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Abstract 

The assessment of the achievement of students and the quality of schools have drawn 

increasing attention from educational researchers, policy makers and practitioners. Various 

test-based accountability and feedback systems involving the use of value added techniques 

have been developed for evaluating the effectiveness of individual teaching professionals and 

schools. A variety of models have been employed for calculating value added measures, 

including the use of linear regression models which link students’ present and prior 

achievements. One of the limitations associated with the use of the conventional linear 

regression methods in value added calculation is that the value added measures are likely to 

be overestimated for students with higher prior achievements while underestimated for 

students with low prior achievements. This study explores an alternative approach, the 

principal axis approach, to calculating value added measures which can eliminate some of the 

limitations associated with the conventional linear regression methods. 

Keywords: Accountability, value added, large scale assessment, school effectiveness, linear 

regression models, principal axis 

 

Introduction 

Educational assessments can be used as a means to identify the effectiveness of specific 

teaching and learning strategies with regard to their intended effects, in addition to providing 
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important information about what students know and are able to do in particular subject areas 

(Wiliam, 2010). To help school improve its performance, various accountability and feedback 

systems involving the use of results from large scale assessments as performance indicators 

have been developed in many parts of the world for evaluating the effectiveness of schools 

and teachers (e.g. Raudenbush and Willms, 1991; Willms, 1992; Fitz-Gibbon, 1996, 1997; 

Sanders et al., 1997; Yang et al., 1999; Hamilton et al., 2002; Tymms, 2002; Demie, 2003; 

Schagen and Schagen, 2003, 2005; Harker and Tymms, 2004; McCaffrey et al., 2004; 

Wilson, 2004; Ray, 2006; Gorard, 2006; Lissitz, 2006; Taylor and Nguyen, 2006; Ray, 2006; 

DfE, 2011; Hout and Elliott, 2011; Isenberg and Hock, 2011; Timmermans et al., 2011; Wei 

et al., 2012; Coe, 2003). It has long been recognized that test scores only reflect the present 

achievement that a student has attained at the time of testing and will not provide a complete 

picture of the effect of the school on the student over the period of study in the school (see, 

for example, Crane, 2002). As a results, most test based accountability systems use value 

added measures which involve the comparison of students’ present or outcome achievement 

with their prior achievement to assess the effect of schooling for the specified period of study 

in the school (see Fitz-Gibbon, 1996, 1997; Sanders et al., 1997; Tymms, 2002; McCaffrey et 

al., 2004). 

 Test scores reflect the combined influences of a number of factors such as the learning 

environment in the school, the social-economical background of the students, the student’s 

attitudes towards study, the academic achievement attained before entering the school, and 

many others. When calculating value added measures, the present performance measure of a 

student is normally partitioned into two components, with one related to the prior 

achievement of the student and the other related to the effect of the school and other factors 

that may have influences on the progress made by students. This latter component supposedly 

represents contributions from the school attended and the other factors. As the value added is 
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assumed in part to reflect the effect of the school, its accurate calculation is important in order 

to provide an objective assessment of the progression made by the student. However, it is 

difficult to provide accurate estimate of the contribution to a student’s present performance 

from his/her prior achievement, and various theoretical and empirical models, including the 

simple single level linear regression models and more complex multilevel models with fixed 

effects or random effects have been proposed for value added calculation (e.g. Bryk et al., 

1996; Fitz-Gibbon, 1996; Sanders and Rivers 1996; Goldstein, 1997, 2003; Ray, 2006; 

McCaffrey et al., 2004; Lissitz, 2006; DfE, 2010, 2011; Wei et al, 2012). 

 In England, value added calculated based on the simple linear regression models was 

used as school performance measures before 2006. From 2006 to 2010, value added measures 

based on both the simple linear regression models and the complex multilevel models were 

used. The multilevel models used in England are also termed the contextual value added 

(CVA) models which take into consideration the contribution from the differing 

characteristics of students and schools to students’ outcome performance measures (DfE, 

2010, 2011). However, as demonstrated by Fitz-Gibbon (1997), students’ characteristics, 

including socioeconomic status (SES), account for only a small proportion of the variance in 

outcome measures at the student level and have limited influence on the value added 

measures at individual student level for the English education system. From 2011, the UK 

government ceased to use CAV models for deriving school value added performance 

measures in England due to the difficulty in and confusion caused by interpreting their results. 

