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ABSTRACT
Using realistic cosmological simulations of Milky Way sized haloes, we study their dynamical
state and the accuracy of inferring their mass profiles with steady-state models of dynamical
tracers. We use a new method that describes the phase-space distribution of a steady-state tracer
population in a spherical potential without any assumption regarding the distribution of their
orbits. Applying the method to five haloes from the Aquarius � cold dark matter (�CDM) N-
body simulation, we find that dark matter particles are an accurate tracer that enables the halo
mass and concentration parameters to be recovered with an accuracy of 5 per cent. Assuming
a potential profile of the Navarro, Frenk & White (NFW) form does not significantly affect
the fits in most cases, except for halo A whose density profile differs significantly from the
NFW form, leading to a 30 per cent bias in the dynamically fitted parameters. The existence
of substructures in the dark matter tracers only affects the fits by ∼1 per cent. Applying
the method to mock stellar haloes generated by a particle-tagging technique, we find the
stars are farther from equilibrium than dark matter particles, yielding a systematic bias
of ∼20 per cent in the inferred mass and concentration parameter. The level of systematic
biases obtained from a conventional distribution function fit to stars is comparable to ours,
while similar fits to dark matter tracers are significantly biased in contrast to our fits. In line
with previous studies, the mass bias is much reduced near the tracer half-mass radius.

Key words: methods: data analysis – Galaxy: fundamental parameters – galaxies: haloes –
galaxies: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

Dynamical modelling is of fundamental importance in the determi-
nation of the mass distribution of dark matter haloes. To constrain
the total mass distribution or the gravitational potential, a large
family of dynamical methods work by fitting a proposed potential-
dependent distribution function (DF) to the observed phase-space
distribution of a tracer population. In such modelling, one should
make as few assumptions as possible so as to avoid biasing the re-
sults. In practice, a required minimal assumption is that the system
is in steady state, so that modelling the tracer DF with a single obser-
vational snapshot is informative without requiring the observation to
take place at any special moment. However, most existing methods
involve additional assumptions, for example, about the distribution
of orbits, the functional form of the DF, or the spatial distribution
of tracer particles outside the observational window. In a previous
paper (Han et al. 2015, hereafter Paper I), we developed a method
that can be used to infer the potential while only making the as-
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sumption that the tracer population is in a steady state. In particular,
taking a spherical potential as an example, we have shown that the
steady-state property translates into a fundamental orbital Probabil-
ity Density Function (oPDF), which provides enough information
to enable the inference of the halo potential. Applying this method
to a set of steady-state tracers in an NFW potential generated from
Monte Carlo simulations, we showed that the method is able to re-
cover the true potential. While spherical symmetry is assumed, all
the steps of the method can be generalized to non-spherical cases.

A realistic halo from cosmological simulations or one in the real
Universe may violate the assumptions of our method in several
ways. For example, spherical symmetry is only approximate since
we know haloes are triaxial (Frenk et al. 1988; Jing & Suto 2002).
Also, the potential and the distribution of any tracer are not strictly
static as haloes evolve with time. Finally, real haloes are not smooth
structures, since they contain many subhaloes. In this work, we
apply the oPDF method to the dynamical distribution of dark matter
and star particles in simulated haloes, to explore the extent to which
the tracers in a real halo satisfy our model assumptions.

One important motivation for this work is to provide a generic
assessment of what to expect for the accuracy of dynamical mass
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estimates of the Milky Way (MW) halo. The mass of the MW plays
a crucial role in interpreting many of the Local Group observa-
tions (Wang et al. 2012; Cautun et al. 2014; Kennedy et al. 2014).
However, dynamically inferred masses in the literature vary widely,
ranging from 0.5 × 1012 to 2.5 × 1012 M� across different studies
(e.g. Wilkinson & Evans 1999; Xue et al. 2008; Gnedin et al. 2010;
Gibbons, Belokurov & Evans 2014; Williams & Evans 2015a; see
Wang et al. 2015 for a recent compilation of measurements). At least
part of the discrepancy originates from the different assumptions in-
volved in different methods. Hence, it is interesting to investigate
the intrinsic accuracy of a generic dynamical method that makes
minimal assumptions, which could then be interpreted as a lower
limit on the systematic uncertainty in dynamical mass estimation.
Such a study is also timely given the huge amount of phase-space
data for stars in the Galaxy being obtained by a new generation of
instruments such as GAIA (Perryman et al. 2001).

To this end, we apply our generic dynamical method to five
haloes from the Aquarius simulations, a set of cosmological zoom-
in simulations of the formation and evolution of MW sized haloes in
the �cold dark matter (�CDM) cosmology (Springel et al. 2008).
We fit for the mass and concentration parameters of each halo using
both the dark matter particles and the ‘halo stars’ from the particle-
tagging method of Cooper et al. (2010) as tracers. We find that while
the dark matter (DM) tracers recover the halo parameters accurately,
the tagged stars result in ∼20 per cent bias in the dynamically fitted
parameters. We give a brief review of the oPDF method in Section 2.
The applications to DM and stars are presented in Sections 4 and 5,
with the data described in Section 3 and a discussion on the half-
mass constraint in Section 6. We summarize the results and conclude
in Section 7.

2 TH E OP D F M E T H O D

Below, we briefly review the oPDF method developed in Paper I.
A likelihood estimator and a non-parametric profile reconstruction
method were developed in Paper I which show similar efficiency in
making use of the dynamical information. We restrict our attention
to the likelihood method throughout this paper.

