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Abstract

We offer a systematic analysis of the use of deep learning networks for stock market analysis
and prediction. Its ability to extract features from a large set of raw data without relying on prior
knowledge of predictors makes deep learning potentially attractive for stock market prediction at
high frequencies. Deep learning algorithms vary considerably in the choice of network structure, ac-
tivation function, and other model parameters, and their performance is known to depend heavily on
the method of data representation. Our study attempts to provides a comprehensive and objective as-
sessment of both the advantages and drawbacks of deep learning algorithms for stock market analysis
and prediction. Using high-frequency intraday stock returns as input data, we examine the effects
of three unsupervised feature extraction methods—principal component analysis, autoencoder, and
the restricted Boltzmann machine—on the network’s overall ability to predict future market behavior.
Empirical results suggest that deep neural networks can extract additional information from the resid-
uals of the autoregressive model and improve prediction performance; the same cannot be said when
the autoregressive model is applied to the residuals of the network. Covariance estimation is also
noticeably improved when the predictive network is applied to covariance-based market structure
analysis. Our study offers practical insights and potentially useful directions for further investigation
into how deep learning networks can be effectively used for stock market analysis and prediction.

KEYWORDS: Stock market prediction; deep learning; multilayer neural network; covariance estima-
tion

1 Introduction

Research on the predictability of stock markets has a long history in financial economics (e.g., Bradley,
1950; Granger & Morgenstern, 1970; Bondt & Thaler, 1985; J. Y. Campbell & Hamao, 1992; Ang
& Bekaert, 2007; J. Y. Campbell & Thompson, 2008; Bacchetta, Mertens, & Van Wincoop, 2009;
S. D. Campbell, 2012). While opinions differ on the efficiency of markets, many widely accepted
empirical studies show that financial markets are to some extent predictable (Ferreira & Santa-Clara,
2011; J. H. Kim, Shamsuddin, & Lim, 2011; Bollerslev, Marrone, Xu, & Zhou, 2014; Phan, Sharma, &
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Narayan, 2015). Among methods for stock return prediction, econometric or statistical methods based
on the analysis of past market movements have been the most widely adopted (Agrawal, Chourasia, &
Mittra, 2013). These approaches employ various linear and nonlinear methods to predict stock returns,
e.g., autoregressive models and artificial neural networks (ANN) (Bogullu, Dagli, & Enke, 2002; A.-
S. Chen, Leung, & Daouk, 2003; Thawornwong & Enke, 2004; Armano, Marchesi, & Murru, 2005;
Cao, Leggio, & Schniederjans, 2005; Zhu, Wang, Xu, & Li, 2008; Atsalakis & Valavanis, 2009; Tsai
& Hsiao, 2010; Guresen, Kayakutlu, & Daim, 2011a; Khashei & Bijari, 2011; Kara, Boyacioglu, &
Baykan, 2011; Wang, Wang, Zhang, & Guo, 2011; Yeh, Huang, & Lee, 2011; Kazem, Sharifi, Hussain,
Saberi, & Hussain, 2013; Ticknor, 2013; Adebiyi, Adewumi, & Ayo, 2014; Enke & Mehdiyev, 2014;
Monfared & Enke, 2014; Rather, Agarwal, & Sastry, 2015; Y. Kim & Enke, 2016a, 2016b). While
there is uniform agreement that stock returns behave nonlinearly, many empirical studies show that for
the most part nonlinear models do not necessarily outperform linear models: e.g., C. Lee, Sehwan, and
Jongdae (2007), K. J. Lee, Chi, Yoo, and Jin (2008), Agrawal et al. (2013), and Adebiyi et al. (2014) pro-
pose linear models that outperform or perform as well as nonlinear models, whereas Thawornwong and
Enke (2004), Cao et al. (2005), Enke and Mehdiyev (2013), and Rather et al. (2015) find nonliner mod-
els outperfrom linear models. Table I provides a summary of recent works relevant to our research. For
more exhaustive and detailed reviews, we refer the reader to Atsalakis and Valavanis (2009), Guresen,
Kayakutlu, and Daim (2011b), and Cavalcante, Brasileiro, Souza, Nobrega, and Oliveira (2016).

Recently there has been a resurgence of interest in artificial neural networks, in large part to its
spectacular successes in image classification, natural language processing, and various time-series prob-
lems (Hinton & Salakhutdinov, 2006; H. Lee, Pham, Largman, & Ng, 2009; CireşAn, Meier, Masci,
& Schmidhuber, 2012). Underlying this progress is the development of a feature learning framework,
known as deep learning (LeCun, Bengio, & Hinton, 2015), whose basic structure is best described as a
multi-layer neural network, and whose success can be attributed to a combination of increased computa-
tional power, availability of large datasets, and more sophisticated algorithms (Hinton, Osindero, & Teh,
2006; Bengio, Lamblin, Popovici, Larochelle, et al., 2007; Salakhutdinov & Hinton, 2009; Deng & Yu,
2014; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).

There has been growing interest in whether deep learning can be effectively applied to problems
in finance, but the literature (at least in the public domain) still remains limited.1 With the increasing
availability of high-frequency trading data and the less-than-satisfactory performance of existing models,
comprehensive studies that objectively examine the suitability of deep learning to stock market prediction
and analysis seem opportune. The ability to extract abstract features from data, and to identify hidden
nonlinear relationships without relying on econometric assumptions and human expertise, makes deep
learning particularly attractive as an alternative to existing models and approaches.

ANNs require a careful selection of the input variables and network parameters such as the learning
rate, number of hidden layers, and number of nodes in each layer in order to achieve satisfactory results
(Hussain, Knowles, Lisboa, & El-Deredy, 2008). It is also important to reduce dimensionality to improve
learning efficiency. On the other hand, deep learning automatically extracts features from data and
requires minimal human intervention during feature selection. Therefore, our approach does not require
expertise on predictors such as macroeconomic variables and enables us to use a large set of raw-level
data as input. Ignoring the factors that are known to predict the returns, our approach may not be able to

1There exist a few studies that apply deep learning to identification of the relationship between past news events and stock
market movements (Yoshihara, Fujikawa, Seki, & Uehara, 2014; Ding, Zhang, Liu, & Duan, 2015), but, to our knowledge,
there is no study that apply deep learning to extract information from the stock return time series.

2



outperform existing models based on carefully chosen predictors. However, considering the fast growth
of deep learning algorithms, we believe our research will serve as a milestone for the future research in
this direction. (Chourmouziadis & Chatzoglou, 2016) also predict that deep learning will play a key role
in financial time series forecasting.

We conjecture that, due to correlation, past stock returns affect not only its own future returns but
also the future returns of other stocks, and use 380 dimensional lagged stock returns (38 stocks and 10
lagged returns) as input data letting deep learning extract features. This large input dataset makes deep
learning a particularly suitable choice for our research.

We test our model on high-frequency data from the Korean stock market. Previous studies have
predominantly focused on return prediction at a low frequency, and high frequency return prediction
studies haven been rare. However, market microstructure noise can cause temporal market inefficiency
and we expect that many profit opportunities can be found at a high frequency. Also, high-frequency
trading allows more trading opportunities and makes it possible to achieve statistical arbitrage. Another
advantage of using high-frequency data is that we can get a large dataset, which is essential to overcome
data-snooping and over-fitting problems inevitable in neural network or any other non-linear models.
Whilst it should be possible to train the network within 5 minutes given a reasonable size of training set,
we believe daily training should be enough.

Put together, the aim of the paper is to assess the potential of deep feature learning as a tool for
stock return prediction, and more broadly for financial market prediction. Viewed as multi-layer neu-
ral networks, deep learning algorithms vary considerably in the choice of network structure, activation
function, and other model parameters; their performance is also known to depend heavily on the method
of data representation. In this study, we offer a systematic and comprehensive analysis of the use of
deep learning. In particular, we use stock returns as input data to a standard deep neural network, and
examine the effects of three unsupervised feature extraction methods—principal component analysis,
autoencoder, and the restricted Boltzmann machine—on the network’s overall ability to predict future
market behavior. The network’s performance is compared against a standard autoregressive model and
ANN model for high-frequency intraday data taken from the Korean KOSPI stock market.

The empirical analysis suggests that the predictive performance of deep learning networks is mixed
and depends on a wide range of both environmental and user-determined factors. On the other hand, deep
feature learning is found to be particularly effective when used to complement an autoregressive model,
considerably improving stock return prediction. Moreover, applying this prediction model to covariance-
based market structure analysis is also shown to improve covariance estimation effectively. Beyond these
findings, the main contributions of our study are to demonstrate how deep feature learning-based stock
return prediction models can be constructed and evaluated, and to shed further light on future research
directions.