The linear regression models have however been retained due to their simplicity in terms of 

data collection and analysis and interpretation of results. However, as will be argued, one of 

the limitations associated with the use of the conventional linear regression method in value 

added calculation is that the value added is likely to be overestimated for students with higher 

prior achievements while underestimated for students with low prior achievements. The 
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present study investigates such limitations and proposes an alternative approach which 

represents a more appropriate, simpler and fairer approach and overcomes some of the 

limitations. 

 

The OLS Regression Approach to Value Added Calculation 

As indicated earlier, the conventional or Ordinary Least Squares (OLS) regression models 

have been used for value added analysis in England since the introduction of value added 

school performance measures (Fitz-Gibbon, 1996, 1997; Ray 2006; DfE, 2010, 2011). The 

method used for value added calculation involving OLS regression models can be 

summarised as follows. The relationship between the present performance measures ( iY ) of 

student i and his/her prior performance measures ( iX ) is represented using a linear regression 

model like the one shown below: 

 

 iii RYkXY  0          (1) 

 

where k and Y0 are model parameters. iR  is the residual representing the departure of the 

present achievement from the model predicted value. Model parameters are estimated by 

minimising the squares of the vertical residuals (i.e. the least squares method). It is to be 

noted that linear regression analysis is appropriate when the purpose of the investigation is 

mainly about predicting variable Y (predicted variable) from observations on variable X (the 

predictor) or investigating the association between the two variables. Furthermore, in the 

linear regression model represented by Equation (1), the explanatory variable  X is taken to be 

fixed (i.e. without measurement and sampling errors) and that only the response variable Y is 

a random variable (see Krzanowski, 1998). In the context of value added analysis, the term 

0YkXi   in Equation (1) represents the average present performance measure of students with 
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similar prior performance measures and can be interpreted as reflecting the influence of the 

prior achievement on the present achievement for the population under study as a whole. If 

there is a perfect linear relationship between present achievement Y and the prior achievement 

X (i.e. the square of the correlation between the two variables 2R  is 1.0, or the fitted line runs 

through all data points) then the influence of the school will be the same for all schools if the 

data used to derive the relationship were collected for students from a group of schools. In 

such a case, the variation in the present performance measures among the students can be 

solely explained by variation in their prior performance measures, and the residual iR  will be 

0. The regression line, or the line of best fit, 0YkXY   can also be interpreted as 

representing the average expected present student’s performance measure based on the prior 

performance measure. For an individual student i, the residual Ri is defined as: 

 

 )( 0YkXYR iii           (2) 

 

The residual Ri is also termed value added and can be interpreted as measuring the relative 

magnitude of progress made by the student in the time span between the present and prior 

performance measurements in relation to the average present performance for students with 

similar prior academic abilities. This value added therefore reflects the influence of factors 

other than the level of achievement attained by the student at the beginning of his/her study on 

the outcome achievement. The value added is assumed to reflect, to a certain extent, the 

influence of the school on the individuals concerned over the period of study. If the value 

added is positive (i.e. the data point is above the regression line), the student performed better 

than the average performance of students with similar prior performance measures. On the 

other hand, if the value added is negative (i.e. the data point is below the regression line), the 

student performed less well than the average performance of students with similar prior 
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achievement. Undoubtedly, all schools will aim to raise their students’ academic achievement 

level, but they vary in achieving their objectives. Some schools perform better than others due 

to the existence of differences in the learning environment between schools. Students studying 

in better-performing schools will have an advantage over students studying in other schools in 

terms of learning. The average aggregated value added for all students in a school can be 

defined as: 

 

 

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i

ischool R
N

VA
1

1
         (3) 

 

where N is the number of students in the school. This average aggregated value added will 

reflect the overall performance of the school in comparison with the average performance of 

other schools. A positive average aggregated value added will indicate that the school 

performed better than the average performance of all schools, while a negative aggregated 

value added will indicate that the school performed less well than the average performance of 

all schools. 

