fV k  is the function of the fluid 

velocity fV . It is irrelevant to the fluid density
1 , if fV is assumed to be independent of

1 . 

Hence, in the range 8Td V  , forward modes L(0,m)l (m=1,2,...,48) for fluid columns of 

different densities correspond to the same dispersion spectra, as presented in Fig. 6(a). Similarly, 

for a hollow cylinder, the secular equation (13) ( , , , ) 0p L TV V k  , that is the function of bulk 

velocities
TV and

LV , is independent of the cylinder density
2 . Dispersion spectra of the forward 

modes L(0,m)p (m=1,2,…,5) and the backward mode L(0,5)b,p are given in Fig. 6(b). The slopes 

of the two straight lines in Fig. 6(b) are equal to 2 and 2 L TV V , respectively. 

  For a fluid-filled cylinder, the density ratio
1 2  does not affect the first term of the secular 

equation (10), i.e. the decoupling term that is the product of two secular equations
l and p .  

However, it does affect the second term (the coupling term), as it appears in the matrix element

2 2 2

1 0 11 22 ( ) .TM a P a V      For instance, dispersion spectra of L(0,m)pl (m=1,2,…,53) modes 

corresponding to
1 2   0.013, 0.253, and 1.14 are given in Figures 6(c), 6(d), and 6(e), 

respectively. Slopes of three straight lines (dashed lines) in Figures 6(c)-(e) are 2 f TV V , 2 , 

and 2 P TV V . Here, 
2 22 1 5377P T T LV V V V   m/s is the plate velocity. In Fig. 6(c), for the 

small density ratio
1 2   0.013, the coupling strength is weak. The contribution of the guided 

modes propagating in the hypothetical fluid column can be almost perfectly separated from those 
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propagating in the solid cylinder. In Fig. 6(d), for
1 2   0.253, the coupling strength is stronger 

than that in Fig. 6 (c). The decoupling model provided in this paper is still available. That is, if 

the small gaps between neighboring dispersion curves of L(0,m)pl in Fig. 6(d) are linking 

together, dispersion curves of L(0,m)p in Fig. 6(b) can be observed. In Fig. 6(e), for 
1 2  

1.14, the coupling strength is strong, and the decoupling model is not available.  

The coupling strength, which is related to the density ratio, clearly affects the number and 

distribution of backward modes in fluid-filled pipes, as shown in Figures 6(c), 6(d), and 6(e). For 

clarity, we present a zoomed view of the relevant portion of the spectra, shown dispersion curves 

in the dimensionless frequency range5.25 6.5Td V  and in the dimensionless wavenumber 

range 2 0.4kd   . Dispersion spectra corresponding to 
1  10, 100, 200, 500, 2000, and 9000 

kg/m
3
 are given in Figures 7(a) to 7(f), respectively. Numbers of backward modes, backward 

modes with double-ZGVs, and ZGV points corresponding to different densities
1  in the range 

5.25 6.5Td V 
 
are listed in Table I.  

In Fig. 7(a), for
1 2   0.0013, the coupling strength is quite weak. This weak coupling 

between the backward mode L(0,5)b,p and the forward modes L(0,34)l, L(0,35)l, and L(0,36)l 

generates 4 backward modes L(0,m)b,pl (m=37,…,40) and 6 ZGV points. The L(0,37)b,pl and 

L(0,38)b,pl exhibit two ZGV frequencies on the same branch. The frequency-gaps between the 

neighboring backward modes are quite small. If we ignore these small gaps and link the four 

backward modes, the linked dispersion curve almost coincides with the dispersion curve of the 

L(0,5)b,p mode in Fig. 3(e).  
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In Fig. 7(b), for
1 2   0.013, the coupling strength is relatively stronger than that in Fig. 7(a). 

4 backward modes L(0,m)b,pl (m=37,…,40) and 6 ZGV points are generated, and the gaps 

between neighboring backward modes are relatively larger. The repulsion between two forward 

modes L(0,5)p and L(0,39)l produces the backward mode L(0,43)b,pl and the associated ZGV, i.e. 

the point z7 in Fig. 7(b).  

The coupling strength (repulsion) becomes stronger with increasing density ratio. As shown in 

Figures 7(c) and 7(d), the strong repulsion generates more backward modes and ZGV points. 

However, as listed in Table I, numbers of backward modes and ZGVs do not monotonically 

increase with increasing
1 2  .  