2.1 The oPDF

In a steady-state system, phase-space continuity implies a funda-
mental DF,

dP (λ|orbit)/dλ ∝ dt(λ|orbit)/dλ, (1)

where λ is an affine parameter specifying the position of a parti-
cle on a given orbit. That is, for any given orbit, the probability
of observing a particle at a given position λ is proportional to
the time it spends at that position. In a spherical potential, the
orbits of particles are described by their conserved binding en-
ergy, E = − (

1
2 (v2

t + v2
r ) + ψ(r)

)
and conserved angular momen-

tum, L = r vt, where vr and vt are the radial and tangential velocities,
and ψ(r) is the potential at radius r. Taking r as the affine parameter,
equation (1) becomes

dP (r|E,L) = dt∫
dt

= 1

T

dr

|vr| , (2)

where T = ∫ ra

rp
dr/|vr| is the period of half an orbit, with rp and ra

being the peri- and apo-centre radii of the orbit. When radial cuts
(rmin, rmax) are imposed, we only need to replace the orbital limits,
ra, with min (ra, rmax) and rp with max (rp, rmin), since equation (1)

holds within any radial range. Taking the radial action angle, θ ,
which we call the phase angle, as the affine parameter, the oPDF
becomes a uniform distribution,

dP (θ |E, L) = dθ, (3)

where

θ (r) = 1

T

∫ r

rp

dr

vr
. (4)

This uniform distribution with θ ∈ [0, 1] is also known as the random
phase principle or orbital roulette (Beloborodov & Levin 2004).

2.2 Uniform phase diagnostics

For a steady-state tracer, if one defines a normalized mean phase
deviation (Beloborodov & Levin 2004) by

�̄ =
√

12N (θ̄ − 0.5), (5)

then when the sample size, N, is large enough the uniform phase
distribution of θ should result in �̄ being distributed like a standard
normal variable. Hence, for a real sample, �̄2 can be used as a
measure of the difference of the actual phase distribution from the
expected uniform distribution.

2.3 The radial likelihood estimator

Given a tracer and an assumed potential, one can predict the ex-
pected radial PDF of each tracer particle using

P (r) = 1

N

N∑
j=1

P (r|Ej ,Lj ), (6)

where Ej and Lj are the energy and angular momentum of particle j
under the assumed potential. If we bin the data radially into m bins,
the expected number of particles in the ith bin is given by

n̂i = N

∫ ru,i

rl,i

P (r) dr, (7)

where rl, i and ru, i are the lower and upper bin edges. The binned
radial likelihood is given by

L =
m∏

i=1

n̂
ni
i exp(−n̂i) (8)

= exp(−N )
m∏

i=1

n̂
ni
i , (9)

where ni is the observed number of particles in the ith bin. The
best-fitting potential is defined to be the one that maximizes this
likelihood.

3 DATA

We use the Aquarius simulations (Springel et al. 2008), a set of
cosmological zoom-in simulations of the formation and evolution
of MW sized haloes, for this analysis. The five simulations we use
(labelled ‘A’ to ‘E’) were run at a series of resolutions and we
only use the second highest resolution (level-2) runs, which have a
particle mass of ∼104 M� so that each halo is resolved with ∼108

particles. We consider two types of tracers in the halo: DM particles
and star particles. Because Aquarius is a DM-only simulation, the
star particles are a subset of DM particles selected with a particle-
tagging technique (Cooper et al. 2010).
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Dynamical state of Aquarius haloes 1019

The oPDF method laid out above assumes a steady-state system
with a spherical potential. The real halo may deviate from these
assumptions in many respects, for example, by being aspherical,
evolving or having substructures. We expect these deviations to
bias the fit, and our aim is to quantify these systematic errors. To
this end, we will use a large sample to ensure that the statistical
noise as inferred from the likelihood estimator is much smaller than
the level of accuracy of interest. Using Monte Carlo realizations we
found in Paper I that the typical error in halo profile parameters is
0.1/

√
N/1000 dex for N particles. Wherever possible, we will use

samples with N ∼ 106 particles leading to statistical errors of the
order of only ∼1 per cent in the dynamically derived parameters,
the mass, M, and the concentration, c.

3.1 DM samples

For each halo, we create a tracer of the DM consisting of 106

randomly sampled DM particles. To constrain the potential profile
of a halo all the way out to the virial radius, we adopt an outer
cut of 300 kpc, which is slightly larger than the virial radius of the
Aquarius haloes (200 to 250 kpc). We also adopt an inner cut of
1 kpc, chosen to avoid convergence issues (Navarro et al. 2010), and
to suppress the effect of any ambiguity in the definition of the centre
of a real halo. By default, we use all the particles within the above
radial range, no matter whether the particle belongs to the Friends-
of-Friends halo or not. The Hubble flow is ignored throughout this
analysis, since the scale at which it becomes important is given by
GM/R ∼ (HR)2/2, yielding R ∼ 1 Mpc h−1 for a MW sized halo.1

3.2 Tagged star samples

In reality, one does not, of course, observe dark matter directly.
A realistic tracer population would be the stars in the halo of a
galaxy. In this section we apply the oPDF method to the Aquarius
stellar haloes calculated by Cooper et al. (2010). These stars are
identified in the output of the dark matter only simulation by tagging
dark matter particles over time following the star formation history
given by the GALFORM semi-analytical model of galaxy formation
(Cole et al. 1994, 2000; Bower et al. 2006). The dynamics of the
stars are then identical to the dynamics of the tagged dark matter
particles. Since the dark matter particles are dissipationless, this
tagging method does not resolve stellar discs. Nor does it take
into account the effects of baryon dissipation on the gravity of the
system. As a result, the distribution of stars in the inner galaxy
is not quite realistic. Despite this limitation, the particle-tagging
method provides a realistic model for the stripping and distribution
of accreted stars in the simulated outer halo, since the accreted
stars follow the same collisionless dynamics as the dark matter
particles on large scales (see Le Bret et al. 2015, for a controlled
comparison of particle tagging to hydrodynamical simulations).
Recently, Cooper et al. (2013) have applied this technique to large-
scale cosmological simulations and have shown that it produces
galactic surface brightness profiles that agree well with the outer
regions of stacked galaxy profiles from Sloan Digital Sky Survey
(SDSS).

To test the oPDF method with a realistic tracer population, for
each halo we use the accreted stars from the particle-tagging tech-
nique. In addition, we exclude particles inside 10 kpc of each halo

1 We have explicitly checked that including the Hubble flow produces little
difference in our results.

as the presence of a disc in a real galaxy violates the spherical sym-
metry assumption for the potential, and because the lack of such
a disc in the simulated halo makes the mock data less realistic at
small radii. As with the dark matter tracers, an outer radius cut of
300 kpc is applied to each halo. In a forthcoming paper (Wang et al.,
in preparation), we will extend this study to a larger sample of Lo-
cal Group haloes in which the stars are taken from hydrodynamical
simulations.