 An important assumption of the linear regression models outlined above (regressing Y 

on X) is that there is no error associated with the prior performance measure (X) and only the 

present performance measure (Y) is the random variable and has errors. However, as with the 

present performance measures, the prior achievement measures will also have errors. The 

regression approach to value added analysis requires that the present and prior performance 

measures are positively correlated. Furthermore, regression models are normally used for the 

purpose of prediction. However, value added analysis is not simply about using prior 

achievement to predict present achievement, and linear regression is only one of the 

approaches that are used to describe the relationship between the two measures. For example, 

it is possible to undertake an inverse regression (regressing X on Y involving minimising the 
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squares of the horizontal residuals) to derive a relationship between the two variables X and Y 

similar to that represented by Equation (1) but with different values for the two model 

parameters. Visually, in the case of a bivariate dataset that is normally distributed, the density 

of the data in the x-y plane will have contours that are concentric ellipses, and the regression 

line for Y on X will run through the ellipses where they are tangent to the vertical line, while 

that for X on Y will pass the ellipse where they are tangent to the horizontal line and will 

therefore be different for the line for regressing Y on X (see Friendly et al., 2013). The shape 

of the ellipses, as characterised by the values of the semi-major and semi-minor axes, will be 

determined by the covariance or correlation of the two variables. Figure 1 shows the two 

regression lines derived for a bivariate dataset using the approach outlined above. One ellipse 

is also shown in the graph for illustrative purpose. One of the symmetry lines, which the 

extension of the semi-major axis of the ellipse and lies between the two regression lines, for 

the dataset is also plotted in Figure 1. All three lines pass through the central point of the 

dataset ( YX , ) (where X  is the average of the prior performance measure and Y is the 

average present performance measures). Although both regression lines are normally used to 

represent the relationship between two variables for a bivariate dataset, it will be argued that 

an important disadvantage of the use of Equations (1) and (2) for value added analysis is that 

the value added thus calculated will be overestimated for students with higher prior 

achievements but underestimated for students with low prior achievements as a result of 

minimising the squares of the residuals (the departures of the present performance measure Y 

from the average of all students with similar prior performance measures) under the 

assumption of no error on X. If the inverse regression is used, the opposite effect will occur. 

That is the value added will be underestimated for students with higher prior achievements 

but overestimated for students with low prior achievements. This issue associated with the use 

of Equations (1) and (2) to calculate value added has been raised by Harker and Tymms 
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(2004) who have noted how the positively biased value added towards groups of high ability 

students can lead to a compositional effect (see also Hauser 1970, 1974; Bryk and 

Raudenbush 1992). 

 

     <Figure 1> 

 

 The present study proposes an alternative approach that alleviates some of the 

problems associated with the conventional regression method used for value calculated 

calculation discussed above. 

 

The Principal Axis Approach to Value Added Calculation 

As indicated above, an important assumption made in the use of a regression model like 

Equation (1) for value added calculation is that the independent variable representing the prior 

achievement X is measured without error. Only the dependent variable representing the 

present achievement is assumed to be a random variable and have an error component 

involving both sampling error and measurement error. Since both the present performance and 

the prior performance measures are generally represented by test scores, they will have 

measurement errors as a result of unreliability of the tests used (see He and Opposs, 2012; He 

et al., 2013). Both variables should be treated equally as random variables in the analysis (A 

more sophisticated approach might weigh the line in proportion to the ratio of errors on the 

two measures. Any lines that lie between the two regression lines would be equally acceptable 

for describing the relationship between the two variables effectively. However, they measure 

slightly different characteristics of the data. It is clear from Figure 1 that there are situations 

where a data point can be above one fitted line but below another line and verse versa. A 

residual for each data point with respect to each of the three lines can be defined using an 
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equation similar to Equation (2). The extent of the difference in residuals for the different 

lines will depend on the magnitude of the covariance or correlation between the two variables 

or the ratio between the two axes of an equal density ellipse. Once we accept that both X and 

Y should be treated equally as random variables in the analysis, the line of best fit that can 

describe the structure of the data most accurately and effectively would be the semi-major 

axis of the concentric ellipses, not the conventional regression lines based on regressing Y on 

X or X on Y. The semi-axis of the concentric ellipses is a line of symmetry of the data points. 

In the case of a bivariate dataset like that described above, the major axis or the semi-major 

axis of the concentric ellipses corresponds to the first or major principal axis (PA) from the 

Principal Component Analysis (PCA). The major principal axis produces the maximum 

variances for the dataset along the direction of the line. PA is particularly appropriate for 

describing the bivariate scatter of the data in situations where both dependent and independent 

variables are measured with similar magnitude of errors and are treated symmetrically as 

random variables. 

