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ATTRACTORS FOR DAMPED QUINTIC WAVE EQUATIONS IN BOUNDED

DOMAINS

VARGA KALANTAROV1, ANTON SAVOSTIANOV2, AND SERGEY ZELIK2

Abstract. The dissipative wave equation with a critical quintic nonlinearity in smooth bounded three
dimensional domain is considered. Based on the recent extension of the Strichartz estimates to the
case of bounded domains, the existence of a compact global attractor for the solution semigroup of this
equation is established. Moreover, the smoothness of the obtained attractor is also shown.
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1. Introduction

We consider the following damped wave equation:

(1.1)

{

∂2
t u+ γ∂tu−∆xu+ f(u) = g,

u
∣

∣

t=0
= u0, ∂tu

∣

∣

t=0
= u′0

in a bounded smooth domain Ω of R3 endowed by the Dirichlet boundary conditions. Here γ is a
fixed strictly positive constant, ∆x is a Laplacian with respect to the variable x = (x1, x2, x3), the
nonlinearity f is assumed to have a quintic growth rate as u → ∞:

(1.2) f(u) ∼ u5

and to satisfy some natural assumptions, see Section 6 for the details, and the initial data ξu(0) :=
(u0, u

′
0) is taken from the standard energy space E :

E := H1
0 (Ω)× L2(Ω), ‖ξu‖

2
E := ‖∇xu‖

2
L2 + ‖∂tu‖

2
L2 .

Dispersive or/and dissipative semilinear wave equations of the form (1.1) model various oscillatory
processes in many areas of modern mathematical physics including electrodynamics, quantum me-
chanics, nonlinear elasticity, etc. and are of a big permanent interest, see [19, 2, 30, 7, 28, 29, 27] and
references therein.

To the best of our knowledge, the global well-posedness of the quintic wave equations in the whole
space (Ω = R

3) has been first obtained by Struwe [26] in the class of radially symmetric solutions and
by Grillakis [12] for the non radially symmetric case and smooth initial data. Their proof is strongly
based on the explicit formulas for the solutions of the wave equation in R

3 as well as on the so called
Morawetz-Pohozhaev identity.

The global unique solvability in Ω = R
3 for the initial data in the energy space has been verified

by Shatah and Struwe [24] (see also [25] and [14, 15, 16]). This well-posedness is obtained in the class
of solutions which possess (together with the energy estimate) some extra space-time regularity (say,
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2 QUINTIC WAVE EQUATION

u ∈ L4(t, t + 1;L12(Ω)) or u ∈ L8((t, t + 1) × Ω) or (u, ∂tu) ∈ L4(t, t + 1; Ẇ 1/2,4(Ω) × Ẇ−1/2,4(Ω)))
which follow from the Strichartz type estimates. In the present paper we refer to the analogues of
such solutions in bounded domains as Shatah-Struwe solutions, see Section 2 for more details.

Again to the best of our knowledge, even in the case of the whole space Ω = R
3 or in the case

where Ω is a compact manifold without boundary, the global attractors for equations of the type (1.1)
have been constructed only for the sub-quintic case f(u) ∼ u|u|4−ε, ε > 0, see [9] and [17], and their
existence in the quintic case was a longstanding open problem.

The case of bounded domains looked even more delicate since the Strichartz type estimates have
been not known for that case till recently and based purely on the energy estimates, one can verify
the global well-posedness only for the cases of cubic or sub-cubic growth rates of the nonlinearity f .
Therefore, for a long time, exactly the cubic growth rate of the nonlinearity f has been considered
as a critical one for the case of bounded domains, see [2, 1, 7, 18, 32, 31, 23] and references therein.
In particular, the existence of a compact global attractor for that case has been known only for
the nonlinearity of the cubic growth rate and, for faster growing nonlinearities, only the versions of
weak trajectory attractors (without compactness and uniqueness) have been available, see [7, 32] and
references therein.

However, due to the recent progress in Strichartz estimates, see [4, 5], the suitable versions of
Strichartz estimates are now available for the case of bounded domains as well. Moreover, using also
the proper generalization of Morawetz-Pohozhaev identity to the case of bounded domains, the result
of Shatah and Struwe on the global well-posedness of quintic wave equations is now extended to the
case of smooth bounded domains, see [5, 6]. Thus, it becomes more natural to refer (similar to the case
Ω = R

3) to the quintic growth rate of the non-linearity f as the critical one and treat the sub-quintic
case as a sub-critical one. We will follow this terminology throughout of the paper.

The main aim of the present paper is to develop the attractor theory for the semilinear wave
equation (1.1) in bounded domains for the nonlinearities of the quintic and sub-quintic (but super-
cubic) growth rates. Note from the very beginning that our results in the sub-quintic case are more
or less straightforward extensions of the results [9] to the case of bounded domains based on the new
Strichartz estimates. So, we give the analysis of this case only for the completness (see Section 4) and
are mainly concentrated on the most interesting case of the critical quintic growth rate.

The case of quintic growth rate is indeed much more delicate since the global well-posedness theo-
rem mentioned above gives only the existence and uniqueness of the solutions with extra space-time
regularity u ∈ L4(t, t + 1;L12(Ω)), but does not give any control of this norm in terms of the initial
data and, in particular, does not give any information on the behavior of such norm as t → ∞. By this
reason, the control of this norm may be a priori lost when passing to the limit t → ∞. As a result, even
starting from the regular Shatah-Struwe solutions, we may a priori lose the extra space-time regularity
on the attractor. Since the uniqueness in the classes of solutions weaker than the Shatah-Struwe ones
is also not known, this is a crucial difficulty which (again a priori) may destroy the theory.

To overcome this problem, we verify (in Section 3) that any Shatah-Struwe solution can be obtained
as a limit of Galerkin approximations and utilize the results obtained in [32] on the weak trajectory
attractors of the Galerkin solutions. Namely, based on the finiteness of the dissipation integral, it is
shown there that even in the case of supercritical growth rate of f , every complete solution u(t), t ∈ R,
belonging to the weak attractor becomes smooth for sufficiently large negative times, see Section 5.
Combining this result with the global solvability in the class of Shatah-Struwe solutions, we verify that,
in the quintic case, the weak attractor consists of smooth solutions which, in particular, satisfy the
energy identity. Using then the so-called energy method, see [3, 22], we finally establish the existence
of a compact global attractor for the quintic wave equation (1.1), see Section 6.

Thus, the following theorem is the main result of the paper (see Section 6 for more details).

Theorem 1.1. Let the quintic non-linearity f satisfy assumptions (3.25) and (5.1) with p = 3 and
let g ∈ L2(Ω). Then, the (Shatah-Struwe) solution semigroup S(t) : E → E associated with equation
(1.1) possesses a global attractor A in E which is a bounded set in the more regular space

E1 := [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω).

The paper is organized as follows. The preliminary things, including the key Strichartz estimates
for the linear equation and various types of energy solutions of (1.1) are discussed in Section 2. The
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key properties of the Shatah-Struwe solutions including the local and global existence, uniqueness and
further regularity are collected in Section 3. Section 4 is devoted to the relatively simple sub-critical
case when the nonlinearity f grows slower than a quintic polynomial and the analogue of Theorem 1.1
for that case is obtained there. The brief exposition of the trajectory attractor theory for the critical
and supercritical wave equations developed in [32] is given in Section 5. Finally, the existence of a
compact global attractor for the quintic wave equation is proved in Section 6.

2. Preliminaries: Strichartz type estimates and types of energy solutions

In this section, we introduce the key concepts and technical tools which will be used throughout of
the paper. We start with the estimates for the solutions of the following linear equation:

(2.1) ∂2
t v + γ∂tv −∆xv = G(t), ξu

∣

∣

t=0
= ξ0, u

∣

∣

∂Ω
= 0.

The next proposition is a classical energy estimate for the linear equation (2.1).

Proposition 2.1. Let ξ0 ∈ E, G ∈ L1(0, T ;L2(Ω)) and let v(t) be a solution of equation (2.1) such
that ξv ∈ C(0, T ; E). Then the following estimate holds:

(2.2) ‖ξv(t)‖E ≤ C

(

‖ξ0‖Ee
−βt +

∫ t

0
e−β(t−s)‖G(s)‖L2 ds

)

,

where the positive constants C and β depend on γ > 0, but are independent of t, ξ0 and G.

Indeed, estimate (2.2) follows in a standard way by multiplying (2.1) by ∂tv+ αv (for some α > 0)
and applying the Gronwall inequality, see e.g., [30, 7] for the details.

The next proposition is however much more delicate and follows from the recently proved Strichartz
type estimates for wave equations in bounded domains, see [4] (see also [5, 6]).

Proposition 2.2. Let the assumptions of Proposition 2.1 hold. Then, v ∈ L4(0, T ;L12(Ω)) and the
following estimate holds:

(2.3) ‖v‖L4(0,T ;L12(Ω)) ≤ CT (‖ξ0‖E + ‖G‖L1(0,T ;L2(Ω))),

where C may depend on T , but is independent of ξ0 and G.

Indeed, for γ = 0 this estimate is established in [4] and the case γ 6= 0 is reduced to the case γ = 0
due to the control of the L2-norm of ∂tv via energy estimate (2.2).