The remainder of the paper is organized as follows. Section 2 describes the framework for stock
return prediction adopted in our research, with a brief review of deep neural networks and data repre-
sentation methods. Section 3 describes the sample data construction process using stock returns from
the KOSPI stock market. A simple experiment to show evidence of predictability is also demonstrated
in this section. Section 4 proposes several data representations that are used as inputs to the deep neural
network, and assesses their predictive power via a stock market trend prediction test. Section 5 is devoted
to construction and evaluation of the deep neural network; here we compare our model with a standard
autoregressive model, and also test a hybrid model that merges the two models. In Section 6, we apply
the results of return predictions to covariance structure analysis, and show that incorporating return pre-

3



Table I: A summery of recent studies on stock market prediction.

Authors
(Year)

Data Type
(Num. of

input features
×lagged times)

Target Output

Num. of
Samples

(Training:
Validation:

Test)

Sampling
Period

(Frequency)
Method Performance

Measure

Enke and
Mehdiyev (2013)

US S&P 500 index
(20×1)

stock price 361
Jan-1980

to Jan-2010
(daily)

feature selection
+fuzzy clustering

+fuzzy NN
RMSE

Niaki and
Hoseinzade

(2013)

Korea KOSPI200
index (27×1)

market
direction

(up or down)

3,650
(8:1:1)

1-Mar-1994
to 30-Jun-2008

(daily)

feature selection
+ANN

statistical
tests

Cervelló-Royo
et al.

(2015)

US Dow Jones
index (1×10)

market trend
(bull/bear-flag)

91,307
22-May-2000

to 29-Nov-2013
(15-min)

template
matching

trading
simulation

Patel et al.
(2015)

India CNX and
BSE indices

(10×1)
stock price 2,393∗

Jan-2003
to Dec-2012

(daily)

SVR+
{ANN, RF, SVR}

MAPE, MAE,
rRMSE, MSE

T.-l. Chen
and Chen

(2016)

Taiwan TAIEXa

and US NASDAQb

indices
(27×20)

market trend
(bull-flag)

3,818a,∗

3,412b,∗

(7:0:1)

7-Jen-1989
to 24-Mar-2004

(daily)

dimension
reduction
+template
matching

trading
simulation

Chiang et al.
(2016)

World 22 stock
market indices

({3∼5}×1)

trading signal
(stock price)

756
(2:0:1)

Jan-2008
to Dec-2010

(daily)

particle swarm
optimization

+ANN

trading
simulation

Chourmouziadis
and Chatzoglou

(2016)

Greece ASE
general index

(8×1)

portfolio
composition
(cash:stock)

3,907∗
15-Nov-1996
to 5-Jun-2012

(daily)
fuzzy system

trading
simulation

Qiu et al.
(2016)

Japan Nikkei 225
index (71×1)

stock return
237

(7:0:3)

Nov-1993
to Jul-2013
(monthly)

ANN
+{genetic
algorithm,
simulated
annealing}

MSE

Arévalo et al.
(2016)

US Apple stock
(3×{2∼15}+2)

stock price
19,109
(17:0:3)

2-Sep-2008
to 7-Nov-2008

(1-minute)
deep NN

MSE,
directional
accuracy

Zhong and Enke
(2017)

US SPDR S&P 500
ETF (SPY)

(60×1)

market
direction

(up or down)

2,518
(14:3:3)

1-Jun-2003
to 31-May-2013

(daily)

dimension
reduction

+ANN

trading
simulation,
statistical

tests

Our study
Korea KOSPI

38 stock returns
(38×10)

stock return
73,041
(3:1:1)

4-Jan-2010
to 30-Dec-2014

(5-minute)

data
representation+

deep NN

NMSE, RMSE,
MAE, MI

NN: neural network, SVR: support vector regression, RF: random forest, rRMSE: relative RMSE, NMSE: normalized MSE, MI: mutual
information.
∗ In some studies the number of samples is not explicitly provided. We have calculated the number of samples based on each country’s
business days.
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dictions improves estimation of correlations between stocks. Concluding remarks with suggestions for
the future research are given in Section 7.

2 Deep Feature Learning for Stock Return Prediction

2.1 The Framework

For each stock, we seek a predictor function f in order to predict the stock return at time t + 1, rt+1,
given the features (representation) ut extracted from the information available at time t. We assume
that rt+1 can be decomposed into two parts: the predicted output r̂t+1 = f(ut), and the unpredictable
part γ, which we regard as Gaussian noise:

rt+1 = r̂t+1 + γ, γ ∼ N (0, β), (1)

where N (0, β) denotes a normal distribution with zero mean and variance β. The representation ut can
be either a linear or a nonlinear transformation of the raw level information Rt. Denoting the transfor-
mation function by φ, we have

ut = φ(Rt), (2)

and
r̂t+1 = f ◦ φ(Rt). (3)

For our research, we define the raw level information as the past returns of the stocks in our sample. If
there are M stocks in the sample and g lagged returns are chosen, Rt will have the form

Rt = [r1,t, · · · r1,t−g+1, · · · , rM,t, · · · , rM,t−g+1]T ∈ RMg, (4)

where ri,t denotes the return on stock i at time t. In the remainder of this section, we illustrate the
construction of the predictor function f using a deep neural network, and the transformation function φ
using different data representation methods.

2.2 Deep Neural Network

A Neural network specifies the nonlinear relationship between two variables hl and hl+1 through a
network function, which typically has the form

hl+1 = δ(Whl + b), (5)

where δ is called an activation function, and the matrix W and vector b are model parameters. The
variables hl and hl+1 are said to form a layer; when there is only one layer between the variables,
their relationship is called a single-layer neural network. Multi-layer neural networks augmented with
advanced learning methods are generally referred to as deep neural networks (DNN). A DNN for the
predictor function, y = f(u), can be constructed by serially stacking the network functions as follows:

h1 = δ1(W1u+ b1)

h2 = δ2(W2h1 + b2)

...

y = δL(WLhL−1 + bL),
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where L is the number of layers.
Given a dataset {un, τn}Nn=1 of inputs and targets, and an error function E(yn, τn) that measures

the difference between the output yn = f(un) and the target τn, the model parameters for the entire
network, θ = {W1, · · · ,WL, b1, · · · , bL}, can be chosen so as to minimize the sum of the errors:

min
θ

[
J =

N∑
n=1

E(yn, τn)

]
. (6)

Given an appropriate choice of E(·), its gradient can be obtained analytically through error backpropa-
gation (Bishop, 2006). In this case, the minimization problem in (6) can be solved by the usual gradient
descent method. A typical choice for the objective function that we adopt in this paper has the form:

J =
1

N

N∑
n=1

‖yn − τn‖2 + λ ·
L∑
l=1

‖Wl‖2, (7)

where ‖ · ‖ and ‖ · ‖2 respectively denote the Euclidean norm and the matrix L2 norm. The second term
is a “regularizer” added to avoid overfitting, while λ is a user-defined coefficient.

2.3 Data Representation Methods

Transforming (representing) raw data before inputing it into a machine learning task often enhances the
performance of the task. It is generally accepted that the performance of a machine learning algorithm
depends heavily on the choice of the data representation method (Bengio, Courville, & Vincent, 2013;
Längkvist, Karlsson, & Loutfi, 2014). There are various data representation methods such as zero-to-one
scaling, standardization, log-scaling, and principal component analysis (PCA) (Atsalakis & Valavanis,
2009). More recently, nonlinear methods became popular: Zhong and Enke (2017) compare PCA and
two of its nonlinear variants; fuzzy robust PCA and kernel-based PCA. In this paper, we consider three
unsupervised data representation methods: PCA, the autoencoder (AE), and the restricted Boltzmann
machine (RBM). PCA involves a linear transformation while the other two are nonlinear transformations.
These representation methods are widely used in, e.g., image data classification (Coates, Lee, & Ng,
2010).

For raw data x and a transformation function φ, u = φ(x) is called a representation of x, while each
element of u is called a feature. In some cases we can also define a reverse map, ψ : u→ x, and retrieve
x from u; in this case the retrieved value, xrec = ψ(u), is called a reconstruction of x. The functions φ
and ψ can be learned from x and xrec by minimizing the difference (reconstruction error) between them.
We now briefly describe each method below.

(i) Principal Component Analysis, PCA

In PCA, the representation u ∈ Rd is generated from the raw data x ∈ RD via a linear transforma-
tion u = φ(x) = Wx + b, where W ∈ Rd×D, WW T = I , and b ∈ Rd. The rows of W are the
eigenvectors of the first d largest eigenvalues, and b is usually set to −WE[x] so that E[u] = 0.
Reconstruction of the original data from the representation is given by xrec = ψ(u) = W T (u−b).