Due to the limited resolution of the dark matter simulation, each
tagged particle may represent many stars with varied stellar masses,
and one dark matter particle may be tagged multiple times repre-
senting stars formed at different epochs. However, the dark matter
particles in the original simulation are followed dynamically with-
out knowledge of the stellar mass weighting or multiple tagging.
Hence the dynamics of these tracers are only resolved to the level
of the tagged dark matter particles.2 For the purpose of dynamical
modelling, we mainly use the unique set of tagged particles without
any stellar mass weighting. This leaves us with 5–8 × 105 unique
tagged particles for each halo in the level two simulations. In the
following, we continue to use the term stars to refer to these unique
sets of tagged particles.

3.3 Template profiles: defining the true potential
and halo parameters

To fit the halo potential using the oPDF method and assess any
biases in the fit, we need to parametrize the potential with some
functional form and also define the true parameters of the potential
function.

One choice of parametrization is the widely used NFW profile
(Navarro, Frenk & White 1996, 1997),

ρ(r) = ρs

(r/rs)(1 + r/rs)2
, (10)

where rs is the scale radius at which d ln ρ/d ln r = −2 and ρs sets
the density at this radius. These two parameters can be analytically
related to the virial mass and concentration parameters. The virial
mass is defined as the mass inside a virial radius, Rv, where the
enclosed density is 	v times the critical density of the universe

M = 4π

3
	vρcR

3
v . (11)

Throughout this paper, we adopt 	v = 200. The concentration
parameter is defined as c = Rv/rs. With this parametrization, one
may choose to use the best-fitting parameters of the density profile as
the true parameters. However, such a choice would be problematic if
an NFW profile is not a good description of the halo density profile
in question, in which case the best-fitting NFW parameters could
depend on how the fit is performed. To demonstrate this, we fit the
density profile of halo A using a maximum likelihood method. Note
that dynamical modelling is not involved here, and the fit is purely
to characterize the true mass distribution of the halo. The extended
likelihood (Barlow 1990), L, can be written as

lnL =
∑

i

ln ρ(ri) − Npred, (12)

2 From a statistical point of view, the weighted distribution contributes an
additional uncertainty to the stellar mass of each particle, making the star
particle counts in bins a Compound Poisson process rather than a Poisson
process. So strictly speaking, the current likelihood model does not apply to
the weighted distribution.
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Figure 1. The mass profile [scaled as M( < R)/R] of halo A. In the upper
panel, the grey shaded line shows the true mass profile of the dark matter
distribution, while the different coloured lines show NFW profiles from
maximum likelihood fits within 50, 100 and 300 kpc, respectively. The black
dashed line (labelled virial) shows equation (11). It crosses each coloured
line at the virial radius of each profile. The vertical dotted line marks the
scale radius, rs. The lower panel shows the ratio of the fitted mass and the
true mass as a function of the enclosing radius.

where Npred = ∫
windowρ(r)/mp d3r is the predicted number of parti-

cles in the data window, with mp being the particle mass, and ρ(r)
the NFW density profile given by equation (10) with parameters
(ρs, rs). ri is the radial coordinate of the ith particle and the sum-
mation runs over all the particles in the data window. This method
is, in the limit of infinitesimal bins, equivalent to fitting to a binned
profile provided one takes account of the Poisson distribution of the
counts inside each bin. We fit the dark matter distribution around
halo A over several different radial ranges, with outer cuts of 50, 100
and 300 kpc, respectively. The best-fitting mass profiles along with
the real mass profile are shown in Fig. 1. It is obvious that the fits
differ from each other, and none of them describes well the full
mass profile out to the virial radius. The inferred virial masses can
differ by more than 30 per cent. We note that halo A is an extreme
example which deviates grossly from NFW, while the remaining
four Aquarius haloes agree much better with the NFW form.

Given the poor performance of the NFW parametrization for halo
A, it would be problematic to define the true halo mass, concen-
tration or potential parameters from a best-fitting NFW profile. Put
another way, any fit that adopts an NFW parametrization also suffers
from systematics introduced by deviations of the real halo profile
from the NFW form. To eliminate this systematic uncertainty, we
will describe the potential using parametrized template profiles that
are able fully to match the true profile. For each halo, we first ex-
tract the true potential profile from the spherically averaged density
profile. Specifically, the potential at a given point is evaluated as

− ψ(r) = G
∑
ri<r

mi

r
+ G

∑
ri≥r

mi

ri

, (13)

where ri and mi are the radial position and mass of the ith particle.
In practice, the profile is extracted at a sequence of radii and then
interpolated at any other radius. Once a true profile is extracted,
we generalize it to a two-parameter family by varying its scale
and amplitude. Specifically, for each real profile, ψ(r) = f(r), we
generate a parametric template as

ψ(r) = Af
( r

B

)
, (14)

where A and B are dimensionless scale parameters. These two pa-
rameters can be mapped to M and c following the procedure in
Appendix A. The true parameters (M0, c0) of the halo are unam-
biguously defined by locating where in the true density profile the
spherical overdensity matches the virial overdensity criterion and
where the profile has a logarithmic slope of −2.

We will consider both the NFW and the template parametrizations
when fitting the potential.

4 A P P L I C AT I O N TO D M H A L O E S

4.1 The dynamical state of Aquarius haloes

Once the real potential is known (equation 13), we can examine the
distribution of particles in (θ , E, L) space prior to any fit. According
to equation (3), for any system in a steady state, θ should be uni-
formly distributed for particles in any bin of E or L. In Fig. 2, we
show the example of halo A in such coordinates. In the left panels,
all the particles within 1–300 kpc from the halo centre are used. We
are not concerned with the distributions along the E and L directions.
Along the θ direction, overall, at fixed E or L the particle distribu-
tions are close to uniform. However, one can still identify clumps
in phase space which perturb the uniformity. In the rightmost pan-
els only particles from subhaloes identified by SUBFIND (Springel
et al. 2001) are plotted. The coordinates of subhaloes with more
than 1000 particles are overplotted as red circles, with larger circles
corresponding to more massive subhaloes. The remaining particles
representing a smooth component are plotted in the middle col-
umn. Comparing the three columns, it is obvious that substructures
introduce perturbations to the uniform θ -space distribution of the
host halo. These perturbations are twofold: first the particles inside
subhaloes are locally clustered and break the uniform distribution;
secondly, the potential of the subhaloes exists as perturbations to the
potential of the smooth host halo, affecting the orbits of nearby par-
ticles. The existence of locally clustered structures makes the real
particle distribution noisier than a Poisson realization of a smooth
uniform field, and degrades the consistency between the two. In
principle, substructures can be defined as locally overdense struc-
tures in phase space, and a phase-space substructure finder could
be designed to excise them and optimize the uniformity of the dis-
tribution of the remaining background particles. In practice, as we
find subhaloes with SUBFIND, the removal of substructures may not
always increase the dynamical uniformity of the system unless the
substructure finder is designed to do so.