Remark 2.3. Combining energy estimate (2.2) with the Strichartz estimate (2.3), we get a bit stronger
dissipative version of (2.3):

(2.4) ‖ξv(t)‖E + ‖v‖L4(max{0,t−1},t;L12(Ω)) ≤ C

(

‖ξ0‖Ee
−βt +

∫ t

0
e−β(t−s)‖G(s)‖L2 ds

)

,

where positive constant β and C are independent of v and t ≥ 0.
Note also that, due to the interpolation inequality

(2.5) ‖v‖
L

4
θ (0,T ;L

12
2−θ (Ω))

≤ C‖v‖θL4(0,T ;L12(Ω))‖v‖
1−θ
L∞(0,T ;H1(Ω))

and energy estimate (2.2), we have the control of the L4/θ(L12/(2−θ))-norm of the solution v for all
θ ∈ [0, 1]. Most important for what follows will be the case θ = 4

5 which controls the L5(L10)-norm of
the solution.

The next elementary fact will be used below for verifying the local existence of weak solutions.

Corollary 2.4. Let K ⊂ E×L1(0, T ;L2(Ω)) be a compact set. Then, for every ε > 0 there is T (ε) > 0
such that

(2.6) ‖v‖L4(0,T (ε);L12(Ω)) ≤ ε

for all solutions v of problem (2.1) with (ξ0, G) ∈ K.

Indeed, this assertion is an immediate corollary of estimate (2.3) and the Hausdorff criterium.

Remark 2.5. It is not difficult to show, using e.g. the scaling arguments that the assertion of
Corollary 2.4 is false in general if the set K is only bounded in E × L1(0, T ;L2(Ω)).
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We now turn to the nonlinear problem (1.1) with the nonlinearity of quintic growth rate:

(2.7) |f ′(u)| ≤ C(1 + |u|4)

and discuss several classes of weak solutions for it. The most straightforward definition is the following
one.

Definition 2.6. A function v(t) is a weak (energy) solution of problem (1.1) if ξv ∈ L∞(0, T ; E) and
equation (1.1) is satisfied in the sense of distributions. The latter means that

(2.8) −

∫ T

0
(ut, φt)dt− γ

∫ T

0
(u, φt)dt+

∫ T

0
(∇u,∇φ)dt +

∫ T

0
(f(u), φ)dt =

∫ T

0
(g, φ) dt,

for any φ ∈ C∞
0 ((0, T )×Ω). Here and below (u, v) stands for the usual inner product in L2(Ω). Then,

due to the growth restriction (2.7),

f(u) ∈ L∞(0, T ;H−1(Ω))

and from (1.1), we conclude that ∂2
t u ∈ L∞(0, T ;H−1(Ω)). Thus,

ξu(t) ∈ C(0, T ; E−1), E−1 := L2(Ω)×H−1(Ω)

and the initial condition ξu(0) = (u0, u
′
0) is well-defined.

However, these solutions are extremely difficult to work with. Indeed, most part of estimates related
with equation (1.1) are based on energy type estimates and this requires multiplication of (1.1) by
∂tu, but the regularity of energy solutions is not enough to justify this multiplication if f(u) has faster
than cubic growth rate. Thus, to the best of our knowledge even the basic energy estimate is not
known for such solutions if f grows faster than u3.

At least two alternative ways to overcome this problem has been used in a literature. One of
them consists of requiring additionally a weak solution to satisfy most important energy equalities or
inequalities (see [7, 21, 20] and reference therein). The other one poses the extra condition that a weak
solution is obtained as a limit of smooth solutions of the properly chosen approximation problems.
Then the desired estimates are obtained by passing to the limit from the analogous estimates for the
approximating solutions, see e.g., [32, 21] and reference therein. In this paper we will use the so-called
Galerkin approximations for that purposes.

Let λ1 ≤ λ2 ≤ · · · be the eigenvalues of the operator −∆x with homogeneous Dirichlet boundary
conditions and e1, e2, · · · be the corresponding eigenfunctions. Then, they form an orthonormal base in
L2(Ω) and since the domain Ω is smooth, they are also smooth: ei ∈ C∞(Ω). Let PN : L2(Ω) → L2(Ω)
be the orthoprojector to the linear subspace spanned by the firstN eigenfunctions {e1, · · · , eN}. Then,
the Galerkin approximations to problem (1.1) are defined as follows:

(2.9)

{

∂2
t uN + γ∂tuN −∆xuN + PNf(uN ) = PNg, uN ∈ PNL2(Ω),

ξuN
(0) = ξN0 ∈ [PNL2(Ω)]2.

Remind that (2.9) is a system of ODEs of order 2N with smooth (at least C1) nonlinearity, so it is
locally uniquely solvable and under some natural dissipativity assumptions on f (e.g., (3.25)) the blow
up is impossible and the solution is globally defined as well. Moreover, since all of the eigenvectors ei are
smooth, the solutions uN (t, x) are C∞-smooth in x and give indeed the desired smooth approximations
to (1.1). This justifies the following definition

Definition 2.7. A weak solution u(t), t ∈ [0, T ] (in the sense of Definition 2.6) is called Galerkin
(weak) solution of problem (1.1) if it can be obtained as a weak-star limit in L∞(0, T ; E) of the Galerkin
approximation solutions uN of problems (2.9):

(2.10) ξu = lim
N→∞

ξun ,

where the limit is taken in the weak-star topology of L∞(0, T ; E). Note that this convergence implies
only that

(2.11) ξuN
(0) ⇀ ξu(0)

in E and the strong convergence of the initial data in the energy space is not assumed, see [32] for
more details.
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Although the Galerkin solutions are a priori more friendly than the general weak solutions, their
uniqueness is known only for the non-linearities growing not faster than u3, so for faster growing
nonlinearities, one should use the so-called trajectory attractors for study their long-time behavior, see
[32, 21] and also Section 5 below for more details.

The uniqueness and global well-posedness problem for the case Ω = R
3 has been resolved by

Shatah and Struwe [24] (see also [14, 15]) in the class of weak solutions satisfying additionally some
space-time regularity estimate (e.g., u ∈ L4(0, T ;L12(Ω))). This result is strongly based on Strichartz
estimates for the linear wave equations as well as the Morawetz identity for the nonlinear equation.
The analogues of that results for the case of bounded domains have been recently obtained in [4, 5],
so analogously to the case Ω = R

3, one can give the following definition (see [4, 5]).

Definition 2.8. A weak solution u(t), t ∈ [0, T ] is a Shatah-Struwe solution of problem (1.1) if the
following additional regularity holds:

(2.12) u ∈ L4(0, T ;L12(Ω)).

Remark 2.9. As we will see below, the introduced Shatah-Struwe solutions is a natural class of
solutions where the global well-posedness, dissipativity and asymptotic smoothness can be established.
However, to verify the existence of a global attractor we will essentially use the Galerkin solutions as
an intermediate technical tool.

Note also that the ideal situation where all three introduced above classes of weak solutions are
in fact equivalent is not a priori excluded although, to the best of our knowledge, that is rigorously
proved only for the nonlinearities growing not faster than u3. Some results in this direction for quintic
nonlinearities and Ω = R

3 are obtained in [20].

3. Properties of Shatah-Struwe solutions

The aim of this section is to discuss the well-posednes, dissipativity and smoothness of Shatah-
Struwe solutions of problem (1.1). Although most of these results are not new or follow in a straight-
forward way from the known results, they are crucial for what follows, so for the convenience of the
reader, we give their proofs here.

We start with the local existence result.

Proposition 3.1. Let g ∈ L2 and the nonlinearity f satisfy the growth assumption (2.7). Then, for
any initial data ξ0 ∈ E, there exists T = T (ξ0) > 0 such that problem (1.1) possesses a Shatah-Struwe
solution u(t) on the interval t ∈ [0, T ].

Proof. We construct the desired solution u by passing to the limit N → ∞ in the Galerkin approxima-
tions (2.9). To this end, it suffices to obtain a uniform with respect to N estimate for the L4(0, T ;L12)-
norm of the solutions uN (t). To obtain such an estimate, we fix the initial data ξuN

(0) = ξN0 := PN ξ0.
This guarantees that

ξN0 → ξ0

strongly in E . Then, we split the solution uN = vN + wN where vN solves the linear problem

(3.1) ∂2
t vN + γ∂tvN −∆xvN = PNg, ξuN

(0) = PN ξ0

and wN is a reminder which satisfies

(3.2) ∂2
t wN + γ∂twN −∆xwn = −PNf(vN + wN ), ξwN

(0) = 0.

Note that the set of data {(ξN0 , PNg)}∞N=1 is a compact set in E × L1(0, 1;L2(Ω)). Therefore, due to
Corollary 2.4, for any ε > 0, there exists T = T (ε) > 0 (which is independent of ε) such that

(3.3) ‖ξvN (t)‖E ≤ C, ‖vN‖L4(0,t;L12(Ω)) ≤ ε, t ≤ T (ε),

where C is independent of N . Then, due to the growth restriction (2.7) and interpolation inequality
(2.5) with θ = 4/5, we have

(3.4) ‖PNf(vN +wN )‖L1(0,t;L2(Ω)) ≤

≤ C(t+ ‖vN‖5L5(0,t;L10(Ω)) + ‖wN‖5L5(0,t;L10(Ω))) ≤ C(t+ ε4 + ‖wN‖5L5(0,t;L10(Ω))).
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Applying now estimate (2.4) to equation (3.2) and using interpolation inequality (2.5) with θ = 4/5
again, we end up with

(3.5) ‖ξwN
(t)‖E + ‖wN‖L5(0,t;L10(Ω)) + ‖wN‖L4(0,t;L12(Ω)) ≤

≤ C(t+ ε4) + C(‖ξwN
(t)‖E + ‖wN‖L5(0,t;L10(Ω)))

5.