(ii) Autoencoder, AE

6



AE is a neural network model characterized by a structure in which the model parameters are
calibrated by minimizing the reconstruction error. Let hl = δl(Wlhl−1 + bl) be the network
function of the lth layer with input hl−1 and output hl. Although δl can differ across layers, a
sigmoid function, δ(z) = 1/(1 + exp (−z)), is typically used for all layers, which we also adopt
in our research.2 Regarding hl as a function of the input, the representation of x can be written as
u = φ(x) = hL ◦ · · · ◦ h1(x) for an L-layer AE (h0 = x). Then the reconstruction of the data
can be similarly defined: xrec = ψ(u) = h2L ◦ · · · ◦ hL+1(u), and the model can be calibrated
by minimizing the reconstruction error over a training dataset, {xn}Nn=1. We adopt the following
learning criterion:

min
θ

1

N

N∑
n=1

||xn − ψ ◦ φ(xn)||2, (8)

where θ = {Wi, bi}, i = 1, ..., 2L. WL+i is often set as the transpose of WL+1−i, in which case
only Wi, i = 1, · · · , L, need to be estimated. In this paper, we consider a single-layer AE and
estimate both W1 and W2.

(iii) Restricted Boltzmann Machine, RBM
RBM (Hinton, 2002) has the same network structure as a single-layer autoencoder, but it uses
a different learning method. RBM treats the input and output variables, x and u, random, and
defines an energy function, E(x, u), from which the joint probability density function of x and u
is determined from the formula

p(x, u) =
exp(−E(x, u))

Z
, (9)

where Z =
∑

x,u exp(−E(x, u)) is the partition function. In most cases, u is assumed to be a d-
dimensional binary variable, i.e., u ∈ {0, 1}d, and x is assumed to be either binary or real-valued.
When x is a real-valued variable, the energy function has the following form (Cho, Ilin, & Raiko,
2011):

E(x, u) =
1

2
(x− b)TΣ−1(x− b)− cTu− uTWΣ−1/2x , (10)

where Σ, W , b, c are model parameters. We set Σ to be the identity matrix; this makes learning
simpler with little performance sacrifice (Taylor, Hinton, & Roweis, 2006). From Equations (9)
and (10), the conditional distributions are obtained as follows:

p(uj = 1|x) = δ(cj +W(j,:)x), j = 1, · · · , d, (11)

p(xi|u) = N (bi + uTi W(:,i), 1), i = 1, · · · , D, (12)

where δ(·) is the sigmoid function, and W(j,:) and W(:,i) are the jth row and the ith column of W ,
respectively. This type of RBM is denoted the Gaussian-Bernoulli RBM. The input data is then
represented and reconstructed in a probabilistic way using the conditional distributions. Given an
input dataset {xn}Nn=1, maximum log-likelihood learning is formulated as the following optimiza-
tion:

max
θ

[
L =

N∑
n=1

log p(xn; θ)

]
, (13)

2exp (z) is applied to each element of z.
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where θ = {W, b, c} are the model parameters, and u is marginalized out (i.e., integrated out
via expectation). This problem can be solved via standard gradient descent. However, due to
the computationally intractable partition function Z, an analytic formula for the gradient is usu-
ally unavailable. The model parameters are instead estimated using a learning method called the
contrastive divergence (CD) method (Carreira-Perpinan & Hinton, 2005); we refer the reader to
Hinton (2002) for details on learning with RBM.

3 Data Specification

We construct a deep neural network using stock returns from the KOSPI market, the major stock market
in South Korea. We first choose the fifty largest stocks in terms of market capitalization at the beginning
of the sample period, and keep only the stocks which have a price record over the entire sample period.
This leaves 38 stocks in the sample, which are listed in Table II. The stock prices are collected every five
minutes during the trading hours of the sample period (04-Jan-2010 to 30-Dec-2014), and five-minute
logarithmic returns are calculated using the formula rt = ln(St/St−∆t), where St is the stock price at
time t, and ∆t is five minutes. We only consider intraday prediction, i.e., the first ten five-minute returns
(i.e., lagged returns with g = 10) each day are used only to construct the raw level input Rt, and not
included in the target data. The sample contains a total of 1,239 trading days and 73,041 five-minute
returns (excluding the first ten returns each day) for each stock.

The training set consists of the first 80% of the sample (from 04-Jan-2010 to 24-Dec-2013) which
contains 58,421 (N1) stock returns, while the remaining 20% (from 26-Dec-2013 to 30-Dec-2014) with
14,620 (N2) returns is used as the test set:

Training set: {Rnt , rni,t+1}
N1
n=1, Test set: {Rnt , rni,t+1}

N2
n=1, i = 1, · · · ,M.

To avoid over-fitting during training, the last 20% of the training set is further separated as a validation
set.

All stock returns are normalized using the training set mean and standard deviation, i.e., for the
mean µi and the standard deviation σi of ri,t over the training set, the normalized return is defined as
(ri,t − µi)/σi. Henceforth, for notational convenience we will use ri,t to denote the normalized return.

At each time t, we use ten lagged returns of the stocks in the sample to construct the raw level input:

Rt = [r1,t, · · · , r1,t−9, · · · , r38,t, · · · , r38,t−9]T .

3.1 Evidence of Predictability in the Korean Stock Market

As a motivating example, we carry out a simple experiment to see whether past returns have predictable
power for future returns. We first divide the returns of each stock into two groups according to the
mean or variance of ten lagged returns: If the mean of the lagged returns, M(10), is greater than some
threshold η, the return is assigned to one group; otherwise, it is assigned to the other group. Similarly,
by comparing the variance of the lagged returns, V (10), with a threshold ε, the returns are divided into
two groups.
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Table II: The sample stocks. They are chosen from the Korean stock market by the size.

Stock ID Listed Name Abbreviation Stock ID Listed Name Abbreviation

1 KiaMtr Kia Mtr 20 SKTelecom SKTelecom
2 SK hynix SK hynix 21 LOTTE SHOPPING LT Shop
3 HyundaiEng&Const HD Const 22 IBK IBK
4 SAMSUNG C&T SS C&T 23 SAMSUNG CARD SS CARD
5 LG Corp. LG Corp 24 KT KT
6 HYUNDAI STEEL HD STEEL 25 KT&G KT&G
7 HyundaiMtr HD Mtr 26 DHICO DHICO
8 POSCO POSCO 27 LG Display LG Disp
9 SamsungElec SS Elec 28 SKC&C SKC&C
10 SAMSUNG SDI CO.,LTD. SS SDI 29 Kangwonland KW land
11 SamsungElecMech SS ELMech 30 NCsoft NCsoft
12 HHI HHI 31 DSME DSME
13 OCI OCI 32 ShinhanGroup Shinhan
14 KorZinc KorZinc 33 LGELECTRONICS LG Elec
15 SamsungHvyInd SS HvyInd 34 HYUNDAIGLOVIS HD Glovis
16 S-Oil S-Oil 35 HANAFINANCIALGR HANA Fin
17 LOTTE CHEMICAL Corp LT Chemi 36 AMOREPACIFIC AMORE
18 Mobis Mobis 37 SK Innovation SK Innov
19 KEPCO KEPCO 38 KBFinancialGroup KB Fin

The classification is carried out in the training set, and the thresholds η and ε are chosen for each
stock so that the two groups have the same size. These thresholds are then applied to the test set to
classify the returns, and the mean and variance of each group are calculated.

The results are shown in Table III and Figure 1. From the first graph in the figure, it can be clearly
seen that the average return of the M(10) > η group is lower than that of the other group, for all
stocks except AMORE (36). The difference between the two groups is very large for some stocks,
e.g., SAMSUNG SDI (10), HHI (12), and IBK (22). More specifically, the mean difference between
two groups is significant at 99% confidence level for all stocks except AMORE, which is significant at
95% level. Similar results are obtained for the variance-based classification. The variance difference is
significant for all stocks at 99% confidence level. The difference between the two groups may not be
large enough for many stocks to make a profit after transaction costs are accounted for. Nevertheless,
this example suggests that past returns do have predictive power to a certain degree, which can be further
exploited by deep feature learning.
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Table III: Mean and variance of stock returns in each group in the test set. The second and the third
columns are mean returns of each group and the fourth column is the p-value of t-test on the mean
difference. The last three columns are variances of the returns and the p-value of F -test on the variance
difference. The details of the grouping method can be found in Section 3.1.