The transition from two ZGV points to one ZGV point on the same branch can be observed 

with increasing
1 2  . In Figures 7(a)-7(d), L(0,37)b,pl and L(0,38) b,pl exhibit double-ZGVs. In 

Fig. 7(e), for
1 2   0.253, only L(0,37)b,pl exhibits two ZGV frequencies. In Fig. 7(f), for

1 2   1.14, none of the six backward modes L(0,m)b,pl (m=38,…,43) exhibits two ZGVs. The 

reason is that the larger the density ratio
1 2  , the stronger the coupling strength (i.e. repulsion 

force). For example, in Fig. 7(e), if the repulsion between L(0,39)b,pl and L(0,38)b,pl is strong 

enough, it leads to the transition from two ZGVs to one ZGV on the lower branch (i.e. the 

L(0,38)b,pl mode). Moreover, the strong repulsion could cause the disappearance of a backward 

mode. For example, the L(0,37)b,pl in Fig. 7(e) is a backward mode, while the L(0,37)pl in Fig. 7(f) 

is a forward mode. 

Particularly, the strong coupling between a forward mode in the hollow cylinder and a forward 

mode in the hypothetical fluid column could also produce a backward mode. For instance, we 
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present a zoomed view of the relevant portion of the spectra in Fig. 6, shown dispersion curves in 

the dimensionless frequency range3.14 3.16Td V  and in the dimensionless wavenumber 

range 2 0.05kd   . Dispersion curves of the forward mode L(0,19)l in the fluid column and the 

forward mode L(0,3)p in the hollow cylinder are given in Fig. 8(a). Spectra corresponding to 

1  10, 100, 9000, and 11000 kg/m
3
 are given in Figures 8(b)-8(e), respectively.  

In Fig. 8(a), two forward modes L(0,19)l and L(0,3)p have similar cutoff frequencies and an 

intersection point in the vicinity of k = 0. In Fig. 8(b), for
1 2 0.0013   , the weak coupling 

generates a small gap between curves of two forward modes L(0,22)pl and L(0,23)pl. In Figures 

8(c) and 8(d), with increasing density ratio
1 2  , the coupling strength (repulsion force) is 

stronger, the gap becomes wider, while the separation of two cutoff frequencies of L(0,22)pl and 

L(0,23)pl becomes narrower. In Fig. 8(e), for
1 2    1.39, the strong repulsion generates a 

backward-propagating region in the lower branch, i.e. the backward mode L(0,22)b,pl. 

E. Excitation intensity properties 

It is assumed that an axisymmetric point source model is placed at the origin of the cylindrical 

coordinate system of a liquid-filled pipe, and only axisymmetric longitudinal modes (n = 0) are 

excited. Amplitude spectra of longitudinal modes, including backward and forward modes, 

excited by the point source are numerically calculated using equations (27)-(30). The objective is 

to explore the excitation properties of backward waves and ZGV modes.  

Typical results of amplitude spectra of backward modes with single-ZGV and double-ZGVs 

are presented in Figures 9 and 10, respectively. The solid and dotted lines present amplitudes of 

forward and backward modes, respectively. Verification of numerical results is achieved by 
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checking that, at the liquid-solid interface r = a, the radial displacement components in the liquid 

are equal to that in the pipe, i.e. the continuous boundary condition ,1 ,2r rr a r a
u u

 
 is satisfied.  

We use the complex contour integration and residue method to evaluate the excitation of 

waveguide modes. This method is widely used in geophysical prospecting in cased holes which 

can be modeled as fluid-filled cylinders.
37,49

 And it can provide conceptual tools in the isolation 

of the contribution of specific modes of wave propagation to the composite waveform. Other 

methods, for example, the Auld's method (modal analysis),
55

 which is commonly used for 

analyses of excitation of guided modes in plates,
56

 leads to similar results presented in this paper. 

For a hypothetical fluid column, it can be theoretically proved that the complex contour 

integration method and the Auld's method produce the same expressions of displacement 

components.
57

 For a liquid-filled pipe, it will be interesting to theoretically prove that the two 

methods lead to the similar solutions. 

1. Single ZGV point in one backward mode 

In the water-filled pipe with a/b = 0.8, as shown in Fig. 2(b), slopes of dispersion curves of 

the three backward modes L(0,19)b,pl, L(0,20)b,pl, and L(0,21)b,pl only change their signs for 

once, that is, each mode has a single ZGV point at ZGV1, ZGV2, and ZGV3, respectively.  

Absolute values of the axial and radial displacement components of guided modes in the 

water-filled pipe are denoted uz and ur, respectively. The components uz and ur of the three 

backward and 24 forward modes excited by the point source, with the radial distance r = a = 8 

mm (i.e. at the water-pipe interface), are shown in Figures 9(a) and 9(b), as functions of 
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frequency in the range 5.4 6.1Td V  .  

