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Abstract: This paper presents a novel noise robust edge detector based upon the automatic anisotropic 

Gaussian kernels (ANGKs), which also addresses the current problem that the seminal Canny edge 

detector may miss some obvious crossing edge details. Firstly, automatic ANGKs are designed 

according to the noise suppression, edge resolution and localization precision, which also conciliate 

the conflict between them. Secondly, reasons why cross-edge points are missing from Canny detector 

results using isotropic Gaussian kernel are analyzed. Thirdly, the automatic ANGKs are used to smooth 

image and a revised edge extraction method is used to extract edges. Finally, the aggregate test 

receiver-operating-characteristic (ROC) curves and Pratt’s Figure of Merit (FOM) are used to evaluate 

the proposed detector against state-of-the-art edge detectors. The experiment results show that the 

proposed algorithm can obtain better performance for noise-free and noisy images. 

Key Words: automatic anisotropic Gaussian kernels, anisotropic directional derivatives (ANDDs), 

edge detection, Canny detector. 

 

1. Introduction 

Edge detection is a fundamental operation in computer vision and image processing. It concerns 

detecting significant variations in gray level images. The outputs of edge detectors, namely edge maps, 

are the foundation of high-level image processing, such as object tracking [1], image segmentation [2] 

and corner detection [3]. Various methods have been developed, including the differentiation-based 

methods [4-7], statistical methods [8, 9], machine learning methods [10, 11], active contour method 

[12], multiscale methods [13-19], and the anisotropic diffusion or selective smoothing methods [20-24]. 

In gray level images, edges may be defined as sharp changes in intensity and most common types 

include steps, lines, and junctions. Differentiation of intensity is a direct characterization of sharp 
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changes. Early Robert, Sobel, and Prewitt operators used different derivative filters for edge detection 

[4]. Differentiation of an image is an ill-posed problem that noise and texture probably incur spurious 

edge. To regularize the differentiation, images are smoothed by a low-pass kernel before differentiation. 

In the pioneering work of Canny [5], the optimal kernels are derived to be isotropic Gaussian kernels 

with a scale parameter (the standard deviation of Gaussian function), in terms of the Canny’s theory: 

insensibility to noise, good edge localization, and unique response to one edge. The Canny detector 

widely used up to now cascades Gaussian smoothing, gradient calculation, non-maxima suppression, 

and bi-threshold decision. By contrast, the Marr-Hildreth detector [14] cascades Gaussian smoothing, 

Laplacian operator, and zero-crossing detection. In these two notable detectors and their modified 

version [9], an isotropic Gaussian kernel with a predefined scale incurs the duality between edge 

detection and localization precision. An isotropic Gaussian kernel with a large scale achieves good 

detection capability but the blurred edges degrade localization precision and resolution [6]. It is just 

reverse for a Gaussian kernel with a small scale. To amend the duality “detection versus localization”, 

ones developed the multiscale edge detection and the edge enhancement via anisotropic diffusion or 

selective smoothing. 

Edges in images exhibit multiscale characteristics. The contours of small structures are suitable to be 

detected in fine scales while the boundaries of larger objects are suitable to be detected in coarse scales. 

In [15], it was proved that a multiscale Canny edge detection is equivalent to finding the local maxima 

of a wavelet transform. The edge map is extracted from the wavelet modulus maxima of an image. 

Moreover, the image itself can be also approximately restored from these wavelet modulus maxima. In 

a similar vien, various multiscale transforms are applied to analyze images and to capture edge 

information. The typical examples include contourlets [16], ridgelets [18], and shearlets [16]. In 

[16][17], two efficient multiscale and multi-directional detectors via the shearlet transform were 

developed.  

Alternatively, the Gaussian smoothing of images may equivalently be viewed as the solution of the 

heat conduction or diffusion equation [21]. Various anisotropic diffusion or selective smoothing 

methods based upon PDE were developed for image denoising, edge detection, and segmentation 

[22-24]. The anisotropic diffusion based upon partial differential equation (PDE) provides an iterative 

and adaptive Gaussian smoothing of images, where the kernels are matched to the micro-local 

structures around each pixel in scales and directions. The anisotropic diffusion based upon PDE 
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realizes edge region focusing before detection and the followed Canny-type operator performs edge 

extraction from smoothed images [24]. It is noticed that iterative and adaptive smoothing algorithms 

are computationally expensive and the corresponding edge detectors are not fast in implementation. 

Lampert and Wirjadi [25] analyzed the reason that isotropic Gaussian are so popular is that isotropic 

Gaussian filter has only one parameter, which makes it easy to handle analytically, and simple to 

implement. However, from the image processing perspective, ANGKs are more interesting, because a 

set of ANGKs [3][6][26] can characterize anisotropic local structures (such as edges and corners) 

accurately. In [27], a fast anisotropic Gaussian filtering algorithm based upon the convolution 

filters or recursive filters was developed, where an anisotropic 2D Gaussian filter is 

decomposed into a 1D Gaussian filter in the x -direction followed by a 1D filter in a 

non-orthogonal direction. However, it still has no prior work explicitly concerns itself with the 

design of anisotropic and scale factor of ANGKs for edge detection. 

In this paper, the automatic anisotropic factor of ANGKs is designed under the principles of high 

signal-to-noise ratio (SNR), fine localization, and high edge resolution. Subsequently, the reasons why 

some edge points are missing from the Canny edge detectors are analyzed. A revised edge tracking 

method is presented, which overcome some limitations of the Canny edge detector based upon the 

isotropic Gaussian kernel. Finally, a novel noise robust edge detection algorithm is proposed. 