 In the present study, we propose to use the major principal axis to represent the 

relationship between the student’s present performance measure and his/her prior 

performance measure. For a bivariate dataset, the equation of the principal axis derived using 

the PCA technique or any other methods can be expressed as: 

 

 paipaipai RYXkY ,,0          (4) 

where pak  is the slope of the principal axis and paY ,0  is the intercept. The slope pak  and paY ,0  

can be expressed as: 
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where Y  and X  are the means of the present performance measure and prior performance 

measure respectively, and   is the principal angle (the angle between the major principal axis 

and the x-axis in the two dimensional x-y coordinate system, see Figure 1) and can be 

expressed as (see Preisendorfer, 1988): 
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In Equation (6), n is 0 or an integer, and N is the sample size or number of data points. If the 

two variables are standardised to have the same deviation or variance and the same mean 

value, then o45 , and the principal axis in this case is termed standardised principal axis or 

standardised major axis which would be particularly preferred when the two variables are not 

measured on comparable scales (see Warton et al., 2006). This would be suitable for the 

present study as the current and prior performance measures are reported using different 

scales (see later discussion). As the regression lines and the major axis pass the central point 

of the dataset, the line of regressing Y and X represents a clockwise rotation of the major 

principal axis, while the line of regressing X on Y an anticlockwise rotation. The magnitude of 

the rotation depends on the strength of the correlation between the two variables, the strong 

the correlation, the small the rotation. All the three lines will overlap each other when the 

relationship between the two variables is strictly linear. The relationship between the 

dependent variable Y and independent variable X derived using the PCA approach is the same 

as that derived by minimising the Total Least Squares (TLS, i.e. the squares of the 

perpendicular distance of the data points to the fitted line) which are normally termed as the 
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Orthogonal Regression (OR) or Orthogonal Distance Regression (ODR) by some researchers 

(see, for example, Isobe et al., 1990; Boggs and Rogers, 1990; Warton et al., 2006). 

 In the case of o45 , the two model parameters, the slope and the intercept of the 

major axis, 0.1pak  and 0,0 paY . Equation (4) of the major principal axis  becomes: 

 

 paiii RXY ,           (7) 

 

That is the major principal axis in this case is simply the identity line xy  . The line xy   

therefore represents the average present performance measure or the average expected 

standardised scores based on the prior performance measure. The residual or value added for 

an individual student i calculated using the PA method simply becomes: 

 

 iiipaipai XYXYYR  )(,         (8) 

 

Equation (8) indicates that the residual calculated using the PA method is simply the 

difference between the present performance measure and the prior performance measure for a 

student if the values of both measures are standardised in the same way. Data points above the 

line y = x will have positive value added, while data points below the line y = x will have 

negative value added. An intuitive interpretation of the validity of the use of this method in 

value added calculation is that as both test scores have been standardised in a similar fashion, 

they become comparable, and the definition for the residual using Equation (8) removes the 

influence of the level of prior achievement of the individual from the present performance 

measure directly. In other words, the difference between the present performance measure and 

the prior performance measure in this case represents the relative progress made after taking 

into consideration the prior ability of the student and therefore only reflects the effect 
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associated with the external factors, which include the influence of the school on the progress 

made by the student. It is to be noted that in the conventional PCA approach to Factor 

Analysis (FA), a new reference frame involving the rotation of the principal components 

(axes) is frequently used to represent the relationships between variables for the purpose of 

grouping the observed variables and facilitating data interpretation (particularly for dataset 

with more than two variables), although such interpretation can be complex (see Jolliffe, 

2002). In the case of two observed variables, the reference frame based on the principal axes 

will be the most appropriate for data interpretation and any further rotation will not be needed. 

Moreover, for the purpose of the present study, the data is still presented in the x-y frame 

rather than in the reference frame of the two principal axes. This is because in the principal 

axes frame the residuals will just be the projected values of the transformed data points on the 

minor principal axis, which will be the same as the perpendicular distances of the data points 

to the major principal axis. Although such residuals will be proportional to the residuals 

calculated using Equation (8) based in the x-y frame, their interpretation is difficult as they 

will involve residuals related to both the x value (the prior performance measure) and the y 

value (the present performance measure) of the data points. 