Thus, denoting YN (t) := ‖ξwN
(t)‖E + ‖wN‖L5(0,t;L10(Ω)), we end up with the inequality

YN (t) ≤ C(t+ ε4) +CYN (t)5, t ≤ T (ε), YN (0) = 0,

where the constant C is independent of N , t and ε. Moreover, obviously YN (t) is a continuous function
of t. Then, the last inequality gives

YN (t) ≤ 2C(t+ ε4)

if ε and T (ε) is chosen in such way that

C(2C(t+ ε4))5 ≤ C(t+ ε4), t ≤ T (ε).

Thus, fixing ε and T = T (ε) being small enough to satisfy the last inequality, we get the uniform
estimate

‖ξwN
‖C(0,T ;E) + ‖wN‖L5(0,T ;L10(Ω)) ≤ C1

which together with (3.3) and (3.5), gives the desired uniform estimate

‖ξuN
‖L∞(0,T ;E) + ‖uN‖L4(0,T ;L12(Ω)) ≤ C2.

Passing then in a standard way to the weak limit N → ∞, we end up with a Shatah-Struwe solution
of (1.1) and finish the proof of the proposition. �

Remark 3.2. Obviously, the lifespan T = T (ξ0) of a Shatah-Struwe solution u depends a priori on
the initial data ξ0 and since it is greater than zero for all ξ0 ∈ E , one may expect that T depends on
the E-norm of ξ0 only:

(3.6) T = T (‖ξ0‖E ).

In that case, the global solvability problem would be reduced to the control of the energy norm of
a solution u(t). Since such a control follows immediately from the energy estimate (see below), the
global solvability would also become immediate.

Unfortunately, (3.6) is not true in the critical quintic case (as we will see in the next section, it is
indeed true in the subcritical case) and, by this reason, one needs a lot of extra efforts in order to
establish the desired global solvability.

However, (3.6) remains true even in the critical quintic case under the extra assumption that the
energy norm ‖ξ0‖E is small:

‖ξ0‖E ≤ ε1 ≪ 1.

Indeed, in that case the key estimates (3.3), follow directly from the smallness of the energy norm
of ξ0 and estimate (2.4) and no compactness arguments of Corollary 2.4 are required. This simple
observation not only leads for the global solvability for small initial data in the case where the smallness
of the energy of a solution follows from the energy estimate, but also plays a crucial role in the proof
of global solvability for all initial data via the non-concentration of the energy norm, see [5, 24].

At the next step, we check that a Shatah-Struwe solution satisfies the energy equality.

Proposition 3.3. Let g ∈ L2(Ω), the nonlinearity f satisfy the growth restriction (2.7) and u(t),
t ∈ [0, T ] be a Shatah-Struwe solution of equation (1.1). Then the functions t → ‖ξu(t)‖E and t →
(F (u(t)), 1) are absolutely continuous and the following energy identity

(3.7)
d

dt

(

1

2
‖ξu(t)‖

2
E + (F (u(t)), 1) − (g, u(t))

)

+ γ‖∂tu(t)‖
2
L2 = 0

holds for almost all t ∈ [0, T ]. In particular, ξu ∈ C([0, T ], E).
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Proof. Indeed, due to the definition of a Shatah-Struwe solution, growth restriction (2.7) and interpo-
lation inequality (2.5), we have

(3.8) ‖f(u)‖L1(0,T ;L2(Ω)) ≤ C(1 + ‖u‖L5(0,T ;L10(Ω))) ≤ CT .

Therefore, since ∂tu ∈ L∞(0, T ;L2(Ω)), f(u)∂tu ∈ L1([0, T ] × Ω), then approximating the function u
by smooth ones and arguing in a standard way, we see that for every 0 ≤ τ ≤ t ≤ T ,

(F (u(t)), 1) − (F (u(τ)), 1) =

∫ t

τ
(f(u(s)), ∂tu(s)) ds

and, consequently, t → (F (u(t)), 1) is absolutely continuous and

(3.9)
d

dt
(F (u(t)), 1) = (f(u(t)), ∂tu(t))

for almost all t ≥ 0.
We are now ready to finish the proof of energy equality. To this end, we take uN (t) := PNu(t),

where PN is the orthoprojector on the first N eigenvalues of the Laplacian. Then, this function solves

∂2
t uN + α∂tuN + γ∂tuN −∆xuN = −PNf(u) + PNg.

Multiplying this equation by ∂tuN and integrating in space and time, we get the following analogue
of energy equality:

(3.10)
1

2
‖ξuN

(t)‖2E −
1

2
‖ξuN

(τ)‖2E − (g, uN (t)) + (g, uN (τ))+

+

∫ t

τ
γ‖∂tuN (s)‖2L2 ds = −

∫ t

τ
(PNf(u(s)), ∂tuN (s)) ds.

Since, obviously, ξuN
(t) → ξu(t), ξuN

(τ) → ξu(τ) and ∂tuN → ∂tu in L2(τ, t;L2(Ω)) strongly and
PNf(u) → f(u) weakly-star in L1(τ, t;L2(Ω)), we may pass to the limit N → ∞ in (3.10) and with
the help of (3.9) obtain that

(3.11) E(u(t))− E(u(τ)) + γ

∫ t

τ
‖∂tu(s)‖

2
L2 ds = 0,

where

E(u) :=
1

2
‖ξu‖

2
E + (F (u), 1) − (g, u).

It remains to note that (3.11) is equivalent to (3.7) and the energy equality is proved. The continuity
of ξu(t) as a E-valued function follows in a standard way from the energy equality. �

Corollary 3.4. Let the assumptions of Proposition 3.3 hold. Then the Shatah-Struwe solution u(t),
t ∈ [0, T ] is unique.

Proof. Indeed, let u(t) and v(t) be two Shatah-Struwe solutions of equation (1.1) on the interval
t ∈ [0, T ] and let w(t) = u(t)− v(t). Then this function solves

(3.12) ∂2
tw + γ∂tw −∆xw + [f(u)− f(v)] = 0.

Multiplying this equation by ∂tw and integrating over x ∈ Ω (which is justified exactly as in Proposition
3.3), we end up with

(3.13)
1

2

d

dt
‖ξw(t)‖

2
E + γ‖∂tw(t)‖

2
L2 + (f(u)− f(v), ∂tw) = 0.

Using the growth restriction (2.7), the Sobolev embedding H1
0 ⊂ L6 and the Hölder inequality, we

estimate the last term at the left-hand side of (3.13) as follows:

(3.14) |(f(u)− f(v), ∂tw)| ≤ C((1 + |u|4 + |v|4)|w|, |∂tw|) ≤

≤ C(1 + ‖u‖4L12 + ‖v‖4L12)‖w‖L6‖∂tw‖L2 ≤ C(1 + ‖u‖4L12 + ‖v‖4L12)‖ξw‖
2
E .

Since the L4(0, T ;L12(Ω))-norms of u and v are finite by the definition of the Shatah-Struwe solutions,
inserting the obtained estimate into equality (3.13) and applying the Gronwall inequality, we see that
ξw(t) ≡ 0 and the corollary is proved. �
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Corollary 3.5. Let the assumptions of Proposition 3.3 hold and let, in addition, the nonlinearity f
satisfies the following dissipativity assumption:

(3.15) f(u)u ≥ −C, u ∈ R.

Then the Shatah-Struwe solution u(t), t ∈ [0, T ] of problem (1.1) satisfies the following dissipative
estimate:

(3.16) ‖ξu(t)‖E ≤ Q(‖ξu(0)‖E )e
−αt +Q(‖g‖L2), t ∈ [0, T ],

where the monotone function Q and positive constant α are independent of t, T and u.

Indeed, the energy estimate (3.16) follows in a standard way by multiplication of equation (1.1) by
∂tu+ βu, where β is a properly chosen positive constant, and integration in x (the validity of that is
verified in Proposition 3.3) followed by application of the Gronwall type inequality, see [2, 7, 32] for
more details.

The next corollary shows that Shatah-Struwe solutions can be obtained as a limit of Galerkin
approximations.

Corollary 3.6. Let the assumptions of Proposition 3.3 hold, the nonlinearity f satisfy the dissipativity
assumption (3.15) and let u(t) be a Shatah-Struwe solution of problem (1.1). Assume also that the
initial data ξuN

(0) ∈ PNE for the Galerkin approximations uN (t) are chosen in such way that

ξuN
(0) → ξu(0)

strongly in E. Then, the Galerkin solutions uN (t) converge to the solution u(t):

(3.17) ξuN
(t) → ξu(t)

strongly in E for every t ∈ [0, T ]. In particular, any Shatah-Struwe solution is a Galerkin solution of
problem (1.1).

Proof. Indeed, due to the energy estimate (3.16) for the Galerkin approximations uN (t), we know that
the L∞(0, T ; E)-norms of these solutions are uniformly bounded. Thus, we may assume without loss
of generality, that uN (t) → ū(t) weakly star in L∞(0, T ; E), where ū(t) is a weak energy solution of
equation (1.1). Moreover, arguing in a standard way, we see that

(3.18) ξuN
(t) ⇀ ξū(t)

in E for every t ∈ [0, T ]. In addition, from the proof of Proposition 3.1, we know that ū(t) is a Shatah-
Struwe solution for t ∈ [0, T1] for some small, but positive T1. Then, by Corollary 3.4, u(t) = ū(t),
t ∈ [0, T1]. Introduce the time

T ∗ := sup{t ∈ [0, T ], u(s) = ū(s), s ≤ t}.