Stock ID M(10)> η M(10)< η p-val V(10)> ε V(10)< ε p-val

1 -0.079 0.095 0.000 1.069 0.657 0.000
2 -0.023 0.035 0.000 0.915 0.385 0.000
3 -0.049 0.053 0.000 0.956 0.560 0.000
4 -0.038 0.053 0.000 1.113 0.556 0.000
5 -0.073 0.076 0.000 1.071 0.613 0.000
6 -0.024 0.034 0.000 0.627 0.351 0.000
7 -0.124 0.124 0.000 0.935 0.564 0.000
8 -0.099 0.114 0.000 1.117 0.803 0.000
9 -0.041 0.009 0.000 1.018 0.467 0.000
10 -0.154 0.188 0.000 1.141 0.771 0.000
11 -0.048 0.035 0.000 0.953 0.359 0.000
12 -0.178 0.187 0.000 1.548 0.838 0.000
13 -0.093 0.106 0.000 1.005 0.626 0.000
14 -0.007 0.041 0.000 0.693 0.426 0.000
15 -0.065 0.045 0.000 1.111 0.536 0.000
16 -0.044 0.025 0.000 0.729 0.274 0.000
17 -0.068 0.081 0.000 0.997 0.640 0.000
18 -0.068 0.071 0.000 1.026 0.546 0.000
19 -0.029 0.020 0.003 1.529 0.643 0.000
20 -0.092 0.055 0.000 0.990 0.655 0.000
21 -0.091 0.038 0.000 0.878 0.560 0.000
22 -0.164 0.224 0.000 1.054 0.829 0.000
23 -0.042 0.048 0.000 1.204 0.524 0.000
24 -0.124 0.082 0.000 1.176 0.835 0.000
25 -0.067 0.070 0.000 1.279 0.541 0.000
26 -0.023 0.039 0.000 1.168 0.562 0.000
27 -0.026 0.063 0.000 0.846 0.528 0.000
28 -0.080 0.090 0.000 1.066 0.744 0.000
29 -0.065 0.038 0.000 1.067 0.601 0.000
30 -0.095 0.107 0.000 1.137 0.729 0.000
31 -0.037 0.021 0.000 1.209 0.527 0.000
32 -0.086 0.073 0.000 1.068 0.486 0.000
33 -0.048 0.047 0.000 0.607 0.355 0.000
34 -0.009 0.031 0.002 0.946 0.547 0.000
35 -0.067 0.028 0.000 0.731 0.457 0.000
36 0.020 -0.018 0.033 1.594 0.575 0.000
37 -0.113 0.160 0.000 1.028 0.542 0.000
38 -0.069 0.056 0.000 0.942 0.521 0.000
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Figure 1: Mean and variance of stock returns in each group in the test set. The upper graph displays
the mean returns of the stocks in each group defined by the mean of the past returns. The lower graph
displays the variance of the returns in each group defined by the variance of the past returns. x-axis
represents the stock ID. The details of the grouping method can be found in Section 3.1.

4 Market Representation and Trend Prediction

In this section, we compare the representation methods described in Section 2.3, and analyze their effects
on stock return prediction. Each representation method receives the raw level market movements Rt ∈
R380 as the input, and produces the representation output (features), ut = φ(Rt). Several sizes of ut
are considered: 200 and 380 for PCA, and 400 and 800 for both RBM and AE. These representations
are respectively denoted by PCA200, PCA380, RBM400, RBM800, AE400, and AE800 throughout the
paper. For comparison, the raw level data Rt, denote by RawData, is also considered as a representation.
Therefore, there are total 7 representations.

4.1 Stock Market Trend Prediction via Logistic Regression

Before training DNN using the features obtained from the representation methods, we perform a test
to assess the predictive power of the features. The test is designed to check whether the features can
predict the up/down movement of the future return. This up/down prediction problem is essentially a
two-class classification problem, which can be solved by, among others, the logistic regression method.
Let y ∈ {−1, 1} denote the class label with y = 1 (−1) representing up (down) movement of rt+1. The
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probability of y conditional on the features ut is defined as

P (y|ut;w, b) =
1

1 + exp(−(wTut + b)y)
, (14)

where w and b are model parameters. We label the returns rt+1 in the training set according to the rule:
y = 1, if rt+1 > ε, and y = −1, if rt+1 < −ε for some ε (we set ε to 0.02). The regression parameters are
then estimated from the input-target pairs in the training set, {unt , yn}

N1
n=1, by the maximum likelihood

estimation:

max
{w,b}

[
L = −

N1∑
n=1

log
(
1 + exp(−(wTunt + b)yn)

)]
. (15)

For each representation, we compute the classification accuracy defined as the percentage of correct
prediction of ups and downs, and compare with a reference accuracy. The reference accuracy is defined
as the percentage of the occurrences of ups or downs whichever is bigger in the test set. For example,
if there are 5,000 ups and 4,000 downs, the reference accuracy becomes 5,000/(5,000+4,000). This can
be interpreted as having a prior knowledge about which one has a higher probability and betting on that
side every time.

The classification results of each representation are reported in Figure 2 through Figure 5, and the
representations are compared with one another in Table IV. In each figure, the classification accuracies
both from the training set and test set are compared with the reference accuracy obtained from the test
set. The results show that the classification accuracy ranges around 55%-70% depending on the repre-
sentations and the stocks, and is higher than the reference accuracy for most stocks except a few cases
where the reference accuracy is very high, e.g., LOTTE SHOPPING (21). This is an encouraging result
considering the fact that the reference accuracy assumes a prior knowledge about the probability. The
prediction accuracy is rather consistent across stocks and does not deteriorate much in the test set.

The best performing representation varies across stocks. Nonetheless, the untransformed RawData
representation appears to perform best on average, followed closely by PCA380. This suggests that the
past returns of the stocks are related to the future return dominantly in a linear fashion. On the other
extreme, AE400 performs worst, followed by PCA200. These two representations still outperform the
reference accuracy. Within each representation method, higher classification accuracy is associated with
low reconstruction error, which comes from higher dimensional representation. However, no particular
relationship between reconstruction error and classification accuracy can be found across representation
methods.
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Figure 2: Up/down prediction accuracy of RawData. Upper graph: prediction accuracies in each dataset,
and the reference accuracies. Lower graph: The difference between the test set accuracy and the reference
accuracy. x-axis represents the stock ID.

Table IV: Summary of the up/down prediction accuracy test. The figures in the last four columns are the
average values over the 38 stocks.

Representation Number of
Features

Reconstruction Error:
1
N

∑N
n=1 ‖xn − xnrec‖2

Up/Down Prediction
Accuracy

Training Set Test Set Training Set Test Set
RawData 380 0 0 0.6361 0.6201
PCA200 200 109.70 103.17 0.5780 0.5551
PCA380 380 0 0 0.6364 0.6175
RBM400 400 100.32 77.06 0.6079 0.5843
RBM800 800 70.20 60.65 0.6169 0.5928
AE400 400 1.44 1.35 0.5712 0.5341
AE800 800 0.55 0.67 0.6060 0.5692

Reference 0.5113 0.5134
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(a) PCA200
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(b) PCA380

Figure 3: Up/down prediction accuracy of PCA200 and PCA380. Upper graph: prediction accuracies in
each dataset, and the reference accuracies. Lower graph: The difference between the test set accuracy
and the reference accuracy. x-axis represents the stock ID.
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(a) RBM400
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Figure 4: Up/down prediction accuracy of RBM400 and RBM800. Upper graph: prediction accuracies
in each dataset, and the reference accuracies. Lower graph: The difference between the test set accuracy
and the reference accuracy. x-axis represents the stock ID.
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(a) AE400
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Figure 5: Up/down prediction accuracy of AE400 and AE800. Upper graph: prediction accuracies in
each dataset, and the reference accuracies. Lower graph: The difference between the test set accuracy
and the reference accuracy. x-axis represents the stock ID.
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5 Training Deep Neural Networks

In this section, we construct the predictor functions, r̂i,t+1 = fi(ut), i = 1, · · · ,M, using DNN, and
compare their prediction performance with a univariate autoregressive model with ten lagged variables
(AR(10)). We employ a three-layer network model of the form3:

h1 = ReLU(W1ut + b1)

h2 = ReLU(W2h1 + b2)

r̂i,t+1 = W3h2 + b3,

(16)

where ReLU is the rectified linear unit activation function defined as ReLU(x) = max(x, 0), with
max being an element-wise operator. ReLU is known to provide a much faster learning speed than
standard sigmoid units, while maintaining or even improving the performance when applied to deep
neural networks (Nair & Hinton, 2010). Nevertheless, we also test a standard ANN for comparison: we
replace ReLU with a sigmoid unit and keep the rest of the settings and parameters equal.

With four sets of features, RawData, PCA380, AE400, and RBM400, as the input, the DNN is trained
minimizing the objective function defined in Equation (7) with 3,000 learning iterations (epochs), and
the regularizer coefficient, λ = 0.001.4 We choose 200 and 100 dimensions for the hidden variables h1

and h2, respectively. The last 20% of the training set is used as a validation set for early stopping to
avoid overfitting. The training was conducted using Theano 0.7 in Python 3.5 running on a PC with an
Intel Core i7-6700 CPU at 3.40GHz, and a GeForce GTX TITAN X GPU. The entire training procedure
for the four representations consumed 14 hours in this experiment setting.