Compared with four state-of-the-art edge detectors [5][6][9][19] based upon the aggregate test receiver 

operating characteristic (ROC) curves and the Pratt’s Figure of Merit (FOM), the experimental results 

show that the proposed detector can obtain better performance for noise-free and noisy images. 

This paper is organized as follows. In section 2, characteristics of the AGNKS and ANDDs are 

introduced, and the automatic scales selection of ANGKs for edge detection is presented. A revised 

edge tracking method and a novel edge detection algorithm are presented in section 3. The new edge 

detector is compared with the four state-of-the-art detectors, and performance analysis is described in 

section 4. Finally, we conclude our paper in section 5. 

2. Anisotropic Gaussian Kernels and Directional Derivative Vector 

It is indicated [14] that the conflict between the edge localization precision and noise-sensitivity is 

reconcilable for a single isotropic Gaussian kernel. In this section, we first introduce the properties of 

the ANGKs and ANDDS; and then, a set of automatic anisotropic Gaussian kernels are designed to 
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conciliate this conflict. 

2.1 Anisotropic Gaussian kernels and directional derivatives filters 

In the spatial domain, the ANGKs can be represented [3][6] as follows 
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where =[ , ]Tx yx , is the scale factor ( 0  ),  is the anisotropic factor ( 1  ) and R is the 

rotating matrix. When a noisy image corrupted by zero-mean white noise ( )w x with a variance 
2

w  is 

smoothed by an anisotropic Gaussian kernel in (1), noise suppression can be evaluated by the noise 

variance in the smoothed image: 
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where 
2

w  denote the variance of the smoothed noise. Equation (2) shows that the noise suppression 

capability of an ANGK depends on only its scale but it is independent of its anisotropic factor and 

direction. 

For an anisotropic Gaussian kernel , , ( )g   x , an anisotropic directional derivative (ANDD) filter is 

derived as follows: 
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  The anisotropic directional derivative of an input image ( )I x  along the direction   is computed 

by the convolution operator 

, , ,( , ) ( )I I       x x .                         (4) 

An ANGK with
2 26, 6, / 4      , and its corresponding ANDD filter are shown in Fig. 1.  
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Fig.1 An ANGK (a) and its corresponding ANDD filter (b) with 2 2 6    and / 4  . 

A step edge function (SEF) along direction 2   is modeled as 
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where T is the intensity of the gray region, ( )H x  is the Heaviside function. The ANDD 

representation of the SEF is  
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Equation (6) shows two important facts. Firstly, when   , the ANDDs achieve the maximal 

magnitude ( 2 )T  , which corresponds to the edge gradient. Second, the maximal value of the 

ANDDs at the edge is inversely proportional to the scale , implying smoothing images in edge 

detection exhibits a duality of weakening edge response whilst suppressing noise; edge gradient is 

directly proportional to the anisotropic factor  . 

When  =1, the ANGKs degenerate into a single isotropic Gaussian kernel. The previous 

analysis in equation (2) shows that the noise suppression capability of the ANGKs only depend on 

the scale. Thus, in the same scale, using ANGKs instead of isotropic Gaussian kernel increase the 

signal-to-noise ratio (SNR) of the edge responses and improve edge detection performance. In 

Fig.2, we plot the magnitude of the anisotropic directional derivatives of the step edge 

with / 4, 1T   in two scales 1  and 2 and two anisotropic factors 1  (isotropic) 

and 6  (anisotropic). Obviously, with increasing of scale, the edges are blurred heavier and the 
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maximal magnitude of the directional derivatives at the edge is reduced. When anisotropic kernels 

are used, the smoothing along the edge direction blurs less edges and the maximal magnitude of 

the directional derivatives at the edge preserves a larger value, which is helpful to detect weak step 

edges in noisy images. 

 

Fig.2 Magnitudes of the anisotropic directional derivatives at a unit-strength step edge along 45 for 

scales  {1, 2} and anisotropic factors   {1, 6}. 

In [26], we also have proved that the directional derivative response of the ANGKs have the ability 

to characterize the properties of the local structure accurately. A step edge, simple L edge, a Y-type 

edge, an X-type edge, and a star-like edge are shown in the first row of Fig. 3, where iT  is the 

intensity of each wedge-shape region. The corresponding ANDDs are demonstrated in the second row 

of Fig. 3. As comparison, the last row of Fig.3 illustrates the directional derivative response of the 

isotropic Gaussian with = =1 for five type edge points. It can be seen that the isotropic Gaussian is 

unable to discriminate the structure information of edge pixels, which may affect the accuracy of edge 

detection, especially in the cross-edges. This is one of the reasons why Canny edge detector miss some 

cross-edges, which will be illustrated in Section 3.1 in detail. 
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Fig.3 A step edge, a L-type edge, a Y-type edge, an X-type edge, and a star-like edge are plotted in 

(a)-(e) at the first row, the corresponding ANDDs are plotted in the second row, and the corresponding 

isotropic directional derivatives are plotted in the third row for comparison. 