We need to prove that T ∗ = T . To this end, we note that

ξuN
(T ∗) → ξu(T

∗).

The weak convergence follows from (3.18) and to verify the strong convergence, we check that

(3.19) ‖ξuN
(T ∗)‖E → ‖ξu(T

∗)‖E .

Assume that (3.19) is wrong, then without loss of generality, we may assume that

(3.20) ‖ξuN
(T ∗)− ξu(T

∗)‖E ≥ ε0 > 0.

Then, we want to pass to the limit in the energy equality

(3.21)
1

2
‖ξuN

(T ∗)‖2E + (F (uN (T ∗)), 1) − (g, uN (T ∗)) + γ

∫ T ∗

0
‖∂tuN (t)‖2L2 dt =

=
1

2
‖ξuN

(0)‖2E + (F (uN (0)), 1) − (g, uN (0))

for Galerkin approximations uN . Indeed, since we have the strong convergence ξuN
(0) → ξu(0), the

right-hand side of (3.21) tends to the analogous expression for u. To pass to the limit in the left hand
side, we use the inequality

(3.22) ‖ξu(T
∗)‖E ≤ lim inf

N→∞
‖ξuN

(T ∗)‖E
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which is valid due to the weak convergence (3.18), and

(3.23) (F (u(T ∗), 1) ≤ lim inf
N→∞

(F (uN (T ∗), 1),

due to the fact that uN (T ∗) → u(T ∗) almost everywhere, assumption (3.15) and the Fatou lemma.
Thus,

(3.24)
1

2
‖ξu(T

∗)‖2E + (F (u(T ∗), 1) − (g, u(T ∗)) + γ

∫ T ∗

0
‖∂tu(t)‖

2
L2 dt ≤

≤
1

2
‖ξu(0)‖

2
E + (F (u(0), 1) − (g, u(0)).

On the other hand, u(t) is a Shatah-Struwe solution and, by this reason it satisfies the energy equality.
Thus, the inequality in (3.24) is actually the equality which is possible only when both (3.22) and
(3.23) are also equalities.

In particular, for some subsequence Nk, we have ‖ξuNk
(T ∗)‖E → ‖ξu(T

∗)‖E and together with

(3.18), we have the strong convergence ξuNk
(T ∗) → ξu(T

∗) which contradicts (3.20). Thus, the strong

convergence ξuN
(T ∗) → ξu(T

∗) is proved.
Finally, using this strong convergence and arguing as in Proposition 3.1, we see that ū(t) is a Shatah-

Struwe solution on the interval [T ∗, T ∗+T2], for some positive T2 and, therefore, should coincide with
u(t) on that interval as well. This contradiction shows that, actually, T ∗ = T and u(t) = ū(t) for all
t ∈ [0, T ]. The convergence (3.17) can be then proved based on the energy equality exactly as it was
done before for the case t = T ∗. Corollary 3.6 is proved. �

Remark 3.7. Arguing in a bit more accurate way, one can show that, under assumptions of the
previous corollary, ξuN

→ ξu strongly in C(0, T ; E) as well.

We are ready to state the main result of the section on the global existence of Shatah-Struwe
solutions.

Theorem 3.8. Let g ∈ L2(Ω) and the nonlinearity f satisfy assumptions (2.7) and (3.15). Assume
also that the following extra dissipativity assumptions are satisfied

(3.25)

{

1. F (u) ≥ −C + κ|u|6, κ > 0,

2. f(u)u− 4F (u) ≥ −C.

Then, for any ξ0 ∈ E there exists a unique Shatah-Struwe solution u(t) defined for all t ∈ R+ and this
solution satisfies (3.16) as well as the following Strichartz type estimate:

(3.26) ‖u‖L4(0,T ;L12(Ω)) ≤ Q(ξ0, T ), T ≥ 0

for some function Q monotone increasing in T .

Indeed, it only remains to prove the global solvability for (1.1) in the class of Shatah-Struwe solu-
tions. The proof of this fact was given in [5] for the particular case f(u) = u5 and γ = 0, g = 0 and is
based on proving the energy non-concentration for u(t) via the Morawetz type identities adapted to
the case of bounded domains. The general case can be treated by repeating verbatim the arguments
of [5] and is left to the reader. Note also that the extra dissipativity assumptions (3.25) do not allow
the function f(u) to grow slower than u5, however, it is actually not a big restriction since the most
difficult is exactly the case of critical quintic growth rate and as we will see in the next section, we do
not need Theorem 3.8 to treat the subcritical case.

We are now ready to define the solution semigroup S(t) : E → E associated with equation (1.1):

(3.27) S(t)ξ0 := ξu(t),

where u(t) is a unique Shatah-Struwe solution of (1.1). Then, according to Theorem 3.8, this semigroup
is well-defined (and even locally Lipschitz continuous in E , see Corollary 3.4) and is dissipative:

(3.28) ‖S(t)ξ0‖E ≤ Q(‖ξ0‖E )e
−αt +Q(‖g‖L2).
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Remark 3.9. The long time behavior of the solution semigroup S(t) will be studied in the next
sections. However, it worth to note here that we have the dissipative estimate for the energy norm
only and Theorem 3.8 gives us no control of the Strichartz norm as T → ∞ (it’s proof is a typical
proof ad absurdum which gives no bounds on the function Q in estimate (3.26)). By this reason, the
Strichartz estimate may a priori disappear when passing to the limit t → ∞ and the attractor may
consist not only of Shatah-Struwe solutions. The proof that it is actually not the case is one the main
tasks of the present paper.

We conclude this section by one more result which shows that a Shatah-Struwe solution is more
regular if the initial data is smoother.

Proposition 3.10. Let the assumptions of Theorem 3.8 hold and let, in addition, the non-linearity
satisfy the following condition:

(3.29) f ′(u) ≥ −K

and the initial data be more smooth, i.e.,

(3.30) ξ0 ∈ E1 := [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω).

Then, the corresponding Shatah-Struwe solution is more regular as well:

(3.31) ξu(t) = (u(t), ut(t)) ∈ E1

for all t ≥ 0.

Proof. We give below only the formal proof which can be justified using Galerkin approximations and
Corollary 3.6. Indeed, let v(t) := ∂tu(t). Then, as not difficult to check using equation (1.1) and the
growth restriction (2.7),

ξv(0) = (∂tu(0), ∂
2
t u(0) = (u′0,∆xu0 − f(u0)− γu′0 + g) ∈ E

and the function v solves

(3.32) ∂2
t v + γ∂tv −∆xv = −f ′(u)v, ξv(0) ∈ E .

Multiplying equation (3.32) by ∂tv, we get

(3.33)
1

2

d

dt
‖ξv(t)‖

2
E + γ‖∂tv‖

2
L2 = −(f ′(u)v, ∂tv).

Due to the growth restriction (2.7), the term on the right hand side of (3.33) obeys the estimate, see
(3.14),

(3.34) |(f ′(u)v, ∂tv)| ≤ C((1 + |u|4)|v|, |∂tv|) ≤ C(1 + ‖u‖4L12)‖ξv‖
2
E .

Substituting the above estimate to (3.33) and using Gronwall inequality one gets

(3.35) ‖ξv(t)‖
2
E ≤ ‖ξv(0)‖

2
E exp

(

CT +

∫ T

0
‖u(s)‖4L12ds

)

, 0 ≤ t ≤ T.

The fact that ξv(t) ∈ E , in turn, implies that ξu(t) ∈ E1. Indeed, the fact that v = ∂tu ∈ H1 is
immediate and we only need to check that u ∈ H2. To this end, we rewrite equation (1.1) in the form

(3.36) ∆xu(t)− f(u(t)) = g − ∂tv(t)− γv(t) := gv(t) ∈ L2(Ω)

and, multiplying this elliptic equation by ∆xu in L2(Ω) and using the additional assumption (3.29),
we end up with

(3.37) ‖u(t)‖2H2 ≤ C‖∆xu(t)‖
2
L2 ≤ C‖g‖2L2 + ‖ξv(t)‖

2
E +K‖ξu(t)‖

2
E .

Thus, Proposition 3.10 is proved. �

Remark 3.11. The extra assumption (3.29) on the non-linearity f is not essential and is introduced
only in order to avoid the technicalities related with the maximal regularity estimate for the critical
elliptic equation (3.36). Indeed, under this extra assumption, it is immediate as we have seen. In the
general case when f satisfies only the growth restriction (2.7) it is also true, but its proof is much
more delicate and requires, to use e.g., the localization in space technique which we did not want to
discuss here.
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Note also that after obtaining the H2-estimate for u(t), the growth rate of f becomes not essential
due to the embedding H2 ⊂ C, so the further regularity of the solution u(t) (if the initial data is more
smooth) can be obtained by usual bootstrapping arguments.

4. Asymptotic compactness and attractors: the subcritical case

The aim of this section is to consider the subcritical case where the nonlinearity f satisfies

(4.1) |f ′(u)| ≤ C(1 + |u|4−κ)

for some 0 < κ ≤ 4. In that case, the local existence result of Proposition 3.1 can be improved as
follows.