5.1 Performance Evaluation

We evaluate prediction performance using four measures: normalized mean squared error (NMSE), root
mean squared error (RMSE), mean absolute error (MAE), and mutual information (MI).

Normalized Mean Squared Error, NMSE

Given a set of target returns and their predicted values, {rnt+1, r̂
n
t+1}Nn=1, NMSE is defined as

NMSE =
1

N

∑N
n=1

(
rnt+1 − r̂nt+1

)2
var(rnt+1)

(17)

where var(·) denotes variance. Recall that var(rnt+1) = min
c

1

N

N∑
n=1

(rnt+1 − c)2; NMSE is a mean

squared error (MSE) normalized by the least MSE obtained from a constant prediction.
3More than three layers did not improve the predictability and the results are not reported here.
4We also tested higher dimensional representation methods but the results were similar to their lower dimensional counter-

parts.
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Root Mean Squared Error, RMSE

RMSE is the square root of MSE, defined as follows:

RMSE =

√√√√ 1

N

N∑
n=1

(
rnt+1 − r̂nt+1

)2 (18)

Mean Absolute Error, MAE

MAE is defined as follows:

MAE =
1

N

N∑
n=1

|rnt+1 − r̂nt+1| (19)

Note that inequality holds for the last two measures, MAE ≤ RMSE ≤
√
NMAE; both error measures

are known to informative, e.g., while MAE gives the same weight to all error amounts, RMSE is more
sensitive to outliers, and is more suit for normal distributed error. For more interpretations, see Chai and
Draxler (2014).

Mutual Information, MI

MI measures dependency between rt+1 and ut, and is defined as follows:

MI(rt+1;ut) =
∑

rt+1,ut

p(rt+1, ut) log
p(rt+1, ut)

p(rt+1) p(ut)

≈ 1

N

N∑
n=1

log
p(rnt+1 | unt )

p(rnt+1)
.

(20)

MI(rt+1;ut) is zero when the two variables are independent, and bounded to the information entropy,
H(rt+1) = −

∑
rt+1

p(rt+1) log p(rt+1), when the two variables are fully dependent. From the assump-
tion made earlier, we have rt+1 | ut ∼ N (r̂t+1, β). With an additional assumption, rt+1 ∼ N (µ, σ), we
estimate the parameters β, µ and σ from the sample, and evaluate MI from (20).

5.2 Prediction Results

Table V and VI report NMSE in both training and test set, and Table VII reports MAE in the test set.5 In
the training set, all the prediction methods achieve NMSEs smaller than one, implying that these methods
are more accurate than any constant prediction. DNN outperforms AR(10) in the training set, regardless
of the choice of the features, but the advantage mostly disappears when applied to the test set: Only the
DNNs with RawData and AE400 slightly outperform AR(10) in the test set: the DNN with RawData
outperforms AR(10) in 16 stocks and the DNN with AE400 outperforms AR(10) in 14 stocks at 5%
significantly level.6 Interestingly, AR(10) achieves a similar level of performance in both sets, whereas
the performance of DNN deteriorates in the test set to the level of the performance of AR(10).

5We only report performance measures to save the space. Parameter estimation results are available upon request.
6Significance is determined using the standard t-test on the difference of the squared predictions errors.
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ANN performs worst in terms of RMSE and MI, and best in terms of MAE: ANN outperforms
AR(10) in at most 3 stocks at 5% significance level. This is perhaps because of the slow learning speed
of the sigmoid function; parameter estimates react slowly to new data and remain close to the initial
values. This results in the poor performance of ANN in terms of RMSE, which penalizes large errors
more. The performance of ANN could be improved by changing training parameters, but this is beyond
the scope of this study and is not pursued further.

Since the unpredictable part in Equation (1) is assumed to be normally distributed and our objective
function is to minimize squared error, MSE-based measures (NMSE and RMSE) are a more appropriate
performance measure, and from this perspective, DNN using ReLU outperforms ANN for the large and
high dimensional stock market dataset.

Next, we investigate whether the predictability can be enhanced by combining DNN with AR(10).
We apply DNN to the residuals of AR(10), and examine if the prediction errors are reduced. We repeat
the same experiment in the opposite direction: apply AR(10) to the residuals of DNN. We call these
methods AR-DNN and DNN-AR, respectively. The results of AR-DNN and DNN-AR for individual
stocks are reported in Table VIII and IX, respectively, and summary reports are provided in Table X to
XIII.

When DNN is applied to the residuals of AR(10), NMSE is slightly reduced. The effect is small
but consistent across the features. Larger reductions are associated with RawData and AE400. These
representations are also the representations with smaller errors when applied alone. Applying AR(10) to
the residuals of DNN, on the other hand, does not improve the prediction performance in all representa-
tions. For instance, the DNN with RawData further reduces the prediction error of AR(10) in 20 stocks,
whereas AR(10) further reduces the prediction error of the DNN with RawData only in 7 stocks, both at
5% significance level.

5.3 Sensitivity

We compute the gradient of each predictor function with respect to the input features to identify the
contribution of each feature to the prediction. We consider only the RawData representation as our
interest is to identify the informational contents of past returns. Denoting the first-order derivative of the
predictor function of stock i with respect to the jth feature of RawData Jij = ∂fi/∂uj,t, we compute a
sensitivity matrix S ∈ RM×Mg from the test set as follows:

Sij =
1

N2

N2∑
n=1

∣∣Jnij∣∣ . (21)

where Jnij is Jij of the nth data in the test set. The sensitivities of DNN and AR-DNN are visualized
in Figure 6. White color represents zero sensitivity and a darker color means a higher sensitivity. It
is interesting to note that, for DNN, the sensitivity of fi is particularly high with respect to uj,t for
j = i, i+M , and i+2M . This implies that only the first three lagged returns of its own are the dominant
features that determine the predicted value. This explains why DNN hardly outperforms AR(10) in our
test. In fact, AR estimation results, which are not reported in this paper, also show that the first three
lagged returns are the only significant variables for many stocks. On the other hand, the sensitivity of
AR-DNN illustrated in Figure 6-(b) does not show any discernible pattern. Nevertheless, the dark regions
in the figure indicate that the residuals from AR(10) contain information for the future returns.
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Table V: Normalized mean squared error in the training set (04-Jan-2010∼24-Dec-2013).

Stock ID AR(10) ANN
(RawData)

DNN
(RawData)

DNN
(PCA380)

DNN
(RBM400)

DNN
(AE400)

1 0.9810 1.0000 0.9246 0.9336 0.9401 0.9241
2 0.9746 0.9999 0.9314 0.9370 0.9453 0.9343
3 0.9908 0.9985 0.9379 0.9444 0.9479 0.9429
4 0.9816 1.0000 0.9234 0.9244 0.9304 0.9224
5 0.9817 1.0000 0.9431 0.9511 0.9546 0.9452
6 0.9396 0.9674 0.9436 0.9481 0.9490 0.9528
7 0.9288 0.9798 0.8854 0.8952 0.9122 0.8849
8 0.9618 1.0000 0.9198 0.9189 0.9228 0.9184
9 0.9750 1.0000 0.9671 0.9654 0.9661 0.9622
10 0.9164 0.9797 0.8537 0.8669 0.8699 0.8560
11 0.9322 0.9714 0.9389 0.9394 0.9458 0.9400
12 0.9816 0.9999 0.9010 0.9095 0.9165 0.9076
13 0.9771 0.9999 0.8975 0.9061 0.9143 0.8988
14 0.9929 1.0000 0.9644 0.9655 0.9676 0.9672
15 0.9902 1.0000 0.9371 0.9430 0.9487 0.9386
16 0.9492 0.9667 0.9489 0.9550 0.9621 0.9514
17 0.9837 0.9971 0.9218 0.9273 0.9269 0.9240
18 0.9685 1.0000 0.9142 0.9226 0.9297 0.9161
19 0.9571 1.0000 0.9440 0.9455 0.9444 0.9460
20 0.8747 0.9745 0.9089 0.9166 0.9160 0.9121
21 0.9871 1.0000 0.9635 0.9675 0.9683 0.9662
22 0.8737 0.9787 0.7496 0.7539 0.7832 0.7497
23 0.9695 1.0000 0.9545 0.9553 0.9570 0.9559
24 0.9681 1.0000 0.9427 0.9410 0.9432 0.9392
25 0.9645 0.9631 0.9584 0.9613 0.9612 0.9562
26 0.9936 0.9809 0.9670 0.9673 0.9664 0.9687
27 0.9887 1.0000 0.9344 0.9413 0.9463 0.9384
28 0.9444 0.9785 0.8781 0.8800 0.8856 0.8777
29 0.9559 0.9998 0.9546 0.9555 0.9573 0.9528
30 0.9731 1.0001 0.9197 0.9216 0.9244 0.9206
31 0.9880 1.0000 0.9450 0.9512 0.9551 0.9466
32 0.9737 1.0000 0.9473 0.9504 0.9558 0.9468
33 0.9376 0.9706 0.9347 0.9432 0.9462 0.9384
34 0.9539 0.9799 0.9133 0.9191 0.9223 0.9162
35 0.9841 0.9999 0.9448 0.9497 0.9548 0.9482
36 0.9848 1.0008 0.9675 0.9688 0.9693 0.9676
37 0.9281 0.9785 0.8148 0.8159 0.8429 0.8107
38 0.9720 1.0000 0.9293 0.9306 0.9406 0.9278

Average 0.9626 0.9912 0.9244 0.9287 0.9340 0.9256
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Table VI: Normalized mean squared error in the test set (26-Dec-2013∼30-Dec-2014).