For each of the three backward modes, the amplitudes of uz and ur are seen to increase 

dramatically as the ZGV frequency is approached, which implies a highly excitable condition at 

ZGV1, ZGV2, and ZGV3 (i.e. ZGV resonances). The other significant feature in Fig. 9(b) is that 

amplitudes of ur for backward modes also rise sharply as their own cutoff frequencies, i.e. fcut1, 

fcut2, and fcut3, are approached respectively (i.e. thickness resonances). While this feature is not 

present in Fig. 9(a). In fact, the component uz1 of each of backward or forward modes needs to 

be zero at the cutoff frequency. The reason is that, at a mode’s cutoff frequency, the 

wavenumber is zero (k = 0), and this appears in the numerator in the equation (28) for the 

calculation of uz1. This relation has been used to verify our numerical results.  

In Fig. 9, ZGV resonances at ZGV frequencies and thickness resonances at cutoff frequencies 

are favorably generated. This can be explained theoretically. For example, the denominator in 

the equation (27), which is the expression of the radial displacement component in the fluid ur,1, 

is k  . It can be expressed as ( )( ),k k        where k  is the group velocity. 

For each mode, at its cutoff frequency and ZGV frequencies (if exist), its group velocity

g =V k  is equal to zero, and the denominator is equal to zero. Hence, theoretically, 

amplitudes of ur,1 are infinite at cutoff and ZGV frequencies, as shown in Fig. 9(b), which 

corresponds to thickness and ZGV resonances respectively. Similar derivations apply to the 

expression of ur,2 in the equation (29). 

As shown in Fig. 9(c), the dominant mode highly excitable by an axisymmetric point source 

is the L(0,1)pl mode, which is equivalent to A0 mode in plates. However, if the excitation 
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frequency is relatively high, as shown in Figures 9(a) and 9(b), the amplitudes of ur and uz for 

each of the three backward modes in the frequency range in which they exist are orders of 

magnitude larger than those of the other forward modes. This implies that, in certain frequency 

ranges, the backward modes are highly excitable by a point source in a liquid-filled pipe.   

2. Double ZGV points in one backward mode 

We close by considering the excitation properties of a backward mode with double ZGVs, and 

the water-filled pipe with a/b = 0.95 is used for illustration. As displayed in Fig. 5, each of the 

three backward modes L(0,72)b,pl, L(0,73)b,pl, and L(0,74)b,pl possesses two ZGV points at the 

locations marked ZGV1…ZGV6 in the figure. Amplitude spectra of the axial and radial 

displacement components uz and ur in the frequency range 5.4 6.1Td V   are given in 

Figures 10(a) and 10(b), respectively. 

In the frequency range5.4 6.1Td V  , the amplitudes for the other forward modes studied 

are orders of magnitude lower than those of the backward modes with double ZGVs, implying an 

excitable condition for these backward modes. In addition, for each of the three backward modes, 

the amplitudes of uz and ur both increase dramatically as the frequency approaches the upper and 

lower bounds of the frequency range in which the mode exists, i.e. the two ZGV frequencies. It 

means that, at the ZGV frequencies, all these backward modes are highly excitable (i.e. ZGV 

resonances). As shown in Fig. 10(b), peaks of amplitudes of ur are also exhibited at the cutoff 

frequencies of the backward modes (i.e. thickness resonances). Moreover, as discussed in section 

III.C, the water containment in this thin-walled pipe causes three backward modes with double 

ZGVs and nine backward modes with single ZGV. From numerical results, the other nine 
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backward modes with single ZGV, L(0,75)b,pl, …, L(0,83)b,pl, and the associated nine ZGV 

modes are also excitable. Thus, it is possible to excite 15 zero-group-velocity resonances using 

the point source in this thin-walled pipe filled with water.  

Generally, for a thin-walled pipe, the inclusion of water can dramatically affect the backward 

modes. It may cause two types of backward modes with single- or double- ZGV points, greatly 

increasing the number of ZGV modes. From the analyses of excitation properties, it is concluded 

that all the ZGVs are highly excitable by the point source, and those ZGV frequencies are usually 

shifted from the original ZGV frequency in the hollow pipe. That is, it is expected that a number 

of ZGV resonances will exhibit near the original ZGV frequency. This group of ZGV resonances 

could increase the intensity of the ZGV signal. 

IV. CONCLUSIONS  

Generally, for a thick-walled pipe, contained liquid only mildly affects the number of 

backward waves and zero-group-velocity (ZGV) modes. However in the case of a thin-walled 

pipe, the presence of contained liquid leads to an increased number of backward propagating 

waves and ZGV modes.  