2.2 Automatic anisotropic factor for edge detection  

  The input image is the discrete signal in the integer lattice 
2

. Under this way, the continuous 

ANGKs and ANDD filters must be discretized. For given scale, anisotropic factor and oriented 

angles ( 1) / ,k k K    1,2 ,k K ， , sampling the ANGKs in (1) and ANDD filters in (3), the 

discrete ANGKs and ANDD filters are obtained as follows:  
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Below consider the automatic anisotropic factor for edge detection. Canny [5] suggested that the 

optimal edge detector should maximize both signal-to-noise ratio (SNR) and localization. In terms 

of (2) and (6), for a step edge with the direction + 2   and a direction derivative filter , ,k  , 

the SNR of the edge response is 
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It can be seen that the SNR of the edge response depend upon noise level, the difference between 
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the edge direction and smoothed direction, and the anisotropic factor while is independent of the 

scale. Moreover, it also reveals an important fact: when a fixed Gaussian kernel is used to detect 

isolate step edge, the detection probability is independent of the scale of the kernel at a given false 

alarm probability, because the reduction of the edge response and noise level resulted from the 

smoothing are direct proportional. We use 
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to evaluate the insensibility to noise of the set of anisotropic Gaussian kernels. Meanwhile, we 

have proved [6] that the edge resolution and localization precision of the ANGKs are proportional 

to the resolution constant ( , , )K    
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The smaller it is, the higher the edge resolution and localization precision of the ANGK is. In 

terms of Canny criteria in edge detection [5], for a given the scale and the number K of the 

kernels, the optimal anisotropic factor is required to maximize ( , , )SNR K   to achieve the 

insensibility to noise whilst to minimize ( , , )K   to achieve high edge resolution and localization 

precision. Here, the automatic anisotropic factor for edge detection is selected by maximizing the 

ratio ( , , )SNR K  and ( , , )K    for given scale   and the number K of the kernels. It can be 

obtained by 
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From equation (11), when only two directional derivative filters are used, a 1ut  corresponds to 

the isotropic Gaussian kernel and its two partial derivative filters in the traditional Canny detector. 

When 8K  , a 1/ tan( /16)  2.2422ut   . To obtain enough information of gray variation, 

the default of the orientation number is set to 8. Meanwhile, the capability of ANDD filters to 

suppress noise [6] is inversely proportional to the square of the scale and the square of the ratio to 
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the scale to the anisotropic factor. Under this way, we always take  in applications to assure 

that the sampled kernels and derivative filters inherit more features of their continuous versions. 

An example of the isotropic Gaussian-based edge strength map (ESM) and the automatic 

ANDD-based ESM is shown in Fig. 4. The test image with Gaussian standard deviation 15w   

is shown in Fig. 4 (a). The isotropic Gaussian based ESM is shown in Fig. 4(b), which suffers 

from edge blurring effect and ‘dirty’ background resulted from the noise. The reason is that 

isotropic Gaussian kernel does not have the ability to suppress noise and obtain high edge 

resolution. The ANDD-based ESM is shown in Fig. 4 (c), which has high edge resolution and 

clear background. The reason is that the designed automatic ANGKs have considered the edge 

localization, resolution and noise-robustness. 

 

Fig.4 Illustration of the ESMs of a noisy image: (a) a noisy image with 15w  ; (b) ESM of the 

isotropic Gaussian based; (c) ESM of the automatic ANDD-based. 

3. Edge Detection using Automatic ANGKs 

In this section, we first introduce the Canny detector deficiencies. It follows that a new revised 

edge extraction is given, which depend upon gradient vector in an image and non-maxima 
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suppression method. Finally, a novel edge detection algorithm using automatic ANGKs is 

presented.  

3.1 The problem of Canny algorithm 

In Canny algorithm, an edge pixel is defined as if the gradient magnitude at either side of it is 

less than the gradient at the pixel. Based upon the definition, the operation of non-maxima 

suppression is used to extract edges, which may cause crossing edge points missing detection. For 

step edge pixel, the gradient direction is always normal to step edge, which is easily extracted 

under the edge definition of Canny; however, the gradient direction of other type edge points 

(such as Y-type edge, X-type edge, and star-like edge) are influenced by the gray value of each 

wedge-shape component, as the second row of the Fig.3 shown. Under the Canny definition, the 

crossing edge points may be missing detection. This phenomenon also occurs around the crossing 

edge points. 

 

Fig.5Edge detection by Canny detector. (a) and (e) show two different experiment images, respectively. 

(b) and (f) illustrate the gradient vectors of image (a) and (e), respectively. (c) and (g) illustrate the 

gradient vectors after non-maximum suppression of image (a) and (e), respectively. (d) and (h) 

illustrate the edges of (a) and (e) detected by the Canny detector, respectively. 

Two examples are demonstrated in Fig. 5. Two images with four well-defined homogenous 

region and symmetrical gray region are shown Fig .5 (a) and (e), respectively. The two images 

center exist crossing edges (marked by ‘ ’). The gradient vectors of the crossing edge regions 

using Canny detector are shown in Fig. 5 (b) and (f), respectively. The length and direction of 

arrows indicate the gradient magnitude and direction, respectively. Fig. 5(b) shows that the 

gradient magnitudes of the image center of Fig. 5(a) are larger than those of pixels adjacent to 

them. However, the gradient direction of the contour may not be normal to the contour. Fig. 5(f) 
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shows that the gradient magnitude of the image center pixel of the Fig. 5(e) is zero (proof is very 

simple, omitted here), and its surrounding pixels gradients are small. After non-maximum 

suppression, some true edges of the two image center regions are suppressed, as shown in Fig. 5 

(c) and (g), respectively. The results of the Canny detector are shown in Fig. 5 (e) and (h), 

respectively. We see that edges near the image center are missed. 

3.2 A revised edge detection algorithm using ANGKs 

To overcome the edge missing problem of Canny edge detector, a revised edge tracking method 

using automatic ANGKs is proposed in this subsection. 