Stock ID AR(10) ANN
(RawData)

DNN
(RawData)

DNN
(PCA380)

DNN
(RBM400)

DNN
(AE400)

1 0.9577 1.0000 0.9478 0.9549 0.9640 0.9465
2 0.9845 1.0000 1.0100 1.0022 1.0052 1.0049
3 0.9767 0.9992 0.9738 0.9776 0.9755 0.9746
4 0.9758 1.0000 0.9811 0.9813 0.9832 0.9853
5 0.9699 1.0001 0.9749 0.9793 0.9809 0.9757
6 0.9875 0.9813 0.9738 0.9766 0.9821 0.9766
7 0.9227 0.9805 0.9170 0.9236 0.9404 0.9146
8 0.9547 1.0000 0.9601 0.9577 0.9609 0.9635
9 0.9932 1.0003 0.9950 0.9956 0.9978 0.9962
10 0.8853 0.9801 0.8683 0.8831 0.8969 0.8732
11 0.9918 0.9842 0.9733 0.9764 0.9824 0.9786
12 0.9356 1.0000 0.8957 0.9052 0.9123 0.9028
13 0.9445 1.0000 0.9393 0.9480 0.9572 0.9418
14 0.9896 0.9999 0.9999 1.0030 1.0061 0.9996
15 0.9735 1.0001 0.9612 0.9670 0.9725 0.9602
16 1.0050 0.9849 0.9839 0.9886 0.9922 0.9859
17 0.9586 0.9974 0.9514 0.9550 0.9547 0.9546
18 0.9691 1.0001 0.9610 0.9663 0.9762 0.9611
19 1.0398 1.0000 1.0100 1.0085 1.0099 1.0074
20 0.9649 0.9835 0.9506 0.9560 0.9566 0.9529
21 0.9669 0.9997 0.9721 0.9781 0.9768 0.9790
22 0.8726 0.9797 0.8796 0.8791 0.8932 0.8776
23 0.9886 1.0002 0.9916 0.9893 0.9914 0.9904
24 0.9465 1.0000 0.9532 0.9494 0.9488 0.9452
25 0.9686 0.9774 0.9799 0.9837 0.9810 0.9780
26 0.9847 0.9837 0.9778 0.9813 0.9807 0.9815
27 0.9741 0.9998 0.9838 0.9863 0.9858 0.9866
28 0.9538 0.9831 0.9712 0.9711 0.9711 0.9716
29 0.9795 0.9999 0.9781 0.9814 0.9821 0.9795
30 0.9490 1.0002 0.9553 0.9603 0.9595 0.9596
31 0.9793 1.0000 0.9616 0.9728 0.9753 0.9667
32 0.9570 1.0000 0.9669 0.9734 0.9758 0.9630
33 0.9646 0.9795 0.9623 0.9701 0.9749 0.9670
34 0.9858 0.9888 0.9973 0.9912 0.9897 0.9937
35 0.9668 1.0000 0.9765 0.9794 0.9847 0.9777
36 1.0119 1.0008 1.0059 1.0024 1.0039 1.0042
37 0.8920 0.9764 0.8828 0.8841 0.9125 0.8821
38 0.9668 1.0001 0.9663 0.9677 0.9741 0.9654

Average 0.9655 0.9937 0.9629 0.9660 0.9702 0.9638
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Table VII: Mean absolute error in the test set (26-Dec-2013∼30-Dec-2014).

Stock ID AR(10) ANN
(RawData)

DNN
(RawData)

DNN
(PCA380)

DNN
(RBM400)

DNN
(AE400)

1 0.6219 0.6148 0.6379 0.6344 0.6402 0.6375
2 0.4733 0.4651 0.4886 0.4853 0.4867 0.4869
3 0.5694 0.5641 0.5855 0.5836 0.5855 0.5847
4 0.5831 0.5726 0.5988 0.5988 0.6018 0.6010
5 0.6053 0.5980 0.6186 0.6147 0.6192 0.6180
6 0.4219 0.4095 0.4154 0.4147 0.4201 0.4126
7 0.5605 0.5440 0.5714 0.5655 0.5737 0.5678
8 0.6874 0.6677 0.7003 0.6992 0.7025 0.7031
9 0.5317 0.5223 0.5327 0.5329 0.5360 0.5342
10 0.6690 0.6487 0.6832 0.6795 0.6900 0.6828
11 0.4389 0.4232 0.4318 0.4319 0.4358 0.4317
12 0.7509 0.7421 0.7670 0.7672 0.7725 0.7684
13 0.6101 0.6041 0.6307 0.6321 0.6350 0.6328
14 0.4647 0.4591 0.4795 0.4783 0.4816 0.4772
15 0.5676 0.5587 0.5878 0.5836 0.5873 0.5861
16 0.3756 0.3654 0.3724 0.3716 0.3745 0.3720
17 0.6100 0.5996 0.6282 0.6277 0.6311 0.6307
18 0.5700 0.5548 0.5826 0.5801 0.5863 0.5819
19 0.6537 0.6322 0.6516 0.6502 0.6552 0.6511
20 0.6201 0.5903 0.6031 0.6022 0.6087 0.6020
21 0.5565 0.5502 0.5668 0.5657 0.5683 0.5671
22 0.6906 0.6644 0.7068 0.7075 0.7114 0.7066
23 0.5894 0.5738 0.5937 0.5911 0.5947 0.5923
24 0.7260 0.7093 0.7329 0.7332 0.7371 0.7349
25 0.5944 0.5947 0.5951 0.5954 0.5984 0.5943
26 0.6100 0.6145 0.6188 0.6187 0.6237 0.6182
27 0.5428 0.5340 0.5653 0.5627 0.5641 0.5642
28 0.6748 0.6560 0.6921 0.6924 0.6940 0.6939
29 0.5974 0.5786 0.5933 0.5926 0.5968 0.5935
30 0.6649 0.6573 0.6838 0.6847 0.6867 0.6853
31 0.5930 0.5837 0.6029 0.6018 0.6033 0.6016
32 0.5723 0.5645 0.5805 0.5807 0.5830 0.5798
33 0.4295 0.4184 0.4270 0.4255 0.4303 0.4261
34 0.5607 0.5451 0.5719 0.5687 0.5706 0.5716
35 0.5011 0.4972 0.5154 0.5128 0.5162 0.5143
36 0.6639 0.6595 0.6661 0.6644 0.6666 0.6651
37 0.5597 0.5422 0.5812 0.5825 0.5913 0.5832
38 0.5511 0.5418 0.5606 0.5598 0.5633 0.5612

Average 0.5806 0.5690 0.5900 0.5888 0.5927 0.5899

22



Table VIII: AR-DNN normalized mean squared error in the test set (26-Dec-2013∼30-Dec-2014).