Compared with the smooth component, subhaloes occupy rel-
atively low binding energy and high angular momentum orbits.
Despite the clumpy distribution of subhalo particles, they do not
appear to bias the θ distribution significantly in any particular di-
rection. We will come back to this point when fitting the mass and
concentration of the haloes.

In Fig. 3, we explore deviations from a steady state of the DM
tracer at different values of r, E and L in terms of the normalized
mean phase deviation, �̄, which measures the discrepancy level
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Dynamical state of Aquarius haloes 1021

Figure 2. The phase-space distribution of particles in halo A. Top and bottom panels show the distributions in E − θ and L − θ spaces, respectively. The left
column shows the distributions of all the particles in the sample. The middle column shows that with subhalo particles removed. The right column shows the
distributions of subhalo particles alone. Each subhalo with more than 1000 particles is also marked by a red circle in the right hand panels. In all the panels,
only particles with 1 < r < 300 kpc are used. The white lines are the median θs. The images colour code the number of particles in each pixel. The contrast of
each panel has been individually optimized.

from a uniform distribution. For each halo, we calculate the mean
phase within bins of phase-space coordinates r, E or L. We cre-
ate the bins with equal numbers of particles per bin, so that they
have the same statistical noise, allowing direct comparison of �̄

across the bins. The bins are labelled by the percentiles of the re-
spective sorted phase-space coordinate, r, E or L. Recall that if
the tracer is in a steady state, then in the large sample limit, �̄ is
distributed like a standard normal variable.

Consistent with the physical picture displayed in Fig. 2, the DM
particles have a mean phase deviation broadly consistent with zero.
As seen from the left column, the discrepancy is most significant
at large radius, low binding energy and high angular momentum,
revealing a higher level of systematics at these locations. Note low
E and high L regions are also where subhaloes are most abundant
as seen in Fig. 2, and it is also well known that subhaloes tend to
occupy the outer halo (see e.g. Springel et al. 2008). The panels of
the right hand column are the same as the left, but with subhalo par-
ticles removed from the tracer. In calculating the radial profile, the
radial limits of the data window, rmin and rmax, have been adjusted
to the bin edges, so the radial profile examines the local uniformity

of particles. After removing subhalo particles, local dynamical con-
sistency is significantly improved at large radius. However, we see
from the middle and bottom panels of Fig. 3 that this has little effect
on the dynamical consistency within individual orbits over the full
radial range.

Note that �̄ correlates with the depth of the proposed potential
and a positive �̄ indicates the current potential is deeper than a best-
fitting potential (Paper I). As seen in Fig. 3, at large r, L and low E,
the mean phase deviation can be significantly higher than one would
expect from a uniform distribution, which would lead to a level of
systematic uncertainty significantly larger than the statistical noise
in the best-fitting potential. However, overall the fluctuation is still
stochastic with no preferred sign. This indicates that if one is going
to fit the potential, then deviations from our model assumptions
are unlikely to bias the model parameters in a particular direction;
instead, the biases would fluctuate stochastically. Despite this, these
biases are still systematic rather than statistical in nature, as they
are tied to the model assumptions, not to the sample size. In the
following section, we aim to quantify the level of such systematic
uncertainty in the best-fitting parameters of the halo potential.
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1022 J. Han et al.

Figure 3. The normalized mean phase deviation profile of Aquarius DM haloes. From top to bottom, we bin the halo particles according to their r, E, L
coordinates, respectively, with equal numbers of particles in each bin. The mean phase deviation, �̄, is evaluated in each bin, and plotted as a function of the
percentile values in the respective coordinate. Different colour lines represent different haloes. The dashed and dotted reference lines mark the 0 and ±3σ

discrepancy levels. The left panels show the profiles of the full sample. The right panels show that with subhalo particles removed.

4.2 Fitting the halo potential with DM as tracers

With the potential functions and their true parameters defined in
Section 3.3, we can proceed to fit the potential profiles with our
oPDF method, and quantify the level of systematic uncertainty in
the fitted parameters. We adopt the binned radial likelihood esti-
mator, with 50 logarithmic bins. Fitting with a different number of
radial bins gives consistent results.3 For both NFW and template
parametrizations, we fit two data sets: (1) all the dark matter parti-
cles inside 1–300 kpc, i.e. the full sample; (2) the former but with
all the subhalo particles removed, i.e., the smooth sample. Because
we aim to quantify the systematic uncertainties due to deviations
from model assumptions, we need to make sure that the statistical
noise, which is determined by sample size, is small enough. As an
example, in Fig. 4 we show the statistical confidence contours of
halo A from the template fit. These error estimates are consistent
with the scatter among independent subsamples of the parent halo.
The 1σ error is around 0.005 dex for our sample of 106 particles,
quite consistent with our expected scaling of 0.1/

√
N/1000 dex.

Such an accuracy should be sufficient for detection of systematic
biases larger than 1 per cent.

3 Adopting the Anderson–Darling estimator described in Paper I (see also
Beloborodov & Levin 2004) increases the parameter scatter to ∼20 per cent,
due to its poorer accuracy.

Figure 4. The 1σ , 2σ and 3σ confidence contours for the full sample of halo
A fitted with the oPDF likelihood using the template profile. The parameters
are in units of their true values.