 

The CEM Centre Yellis Value Added Project Case Study 

The Centre for Evaluation and Monitoring (CEM) at Durham University, UK, has been 

providing value added information for schools for self-evaluation and management through a 

number of performance indicator systems which involve the comparison of results from 

baseline assessments provided by the CEM centre and outcome measures from official 

national tests and public examinations both in the UK and abroad (see 

http://www.cemcentre.org; Fitz-Gibbon 1996; Tymms and Coe, 2003). 

 

http://www.cemcentre.org/
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The GCSE examinations in England 

In England, the General Certificate of Secondary Education (GCSE) is the main school-

leaving qualification taken by students aged 16. GCSEs are available for over 50 subjects, 

including mathematics, English, sciences and many others. GCSEs are assessed by varying 

amounts of internal or school-based assessment as well as external assessment. Students 

taking GCSEs are classified into eight performance categories known as grades, from A* to G 

with A* the highest grade and G the lowest grade. Students who fail to achieve one of the 

grades are unclassified (grade “U”). In addition to certification and selection for further study 

or training for individual learners, GCSEs are also used as school performance measures for 

accountability purpose either in the form of raw results such as percentages of students 

achieving certain grades set by the government or used as outcome measures for deriving 

value added performance measures (see DfE, 2010, 2011; West, 2010, West et al., 2011). 

 

The Yellis value added project 

One of the systems provided by the CEM centre to schools is the Year 11 Information System 

(Yellis) for students aged from 14-16. Yellis has been used by over 1,200 secondary schools 

in the UK, involving about 200,000 students every year (see 

http://www.cemcentre.org/yellis). It provides an innovative baseline test for students aged 14 

in schools which is used as the prior achievement measure for all students involved in the 

Yellis project. The Yellis baseline test was made as curriculum free as possible in order to 

provide an aptitude measure rather than the academic attainment measure of the students and 

included two main sections, vocabulary, and mathematics. The Yellis vocabulary test was 

XXX minutes long and had a maximum of XXX marks, and the mathematics test was XXX 

minutes long and had a maximum of XXX marks. These tests were taken under examination 

conditions. The Yellis baseline score is defined as the average score of the vocabulary section 

http://www.cemcentre.org/yellis
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score and the mathematics section score. The Yellis baseline assessment was designed for the 

full ability spectrum of the whole population. 

 After the students have taken their GCSE exams (results from individual subjects are 

used as the outcome measures or present performance measures) at the age of 16, value added 

measures for individual students are derived by comparing their GCSE results from individual 

subjects with the Yellis baseline test scores obtained two years previously using the 

conventional regression method outlined above. The Yellis scores and GCSE subject results 

are highly correlated, with values of correlation varying from XXX for subject XXXX to 

XXX for subject XXX (see Coe ??, also see discussion below). Individual level, group/class 

level, school level and subject level and departmental level value added analysis can be 

performed using a software system supplied to the schools by the CEM Centre. 

 

Comparison of value added between the regression model and the principal axis model 

In this study, the Yellis baseline test data collected for nearly 170,000 students from 1093 

secondary schools in the UK in 2000 and their subsequent GCSE Maths grades data collected 

in 2002 have been used for analysis to demonstrate the differences in value added calculation 

using the PA approach and the conventional regression approach discussed above. Figure 2 

shows the frequency distributions of the stdeunts’ Yellis scores and their GCSE mathematics 

grades. As can be seen, the Yellis scores are distributed symmetrically, while the GCSE 

mathematics grades are slightly left-skewed. The reliabilities of the Yellis vocabulary test, the 

mathematics test and the overall test are relatively high, with values of Cronbach’s alpha 

being XXX, XXX and XXX respectively. Although the reliability measures of the GCSE 

mathematics scores and grades were not available for this study, they were expected to be 

similar to those of the Yellis test. 
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     <Figure 2> 

 

 To make the value added calculation simple, the GCSE grades are converted into a 

point scale with values varying from 0 (corresponding to GCSE’s U grade) to 8 

(corresponding to GCSE’s A* grade). As Yellis results and GCSE results are reported using 

different scales, both the Yellis scores and the GCSE Maths point scores have been 

standardised to have a mean of 100 and a deviation of 15 in this study. Since the 

standardisation represents a linear transformation, the relationship between the two variables 

will not be affected. As indicated earlier, the important advantage of using standardised test 

scores for analysis is that the two measures can be compared directly. 

 

     <Figure 3> 

 

Figure 3 shows the distribution of the standardised GCSE Maths point scores obtained in 

2002 against the standardised Yellis baseline scores for students collected in 2000. 