For an input image ( )x n , the anisotropic directional derivatives are calculated by 

, , , ,( ) ( ) ( ) ( ) ( )k k ky x x       
τ

n n n τ n τ .               (12) 

The obtained K images contain edge information along K directions, and then the edge strength 

map (ESM) of the image in terms of the discrete forms is derived by 

 
1,2 ,

ESM ( ) max ( )k
k K

x y


n n
，

,                     (13) 

which is equal with the gradient magnitude at each pixel in an image. Moreover, the edge gradient 

direction map (EGDM) of the image can be extracted by 

 EGDM ( ) arg max ( )k
k

x y
K

 
  
 

n n .                  (14) 

After ESM and EGDM are obtained by ANGKs, non-maximum suppression and hysteresis 

thresholds technique by Canny algorithm [5] are applied to select candidate edge pixels. If 

gradient magnitude of a pixel is larger than two neighbors in the gradient direction, the pixel is 

marked as candidate edge pixel. Subsequently, if the pixel stronger than the upper threshold (
hT ) is 

marked as strong candidate edge; otherwise, the edge pixel between the two thresholds is marked 

as weak candidate edge. The rest of pixels are marked as the background. As a result, the revised 

edge tracking follows the steps below. 

1.  Edge tracking based upon the strong and weak candidate edges set is implemented by 

BLOB-analysis (Binary Large OBject). The ESM is scanned from left to right, top to 

bottom. The first strong candidate edge pixel is declared an edge. It follows that all its 

neighbors are recursively followed till no other candidate edge pixels connect to it, and 

those weak candidate edges are marked as edges if they have been connected to strong 
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edges. Furthermore, each edge contour is marked with a unique label. Under this way, the 

initial edge map   is obtained
1 2{ , , , }mE E E  , 

iE ( 1,2, , )i m represents the 'i th  

edge contour. 

2.  Determining the structure for each edge contour. For the 's th  edge contour 

1 2{ , , , }s nE P P P , ( , )j j jP x y ( 1,2, ,j n ) is the position of the 'j th  pixel on the 

edge contour. Let d  be the distance between the initial point 
1P  and final point 

nP  on 

the 's th  edge contour, and if
maxd D , then 

sE  is labeled as a loop edge contour; 

otherwise, 
sE  is labeled as an open edge contour. Here, 

maxD is defined as the maximum 

admissible distance between 
1P  and

nP , we set 
max =4D .  

3.  Supposing that 
sE  is a loop contour and

1 nP P , the gap between the initial and final points 

will be filled by the shortest distance between them.  

4.  If 
sE  is an open contour, the endpoint 

1P  or 
nP  contains an endpoint 

nQ  of another 

contour in a specified size ( 5 5 ), fill the gap between the two endpoints by the shortest 

distance and connect the two edge contour into an open contour. Otherwise, the endpoint  

1P  or 
nP  contains edge pixels of another edge contour, then the gradient direction of the 

endpoint and its neighborhood pixels are considered; calculating the mean gradient 

direction of the endpoint and its neighboring pixels (for 
max =4D ), and then the endpoints is 

extended to another edge contour along the direction perpendicular to the mean gradient 

direction. Repeat the procedure till the each endpoint of the neighborhood does not contain 

other endpoints.   

Fig. 6 shows a full procedure from edge detection to edge contour extraction and extension. Fig. 

6(a) is the test image. The magnified image of part (a) (marked by ‘ ’) is shown in Fig. 6(b), 

which is used to demonstrate the edge extraction and extension. Fig. 6(c) shows the edge detection 

result by the proposed method. Fig. 6(d) plots the edge contour extracted from the edge map. 

Fig .6(e) illustrates the result of the contours after filling small gaps and edge extension. It can be 

seen that most of the missed cross-edges in the edge detection are picked up by the filling gaps 

and edge extension; for instance, the broken contours “41” and “42” are removed into a loop 

contour, the contours “58”, “59” and “61” are connected into a long contour. The final detection 

result of the test image (a) is shown in Fig. 6(f). 
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Fig.6 Demonstration of edge extraction and extension (a) test image, (b) magnitude image of the part 

(a), (c) the result of edge detection by the proposed method, (d) the edge contour extracted from the 

edge map, (e) the results of fill gaps and edge extension, (f)the final detection result of the test image. 

3.3  Edge Detection Algorithm via Automatic ANGKs 

The proposed method first smooth the input image by ANGKs and obtain the ANDDs of each 

pixel. It follows that the ESM and EGDM are derived as the edge measure. The outline of the 

proposed algorithm is: 

1.  The input image is smoothed by the automatic ANGKs. 

2.  Calculate the ANDDs of the input image in terms of equation (12). 

3.  Calculate the edge strength map ESM ( )x n  and the edge gradient direction map 

EGDM ( )x n  from the ANDDs in terms of equations (13) and (14). 

4.  For each pixel, gradient magnitude and direction are used to the non-maximum suppression. 

If gradient magnitude at either side of it is less than the gradient at the pixel in the gradient 

direction, retain the pixel; otherwise, it would be set to zero. 

5.  Hysteresis thresholds are used to select the candidate edge pixels, and the revised edge 

tracking method is used to edge extraction. 

4. Experimental Results and Performance Evaluation 
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In this section, we focus on experiments and performance evaluation. The proposed detector is 

compared with four detectors, Canny [5], the statistical [9], the IAGKs [6] and the multi-scale 

Sobel [19] in terms of the empirical receiver operating characteristic (ROC) curves [28] and 

Pratt’s Figure of Merit (FOM) [29]. 