Stock ID AR(10) AR-DNN
(RawData)

AR-DNN
(PCA380)

AR-DNN
(RBM400)

AR-DNN
(AE400)

1 0.9577 0.9440 0.9476 0.9557 0.9484
2 0.9845 0.9912 0.9879 0.9869 0.9894
3 0.9767 0.9722 0.9745 0.9738 0.9709
4 0.9758 0.9823 0.9836 0.9755 0.9780
5 0.9699 0.9715 0.9705 0.9705 0.9705
6 0.9875 0.9771 0.9773 0.9758 0.9794
7 0.9227 0.9124 0.9133 0.9161 0.9106
8 0.9547 0.9525 0.9530 0.9547 0.9543
9 0.9932 0.9933 0.9955 0.9948 0.9951
10 0.8853 0.8791 0.8811 0.8823 0.8778
11 0.9918 0.9839 0.9838 0.9817 0.9876
12 0.9356 0.9234 0.9184 0.9190 0.9204
13 0.9445 0.9395 0.9412 0.9413 0.9390
14 0.9896 0.9925 0.9916 0.9919 0.9908
15 0.9735 0.9637 0.9628 0.9647 0.9600
16 1.0050 0.9972 0.9982 0.9987 1.0004
17 0.9586 0.9488 0.9535 0.9551 0.9528
18 0.9691 0.9603 0.9610 0.9647 0.9599
19 1.0398 1.0421 1.0423 1.0408 1.0446
20 0.9649 0.9667 0.9673 0.9650 0.9675
21 0.9669 0.9665 0.9667 0.9670 0.9667
22 0.8726 0.8750 0.8711 0.8692 0.8724
23 0.9886 0.9897 0.9887 0.9888 0.9894
24 0.9465 0.9447 0.9449 0.9461 0.9443
25 0.9686 0.9702 0.9690 0.9704 0.9685
26 0.9847 0.9736 0.9742 0.9750 0.9757
27 0.9741 0.9745 0.9759 0.9741 0.9743
28 0.9538 0.9540 0.9539 0.9537 0.9548
29 0.9795 0.9812 0.9813 0.9811 0.9795
30 0.9490 0.9496 0.9493 0.9493 0.9495
31 0.9793 0.9666 0.9679 0.9713 0.9655
32 0.9570 0.9546 0.9556 0.9566 0.9542
33 0.9646 0.9586 0.9565 0.9612 0.9627
34 0.9858 0.9895 0.9845 0.9842 0.9858
35 0.9668 0.9653 0.9648 0.9665 0.9658
36 1.0119 1.0126 1.0119 1.0109 1.0123
37 0.8920 0.8808 0.8906 0.8887 0.8800
38 0.9668 0.9620 0.9626 0.9630 0.9605

Average 0.9655 0.9622 0.9625 0.9628 0.9621
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Table IX: DNN-AR normalized mean squared error in the test set (26-Dec-2013∼30-Dec-2014).

Stock ID AR(10) DNN-AR
(RawData)

DNN-AR
(PCA380)

DNN-AR
(RBM400)

DNN-AR
(AE400)

1 0.9577 0.9437 0.9446 0.9522 0.9430
2 0.9845 1.0118 1.0067 1.0082 1.0096
3 0.9767 0.9737 0.9727 0.9711 0.9717
4 0.9758 0.9815 0.9814 0.9834 0.9856
5 0.9699 0.9748 0.9723 0.9741 0.9730
6 0.9875 0.9845 0.9831 0.9889 0.9812
7 0.9227 0.9125 0.9132 0.9233 0.9112
8 0.9547 0.9591 0.9571 0.9597 0.9634
9 0.9932 0.9965 0.9974 1.0006 0.9996
10 0.8853 0.8653 0.8689 0.8800 0.8688
11 0.9918 0.9904 0.9935 0.9950 0.9970
12 0.9356 0.8959 0.8992 0.9015 0.9005
13 0.9445 0.9388 0.9451 0.9494 0.9414
14 0.9896 0.9998 1.0011 1.0043 0.9982
15 0.9735 0.9583 0.9581 0.9608 0.9559
16 1.0050 1.0038 1.0057 1.0067 1.0035
17 0.9586 0.9514 0.9507 0.9512 0.9530
18 0.9691 0.9603 0.9652 0.9738 0.9615
19 1.0398 1.0371 1.0373 1.0377 1.0344
20 0.9649 0.9628 0.9643 0.9663 0.9647
21 0.9669 0.9696 0.9700 0.9697 0.9727
22 0.8726 0.8791 0.8789 0.8932 0.8771
23 0.9886 0.9952 0.9930 0.9955 0.9945
24 0.9465 0.9424 0.9424 0.9423 0.9414
25 0.9686 0.9729 0.9746 0.9743 0.9711
26 0.9847 0.9721 0.9732 0.9738 0.9745
27 0.9741 0.9846 0.9835 0.9820 0.9854
28 0.9538 0.9705 0.9719 0.9731 0.9711
29 0.9795 0.9805 0.9807 0.9833 0.9808
30 0.9490 0.9556 0.9600 0.9575 0.9599
31 0.9793 0.9616 0.9668 0.9682 0.9639
32 0.9570 0.9611 0.9638 0.9626 0.9562
33 0.9646 0.9620 0.9629 0.9675 0.9635
34 0.9858 0.9959 0.9991 0.9986 0.9994
35 0.9668 0.9755 0.9724 0.9768 0.9738
36 1.0119 1.0127 1.0102 1.0124 1.0127
37 0.8920 0.8834 0.8837 0.9021 0.8825
38 0.9668 0.9650 0.9652 0.9687 0.9650

Average 0.9655 0.9643 0.9650 0.9682 0.9648
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Table X: Average normalized mean squared error in the test set (26-Dec-2013∼30-Dec-2014). The
figures in the parentheses are NMSE difference between AR-DNN and AR. DNN-AR row is similarly
defined except the figures in the parentheses being NMSE difference between DNN-AR and DNN.

Method Data Representation for DNN
(RawData) (PCA380) (RBM400) (AE400)

AR(10) 0.9655

ANN 0.9937 0.9990 0.9982 0.9976

DNN 0.9629 0.9660 0.9702 0.9638

AR-DNN
0.9622 0.9625 0.9628 0.9621

(-0.0033) (-0.0030) (-0.0027) (-0.0034)

DNN-AR
0.9643 0.9650 0.9682 0.9648

(0.0013) (-0.0010) (-0.0020) (0.0010)

Table XI: Average root mean squared error in the test set (26-Dec-2013∼30-Dec-2014). The figures
in the parentheses are RMSE difference between AR-DNN and AR. DNN-AR row is similarly defined
except the figures in the parentheses being RMSE difference between DNN-AR and DNN.

Method Data Representation for DNN
(RawData) (PCA380) (RBM400) (AE400)

AR(10) 0.8229

ANN 0.8357 0.8379 0.8376 0.8374

DNN 0.8216 0.8230 0.8248 0.8220

AR-DNN
0.8215 0.8216 0.8217 0.8214

(-0.0014) (-0.0013) (-0.0012) (-0.0015)

DNN-AR
0.8221 0.8224 0.8238 0.8223

(0.0005) (-0.0006) (-0.0010) (0.0003)
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Table XII: Average mean absolute error in the test set (26-Dec-2013∼30-Dec-2014). The figures in the
parentheses are MAE difference between AR-DNN and AR. DNN-AR row is similarly defined except
the figures in the parentheses being MAE difference between DNN-AR and DNN.

Method Data Representation for DNN
(RawData) (PCA380) (RBM400) (AE400)

AR(10) 0.5806

ANN 0.5690 0.5675 0.5684 0.5678

DNN 0.5900 0.5888 0.5927 0.5899

AR-DNN
0.5852 0.5850 0.5838 0.5852

(0.0046) (0.0044) (0.0032) (0.0046)

DNN-AR
0.5922 0.5931 0.5937 0.5926

(0.0022) (0.0043) (0.0010) (0.0027)

Table XIII: Average mutual information in the test set (26-Dec-2013∼30-Dec-2014). The figures in the
parentheses are MI difference between AR-DNN and AR. DNN-AR row is similarly defined except the
figures in the parentheses being MI difference between DNN-AR and DNN.

Method Data Representation for DNN
(RawData) (PCA380) (RBM400) (AE400)

AR(10) 0.0179

ANN 0.0032 0.0005 0.0009 0.0012

DNN 0.0193 0.0176 0.0154 0.0188

AR-DNN
0.0197 0.0195 0.0193 0.0197

(0.0018) (0.0016) (0.0015) (0.0018)

DNN-AR
0.0187 0.0182 0.0165 0.0183

(-0.0006) (0.0006) (0.0012) (-0.0005)
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6 Application to Stock Market Structure Analysis

Identification of the correlation between stocks is important for understanding stock market structure
and its behavior. For example, the correlation coefficient can be used to measure the distance between
two stocks using the formula, d(i, j) =

√
2(1− ρij), where ρij is the correlation coefficient between

stock i and stock j returns. This distance measure has been used in several researches (Mantegna, 1999;
Bonanno, Lillo, & Mantegna, 2001; Onnela, Kaski, & Kertész, 2004; Tumminello, Lillo, & Mantegna,
2010). These researches normally assume that the stock returns are unpredictable, and use a sample
covariance to estimate the covariance. However, the results in the previous sections suggest that the
stock returns are predictable to some extent. This motivates us to incorporate the stock return prediction
into covariance estimation to enhance the estimation accuracy.
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(a) Training set (04-Jan-2010 ∼ 24-Dec-2013)
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(b) Test set (26-Dec-2013 ∼ 30-Dec-2014)

Figure 7: MST-based hierarchical tree structures of the stocks in our sample. Group average method (Day
& Edelsbrunner, 1984) is used for tree construction, where y-axis denotes the group average distance.