Correlation analysis indicates a coefficient of 0.76, suggesting that about 58% of the variation 

in one variable is associated with the variation of the other. It could therefore be assumed that 

58% of the variation in the GCSE maths point scores can be explained by the variation in the 

Yellis baseline scores and the remaining 42% of the variation could be assumed to be related 

to the influence of the schools and other external factors. 

 A linear regression of the standardised GCSE Maths point score ( MathsGCSEY , ) on the 

standardised Yellis score ( YellisX ) suggests the following relationship between the two test 

scores: 

 

 4.24756.0,  YellisMathsGCSE XY        (9) 
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With R
2
=0.58. However, if an inverse regression (i.e. regressing YellisX  on MathsGCSEY , ) is 

conducted, we will have: 

 

 4.24756.0 ,  MathsGCSEYellis YX        (10) 

 

Therefore, in this case, the relationship between the GCSE Maths point scores ( MathsGCSEY ,
 ) 

and Yellis scores ( YellisX  ) becomes: 

 

 3.32322.1, 
YellisMathsGCSE XY        (11) 

 

The two regression lines are also plotted in Figure 2. It is clear that the slopes as well as the 

intercepts for the two regression lines are different. The residuals calculated from Equations 9 

and 11 will therefore be different for each individual students and the average of aggregated 

residuals for a class or for a school. Although the two regression lines pass through the centre 

point of the dataset, they do not represent the symmetric lines of the dataset. As can be seen, 

the choice of different conventional regression models results in different value added, and 

this has important implication in terms of providing objective and fair evaluation of the 

performance of individual students, classes/groups and schools. 

 To compare the conventional OLS regression (regressing GCSE Maths scores Y on 

Yellis scores X) and PA value added calculation methods, the residuals for an individual 

student i are calculated as follows: 

 

 
PAfor

regressionOLSfor)4.24756.0(

. iipai
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
     (12) 
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     <Figure 4> 

 

Figure 4 depicts the distribution of the standardised residuals (with a mean of 0 and a 

deviation of 1.0) calculated using the two approaches for individual students against their 

standardised Yellis scores. It is clear from the figure that the residuals for students with Yellis 

scores close to the average Yellis score for the population (100) are similar for both methods, 

but those for students with high Yellis scores have been reduced while those for students with 

low Yellis scores have been raised by the PA method in relation to the values calculated using 

the regression method. The magnitudes of the increase or reduction depend on the difference 

between the Yellis scores and the average Yellis score of 100 or the departure from the Yellis 

average. The maximum change in residuals between the two methods occurs in the regions of 

relatively low or high Yellis scores and is close to 1.0 which is the standard deviation of the 

standardised residuals derived from the individual methods. As can be seen from Figure 4, the 

PA derived residuals represent a clockwise rotation of the regression derived residuals around 

the mean of the standardised Yellis scores, reflecting the fact that the regression line 

represents a clockwise rotation of the major principal axis discussed previously. 

 The difference in residuals for individuals between the two methods will also affect 

the average aggregated value added for a group/class or the entire school. In some schools in 

England, students are placed in different sets according to their academic abilities (Ireson et 

al., 2002). The conventional regression method will therefore produce higher average value 

added for groups with high ability and lower average value added for groups with low ability. 

This increase in value added has been attributed to educational mechanisms by some 

researchers (see, for example, Harker and Tymms, 2004 for an exploration of different 

interpretations). For example, some suggest that students in a high ability group will influence 
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each other positively in their study and will therefore make greater progress than students in 

lower ability groups. As can be seen the compositional effect could be an artefact, resulting 

from the use of the conventional regression method, and the PA method can therefore remove 

or at least reduce its magnitude. 

 Figure 5 further illustrates the relationship between the residuals for individual 

students derived using the two methods. Although the two methods give different results, the 

values are still highly correlated (R
2
=0.88). Overall, 13.7% of the students have the sign of 

their regression-based residuals changed in relation to PA-based residuals. About 8.0% of 

these students have their positive regression-based residuals changed to negative PA-based 

residuals, while 5.7% of them have their negative regression-based residuals changed to 

positive PA-based residuals. 