Mode coupling can be used to explain the effect of introducing the liquid. The increased 

number of backward waves and ZGVs are caused by strong coupling between a backward mode 

in the hollow pipe and several forward modes in the liquid cylinder. In the dimensionless 

frequency-wavenumber plane, the strength of repulsion (i.e. coupling) is related to the frequency 

separation between two dispersion curves of a pair of longitudinal modes propagating 

respectively in the liquid cylinder and in the hollow pipe. The general rule is that the smaller the 
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frequency separation, the stronger the repulsion becomes. The strongest repulsion corresponds to 

the case of intersection of the dispersion curves for two modes. If the repulsion between a 

backward mode in the hollow pipe and a forward mode in the liquid cylinder is sufficiently 

strong, it could produce two backward modes in the liquid-filled pipe, and each of the two 

backward modes may possess one or two ZGV points. 

In a liquid-filled pipe, a backward mode may have two ZGV points. This type of backward 

mode is often found in a thin-walled pipe having a radius ratio a/b approaching unity. In practical 

projects, most oil pipelines have a relatively thin wall compared to the inner and outer radii. 

Hence, the double-ZGV type of backward mode could be expected to be common. From the 

excitation analysis, it is concluded that backward modes and ZGVs are highly excitable by a 

point source which is placed centrally in the liquid-filled pipe. This implies that the ZGV 

technique has the potential to be applied for in-service inspection of pipelines which are carrying 

liquid.  

In this paper, we have limited our study to longitudinal modes. In practice, if a point source is 

not perfectly centered (or the circular cylinder is not perfect), then all the mode families, 

axisymmetric modes longitudinal L(0,m) and torsional T(0,m), and non-axisymmetric flexural 

modes F(n,m) (n=1,2,... and m=1,2,...) are excited. And a high number of F(n,m) modes also 

exhibit backward branches and ZGV points.
18

 According to Ibanescu et al.,
54

 in a circular 

waveguide with constant cross-section, there is no interaction between a longitudinal mode and a 

flexural mode. And due to the continuous rotational symmetry of a fluid-filled pipe, longitudinal 

and flexural modes are uncoupled for any wavenumber k.
54

 Hence, the backward branches of 
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longitudinal modes are not relevant to those of flexural modes. The analyses of mode coupling 

and excitation of longitudinal backward modes in a fluid-filled cylinder could be extended for 

analyzing properties of ZGV resonances of flexural modes. Moreover, this peculiar coupling 

effect of double ZGV points could be also observed both in a viscous liquid and a fluid-filled 

cylinder immersed in fluid. 
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APPENDIX A: MATRIX ELEMENTS OF DISPERSION EQUATION 

The dispersion equation of axisymmetric guided waves in a pipe filled with liquid is found by 

setting to zero the determinant of a 5×5 coefficient matrix, i.e. equation (9). The matrix elements 

are listed using the following notation: 

1 1 1 2 2 2 1 2 2 2 1 2= , = , , , , , ,v a w a w b x a x b Y ka Y kb          

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

11

12

13

14

15

( ),

( ),

( ),

( ),

( ),

v P v

w P w

Y P

M

M

M

M

M

x

w Q w

Y Q x












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

 

2 2 2
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1 1 0 1 0 1

2 2 2 2

21

22

1 0 1 1 0 1

1 1 0 1 0

23

25 1

24

( ) ,

(2 ) ( ) 2 ( ),

2 [ ( ) ( )],

(2 ) ( ) 2 ( ),

2 [ ( ) ( )],

T

T

T

a P v V

Y a V P w w P w

Y x P x P x

Y a V Q w w Q w

Y x Q x Q

M

M

M

M

M x

  







 



 












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1 1 0 1

2 2

1 1 0 1

31

32

33

34 1

35
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TABLE I.  Numbers of backward modes (BW), zero-group-velocity points (ZGV), and 

backward modes with double-ZGVs (D-ZGV) in fluid-filled pipes of different fluid densities
1 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Density
1 (kg/m

3
)  BW D-ZGV ZGV 

10 4  2  6 

50 4 2 6 

100 5 2 7 

200 6 2 8 

500 7 2 9 

1000 7 1 8 

1500 7 1 8 

2000 7 1 8 

9000 6 0 6 

11000 6 0 6 



44 
 

Figure captions 

FIG. 1 The contour of integration in equation (21). 