Proposition 4.1. Let the assumptions of Proposition 3.1 hold and let, in addition, assumption (4.1)
be satisfied. Then, for every ξ0 ∈ E, there exists T = T (‖ξ0‖E) > 0 such that equation (1.1) possesses
a Shatah-Struwe solution u(t) on the interval t ∈ [0, T ] and the following estimate holds:

(4.2) ‖u‖L4(0,T ;L12(Ω)) ≤ Q(‖ξ0‖E )

for some monotone function Q which is independent of u.

Proof. The proof of this statement is similar to the one of Proposition 3.1, but we need to check that
now the lifespan T depends only on the energy norm of ξ0. To this end, we note that, due to (4.1),
estimate (3.4) can be improved as follows

(4.3) ‖PNf(vN +wN )‖L1(0,t;L2(Ω)) ≤ C
(

t+ ‖vN‖5−κ
L5−κ(0,t;L10(Ω))

+ ‖wN‖5−κ
L5−κ(0,t;L10(Ω))

)

≤

≤ C
(

t+ tκ/5‖vN‖5−κ
L5(0,t;L10(Ω))

)

+ C‖wN‖5−κ
L5(0,t;L10(Ω))

.

We see that the first term at the left-hand side of (4.3) can be made small by decreasing t and we
need not to make the L5(L10)-norm of vN small. Thus, we may use estimate (2.8) and interpolation
(2.5), to see that

‖vN‖L5(0,1;L10(Ω)) ≤ C‖ξ0‖E

and, for every ε > 0, we may find T = T (ε, ‖ξ0‖E) such that

C
(

t+ tκ/5‖vN‖5−κ
L5(0,t;L10(Ω))

)

≤ ε, t ≤ T (ε, ‖ξ0‖E ).

Arguing then exactly as in the end of the proof of Proposition 3.1, we establish the existence of the
desired Shatah-Struwe solution u as well as estimate (4.2). Proposition 4.1 is proved. �

As has been already noted in Remark 3.2, the control of the lifespan of the local Shatah-Struwe
solution in terms of the energy norm together with the control of energy norm due to the energy
estimate allows us to extend the local solution for all time and prove the existence of a global Shatah-
Struwe solution u(t) of problem (1.1). Namely, the following statement holds.

Corollary 4.2. Let the assumptions of Proposition 4.1 hold and let, in addition, the nonlinearity
f satisfy the dissipativity assumption (3.15). Then, for every ξ0 ∈ E, there exists a unique global
Shatah-Struwe solution u(t) of problem (1.1) and the following dissipative estimate holds:

(4.4) ‖ξu(t)‖E + ‖u‖L4(t,t+1;L12(Ω)) ≤ Q(‖ξu(0)‖E )e
−αt +Q(‖g‖L2),

where the positive constant α and the monotone function Q are independent of u and t.

Proof. Indeed, the uniqueness is proved in Corollary 3.4 and the dissipative energy estimate is obtained
in Corollary 3.5. According to this estimate, the energy norm ‖ξu(t)‖E cannot blow up in a finite time
and, therefore, due to Proposition 4.1, the local Shatah-Struwe solution u(t) can be extended globally
in time. Finally, the dissipative estimate (4.4) for the Strichartz norm of u follows from (4.2) and the
dissipative estimate (3.16) for the energy norm. �

We are now ready to verify the asymptotic compactness of the solution semigroup S(t) of equation
(1.1) in the subcritical case. To this end, we split the solution u as follows: u(t) = v(t) +w(t), where
v(t) solves the linear problem

(4.5) ∂2
t v + γ∂tv −∆xv = 0, ξv

∣

∣

t=0
= ξu

∣

∣

t=0
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and the remainder w(t) satisfies

(4.6) ∂2
t w + γ∂tw −∆xw = g − f(u), ξw

∣

∣

t=0
= 0.

Then, due to estimate (2.4),

(4.7) ‖ξv(t)‖E + ‖v‖L4(t,t+1;L12(Ω)) ≤ Q(‖ξu(0)‖E )e
−αt

and, therefore, the v-component is exponentially decaying in the energy and Strichartz norms. As the
next corollary shows, the w-component is more regular.

Corollary 4.3. Let the assumptions of Corollary 4.2 hold. Then, there exists δ = δ(κ) > 0 and
δ < 1/2 such that

ξw(t) ∈ Eδ := H1+δ
0 (Ω)×Hδ(Ω)

and the following estimate holds:

(4.8) ‖ξw(t)‖Eδ + ‖w‖L4(t,t+1;W δ,12(Ω)) ≤ Q(‖ξu(0)‖E )e
−αt +Q(‖g‖L2),

where the monotone function Q and the positive constant α are independent of u and t.

Proof. Indeed, since the function G := (−∆x)
−1g ∈ H2, it only remains to verify estimate (4.8) for

the function w̄(t) := w(t)−G which solves

∂2
t w̄ + γ∂tw̄ −∆xw̄ = −f(u), ξw̄(0) = ξu(0)− (G, 0).

Moreover, due to estimate (2.4), we only need to check that

(4.9) ‖f(u)‖L1(t,t+1;Hδ(Ω)) ≤ Q(‖ξu(0)‖E )e
−αt +Q(‖g‖L2).

According to the Hölder inequality and estimate (4.4),

‖f(u)‖L1(t,t+1;W 1,6/5(Ω)) ≤ C(1 + ‖u4∇xu‖L1(t,t+1;L6/5(Ω))) ≤

≤ C(1 + ‖u‖4L4(t,t+1;L12(Ω))‖∇xu‖L∞(t,t+1;L2(Ω))) ≤ Q(‖ξu(0)‖E )e
−αt +Q(‖g‖L2).

On the other hand, due to the growth restriction (4.1),

‖f(u)‖L1(t,t+1;L10/(5−κ)(Ω)) ≤ C(1 + ‖u‖L5(t,t+1;L10(Ω))) ≤ Q(‖ξu(0)‖E )e
−αt +Q(‖g‖L2).

The interpolation inequality

‖U‖Hδ ≤ C‖U‖1−θ
W 1,6/5‖U‖θ

L10/(5−κ) , θ =
10

10 + 3κ
, δ =

3κ

10 + 3κ

now gives the desired estimate (4.9) and finishes the proof of the corollary. �

We conclude our study of the subcritical case by establishing the existence of a global attractor
for the associated solution semigroup. For the convenience of the reader, we recall the definition of a
global attractor, see [30, 2, 7] for more details.

Definition 4.4. Let S(t) be a semigroup acting on a Banach space E . Then, a set A ⊂ E is a global
attractor of S(t) if

1. The set A is compact in E ;
2. The set A is strictly invariant: S(t)A = A;
3. It is an attracting set for the semigroup S(t), i.e., for any bounded set B ⊂ E and every

neighborhood O(A) of the set A, there exists a time T = T (B,A) such that

S(t)B ⊂ O(A), ∀t ≥ T.

The next theorem can be considered as the main result of this section.

Theorem 4.5. Let the assumptions of Corollary 4.2 hold. Then, the solution semigroup S(t) asso-
ciated with problem (1.1) possesses a global attractor A in the energy phase space E. Moreover, the
attractor A is bounded in more regular space:

(4.10) A ∈ Eδ, ‖A‖Eδ ≤ C

for some δ > 0.
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Proof. Indeed, according to the abstract attractor existence theorem, we need to verify that S(t) is
continuous in E for every fixed t and that it possesses a compact attracting set in E , see [2]. The
first assertion is satisfied due to Corollary 3.4 and, according to Corollary 4.3 and estimate (4.7), the
following set

B := {ξ ∈ Eδ, ‖ξ‖Eδ ≤ R}

will be the compact attracting set for S(t) in E if the radius R is large enough. Thus, all assumptions
of the abstract attractor existence theorem are verified and the existence of the attractor A is proved.
It remains to recall that A ⊂ B, so (4.10) is also verified and the theorem is proved. �

Remark 4.6. We stated in Theorem 4.5 only that the attractor A is bounded in Eδ with δ = 3κ
3κ+10 .

However, using the standard bootstrapping arguments one can easily show that A ∈ E1 and that its
actual regularity is restricted only by the regularity of Ω, g and f (if all the above data is C∞-smooth,
the attractor also will be C∞-smooth). Moreover, since H2 ⊂ C, the growth rate of f becomes not
essential and one can establish the finite-dimensionality of A exactly as in the well-studied case when
f(u) grows slower than u3, see e.g., [2]. Mention also that the generalization to the non-autonomous
case, when, say, the external force g = g(t) depends explicitly on time is also straightforward.

5. Weak trajectory attractors for critical and supercritical cases

The aim of this section is to recall the trajectory attractor theory for equation (1.1) for the case of
fast growing nonlinearities developed in [32]. This theory will be essentially used in the next section
for proving the dissipativity of Shatah-Struwe solutions in the critical case. Namely, following [32], we
assume that the nonlinearity f satisfies the following conditions:

(5.1)











1. f ∈ C2(R,R), f(0) = 0,

2. |f ′′(v)| ≤ C(1 + |v|p),

3. f ′(v) ≥ −K + δ|v|p+1,

where the exponent p can be arbitrarily large (of course, we are mainly interested in the case p ≥ 3
since the subcritical case p < 3 is studied in the previous section). Note that, for the case p > 3, the
energy phase space should be modified:

E := [H1
0 (Ω) ∩ Lp+3(Ω)]× L2(Ω)

in order to guarantee the finiteness of the energy (since H1 is not embedded into Lp+3 if p > 3). We
also modify the energy norm for that case as follows:

‖ξu(t)‖
2
E := ‖∂tu(t)‖

2
L2 + ‖∇x(t)‖

2
L2 + ‖u(t)‖p+3

Lp+3 .