4.1 Empirical ROC evaluation 

Bowyer et al. [28] proposed a statistical analysis method using ROC curves to evaluate 

different edge detectors, which use real images, manually specified ground truth (GT), adaptive 

sampling parameter space and train-and-test evaluation. Its kernel is to compare the results of 

detectors under individual optimal parameter settings. For a test image with the GT that contains 

eN  edge pixels and 
neN  non-edge pixels, an edge pixel is detected by the detector within a 

specified tolerance of an edge in the GT, then it is counted as a true positive (TP); otherwise, an 

edge pixel is detected in a no-edge region, it is counted as a false positive (FP). Additionally, 

edge pixels are detected in a don’t-care region do not account as TPs or FPs. Subsequently, if a 

detector at a given parameter setting detects 
TPN  correct edge pixels and 

FPN  false edge pixels; 

then the ROC curve of a detector at the specified parameter setting is obtained by the points ( 

Unmatched GT Edges,  FP Edges), which are defined by 

%   1 TP

e

N
Unmatched GT Edges

N
  ,  %  FP

ne

N
FP Edges

N
 .              (15) 

In this format of the ROC curve, the ideal point is (0, 0) and an ROC curve which lies to the 

lower left of another curve is better. The aggregate ROC curves were introduced in [28] for 

performance evaluation, where a detector parameter setting are first trained to attain the best ROC 

curve on a single image and then tested on the set of images to obtain the aggregate test ROC 

curve by averaging the aggregate ROC curves of all the images. The image database for training 

and testing, coming from the image datasets [28], contains a set of fifty object images and another 

set of ten aerial images with the specified GT. 

The Canny [5] detector has three adjustable parameters, the Gaussian-smoothing scale , the 

percent of not-edge pixels  , and the factor of threshold ratio  . In the ROC curve computation, 

the parameter settings are taken in the set 

1,1.2,...,5

0.6,0.61,...,0.95

0.2,0.21,...,0.6







 
 

 
  

.                         (16) 

The statistical [9] method has three adjustable parameters, the Gaussian-smoothing scale , the 

percent of not-edge pixels  , and the factor of threshold ratio  . In the ROC curve computation, 

the parameter settings are taken in the set 
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1,1.2,...,5

0.6,0.61,...,0.95

0.2,0.21,...,0.6







 
 

 
  

.                         (17) 

The IAGKs [6] method has four adjustable parameters, the anisotropic factor   and scale factor 

, the percent of not-edge pixels  , and the factor of threshold ratio  . The parameter settings 

are taken in the set 

         

2

2

2,3,...,12

2,3,...,12

0.6,0.61,...,0.95

0.2,0.21,...,0.6









 
 

 
 

 
  

.                         (18) 

The multi-scale Sobel [19] has three adjustable parameters, the difference between two 

consecutive scales  , the setting of multi-scale Gaussian smoothing S , the maximal 

displacement of an edge in two consecutive scales 
distT . The parameter settings are taken in the set 

0.1,0.25,0.5

{0.5},{0.5,0.5 },...,

           {0.5,0.5 ,...,6}

       1, 2,3dist

S

T







  
 

   
 

  
  

.                      (19) 

The proposed method has five adjustable parameters, the number of orientations K, the anisotropic 

factor  2
=1 tan

K
 , scale factor , the percent of not-edge pixels  , and the factor of 

threshold ratio  . The parameter settings are taken in the set 

2 2 2 2

4,6,....,16

, 1,..., 10

0.6,0.61,...,0.95

0.2,0.21,...,0.6

K

   





 
 

   
 

 
  

.                       (20) 

 

Fig.7 Comparison of the aggregate test ROC curves of the five detectors for the set of object images 

and aerial images. (a) Aggregate test ROC curves-Objects. (b) Aggregate test ROC curves-Aerials. 

The results shown in Fig. 7 are the ROC curves at the noise-free case. The proposed detector 
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offers the best performance among the five detectors. The IAGKs [6] attains the second best. The 

major reason is that statistical, Canny and Multi-scale Sobel detectors use the isotropic Gaussian 

to smooth the input image and the derivatives of x- and y-axis are used to extract the image 

gray-variation and structure information; however, the edge is the anisotropic feature, isotropic 

Gaussian kernel cannot represent the image’s gray-variation information well. On the contrary, the 

automatic ANGKs can extract the fine image gray-variation information, which is helpful to detect 

weak edges. This is the major reason that the proposed method and IAGKs detector achieve the 

greater performance improvement on the aerial images than three other detectors. Furthermore, a 

revised edge extraction is presented to overcome the limitations of the existing differential-based 

methods, which cause some obvious edge pixels missing. 

 

Fig.8 Comparison of the aggregate test ROC curves of the five detectors for the set of object images 

and aerial images. (a) Aggregate test ROC curves-Objects 10w  . (b) Aggregate test ROC 

curves-Aerials 10w  . (c) Aggregate test ROC curves-Objects 15w  . (d) Aggregate test ROC 

curves-Aerials 15w  . 

The noise-robustness of an edge detector is important in applications, because images are 

inevitably corrupted by noise in acquisition and transmission. Here, zero-mean white 

Gaussian noise of standard deviation 10 and 15 are added to test images to verify the 

noise-robustness, respectively. Fig .8 demonstrates the ROC curves of the five detectors for 

the noise cases. As the noise standard variation increases, the performance of the five 

detectors decreases in different degrees. Meanwhile, the results represent that the proposed 

method achieves the best noise-robustness than the other four detectors. This is owing to the 

fact that the automatic ANGKs have the ability to extract the fine gray-variation and noise 
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suppression. The revised edge extraction can greatly reduce the occurrence probability of 

cross-edges missing. Meanwhile, we have noticed that the difference in the performance of 

the proposed method and IAGKs method [6] is not obvious. The reason is that the test 

samples are limited，the phenomenon is more prominent on the 10 aerial test images. 