The best-fitting parameters in units of the true parameters are
plotted in the left panel of Fig. 5. Overall, the fitted (M, c) pa-
rameters largely agree with their true values, with a bias generally
smaller than 10 per cent. The typical bias quantified by the scatter
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Dynamical state of Aquarius haloes 1023

Figure 5. Left: fitted parameters of Aquarius haloes using the radial likelihood estimator. Different shaped symbols denote different haloes. The red and blue
colours denote the fitting results using NFW and template profiles (labelled TMP), respectively. In both cases, the open symbols show the fits with the full
samples, while the filled ones show those for the smooth samples, i.e. with subhalo particles excluded. For each combination of sample and profile, we combine
the five haloes to estimate a mean and a covariance matrix for the parameters, and plot the 1σ contour (the ellipses, open or filled) in the same style for a
bivariate Gaussian with the estimated mean and covariance. Right: same as the left, but also showing the fits from Wang et al. (2015) to the smooth DM sample
using a f(E, L) = L−2βF(E) model (green symbols and ellipse).

among the five haloes is ∼5 per cent as listed in Table 3. For each
parametrization and data set, we combine the five haloes to esti-
mate a mean and a covariance matrix for the parameters, and plot
the one-sigma contour for a bivariate Gaussian with the estimated
mean and covariance. Note these contours are an estimate of the
systematic uncertainties, since the statistical noise of the model is
negligible given the sample sizes. Consistent with our expectation
from the mean phase profiles, there is not a definitive systematic
bias but rather, as far as we can tell from the small sample of haloes,
the scatter is mostly stochastic from halo to halo. Comparing the
fits with and without subhalo particles, there is not a significant im-
provement in the latter. When NFW profiles are adopted in the fits,
the accuracy is comparable to that achieved with template profiles in
most cases. This reflects the fact that most haloes are well described
by NFW profiles. Note that the significantly larger confidence re-
gions in NFW fits as marked by the ellipses in Fig. 5 is caused purely
by halo A, whose dynamical fit shows a bias in concentration up to
30 per cent. This is due to the fact that the density profile of halo A
differs significantly from NFW, as is evident from Fig. 1. In Fig. 6
we show the disagreement in halo A from a different perspective,
by comparing the NFW parametrization of the halo potential with
the true potential. When the set of true halo parameters are used, the
NFW potential is consistent overestimated inside the halo. The dy-
namical fit adjusts the parameters so that the NFW potential agrees
with the true potential to within 5 per cent for most of the radial
range. The best-fitting NFW potential agrees better with the true
potential, reflecting the fact that the dynamical fit largely recovers
the true potential by force-fitting the NFW parametrization, despite
giving different parameters from the true values. It is quite interest-
ing to see that when the template profile is adopted, halo A does
not appear to be more biased than the other haloes, meaning that a
deviation from the NFW form does not necessarily mean a lack of
equilibrium.

In the right panel of Fig. 5, we compare our fits to those obtained
from a conventional DF method that describes the phase-space den-
sity only as a function of (E, L) of the particles (Wang et al. 2015).

Figure 6. The potential profile of halo A and its NFW parametrization.
We plot the ratio between the parametrized NFW potential, ψ , and the
true potential, ψ0, of the halo as a function of radius. For the dynamical
modelling only the potential difference is relevant and so the zero-points of
the NFW potentials have been adjusted to produce the true potential value at
the virial radius. The red solid line corresponds to the NFW potential profile
using the true parameters and the green dashed line to the NFW parameters
found from the oPDF likelihood estimated from all the dark matter particles.

Specifically, the phase-space probability is assumed to have the form
dP (r, v) = f (E)L−2β d3r d3v, where β is a parameter describing
the velocity anisotropy, with f (E) further determined by inverting
a double-power-law tracer density profile inside an NFW potential
(see equation 12 in Wang et al. 2015 for further details). This DF
describes a family of models with constant anisotropies, while in
general more flexible models can be constructed (e.g. Wojtak et al.
2008; Posti et al. 2015; Williams & Evans 2015b). In contrast to the
fairly unbiased fits with our method, this f(E, L) method suffers from
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Figure 7. As Fig. 2 but for the stars in the level 2 halo A. From left to right the distributions of all the stars, the ‘smooth’ component (all stars excluding
satellites), and those in satellite subhaloes. The contrast of each panel is individually optimized.

an ∼50 per cent net bias in the parameters. As discussed in Wang
et al. (2015), this can be attributed to the fact that the f(E, L) DF
only describes gravitationally bound systems by construction (see
also section 6.3.1 of Paper I), and struggles to match the distribution
of the loosely bound particles. Because our oPDF method has no
prerequisite on the distribution of orbits (hence no prerequisite on
the energy distribution), our fits show no such net bias. On the other
hand, the f(E, L) fits exhibit a comparable amount of halo-to-halo
scatter to ours, reflecting that our method does capture the minimum
irreducible uncertainty associated with steady-state models.

5 A P P L I C AT I O N TO M O C K ST E L L A R
H A L O E S

In Fig. 7, we show the phase-space distribution of stars in halo A.
Unlike the DM tracer which is only slightly perturbed by subhaloes,
the halo stars are dominated by those in the satellite subhaloes.
The mass fraction contained in satellite galaxies is 50–70 per cent
(Table 1) in the radial range of interest. These satellite stars are
obviously not in equilibrium with the rest, and can be observation-
ally identified and removed as satellite galaxies. In what follows,
we will only use the ‘smooth’ component of halo stars, i.e., those
excluding satellite stars, as our tracer sample. In total, each halo

Table 1. Basic properties of the stellar haloes, within 10–
300 kpc. Ntot is the total number of star particles, Nsmth/Ntot

is the fraction of particles in the smooth component and
msmth/mtot is the mass fraction of particles in the smooth
component.

Halo Ntot Nsmth/Ntot msmth/mtot D

A 5.4 × 105 0.50 0.34 9.6
B 7.4 × 105 0.72 0.36 9.6
C 5.3 × 105 0.70 0.43 5.9
D 8.1 × 105 0.60 0.52 5.5
E 5.1 × 105 0.47 0.18 9.5

has (2–5) × 105 smooth star particles within 10–300 kpc, yielding
a statistical uncertainty of ∼2 per cent in mass and concentration.