In this section, we will work with Galerkin solutions of equation (1.1), see Definition 2.7.

Proposition 5.1. Let the nonlinearity f satisfies assumptions (5.1) and let g ∈ L2(Ω). Then, for
every ξ0 ∈ E, there exists at least one Galerkin solution u(t), t ∈ R+, of problem (1.1)

The assertion of this proposition is standard, so its proof is omitted, see, e.g., [32] for more details.
Our next aim is to state the analogue of the energy inequality for Galerkin solutions. We first note

that, arguing in a standard way, one derives the following dissipative energy estimate for the Galerkin
approximations uN (t) (which are the solutions of (2.9)):

(5.2) ‖ξuN
(t)‖2E +

∫ ∞

t
‖∂tuN (τ)‖2L2 dτ ≤ C‖ξuN

(s)‖2Ee
−α(t−s) + C(1 + ‖g‖2L2),

where 0 ≤ s ≤ t and positive constants C and α are independent of s, t, N and uN , see [32]. However,
since we do not have the strong convergence ξuN

(τ) → ξu(τ) in E, we cannot pass to the limit in
(5.2) at least in a straightforward way, so we cannot guarantee that (5.2) will remain true for the
limit Galerkin solution u(t). To overcome this difficulty, we need to introduce, following again [32],
the so-called M -energy functional which generalizes the usual energy functional.

Definition 5.2. Let the assumptions of Proposition 5.1 hold and let u be a Galerkin solution of
problem (1.1). We define the functional Mu(t), t ≥ 0, by the following expression:

(5.3) Mu(t) := inf

{

lim inf
k→∞

‖ξuNk
(t)‖E : ξuNk

⇀ ξu, ξuNk
(0) ⇀ ξu(0)

}

,
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where the external infinum in the right-hand side of (5.3) is taken over all sequences of the Galerkin
approximations {ξuNk

(t)}∞k=1 which converge weakly-∗ in L∞
loc(R+, E) to the given Galerkin solution u.

The following corollary gives simple, but important properties of the M -energy functional.

Corollary 5.3. Let the assumptions of Proposition 5.1 hold. Then, for every Galerkin solution u of
equation (1.1), the following estimates hold:

(5.4) Mu(t) < ∞, ‖ξu(t)‖E ≤ Mu(t), MThu(t) ≤ Mu(t+ h), h ≥ 0,

where (Thu)(t) := u(t+ h), and

(5.5) Mu(t)
2 +

∫ ∞

t
‖∂tu(t)‖

2
L2 dt ≤ CMu(s)

2e−α(t−s) + C(1 + ‖g‖2L2),

where t ≥ s ≥ 0 and constants α > 0 and C > 0 are the same as in (5.2).

Indeed, estimates (5.4) are immediate corollaries of the definitions of the Galerkin solution and the
functional Mu(t) and estimates (5.5) follow from estimate (5.2) in which we pass to the limit Nk → ∞.

Remark 5.4. It is well-known (see [2]) that, in the case p ≤ 1, we have the strong convergence of
Galerkin approximations and, consequently,

(5.6) ‖ξu(t)‖E = Mu(t).

So, in this case, the M -energy coincides with the classical one. Moreover, the same equality will hold
in the case when p ≤ 3 and u is a Shatah-Struwe solution of problem (1.1) due to Corollary 3.6. But
to the best of our knowledge, neither identity (5.6) nor the fact that any solution ξu ∈ L∞(R+, E) of
(0.1) can be obtained as a limit of the Galerkin approximations are known in the supercritical case
p > 3. Nevertheless, if the solution ξu(t) of problem (1.1) is sufficiently regular:

ξu ∈ L∞(R+, E1), E1 := [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω),

then it is unique and, arguing as in Corollary 3.6, we can show the strong convergence of Galerkin
approximations and equality (5.6).

It also worth to emphasize that, in contrast to the usual energy functional, the functional Mu(t)
is not a priori local with respect to t, i.e. Mu(T ) depends not only on ξu(T ), but also on the whole
trajectory u.

We are now ready to build up a trajectory dynamical system associated with equation (1.1), see
[7, 8, 32] for more details.

Definition 5.5. We define the trajectory phase spaceK+ of problem (1.1) as the set of all its Galerkin
solutions which correspond to all possible initial data ξ0 ∈ E, see Definition 2.7. Obviously, K+ is a
subset of L∞(R+, E).

We endow the trajectory phase space K+ with the topology induced by the embedding

K+ ⊂ Θ+ := [L∞
loc(R+, E)]w

∗

,

i.e. by the weak-∗ topology of the space L∞
loc(R+, E).

We also introduce the group of positive time shifts:

(5.7) Th : Θ+ → Θ+, h ≥ 0, (Thu)(t) := u(t+ h).

Then, as not difficult to see, semigroup (5.7) acts on the trajectory phase space K+:

(5.8) Th : K+ → K+.

Semigroup (5.8) acting on the topological space K+ is called the trajectory dynamical system associ-
ated with equation (1.1).

Remark 5.6. As known, in the case p ≤ 1, the Galerkin solution u(t) of equation (1.1) is unique and,
consequently, this equation generates a semigroup in the classical energy phase space E in a standard
way:

(5.9) S(t) : E → E , t ≥ 0, S(t)ξu(0) := ξu(t).



QUINTIC WAVE EQUATION 15

Moreover, in this case, the map

(5.10) Πt=0 : K
+ → E , Πt=0ξu = ξu(0),

where, by definition, Πt=0u = ξu(0), is one to one and realizes a (sequential) homeomorphism between
K+ and Ew (= the space E endowed by the weak topology). Thus,

(5.11) S(t) = Πt=0 ◦ Tt ◦ (Πt=0)
−1,

and, therefore, the trajectory dynamical system (5.8) is conjugated to the classical dynamical system
(5.9) defined on the usual energy phase space E endowed with the weak topology.

We note however that, for fast growing nonlinearities, the uniqueness problem for (1.1) is not solved
yet (in particular, even in the most interesting for our purposes quintic case p = 3, the uniqueness of
Galerkin solutions is not known) and under the classical approach, semigroup (5.9) can be defined as
a semigroup of multivalued maps only. The use of the trajectory dynamical system (5.8) allows us to
avoid multivalued maps and to apply the standard attractor theory in order to study the long time
behavior of solutions of (1.1) in the supercritical case.

As the next step, we intend to define the attractor of the introduced trajectory dynamical system.
As usual (see e.g. [7, 8, 32]), in order to define the global attractor of the semigroup (5.8), we first
need to define the class of bounded sets which will be attracted by this attractor.

Definition 5.7. A set B ⊂ K+ is called M -bounded if the following quantity is finite:

(5.12) ‖B‖M := sup
ξu∈B

Mu(0) < ∞.

In other words, the set B ⊂ K+ is M -bounded if the modified energy of all the solutions belonging to
B is uniformly bounded.

Definition 5.8. A set Atr is a global attractor of the trajectory dynamical system (5.8) (= the
trajectory attractor of equation (1.1)) if the following conditions hold:

1. The set Atr is a compact M -bounded set in K+.
2. This set is strictly invariant, i.e. ThA

tr = Atr, for h ≥ 0.
3. This set is an attracting set for semigroup (5.8), i.e. for every M -bounded subset B ⊂ K+ and

every neighborhood O(Atr) of Atr in K+, there exists T = T (B,O) such that

(5.13) ThB ⊂ O(Atr), for h ≥ T.

The next theorem establishes the existence of the attractor Atr for the trajectory dynamical system
associated with problem (1.1).

Theorem 5.9. Let the assumptions of Proposition 5.1 hold. Then, semigroup (5.8) possesses a global
attractor Atr in the sense of Definition 5.8 which can be described in the following way:

(5.14) Atr = Πt≥0K, Πt≥0u := u
∣

∣

t≥0
.

Here K ⊂ L∞(R, E) is the set of all the complete solutions of problem (1.1) which are defined for all
t ∈ R and can be obtained as a Galerkin limit, i.e. ξu ∈ K if and only if there exist a sequence of
times tk → −∞ and a sequence of solutions ξuNk

(t) of the problems:

(5.15)

{

∂2
t uNk

+ γ∂tuNk
−∆xuNk

+ PNk
f(uNk

) = gNk
,

ξuNk
(tk) = ξ0k ∈ ENk

, t ≥ tk,

where ENk
:= PNk

E, such that

(5.16) ‖ξ0k‖E ≤ C, and ξu = Θ− lim
k→∞

ξuNk
,

where C is independent of k and

(5.17) Θ :=

[

L∞
loc(R, E)

]w∗

.

For the proof of this theorem see [32].
The next standard assertion utilizes the gradient structure of equation (1.1).
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Corollary 5.10. Let the assumptions of Theorem 5.9 hold and let ξu ∈ K. Then,

(5.18)

∫ +∞

−∞
‖∂tu(s)‖

2
L2 ds ≤ C(1 + ‖g‖2L2),

where the constant C is the same as in (5.5), and moreover, for every 1 ≥ β > 0,

(5.19) ∂tu ∈ Cb(R,H
−β(Ω)) and lim

t→±∞
‖∂tu(t)‖H−β(Ω) = 0.