 

     <Figure 5> 

 

 Figure 6 shows the distributions of the average standardised residuals for 1093 schools 

used in  this study estimated using the two methods with their corresponding school average 

Yellis scores (calculated as the mean of all the students taking both the Yellis test and the 

GCSE exams). Again, it is clear that the standardised residuals are similar for schools with 

school average Yellis scores near the population Yellis average score of 100. However, the 

average aggregated standardised residuals calculated using the PA method for schools with 

high average Yellis scores have been reduced relative to the residuals calculated from the 

regression method, while those for schools with low average Yellis scores have been 

increased. As can be seen from Figure 6, the average standardised residuals for schools 

derived using the PA method represents again a clockwise rotation of those derived using the 

conventional regression method around the mean standardised Yellis score. However, the size 
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of the rotation is smaller in comparison with that for individual students shown in Figure 5 as 

the school value added is calculated as the mean of the value added for individual students. 

The value added for a proportion of the schools with low Yellis scores and negative residuals 

in the regression method has changed to positive residuals in the PA method, while the value 

added for a proportion of schools with high Yellis scores and positive residuals has changed 

from positive to negative. The maximum change in residuals between the two methods is 

about 0.67, which is about two thirds of the standard deviation of the standardised residuals 

from the two methods. Figure 7 further depicts the relationship between the average 

standardised residuals for these schools estimated using the two different approaches. A 

correlation analysis suggests a coefficient value of 0.86 between the residuals derived using 

the two different approaches. Overall, about 15.5% of the schools have the sign of their 

regression-based average school residuals changed in comparison with the PA-based average 

residuals. About 8.0% of the schools have their negative regression-based average school 

value added changed to positive PA-based average value added, while 7.5% of them have 

their positive regression-based average value added changed to negative PA-based average 

value added. 

 

     <Figure 6> 

     <Figure 7> 

 

 Figure 7 shows the distribution of the standardised GCSE maths point scores for 

students against their standardised Yellis scores in a specific school selected for this study. 

Both the ordinary regression line and the PA line for the overall population are superimposed 

in the figure. Figure 8 shows the corresponding distribution of the standardised residuals for 

individual students from the two methods against their standardised Yellis scores. Again, the 
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results from PA represent a clockwise rotation of the results from the conventional regression 

method. The value added calculated using PA for students with high Yellis scores is 

substantially reduced in comparison with that calculated using the regression method, and a 

proportion of these students have their positive regression derived residuals changed to 

negative PA derived residuals. In contrast, the value added calculated using PA for those with 

low Yellis score is considerably increased in comparison with the regression derived value 

added. This has important implications in terms of assessing class teachers using the overall 

aggregated residuals of individual students in a class if the students are grouped into sets of 

different academic abilities. The regression method will favour groups with higher abilities 

while disadvantage groups with low abilities. 

 

     <Figure 7> 

     <Figure 8> 

 

Discussion and Conclusion 

Many test-based accountability systems use value added analysis technique involving the 

comparison of students’ prior achievement and outcome achievement to produce performance 

measures that are used to judge the quality of learning of individual students and the quality 

of teaching of class teachers and schools. These value added performance measures should be 

estimated as accurate as possible. Specifically, the contribution to the progress made by a 

student associated with the level of achievement before entering the school has to be 

accurately estimated. 

 The OLS regression models have been frequently used to represent the relationship 

between students’ present and prior performance measures and used to calculate value added. 

It has been demonstrated in this study that the use of the OLS regression method to calculate 
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value added is likely to disadvantage students with lower prior performance while give 

advantages to students with higher prior performance. This is primarily due to minimising the 

squares of the departures of the present performance measures from the population averages 

when estimating the regression model parameters. The OLS regression method assumes that 

only the present performance measures have errors and are treated as a random variable. 

However, such assumption is not likely to be met by any test data. The value added calculated 

based on the conventional regression model will be overestimated for students with high prior 

achievement but underestimated for students with low prior achievement. At group or class 

level, teachers teaching groups of low ability students will be disadvantaged while those 

teaching groups of high ability students will gain unfair advantage. At school level, the 

conventional OLS regression method will favour schools with intakes represented by high 

prior performance measures and disadvantage schools with intakes represented by low prior 

performance measures. 