Meanwhile, the parameter settings of the ANGKs in IAGKS method [6] play the biggest 

advantage in the rule of ROC evaluation. 

Furthermore, the BSDS500 image datasets [2] are used to further evaluate the five detectors. 

Compared with the image datasets [28], the manually specified GTs of the BSDS500 image 

datasets also include edge pixels and non-edge pixels, while do not have don’t care edge region. 

We used 50 images for training and algorithm development. The 200 test images were used to 

generate the final results for this paper. The results shown in Fig. 9 are the ROC curves at the 

noise-free and noisy cases. In the noise-free case, the proposed achieves the highest performance. 

The IAGKs [6] attains the second best. The other three edge detectors performed substantially poorer. 

The main reason is that the isotropic Gaussian kernel has not the ability to extract gray intensity 

variation information well. In the noisy case, the performance of the proposed detector provides 

more significant improvements, owing to its noise-robustness and good edge connectivity. The 

IAGKs [6] obtains the second best for the ANGKs are robust to the noise. The other three 

detectors substantially lack noise robustness, because noise suppression of the isotropic Gaussian 

kernel is at the cost of edge localization loss. 

 

Fig.9 Comparison of the aggregate test ROC curves of the five detectors for the set of BSD500 test 

images. (a) Aggregate test ROC curves. (b) Aggregate test ROC curves 10w  . (c) Aggregate test 

ROC curves 15w  . 



18 

4.2 FOM evaluation 

Pratt’s Figure of Merit (FOM) [29] is another popular performance evaluation tool, which 

does not require ground truth images. FOM measures the deviation of a detected edge point 

from the ideal edge. It is defined as 

2
1

1 1

max{ , } 1 ( )

dN

kd i

FOM
N N d k




 ,                      (21) 

where 
iN  is the number of the edge points on the ideal edge, 

dN  is the number of detected 

edge points, ( )d k  is the distance between the k-th detected edge pixel and the ideal edge,   is 

scaling constant (here 1/ 4  ). In all cases, FOM ranges from 0 to 1, where 1 corresponds to a 

perfect match between the detected edge map and the ideal edge map. 

 

Fig.10.Ten test images for the FOM evaluation 

In this experiment, ten test images with different scenes, as shown in Fig.10, collected from 

the literature on edge detection, are used for FOM computation. The proposed detector 

(K=8,  2

2
=1 tan

K
 , 2 22  ), Canny [5] and IAGKs [6] use the default parameter values except 

for the percent of not-edge pixels and factor of threshold ratio. For each test image, its 

corresponding ideal edge map is attained by the Canny [5], the IAGKs [6] detectors and the 

proposed method in two steps. Firstly, three edge maps are obtained by the three detectors; the 

three edge maps have almost same number of edge pixels by tuning the percent of non-edge pixels 

and fixing the factor of threshold ratio at 0.5. Then, the ideal edge map is formed by the edge 

pixels, which exists at least two out of three edge maps. Secondly, the noise-robustness of the 

three detectors is evaluated by their FOM’s change with noise levels based upon the ideal edge 

map. The percent of not-edge pixels of the three detectors is uniformly sampled from 0.6 to 0.9 

with an interval 0.002 and the largest FOM of the obtained edge maps is specified as the FOM of 

the detector at the noise level. 
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Take ‘Lena’ image as an example, the three edge maps are shown in Fig. 11 (b)-(d); they are 

highly similar except for a very few details, which has 17838, 17885 and 17874 edge pixels, 

respectively. The ideal edge map has 17758 edge pixels, as shown in Fig. 12 (a). It is worth to note 

that the edge map by the proposed detector has better edge connectivity in noise free case. The 

main reason is that the revised edge connection method reduces the probability of the cross-edge 

missing. 

 

Fig.11. Edge maps by the three detectors for the noise-free ‘Lena’ image: (a) noise-free ‘Lena’ image; 

(b) edge map by Canny detector with the percent of non-edge pixels 0.7, (c) edge map by the IAGKs 

detector with the percent of non-edge pixels 0.742, and (d) edge map by the proposed detector with 

the percent of non-edge pixels 0.62. 

At noise levels 5w  , 10 and 15, the FOM of the three detectors are summarized in Table 1. It 

is easily conclude that the proposed detector achieve the best noise robustness than the two other 

detectors in this evaluation. The IAGKs [7] is moderate, the Canny is the poorest. The reason is 

that the proposed detector uses the automatic ANGKs to detect edges, which conciliates the conflict 

between the edge localization and noise-sensitivity. While the IAGKs detector [7] uses the experience 

to select the scale and anisotropic factor. The Canny detector using a single isotropic Gaussian kernel 

cannot conciliate this conflict [14]. As shown in Fig. 12 (b)-(d), the proposed detector attains the best 

edge map at 15w  , incurs the least spurious edges. The IAGKs [7] detects a few spurious edges 

in smooth region and many false edges near the real edges. The Canny detector incurs quite a few 
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false edges near the real edges and smooth region. 