Indeed, the finiteness of the dissipation integral is an immediate corollary of estimate (5.5) and the
definition of the set K and the convergence (5.19) follows from this integral and from the embedding
Θ ⊂ Cloc(R,H−β(Ω)), see [32] for more details.

The next theorem which establishes the backward regularity of solutions on the trajectory attractor
Atr is crucial for our proof of asymptotic compactness for the quintic case, see the next section.

Theorem 5.11. Let the assumptions of Theorem 5.9 hold. Then, for every complete Galerkin solution
ξu ∈ K of equation (1.1), there exists a time T = Tu such that

(5.20) ξu ∈ Cb((−∞, T ], E1)

and

(5.21) ‖ξu‖Cb(−∞,T ;E1) ≤ C,

where the constant C is independent of u ∈ K.

The proof of this theorem is essentially based on the finiteness of the dissipation integral (5.18) and
is given in [32], see also [10, 11] for the analogous results for the hyperbolic Cahn-Hilliard equations.

To conclude the section, we state a version of the so-called weak-strong uniqueness result which
shows that the solution ξu(t) ∈ K is unique until it is regular, so the non-uniqueness can appear only
after the possible blow up of the strong solution.

Theorem 5.12. Let the assumptions of Theorem 5.9 hold and ξu ∈ K be a complete weak solution of
(1.1) which satisfies (5.20), for t ≤ T . We also assume that ξv ∈ K is another complete weak solution
which satisfies

(5.22) ξu(t) = ξv(t), for all t ≤ T ′ < T.

Then, necessarily
ξu(t) = ξv(t), for all t ≤ T.

The proof of this theorem is also given in [32].

6. Asymptotic compactness and attractors: the critical case

In this concluding section, we establish the asymptotic compactness of the Shatah-Struwe solutions
and the existence of the global attractor for the solutions semigroup S(t), see (3.27), of equation
(1.1) in the critical quintic case. The crucial role in our proof of this fact is played by the trajectory
attractor Atr for the Galerkin solutions of this equation and the backward regularity of solutions on
it discussed in the previous section. Namely, combining the results of Section 3 on the Shatah-Struwe
solutions with the trajectory attractor approach for the Galerkin solutions discussed in the previous
section, we obtain the following regularity result.

Proposition 6.1. Let the nonlinearity f satisfy (3.25) and (5.1) with p = 3 and let g ∈ L2(Ω).
Then the trajectory attractor Atr of problem (1.1) constructed in Theorem 5.9 is generated by smooth
complete solutions of (1.1), namely, for any ξu ∈ K,

(6.1) ξu(t) ∈ E1,

for all t ∈ R.

Proof. Indeed, due to Theorem 5.11, we know that ξu(t) ∈ E1 for all t ≤ T . Moreover, due to Theorem
3.8 there is an extension ū(t) for t ≥ T such that ū(t) = u(t) for t ≤ T and ū(t) is a Shatah-Struwe
solution of equation (1.1) for all t ∈ R. Then, due to Proposition 3.10 and the fact that ξū(T ) ∈ E1,
we conclude that ξū(t) ∈ E1 for all t ∈ R.
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Furthermore, due to Corollary 3.6, any Shatah-Struwe solution is a Galerkin solution as well and
the Galerkin approximations converge even strongly in E to that solution. By this reason, the modified
energy coincides with the usual one (i.e., identity (5.6) holds) for any Shatah-Struwe solution and this,
together with the definition of the set K implies that ū ∈ K. Finally, due to the uniqueness Theorem
5.12, u(t) = ū(t) for all t ∈ R. This gives (6.1) and finishes the proof of the proposition. �

Remark 6.2. Note that, at this stage we have established only the E1-regularity of any solution u ∈ K
and the global boundedness of K in Cb(R, E) (due to the energy estimate). However, since we do not
control the growth rate of the Strichartz norm with respect to T in estimate (3.26), we still do not
have boundedness of ξu(t) as t → ∞ in the E1-norm. Nevertheless, we obviously have the energy
equality for every u ∈ K. This, together with the standard energy method will allow us to establish
the asymptotic compactness which a posteriori will give us the desired control of the Strichartz norm
and, finally, we will verify that K is bounded in Cb(R, E1) as well.

The next theorem can be considered as the main result of this section.

Theorem 6.3. Let the assumptions of Proposition 6.1 hold. Then, the solution semigroup S(t) gen-
erated by the Shatah-Struwe solutions of equation (1.1) possesses a global attractor A in the space E
(see Definition 4.4) which is a subset of E1. Moreover,

(6.2) A = Πt=0A
tr,

where Atr is a trajectory attractor of equation (1.1) constructed in Theorem 5.9 (based on the Galerkin
solutions of equation (1.1)).

Proof. Indeed, due to estimate (3.28), the ball

B := {ξ ∈ E , ‖ξ‖E ≤ R}

is an absorbing ball for the semigroup S(t) in E and, arguing as in Corollary 3.4, we see that the
semigroup S(t) is continuous in E for every fixed t. Thus, according to the abstract attractor existence
theorem (see [2, 13, 21]), we only need to verify the asymptotic compactness of the semigroup S(t).
Namely, we need to check that, for every sequence ξn ∈ B and every sequence of times tn → ∞, the
sequence S(tn)ξn is precompact in E , i.e., that there exists a subsequence nk such that

(6.3) S(tnk
)ξnk

→ ξ∞

strongly in E .
To prove the strong convergence we will utilize the so-called energy method, see e.g., [22, 3]. We start

with the elementary observation that, without loss of generality, we may assume that S(tn)ξn → ξ∞
weakly in E . This follows from the fact that the sequence S(tn)ξn is bounded due to energy estimate
and the Banach-Alaoglu theorem. Let us denote by vn(t) := S(t)ξn the corresponding Shatah-Struwe
solutions of equation (1.1) and fix un := Ttnvn. Then, un(t) are also Shatah-Struwe solutions of
equation (1.1) defined on time interval t ∈ [−tn,∞) and

ξun(0) ⇀ ξ∞

weakly in E . Since every Shatah-Struwe solution is a Galerkin solution and the M -energy of them
coincide with the usual energy, by the definition of the trajectory attractor Atr, we may assume
without loss of generality that ξun is weakly-star convergent to some Galerkin solution ξu(t) ∈ Atr in
the space L∞

loc(R+, E). Moreover, if we extend the functions ξun(t), say, by zero for t ≤ −tn, we also
may assume that

ξun(t) → ξu(t), weakly star in L∞
loc(R, E)

and that ξu ∈ K with ξu(0) = ξ∞, see [32] for the details.
Multiplying now equations (1.1) for un by ∂tun + αun, where α > 0 will be fixed below, we end up

with the following energy type identity:

(6.4)
d

dt
Eα(un) + κEα(un) +Gα(un) + (Φα(un), 1) + (gα, un) = 0,

where κ > 0 is a parameter, gα = (κ− α)g, Φα(u) := αf(u)u− κF (u),

Eα(u) :=
1

2
‖ξu‖

2
E + (F (u), 1) − (g, u) + α(u, ∂tu) +

1

2
αγ‖u‖2L2
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and

Gα(u) := (γ − α−
κ

2
)‖∂tu‖

2
L2 +

(

α−
κ

2

)

‖∇xu‖
2
L2 − κα(u, ∂tu)−

γακ

2
‖u‖2L2 .

We recall that the above calculations are justified since any Shatah-Struwe solution satisfies the energy
equality. We now fix the positive constants α and κ to be small enough that the quadratic form Gα

is positive definite:

K1‖ξu‖
2
E ≤ Gα(u) ≤ K2‖ξu‖

2
E

for some positive K1 and K2. We also assume that 4κ ≤ α which guarantees that

Φα(u) ≥ −C,

due to assumption (3.25). Integrating now equality (6.4) with respect to t ∈ [−tn, 0], we arrive at

(6.5) Eα(un(0)) +

∫ 0

−tn

eκs (Gα(un(s)) + (Φα(un(s)), 1) + (gα, un(s))) ds = Eα(ξn)e
−κtn .

We want now to pass to the limit n → ∞ in equality (6.5). To this end, we remind that ξun is uniformly
bounded in L∞(R−, E) and is weakly-star convergent in this space to the solution ξu ∈ K. Moreover,
we also know that ξn(0) → ξ∞ = ξu(0) weakly in E . Using the compactness of the embedding
Cloc(R−, E) ⊂ Cloc(R−, L

2(Ω)), we also conclude that un → u strongly in Cloc(R−, L
2(Ω)) and, in

particular, almost everywhere. Therefore, since Φα(u) is bounded from below and the quadratic form
Gα(u) is positive definite, using also the Fatou lemma, we conclude that

lim inf
n→∞

∫ 0

−tn

eκs (Gα(un(s)) + (Φα(un(s)), 1) + (gα, un(s))) ds ≥

≥

∫ 0

−∞
eκs (Gα(u(s)) + (Φα(u(s)), 1) + (gα, u(s))) ds

and, analogously,

(6.6) lim inf
n→∞

Eα(un(0)) ≥ Eα(u(0)).