One way of analyzing the market structure is to construct a hierarchical structure of the stocks using
the minimum spanning tree (MST) (Graham & Hell, 1985). Given the distances of all pairs of the stocks,
d(i, j), i, j = 1, . . . ,M , a spanning tree (ST) is defined by a set of edges, so that there exist unique
paths (serially connected edges) between every pair of data points (stocks, in our case). Then, MST is
determined as the ST that minimizes the sum of the edge distances: MST = argmin

ST

∑
(i,j)∈ST

d(i, j), where

(i, j) denotes an edge between stocks i and j. Once MST is found, different algorithms can be employed
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for hierarchical tree analysis or clustering (Gordon, 1987; Grygorash, Zhou, & Jorgensen, 2006). As
an example, Figure 7 shows hierarchical tree structures of the stocks in our sample, constructed using
the group average method proposed in Day and Edelsbrunner (1984). The correlation coefficients are
obtained from the sample covariance of each dataset. The hierarchical structures of the market appear
to be in accordance with the general perception of the market: For instance, the banking industry stocks
(KB Fin, Shinhan, and HANA Fin) are grouped together both in the training set and test set, and so
do the motor industry stocks (KiaMtr, HD Mtr, and Mobis). Nevertheless, the two tree structures are
not identical, which suggests the necessity of a forward-looking correlation estimation to anticipate the
change of the market structure.

We define a forward-looking covariance using the stock return prediction as follows. Given the
prediction of returns, r̂t+1, the forward-looking covariance, Σf , is defined as: 7

Σf , E[rt+1rt+1
T |r̂t+1]− µµT , (22)

where µ = E[rt+1]. Since E[rt+1|r̂t+1] = r̂t+1, it can be rewritten as

Σf = B + r̂t+1r̂
T
t+1 − µµT , (23)

where B , E[(rt+1 − r̂t+1)(rt+1 − r̂t+1)T ] is the unpredictable component of the covariance, which is
estimated from the past returns and their predictions, and the second term is the predictable component.
We use our return prediction model to obtain the forward-looking covariance.

The performance of the forward-looking covariance is evaluated via the log-likelihood function:
given the mean and covariance estimates at each time in the test set, the out-of-sample log-likelihood is
given by:

L =

N2∑
n=1

lnN (rt+1
n; µ̂n, Σ̂n)

=

N2∑
n=1

−1

2
ln |Σ̂n| − 1

2
(rt+1

n − µ̂n)T (Σ̂n)
−1

(rt+1
n − µ̂n) + C, (24)

where rnt+1, µ̂n, and Σ̂n are the target returns (true one-period ahead returns) and their mean and covari-
ance estimates for the nth data point, and C is a constant term. We test several estimation methods and
compare them in Table XIV.

In the table, estimation methods M1-M4 estimate µ̂ and Σ̂ using the sample analogues, but with
different samples: Subscript “tr” refers to the training set and “ts” the test set. For example, M4 calculates
the sample mean and covariance from the test set, i.e., M4 assumes that the distribution of the returns
in the test set is constant and known a priori. As expected, using the test set for covariance calculation
(M2 and M4) gives larger log-likelihood values compared with using the training set (M1 and M3).
Interestingly, however, using a prior information on the mean (M3 and M4) has little effect on the log-
likelihood.

M5 uses the forward-looking covariance estimate in (23). B is estimated from the training set and
assumed to be constant, while r̂t+1 is updated at each time. M5 outperforms M1 and M3 which are

7Note that in this section, rt+1 denotes a vector of stock returns, i.e., rt+1 = [r1,t+1, . . . , r38,t+1]
T . r̂t+1 and µ are also

defined in a similar manner.
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Table XIV: Comparison of different mean and covariance estimation methods. Subscripts tr, ts, and
ma respectively refer to the test set, training set, and moving average. The log-likelihood values are
calculated in the test set (26-Dec-2013∼30-Dec-2014), ignoring the constant term in (24).

Estimation
Methods µ̂ Σ̂

Log-likelihood, L (×105)

AR-DNN
(RawData)

AR-DNN
(PCA380)

AR-DNN
(RBM400)

AR-DNN
(AE400)

M1 µ̂tr Σ̂tr -1.8601
M2 µ̂tr Σ̂ts -1.6638
M3 µ̂ts Σ̂tr -1.8599
M4 µ̂ts Σ̂ts -1.6636
M5 µ̂tr Btr + r̂t+1r̂

T
t+1 − µ̂trµ̂Ttr -1.7606 -1.7617 -1.7646 -1.7592

• Using rolling window (sample size of 3,000)

M6 µ̂tr Σ̂ma -1.6320
M7 µ̂ma Σ̂ma -1.6326
M8 µ̂tr Bma + r̂t+1r̂

T
t+1 − µ̂trµ̂Ttr -1.5464 -1.5476 -1.5480 -1.5459

M9 µ̂ma Bma + r̂t+1r̂
T
t+1 − µ̂maµ̂

T
ma -1.5575 -1.5588 -1.5590 -1.5570

based on the training set sample covariance, but underperforms M2 and M4 which are based on the test
set sample covariance.

From M6 to M9, the mean and covariance estimates are updated each time by rolling the sample
window (denoted by subscript “ma”). The results in the table are from the sample window size of 3,000.
Using other sample sizes, e.g., 500 or 5,000, yield similar results (not reported here). The methods based
on rolling covariance estimation (M6 and M7) perform slightly better than M2 and M4, which assume
a prior information on the covariance of the test set. The most remarkable result, however, comes from
M8 and M9, which incorporate return prediction and estimate B rolling the sample window. M8 and M9
clearly outperform all other methods no matter which data representation method is used. Again, using
different mean estimates has little impact on the results.

Based on the results in Table XIV, we believe that a structural change of the market can be better
anticipated using our model. As an illustrative example, Figure 8 shows the change of the hierarchical
structure of the stocks over time, obtained from M8 with AR-DNN (RBM400).
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(a) 26-Dec-2013
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(b) 07-Apr-2014
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(c) 16-Jul-2014
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Figure 8: Cross-sectional hierarchical tree structure of the stocks for some selected sample periods,
obtained from M8 with AR-DNN (RBM400).
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7 Concluding Remarks

In this paper, we propose a deep feature learning-based stock market prediction model. From the raw
level input consisting of lagged stock returns, we generate seven sets of features employing three data
representation methods; principal component analysis, autoencoder, and restricted Boltzmann machine,
and construct three-layer deep neural networks (DNN) to predict the future stock returns. Applied to the
Korean stock market, we find that the DNNs perform better than a linear autoregressive model in the
training set, but the advantage mostly disappears in the test set. This result can be partially explained
by the sensitivity analysis which shows that the predicted part of a stock return is mostly governed by
the first three lagged returns of itself, and the lagged returns of other stocks have negligible influence.
Nevertheless, by applying the DNN to the residuals of the autoregressive model, we find that the DNN
can extract additional information and improve prediction. This does not hold true when the autore-
gressive model is applied to the residuals of the DNN, demonstrating the advantages of DNNs over the
autoregressive model. Furthermore, we apply our prediction model to covariance-based market structure
analysis and find that our model improves covariance estimation effectively.

These results can help high-frequency traders improve stock return and covariance prediction. Com-
bined together, they can forecast overall market return and risk, which can be used for trading market
index derivatives such as index futures and options.

One of main advantages of DNNs is the ability to extract features from a large set of raw data without
relying on prior knowledge of predictors. This makes deep learning particularly suitable for stock market
prediction, in which numerous factors affect stock prices in a complex, nonlinear fashion. If there exist
factors with strong evidence of predictability, exploiting those factors may likely give better performance
than simply dumping a large raw dataset. However, we can also use these factors as part of the input data
for deep learning, and let deep learning identify the relationship between the factors and stock prices.
Nevertheless, with the ongoing release of newer deep learning algorithms, testing and choosing the most
appropriate model can be a challenge in applying deep learning.

To the best of our knowledge, this is—at least in the public domain—one of the few comprehensive
studies that examine the effectiveness of deep feature learning for stock market analysis and prediction.
The empirical results presented here by no means offer any conclusive demonstration of the superiority
of deep learning networks, but do suggest promising extensions and directions of further investigation.
For instance, additional factors that are known to carry information about the future price movement,
such as trading volume and the price of a derivative linked to the stock, can be augmented to the in-
put. Identifying the complex relationship between the future price and all these factors is practically
impossible without harnessing the power of deep feature learning; the method may be found to be more
effective when applied to higher frequency data where market microstructure affects price dynamics.
Data representation methods and network functions other than those considered may also offer better
performance. These future tasks require vast amounts of data and computer resources, and are beyond
the scope the current research given the limited data availability and hardware resources. We hope to see
more researchers participating in this line of research in a near future.
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