FIG. 2 (Color online) Dispersion spectra of the three groups of axisymmetric longitudinal modes 

in the water cylinder, in the hollow pipe, and in the steel pipe filled with water, respectively, in 

the dimensionless frequency range 8Td V 
 
(a). In the dimensionless frequency range 

5.25 6.5Td V   and in the Gazis normalized wavenumber range 2 0.4kd   , dispersion 

curves of longitudinal modes in the water-filled pipe are presented in Fig. 2(b), and two sets of 

dispersion curves of modes in the water cylinder and in the hollow pipe respectively are given in 

Fig. 2(c). The internal and external radii of the pipe are a = 8 mm and b = 10 mm. The vertical 

and horizontal axes are dimensionless frequency Td V and wavenumber 2kd  , where is 

the angular frequency, d and TV
 
are the thickness and the shear bulk velocity of the pipe, and k 

is the wavenumber. Solid lines in Figures 2(a) and 2(b) denote forward-propagating modes. In 

Fig. 2(c), the dashed and solid lines represent forward-propagating modes in the water cylinder 

and in the hollow pipe, respectively. Dotted lines in the three figures denote 

backward-propagating modes, and the green dots denote the zero-group-velocity (ZGV) points. 

FIG. 3 (Color online) Dispersion spectra of longitudinal modes in the water cylinders with radius 

a = 4, 5, and 9 mm and in the hollow steel pipes with ratios of internal to external radius a/b = 

0.4, 0.5, and 0.9, respectively (a)(c)(e); and those in the water-filled pipes with a/b = 0.4, 0.5, 

and 0.9, respectively (b)(d)(f). In figures (a)(c)(e), dashed and solid lines represent 

forward-propagating modes in the water cylinders and in the hollow pipes, respectively; and 

dotted lines denote backward modes. In figures (b)(d)(f), solid and dotted lines represent 
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forward- and backward- modes, respectively. The ZGV points are marked by green dots. 

FIG. 4 (Color online) In the dimensionless frequency range 8Td V  , cutoff frequencies of 

longitudinal modes in the water columns with radii being a = 1, 2,...,9, and 9.5 mm, respectively, 

are denoted by black dots. And ZGV frequencies of the backward modes L(0,5)b,p in hollow steel 

pipes with the same outer radius b = 10 mm and inner radii being a = 1, 2,...,9, and 9.5 mm, 

respectively, are denoted by red triangles. 

FIG. 5 (Color online) Dispersion spectra (a) and group velocity dispersion curves (b) of the three 

backward modes in the steel pipe filled with water. Each backward mode has two ZGV points. 

The inner and outer radii of the pipe are a = 9.5 mm and b = 10 mm. The dotted and solid lines 

represent backward and forward modes, respectively. The green dots denote ZGV points. 

FIG. 6 (Color online) Dispersion spectra of longitudinal modes in the fluid column (a), in the 

hollow steel pipe (b), in the fluid-filled pipes with fluid densities being 100 kg/m
3
 (c), 2000 

kg/m
3
 (d), and 9000 kg/m

3
 (e), respectively. Dotted lines denote backward modes. 

FIG. 7 (Color online) Dispersion spectra of longitudinal modes in fluid-filled pipes of fluid 

densities 
1  10, 100, 200, 500, 2000, and 9000 kg/m

3
 are given in Figures 7(a) to 7(f), 

respectively. For instance, the number 36 denotes L(0,36)pl, and the number 37b denotes 

L(0,37)b,pl. The ZGV points are marked by green dots. The dashed and solid lines represent 

backward and forward modes, respectively. 

FIG. 8 (Color online) Dispersion spectra of the L(0,19)l mode in the liquid column and the 

L(0,3)p mode in the hollow cylinder with radius ratio a/b = 0.9 (a). Dispersion spectra of the 
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L(0,22)pl and L(0,23)pl modes in fluid-filled pipes with density ratios 
1 2   0.0013 (b), 0.013 

(c), 1.14 (d), and 1.39 (e), respectively. 

FIG. 9 (Color online) In the water-filled pipe with radius ratio a/b = 0.8, amplitude spectra of the 

axial and radial displacement components, uz and ur, of guided modes on the liquid-solid 

interface in the frequency range 5.4 6.1Td V   are given in (a) and (b), respectively. Spectra 

of ur in the range 6.1Td V  are given in (c). Each backward mode has a single ZGV point. 

The dotted and solid lines denote backward and forward modes, respectively. 

FIG. 10 (Color online) In the water-filled pipe with radius ratio a/b = 0.95, amplitude spectra of 

the axial and radial displacement components of guided modes, i.e. uz on the external interface r 

= b =10 mm and ur on the internal interface r = a = 9.5 mm, are given in (a) and (b), respectively. 

Each backward mode has two ZGV points. The dotted and solid lines denote backward and 

forward modes, respectively. 
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