Thus, taking into the account that ξn is uniformly bounded in E , we end up with

(6.7) Eα(u(0)) +

∫ 0

−∞
eκs (Gα(u(s)) + (Φα(u(s)), 1) + (gα, u(s))) ds ≤ 0.

We now recall that u ∈ K, so, by Proposition 6.1, u is smooth and, therefore, it satisfies the energy
equality. Thus, repeating the derivation of (6.5), but for the function u, we see that the last inequality
is actually the equality. This is possible only if (6.6) is actually equality. Using now that, due to the
Fatou lemma

lim inf
n→∞

(F (un(0)), 1) ≥ (F (u(0)), 1) and lim inf
n→∞

‖ξun(0)‖
2
E ≥ ‖ξu(0)‖

2
E ,

we see that

‖ξu(0)‖
2
E = lim inf

n→∞
‖ξun(0)‖

2
E .

Thus, since ξun(0) ⇀ ξu(0), we may assume without loss of generality that

S(tn)ξn = ξun(0) → ξ∞ = ξu(0)

strongly in E . This proves the desired asymptotic compactness of the semigroup S(t).
Thus, by the abstract attractor existence theorem, there exists a global attractor A for the semigroup

S(t) associated with equation (1.1) and, obviously,

A ⊂ Πt=0K.

The opposite inclusion follows from the fact that K consists of smooth solutions which are the Shatah-
Struwe ones. So, the equality (6.2) is also proved and the theorem is proved. �

We now want to verify that the constructed attractor is bounded in E1. To this end, we need the
following result.
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Corollary 6.4. Let the assumptions of Theorem 6.3 hold. Then, the restriction of the trajectory set
K to the time interval t ∈ [0, 1] is a compact set of L4(0, 1;L12(Ω)):

K
∣

∣

t∈[0,1]
⊂⊂ L4(0, 1;L12(Ω)).

Proof. Indeed, due to Theorem 6.3, the attractor A is compact in E . Then, arguing as in the proof of
Proposition 3.1, we see that, for every ε > 0, there exists T = T (ε) such that, for any Shatah-Struwe
solution u(t) starting from the attractor (ξu(0) ∈ A), we have

‖u‖L4(0,T (ε);L12(Ω)) ≤ ε

or, in other words,

(6.8) ‖K
∣

∣

t∈[0,T (ε)]
‖L4(0,T (ε);L12(Ω)) ≤ ε.

Since the set K is invariant with respect to time shifts (ThK = K), we have proved that, for any u ∈ K

(6.9) sup
T∈R

‖u‖L4(T,T+1;L12(Ω)) ≤ C,

where the constant C is independent of u.
Since A is compact, verifying the continuity of the solution map S : ξu(0) → u as the map from

A to L4(0, 1;L12(Ω)) will prove the corollary. To this end, we first observe that using the uniform
estimate (6.8) and arguing as in the proof of Corollary 3.4, we see that

(6.10) ‖ξu1(t)− ξu2(t)‖E ≤ CeKt‖ξu1(0) − ξu2(0)‖E ,

where C and K are independent of ξui(0) ∈ A. Thus, the map S is continuous as the map from E to
C(0, 1; E).

To prove the continuity in the Strichartz norm, we note that analogously to (3.14),

‖f(u1(t))− f(u2(t))‖L2(Ω) ≤ C(1 + ‖u1(t)‖
4
L12(Ω) + ‖u2(t)‖

4
L12(Ω))‖ξu1(t)− ξu2(t)‖E .

This estimate, together with (6.10) and (6.9), gives

‖f(u1)− f(u2)‖L1(0,1;L2(Ω)) ≤ C‖ξu1(0) − ξu2(0)‖E ,

where the constant C is independent of ξui(0) ∈ A. Applying now the Strichartz estimate (2.3) to
equation (3.12), we get

‖u1 − u2‖L4(0,1;L12(Ω)) ≤ C‖ξu1(0) − ξu2(0)‖E .

Thus, the map S is indeed continuous as a map from E to L4(0, 1;L12(Ω)) and the corollary is
proved. �

We are finally ready to state the result on the boundedness of the global attractor in E1.

Theorem 6.5. Let the assumptions of Theorem 6.3 hold. Then the global attractor A of the solution
semigroup S(t) associated with equation (1.1) is a bounded set in E1.

Proof. Indeed, due to estimate (5.21) for any complete solution u ∈ K and due to the invariance of K,
it is sufficient to verify the following estimate:

(6.11) ‖ξu(t)‖E1 ≤ Q(‖ξu(0)‖E1), t ≥ 0,

where the monotone function Q is independent of t ≥ 0 and ξu(0) ∈ A.
We will proceed analogously to the proof of Proposition 3.10, but will improve estimate (3.34) using

the information on the compactness of K in the Strichartz norm. Namely, due to that compactness
and estimate (6.9), for every ε > 0, we can split the solution u in a sum u(t) = ū(t) + ũ(t), where

(6.12) sup
T≥0

‖ũ‖L4(T,T+1;L12(Ω)) ≤ ε

and the other function is smooth:

(6.13) ‖ū(t)‖E1 ≤ Cε, t ≥ 0,
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where the constant Cε depends on ε, but is independent of t and u ∈ K. Using this decomposition,
we improve (3.34) as follows

(6.14) |(f ′(u)v, ∂tv)| ≤ (|f ′(ū+ ũ)− f(ū)|, |v| · |∂tv|) + (|f ′(ū)|, |v| · |∂tv|) ≤

≤ C((1 + |ū|3 + |ũ|3)|ũ|, |v| · |∂tv|) + C‖f ′(ū)‖L∞‖v‖L2‖∂tv‖L2 ≤

≤ C(1 + ‖ũ‖3L12 + ‖u‖3L12)‖ũ‖L12‖ξv‖
2
E + ε‖ξv‖

2
E + Cε‖∂tu‖

2
L2 = lε(t)‖ξv‖

2
E + Cε‖ξu‖

2
E ,

where lε(t) := ε+ C
(

1 + ‖ũ‖3L12 + ‖u‖3L12

)

‖ũ‖L12). Then, due to (6.9) and (6.12), we have

(6.15)

∫ t+1

t
lε(t) dt ≤ Cε,

where the constant C is independent of ε and on u ∈ K. Inserting this estimate into (3.33), we have

(6.16)
1

2

d

dt
‖ξv(t)‖

2
E + γ‖∂tv(t)‖

2
L2 ≤ lε(t)‖ξv(t)‖

2
E + Cε‖ξu(t)‖

2
E .

Multiplying now equation (3.32) by αv, where α > 0 is a small parameter, integrating over Ω and
using (3.29), we derive

d

dt
(α(v(t), ∂tv(t)) +

1

2
αγ‖v(t)‖2L2) + α‖∇xv(t)‖

2
L2 ≤ Kα‖ξu(t)‖

2
L2 + α‖∂tv‖

2.

Taking a sum of this inequality with (6.16) and fixing α > 0 to be small enough, we finally arrive at

d

dt

(

1

2
‖ξv(t)‖

2
E + α(v(t), ∂tv(t)) +

1

2
αγ‖v(t)‖2L2

)

+ (κ− lε(t))‖ξv(t)‖
2
E ≤ Kα‖ξu(t)‖

2
E

for some positive constant κ which is independent of ε and u. Fixing now ε > 0 to be small enough,
applying the Gronwall inequality and estimating the term containing lε(t) using (6.15), we get

‖ξv(t)‖
2
E ≤ Ce−κt‖ξv(0)‖

2
E + C‖ξu‖

2
C(R+,E) ≤ C

(

‖ξv(0)‖
2
E + 1

)

.

Estimate (3.37) gives now the desired estimate (6.11) and finishes the proof of the theorem. �

Remark 6.6. Since H2 ⊂ C in the 3D case, the proved boundedness of the global attractor A in the
space E1 allows us to verify the further regularity of the attractor by straightforward bootstrapping,
so, similarly to the subcritical case, the actual regularity of the attractor is restricted by the regularity
of f and g only. Moreover, the finite-dimensionality of A can be obtained also exactly as in the
subcritical case.

However, we emphasize that, in contrast to the subcritical case, our proof of the existence of the
global attractor A and its further regularity is strongly based on the gradient structure of equation
(1.1) and the finiteness of the dissipation integral (5.18). Thus, the extension of the results of this
section to the case of non-autonomous external forces g = g(t) or to systems of equations of the form
(1.1) with non-gradient nonlinearity f is still an open problem. As we have already mentioned, the
key difficulty in this problem is to establish the dissipative estimate for the Strichartz norm of any
Shatah-Struwe solution u of the form

(6.17) ‖u‖L4(T,T+1;L12(Ω)) ≤ Q(‖ξu(0)‖E )e
−αT +Q(‖g‖L2).

This estimate cannot be obtained directly from the proof of Theorem 3.8 and we do not know whether
or not it is actually true even in the autonomous case considered in this section. Nevertheless, we
conjecture that it is true at least in the autonomous case since, a posteriori, based on the existence
of the compact global attractor A, on can verify a slightly weaker version of (6.17), namely, that for
every bounded set B ⊂ E , there exists T = T (B) such that

‖u‖L4(t,t+1;L12(Ω)) ≤ Q(‖g‖L2), t ≥ T,

so one only needs to verify (6.17) on a finite time interval and we expect that it can be done using
the concentration compactness arguments, see e.g. [29]. On the other hand, up to the moment, we do
not know how to verify (6.17) in the non-autonomous case.
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