The mean phase deviation profile is shown in Fig. 8. As for the
profile of DM tracers, overall �̄ is consistent with zero, with the
highest scatter seen at large radius, low binding energy and high
angular momentum. Note that stars with low binding energies are
also those that have been accreted recently (Wang et al. 2015). The
scatter in the star profiles also appears higher than that in the DM
case.

The fits using stars are plotted in Fig. 9 for both the template
and NFW profile models. For individual haloes, the deviation from
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Figure 8. The mean phase deviation profile of Aquarius stellar haloes.
This is the same as the right hand side of Fig. 3, but for star particles.
From top to bottom, we bin the star particles according to their r, E and L
coordinates, respectively, with equal numbers of particles in each bin. The
mean phase deviation, �̄, is evaluated in each bin, and plotted as a function
of the percentile values in the respective coordinate. Different coloured lines
represent different haloes as indicated in the legend. The dashed and dotted
reference lines mark the 0 and ±3σ discrepancy levels. Only the smooth
component of the halo stars is used.

the true parameters can be as high as 40 per cent. For comparison,
the fits and 1σ contours from the f(E, L) method of Wang et al.
(2015) and those from the DM tracers in the previous section are
also plotted.

Overall, we do not observe a statistically significant net bias in the
fits with the current sample of five haloes, even though the f(E, L)
method applied to stars is only marginally unbiased at the 1σ level.
In other words, the systematic bias varies from halo to halo in a
stochastic way. Despite this stochastic behaviour, we have checked
that the systematic bias does not change with sample size, so it is
indeed a systematic rather than a statistical error. There is a negative
correlation between the mass and concentration parameters in the
template fits, which is similar to the correlation in the statistical
noise of the two parameters. This correlation is absent in the NFW
fits only because halo A is not well described by NFW and this
biases the fit significantly. A viable explanation of this behaviour of
the systematic bias lies in the deviation of the tracer population from
a steady state. For example, the existence of correlated phase angles
in streams and caustics implies that different tracer particles are not
independent. As a result, the constraining power of a set of particles
in a stream is less than that of an equal number of independent

Figure 9. As Fig. 5, but showing the results of the dynamical fits to the
halo stars. As indicated in the legends, symbols of different shapes represent
different haloes, while different colours distinguish different data sets and
model profiles. Red and green show fits to stars adopting NFW and template
profiles respectively; blue shows the fit from Wang et al. (2015) to stars
combining radial and tangential velocities using a specific f(E, L) model;
grey shows the template fit applied to the smooth DM tracer. The symbols
are the results of fits to individual haloes, while the large ellipses mark the
estimated 1σ confidence regions for each type (i.e. combination of data set
and model) of fit estimated from the sample of five haloes.

particles. In the large sample limit, when each stream is sufficiently
sampled, the errors on the inferred model parameters do not vanish
but are limited by the effective number of independent streams or
particle clumps. This is an intrinsic property of each halo. Hence it is
understandable that we are left with irreducible stochastic biases in
well-sampled haloes. In addition, these residual errors are expected
to exhibit similar parameter correlations to the statistical noise. Note
that while the DM fits exhibit only ∼5 per cent scatter, the scatter
for the stellar fits is typically ∼20 per cent.

Since stars and DM tracers have different E-L distributions, they
occupy a statistically different set of orbits. This implies the tracers
potentially have different spatial distributions. As a result, they
could be sampling different parts of the halo, or the same region
but with different weights given to the local deviations of the halo
potential. It is possible that the different sampling has resulted in
the stars yielding a large scatter in the inferred halo properties. To
see whether this is the case, we select dark matter particles that
have the same E-L distribution as the stars to create a star-like dark
matter sample. Subhalo particles are removed from the DM and
star samples before sampling the E-L distribution and the radial
coordinates are ignored when constructing the samples. The same
fitting procedure is then applied to this star-like dark matter sample.
The results are shown in Fig. 10. By drawing a sample with the
stellar P(E, L) from DM particles, the scatter in the fits is actually
slightly decreased (probably due to the removal of the less virialized
outer halo particles) compared to the DM fits, and is much smaller
than that in the star fits. This shows that the tagged stars are indeed
in less of a steady state than the dark matter.

We remark that even though for the star samples the scatter in
Fig. 8 is higher at large radii, low binding energies and high an-
gular momentum, we do not detect a systematic decrease in the
biases of the fitted parameters as we exclude the large radii, low
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Figure 10. Comparison between the results of stellar and the DM dynamical
fits. The ‘Star’ and ‘DM’ fits are the same as in Fig. 9, using stars and
DM particles, respectively. The ‘dmStar’ fit uses a sample of DM particles
selected to have the same E-L distribution as that of the stars. Subhalo
particles have been removed in all three cases and only the template profiles
are used.

energy or low angular momentum regions. The lack of systematic
improvements in bias when excluding the regions with large scatter
is consistent with our previous argument that the biases are limited
by the effective number of independent streams. Also note the bias
and scatter are separate quantities, and we have observed that in the
high scatter regions the mean profile does not appear more biased.

6 H A L F M A S S C O N S T R A I N T

In Paper I we used Monte Carlo samples to demonstrate that the
mass profiles are best constrained near the median radius of the
tracer population. Similar best-constrained masses also exist in sev-
eral previous studies using very different methodologies (Walker
et al. 2009; Wolf et al. 2010; Amorisco & Evans 2011, see section
5.1 of Paper I for more discussion). Here we revisit this discovery
with the Aquarius haloes. In Fig. 11 we plot the constrained mass
profile from the DM and star tracers in halo A. Note our likeli-
hood method constrains not only the characteristic mass, but also
the shape of the mass profile. If the profile shape is biased then
the bias in enclosed mass varies with radius. Consistent with our
previous findings, the mass is best constrained near the half-mass
radius of the tracer. Comparing these best-constrained masses, the
bias in stars is still significantly larger than that in DM. This is also
consistent with our test using a star-like DM tracer in Fig. 10, where
we find that the different samplings of the star and DM tracers are
not the cause of the different bias levels. For comparison, the best-
fitting profile of the star-like DM tracer is also plotted, and shows
a bias comparable to the original DM fit. As listed in Table 2, stars
yield an average bias of ∼5 per cent at r1/2 when using the template
fits, while the DM yields only ∼1 per cent. The star-like DM tracers
have r1/2 close to that of the stars, but gives almost no bias at r1/2.
As far as the constraints at r1/2 are concerned, fitting with NFW
profiles gives quite similar results to template fits, indicating that
the half-mass constraint is less sensitive to the adopted functional