 

Fig.12. Visual comparison of the three detectors at 15w  : (a) the ideal edge map; (b) edge map by 

Canny detector; (c) edge map by IAGKs detector; (d) edge map by the proposed detector. 

Table I. FOM comparison of the three detectors at three noise levels, 

where each cell lists FOM and the number of detected edge pixels(NDEPs). 

Image name/ideal 

edge pixels 

 Canny IAGKs[6] Proposed 

Noise level 

 5w   10w   15w   5w   10w   15w   5w   10w   15w   

Lena/17758 
FOM 

NDEPs 

0.8839 

18039 

0.8489 

17946 

0.7992 

17964 

0.8856 

18051 

0.8592 

17770 

0.8076 

17844 

0.9247 

18091 

0.8706 

17946 

0.8361 

17920 

Shave/6277 
FOM 

NDEPs 

0.8318 

6225 

0.7722 

6208 

0.7381 

6210 

0.8536 

6214 

0.8054 

6207 

0.7647 

6238 

0.8709 

6287 

0.8178 

6216 

0.7885 

6261 

Radio/15262 
FOM 

NDEPs 

0.8912 

15283 

0.8790 

15271 

0.8543 

15210 

0.9139 

15288 

0.9070 

15308 

0.8952 

15224 

0.9339 

15272 

0.9414 

15281 

0.9133 

15271 

Parking 

meter/13486 

FOM 

NDEPs 

0.8924 

13526 

0.8885 

13564 

0.8872 

13450 

0.9168 

13497 

0.9044 

13552 

0.8965 

13446 

0.9241 

13451 

0.9077 

13484 

0.8978 

13494 

Motorbike/13808 
FOM 

NDEPs 

0.8896 

13762 

0.8778 

13742 

0.8662 

13857 

0.9032 

13832 

0.8949 

13741 

0.8799 

13770 

0.9282 

13758 

0.9099 

13784 

0.8972 

13806 

Block/1973 
FOM 

NDEPs 

0.9468 

1970 

0.9360 

1988 

0.9337 

1972 

0.9623 

1964 

0.9554 

1965 

0.9413 

1968 

0.9734 

1967 

0.9602 

1962 

0.9545 

1960 

House/2996 
FOM 

NDEPs 

0.9388 

2998 

0.9300 

2992 

0.9151 

2976 

0.9422 

2989 

0.9339 

2977 

0.9205 

3010 

0.9653 

2980 

0.9538 

2990 

0.9364 

3008 



21 

Peppers/10003 
FOM 

NDEPs 

0.8725 

9971 

0.8467 

10018 

0.8314 

10004 

0.8934 

10028 

0.8880 

9986 

0.8629 

10024 

0.9023 

10021 

0.8969 

10005 

0.8817 

9997 

Appreciation/9423 
FOM 

NDEPs 

0.8793 

9424 

0.8598 

9474 

0.8393 

9441 

0.9011 

9472 

0.8793 

9425 

0.8546 

9440 

0.9175 

9429 

0.8942 

9422 

0.8775 

9390 

Sofa/15139 
FOM 

NDEPs 

0.8612 

15191 

0.8427 

15157 

0.8176 

15158 

0.8955 

15146 

0.8649 

15123 

0.8258 

15112 

0.9098 

15115 

0.8869 

15191 

0.8508 

15100 

4.3 Computation complexity 

The proposed edge detector has been implemented in Matlab. Detection is done on a 

1.6-GHz with 4GB of memory. For each test image, the proposed algorithm was executed 100 

times and mean execution times were measured. The computation complexity of the proposed 

algorithm is depicted in Table 2. According to Table 2, the ‘Block’ and ‘House’ image 

required the similar time; the ‘Lena’, ‘Radio’ and ‘Parking meter’ image required the more 

time. Note that the time slightly vary depending upon the number of detected edge pixels in 

the image. In the three subcomponents of the proposed detector, select candidate edge pixels 

consumes much more time than image smooth and revised edge tracking. Since the image 

fine gray variation information are derived from the eight direction ANGKs, which burden the 

computation complexity of the subsequent processing. Seeing that computation complexity, 

the proposed method should be ported to an embedded processor or FPGA controller to 

improve the real time performance. 

Table II. Mean run-time of the proposed edge detector 

Task 

Time(s) 

Block 

(256×256) 

House 

(256×256) 

Radio 

(488×611) 

Parking meter 

(558×495) 

Lena 

(512×512) 

Image smoothing 0.169 0.171 0.486 0.416 0.4314 

Select candidate 

edge pixels 

1.425 1.432 5.114 4.577 4.901 

Revised edge 

tracking 

0.393 0.422 1.696 1.466 1.742 

5. Conclusions 

The main contribution of the paper is the consideration of the extraction of fine 

gray-variation information and the edge missing problem in the edge detection. The 

automatic ANGKs are designed to smooth the input image and suppress the noise; the 

revised edge extraction method is used to obtain the closed edge contours, which can 

enhance the detection accuracy and alleviate the false or missing detection. The experiment 
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results show that the proposed detector outperforms the four state-of-the-art edge detectors in 

terms of the aggregate ROC curves and Pratt’s FOM evaluations. 

Acknowledgments 

The authors will be very thankful to the reviewers and the editors for their valuable 

suggestions to improve the paper. This work was supported by the National Natural Science 

Foundation of China (No.61401347), by natural science basic research plan in Shaanxi 

province of China (Program No. 2016JM6013).  

REFERECES 

[1] Pushe Zhao, Hongbo Zhu, and Tadashi Shibata, A directional-edge-based real-time object 

tracking system employing multiple candidate-location generation, IEEE Trans. Image 

Processing, 23(3):503-518, 2013. 