 The principal axis (PA) approach on the other hand, treats both present and prior 

performance measures equally as random variables and uses the major principal axis (the 

major symmetrical line of the dataset) to represent the relationship between the two 

performance measures. This would be a more appropriate representation of the relationship 

between the two variables as both performance measures are likely to have similar magnitude 

of errors and there is no need to assume a cause-effect relationship between the two variables 

since both the prior and current performances reflect the level of the underlying ability of the 

student. The PA method increases the value added for low prior performing students while 

decreases the value added for high prior performing students in comparison with the OLS 

regression approach. It therefore removes the limitations associated with the OLS regression 

method that unfairly disadvantage students with low prior achievement and gives advantages 

to students with high prior achievement. At group or class level, the PA approach will also 
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provide fairer value added for teachers of all ability groups than the regression method which 

gives unfair advantage to groups of high ability students. At school level, the PA approach 

will also produce fairer value added for schools than the OLS regression approach which 

unfairly disadvantage schools with intakes of low prior performing students while give 

advantages to schools with intakes of high prior performing students. 

 Findings from the present study clearly indicated that the value added measures 

estimated using the PA approach can be considerably different from those estimated based on 

the conventional regression approach, particular at both the bottom and top of the prior 

achievement range. Results from this study has important implications in terms of conducting 

fairer comparison of the relative learning progression between individual students, the quality 

of teaching of class teachers and schools when using value added as a performance indicator. 

The appropriateness of the model used for calculating value added performance measures to a 

large extent depends on the various assumptions of the model that are met by the observed 

data. It has been argued in this paper that the PA approach is more appropriate than the 

conventional regression model when comparing test scores and is likely to produce fairer 

value added for students, teachers and schools. 

 Conceptually, the PA approach is more acceptable and easier to understand than the 

conventional regression approach as it uses the major symmetry line to represent the 

relationship between the prior and outcome achievement measures. Technically, when both 

prior and present achievement measures are standardised in the same fashion, the PA 

approach is also simpler to implement and would be easier to understand by teachers. 

 It is recognised that in this study, it has been assumed that the value added calculated 

using both the conventional regression method and the PA approach is school-related and the 

contribution from other factors such as students’ demographics has been ignored. Work by 

Fitz-Gibbon (1997) suggested that variation in students’ social indicators (including SES) 
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only accounts for a small proportion of variation in achievement measures and contributes 

little to the prediction of value added at individual student level. She suggests that students’ 

potential cannot be accurately judged by their home background. However, it is suggested that 

further work is required to compare the PA-derived value added measures with those derived 

from models that incorporate other factors such as students’ SES for individual students, 

classes and schools in order to explore further the impact of different models on the 

calculation of test score based value added performance measures. 
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Figure Captions 

 

Figure 1 The regression lines, a line of symmetry and an ellipse for a bivariate dataset. 

Figure 2 The distributions of Yellis scores (top) in 2000 for students involved in the Yellis project and 

their GCSE Maths grades in 2002. 

Figure 3 Relationship between standardised GCSE Maths point scores and Yellis baseline test scores. 

Figure 4 Distribution of standardised residuals for individual students calculated using the 

conventional regression method and the PA method against Yellis scores. 

Figure 5 Relationship between standardised residuals for individual students calculated using the 

conventional regression method and the PA method. 

Figure 6 Distribution of standardised residuals for schools calculated using the conventional 

regression method and the PA method against Yellis scores. 

Figure 7 Relationship between standardised residuals for schools calculated using the conventional 

regression method and the PA method. 

Figure 8 Distribution of standardised GCSE Maths scores and Yellis scores for students in a specific 

school. 

Figure 9 Distribution of standardised residuals for students in a specific school calculated using the 

conventional regression method and the PA method against Yellis scores. 
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Figure 1 The regression lines, a line of symmetry and an ellipse for a bivariate dataset. 
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Figure 2 The distributions of Yellis scores (top) in 2000 for students involved in the Yellis project and 

their GCSE Maths grades in 2002. 
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Figure 3 Relationship between standardised GCSE Maths point scores and Yellis baseline test scores. 



 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Distribution of standardised residuals for individual students calculated using conventional 

regression method and PA method against Yellis scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Relationship between standardised residuals for individual students calculated using 

conventional regression method and PA method. 
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Figure 6 Distribution of standardised residuals for schools calculated using conventional regression 

method and PA method against Yellis scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Relationship between standardised residuals for schools calculated using conventional 

regression method and PA method. 
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Figure 8 Distribution of standardised GCSE Maths scores and Yellis scores for students in a specific 

school. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Distribution of standardised residuals for students in a specific school calculated using 

conventional regression method and PA method against Yellis scores. 
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