Figure 11. The template-fitted mass profile of halo A, using smooth DM
(red) and smooth star (grey) particles as tracers, respectively. The shaded
regions are the 1σ constraints on the mass profile, normalized by the true
profile. The vertical lines mark the half-mass radius of the two tracers. The
green dotted line is the best-fitting profile from the star-like DM tracer (i.e.
‘dmStar’ in Fig. 10).

form for the halo density profile (see also Paper I). However, models
with extra assumptions could still lead to significant bias at r1/2. For
example, fitting the DM tracers with the f(E, L) method in Wang
et al. (2015) produces an average mass bias of 13 per cent at r1/2

(Table 3).
We emphasize that since we are not only interested in the

mass constraint at a single radius but also in the full profile, any
parametrization of a specific density profile should be equivalent.
As long as the constraints are fully described in terms of the pa-
rameter covariance or the two-dimensional confidence contour, the
constraints on the full profile can always be recovered and trans-
lated to constraints in any other parametrization of the profile. Our
parametrization is intentionally chosen to constrain the most popu-
lar parameters, the virial mass and concentration of haloes.

7 SU M M A RY A N D C O N C L U S I O N S

We have applied our oPDF estimator to tracers in five simulated
haloes from the Aquarius project to study the level of systematic
biases in fitting the mass distribution of MW sized haloes. We fo-
cus on effects from the parametrization of the halo potential, the
existence of subhaloes, and the types of tracer used. Assuming a
spherical symmetric potential, our method only makes use of the
dynamical equilibrium of the tracer. As a result, the level of system-
atic biases detected in our analysis can, in general, be interpreted
as the minimum level of bias present in any time-independent DF
modelling of dynamical tracers that assumes a spherical potential.
With our sample of five haloes, we do not have a reliable detection
of a common bias in our method towards any particular direction
in parameter space. Instead, we focus on characterizing the average
amplitude of the bias in each fit. We quantify this as the rms scatter
of the biases for individual haloes, and summarize them in Table 3.
The method works very well on DM tracers, with a level of system-
atic bias at only ∼5 per cent. Assuming an NFW profile does not
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Table 2. Tracer half-mass radius r1/2 and mass bias b1/2 at r1/2, from fits to the smooth component of DM, star, and ‘dmStar’ tracers.
‘dmStar’ refers to DM tracers selected to have the same E-L distribution as the stars, as in Fig. 10. We list the biases from template fits
by default. For DM and star tracers, biases from NFW fits are also given in parentheses.

Halo DM r1/2/kpc DM b1/2 Star r1/2/kpc Star b1/2 dmStar r1/2 dmStar b1/2

A2 103 0.00 (0.05) 41.7 − 0.07( − 0.02) 41.6 − 0.01
B2 85.4 0.01 (0.03) 18.8 0.05 (0.05) 19.0 0.01
C2 86.2 0.03 (0.05) 48.2 0.03 (0.04) 47.4 0.00
D2 103.1 − 0.02 (0.00) 32.8 0.04 (0.05) 33.1 0.00
E2 90.1 − 0.00 (0.00) 18.6 0.04 (0.02) 18.6 0.00

Table 3. Summary of the different fits to the halo density profile. For each combination of data and method, we list the fitted parameters averaged over the
five haloes (x̄) and their halo-to-halo standard deviation (σ ) in the form x̄ ± σ . The mass (M) and concentration (c) parameters are normalized by their true
values, M0 and c0. The mass bias at the tracer half-mass radius, b1/2, is also listed in the same form. Different columns refer to different combinations of data
and methods. ‘DM-Full’, ‘DM’ and ‘Star’ refer to full DM, the smooth DM (DM-Full excluding subhalo particles), and smooth star tracers. ‘dmStar’ refers to
DM samples selected to have the same E-L distribution as stars. ‘NFW’ and ‘TMP’ refer to fits using NFW or template potential profiles. f(E, L) refers to the
(r, vr, vt) fit in Wang et al. (2015) using an f(E, L) DF.

DM:NFW DM:TMP DM-Full:TMP DM:f(E, L) Star:NFW Star:TMP Star:f(E, L) dmStar:TMP

M/M0 0.97 ± 0.07 1.00 ± 0.05 1.02 ± 0.04 1.54 ± 0.05 1.00 ± 0.25 1.10 ± 0.23 0.82 ± 0.16 0.99 ± 0.03
c/c0 0.99 ± 0.17 0.98 ± 0.06 0.96 ± 0.04 0.48 ± 0.13 0.99 ± 0.16 0.97 ± 0.18 1.12 ± 0.14 1.01 ± 0.03
b1/2 0.02 ± 0.02 0.00 ± 0.01 − 0.01 ± 0.02 0.13 ± 0.02 0.03 ± 0.02 0.02 ± 0.04 − 0.02 ± 0.01 0.00 ± 0.01

significantly affect the fits in most cases, except in one case out of
five where the density profile of the halo (Aq-A) differs significantly
from the NFW form, leading to a much larger bias (∼30 per cent)
when adopting the NFW profile. However, the deviation from the
NFW profile in halo A does not affect the equilibrium of the DM
tracer. Subhaloes exist as perturbations that give rise to deviations
from steady state for the tracers, but only affect the dynamical fits
using DM tracers by ∼1 per cent. In contrast to the fairly good fits
to the DM tracers with our method, a conventional DF fit adopt-
ing a specific f(E, L) DF (Wang et al. 2015) yields a net bias of
50 per cent in mass and concentration on average. This is caused by
the additional assumptions made in the f(E, L) DF that restricts the
allowed distribution of orbits. On the other hand, the halo-to-halo
variation in the bias is comparable to that in our method, demon-
strating that our method gives the minimum uncertainty in mass
modelling assuming time-independent DFs.