[2] Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jitendra Malik, Contour Detection 

and Hierarchical Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 33(5): 

898-916, 2011. 

[3] Wei-Chuan Zhang, Peng-Lang Shui, Contour-based corner detection via angle difference 

of principal directions of anisotropic Gaussian directional derivatives, Pattern 

Recognition, 48(9):2785-2797, 2015. 

[4] J. Prewitt, object enhancement and extraction, Picture process. Phychopict., pp.75-149, 

1970. 

[5] John Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. 

Mach. Intell., 8(6): 679-698, 1986. 

[6] Peng-Lang Shui, Wei-Chuan Zhang, Noise-robust edge detector combining isotropic and 

anisotropic Gaussian kernels, Pattern Recognition, 45(2): 806-820, 2012. 

[7] C. Lopez-Molina, G. Vidal-Diez de Ulzurrun, J.M. Bateens, J.Van den Bulcke, B. De 

Bates, Unsupervised ridge detection using second order anisotropic Gaussian kernels, 

Signal Processing, 116:55-67, 2015. 

[8] S. Konishi, A.L. Yuille, J.M. Coughlan, S.-C. Zhu, Statistical edge detection: learning and 

evaluating edge cues, IEEE Trans. Pattern Anal. Mach. Intell., 25(1):57-74, 2003. 

[9] Rishi R. Rakesh, Probal Chaudhuri, C. A. Murthy, Thresholding in edge detection：a 

statistical approach, IEEE Trans. Image Processing, 13(7):927-936, 2004. 

[10] Shaobai Li, Srinandan D. and Koushik M., Dynamical System Approach for Edge 

detection using Coupled FitzHugh-Nagumo Neurons, IEEE Trans. Image Processing, 

24(12):5206-5220, 2015. 

[11] P Dollár, CL Zitnick, Fast edge detection using structured forests, IEEE Trans. Pattern 

Anal. Mach. Intell., 37(8):1558-1570, 2015. 

[12] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International 

Journal of Computer Vision, 1(4):321-331, 1987. 

[13] D. Marr and E. Hildreth, Theory of edge detection. Proc. Royal Society of London, B, 

207, pp. 187–217, 1980. 

http://scholar.google.com.secure.sci-hub.org/citations?user=a8Y2OJMAAAAJ&hl=zh-CN&oi=sra
http://scholar.google.com.secure.sci-hub.org/citations?user=ZeJjFQMAAAAJ&hl=zh-CN&oi=sra


23 

[14] S. Mallat and W-L Hwang, Singularity detection and processing with wavelets, IEEE 

Trans. Inform. Theory, 38(2): 617-643, 1992. 

[15] D. D. Po and M. N. Do, Directional multiscale modeling of images using the contourlet 

transform, IEEE Trans. Image Processing, 15(6): 1610-1620, 2006. 

[16] S. Yi, D. Labate, G. R. Easley, and H. Krim, A shearlet approach to edge analysis and 

detection, IEEE Trans. Image Processing, 18(5): 929-941, 2009. 

[17] Miguel A. Duval-Poo, Francesca Odone, Emesto De Vito, Edge and corner with 

shearlets, IEEE Trans. Image Processing, 24(11): 3768-3781, 2015. 

[18] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, The dual-tree complex wavelet 

transform. IEEE Signal Processing Magazine, 22(6): 123-151, 2005. 

[19] C. Lopez-Molina, B. De Bates, H. Bustince, J. Sanz, E. Barrenechea, Multi-scale edge 

detection based on Gaussian smoothing and edge tracking, Knowledge-Based Systems, 

44(3):101-111, 2013. 

[20] C. Lopez-Molina, M. Galar, H.Bustince, B. De Bates, On the impact of anisotropic 

diffusion on edge detection, Pattern Recognition, 47: 270-281, 2014. 

[21] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE 

Trans. Pattern Anal. Mach. Intell., 12(7): 629-639, 1990. 

[22] L. Alvarez, P-L Lions, J-M Morel, Image selective smoothing and edge detection by 

nonlinear diffusion, II, SIAM Jour. of Numerical Analysis, 29(3): 845-866, 1992. 

[23] Song Gao and T. D. Bui, Image segmentation and selective smoothing by using 

Moumford-Shah Model, IEEE Trans. Image Processing, 14(10): 1537-1549, 2005. 

[24] E. A. S. Galvanin, G. M. do Vale, and A. P. Dal Poz, The Canny detector with edge 

focusing using an anisotropic diffusion process, Pattern Recognition and image analysis, 

16(4): 614-621, 2006. 

[25] C. H. Lampert, O. Wirjadi, An optimal non-orthogonal separation of the anisotropic 

Gaussian convolution filter, Fraunhofer ITWM, 2005. 

[26] Peng-Lang Shui, Wei-Chuan Zhang, Corner Detection and Classification using 

Anisotropic Directional Derivative Representations, IEEE Trans. Image Processing, 

22(8): 3204-3219, 2013. 

[27] J-M Geusebroek, A. W. M. Smeulder and J. van de Weijer, Fast anisotropic Gauss 

filtering, IEEE Trans. Image Processing, 12(8): 938-943, 2003. 

[28] K. Bowyer, C. Kranenburg, A. Dougherty, Edge detector evaluation using empirical 

ROC curves, Comput. Vis. Image Understand. 84 (1):77–103, 2001. 

[29] W.K. Pratt, Digital Image Processing, Wiley Interscience Publications, 1978. 

 