Applying our method to mock stars results in a higher level of
bias, b ∼ 20 per cent, comparable to that in the f(E, L) DF method
tested in Wang et al. (2015) which, however, also suffers from a
non-zero net bias. The larger bias using star tracers is not due to
different phase-space sampling by stars compared to DM particles:
DM tracers constrained to sample the phase-space E-L distribution
in the same way as the stars yield biases at the same level as the
original DM tracers. The larger deviation of tagged stars from a
steady state is not surprising because they involve the 1 per cent
most bound particles of their host subhalo at the time of star for-
mation. By definition, these particles are the most resistant to tidal
stripping and subsequent mixing. Even though we only use the
stripped population of tagged particles, they are still farther from
equilibrium than the smooth component of the host halo.

It is well known that dynamical tracers best-constrain the host
mass near the tracer’s half-mass radius, r1/2 (Walker et al. 2009;
Wolf et al. 2010; Amorisco & Evans 2011). Although we adopt a
vastly different method from those analyses, a similar behaviour
is also observed in our analysis. Near r1/2, the mass biases, b1/2,
are much reduced, and also become less sensitive to the functional
form of the halo profile assumed in our model. Larger biases are

still observed for stars, b1/2 ∼ 5 per cent, compared with b1/2 ∼
2 per cent for DM tracers. The f(E, L) method that poorly fits the
DM tracer produces a much larger bias, b1/2 ∼ 10 per cent. Although
the bias at r1/2 is significantly smaller than the bias for the total mass,
in reality b1/2 together with the constraint on the profile shape at
r1/2 is equivalent to the joint constraint in the mass-concentration
space. Given the full mass-concentration covariance matrix, one
can readily obtain the mass constraint at any radius including r1/2.
While r1/2 depends on the tracer, M and c are intrinsic properties of
the halo.

In this work we frequently compare our results with those of Wang
et al. (2015) who used a specific model of the f(E, L) family to study
the same haloes. We demonstrate that the extra assumptions in that
model beyond time-independence and spherical symmetry have re-
sulted in a worse performance compared with the oPDF. There are
more flexible DFs that can improve over the one assumed in Wang
et al. (2015), for example, by allowing for varying anisotropies (e.g.
Wojtak et al. 2008; Williams & Evans 2015b). More generally, there
may exist a true model that describes well the DF of the tracers.
However, such a true model has to be known a priori to fit the tracers
correctly, which is a highly challenging task if at all possible. At the
same time, any specifically proposed DF has generally limitations
stemming from extra assumptions over and above the Jeans theo-
rem. These extra assumptions may not be obeyed by an arbitrary
tracer sample. As such, the results obtained using the oPDF method
which makes minimal assumptions are particularly robust, and the
comparison with the specific model of Wang et al. (2015) therefore
serves to illustrate the limitations of restricted models. In particular,
since the statistical noise has been controlled to be negligible in our
analysis, the level of systematic bias detected with the oPDF is the
minimum level of systematic bias expected from any model that
assumes a spherically symmetric and time-independent DF.

Note that the stars used in this work are generated from a particle-
tagging method that is a relatively simple way of approximating the
phase-space distribution of stars. Several factors, including insuf-
ficient mass resolution (the weighting and multiple tagging of star
particles), the time discreteness of the tagging (the method works
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with snapshots), and the lack of dissipation and back-reaction on
the potential from stars, could all potentially affect the degree of
realism with which the tagged stars represent the dynamics of real
stars. Due to these limitations, the results from the tagged stars
should only be taken as indicative. Also note that only five haloes
are studied in this work and these may not be very representative
of our MW halo. In a follow up work, we will apply the method to
a larger sample of haloes modelled using SPH simulations of the
Local Group for a more realistic assessment of the dynamical state
of tracers in Galactic haloes.
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APPENDI X A : PARAMETERS O F TEMPLATE
PROFI LES

To connect template parameters A and B in equation (14) to physical
parameters, we can define

A = ψs/ψs0, (A1)

B = rs/rs0, (A2)

where rs is a scale radius at which the profile has some predefined
shape, and ψ s is the potential at r = 0. We choose rs to be the
radius where d ln ρ/d ln r = −2 to be consistent with an NFW
parametrization. rs0 and ψ s0 are the corresponding quantities of the
true profile. Hence this template profile is parametrized by (A, B)
or equivalently by (ψ s, rs). We can also define equivalent mass
and concentration parameters. For each profile, the virial mass, M,
and virial radius, Rv, can be defined following the same spherical-
overdensity definition as in equation (11), and the concentration can
be defined through c = Rv/rs, consistent with NFW.4 The mass and
concentration parameters of the true profile (i.e. the template with
A = 1, B = 1), M0 and c0, are by definition the true parameters of
the halo, and can be obtained unambiguously from the true profile
without fitting. If the halo is perfectly NFW, then the true parameters
defined this way are also the best-fitting NFW parameters to the
density profile. When the density profile differs from NFW form,
however, the true parameters, M0 and c0, should be interpreted as
the spherical overdensity mass and the contrast of the spherical
overdensity radius, Rv, to the slope −2 radius, rs, rather than being
any best-fitting NFW parameters.

With the template parametrization, the inversion from any set of
(M, c) parameters back to (A, B) is also straight-forward. Note that
the mass profile of the template scales as

M(r) = ψ ′(r)r2

G

= ABm
( r

B

)
, (A3)

where M(r) is the mass profile of the template with parameters
(A, B), ψ ′(r) is the derivative of the template potential, and m(r) is
the true mass profile. Hence M = ABm(Rv/B). After obtaining (Rv,
rs) from (M, c), one can solve (A, B) as follows:

B = rs
rs0

(A4)

4 Although we have chosen rs to be the slope −2 radius, in principle rs can
be defined to be the radius at any characteristic slope, with the concentration
parameter being interpreted as the ratio between Rv and rs. As long as the
definition is consistent within the same template, the B parameter does not
depend on the specific definition of rs.
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A = M

Bm(Rv/B)
. (A5)

To create the templates numerically, we extract both the potential
profiles and the cumulative density profiles ρ( < r) ∝ ψ ′(r)/r from

the particle distribution of each halo. The ρ( < r) is provided to
avoid the need for numerical differentiation of the potential profile.
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