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Abstract. Suppose K is a finite field extension of Qp containing
a primitive p-th root of unity. Let K<p be a maximal p-extension of
K with the Galois group of period p and nilpotent class < p. In this
paper we develop formalism which allows us to study the structure
of Γ<p = Gal(K<p/K) via methods of Lie theory. In particular,
we introduce an explicit construction of a Lie Fp-algebra L and an
identification Γ<p = G(L), where G(L) is a p-group obtained from
the elements of L via the Campbell-Hausdorff composition law. In
the next paper we apply this formalism to describe the ramification

filtration {Γ(v)
<p}v>0 and an explicit form of the Demushkin relation

for Γ<p.

Introduction

Everywhere in the paper p is a prime number, p > 2.
Let K be a complete discrete valuation field with finite residue field

k ' FpN0 , N0 ∈ N. Let Ksep be a separable closure of K and Γ =
Gal(Ksep/K).

A profinite group structure of Γ is well-known, [9]. Most significant
information about this structure comes from the maximal p-quotient
Γ(p) of Γ, [10, 13, 14]. As a matter of fact, the structure of Γ(p) is not
too complicated: its (topological) module of generators equals K∗/K∗p

and if K has no non-trivial p-th roots of unity (e.g. if charK = p) then
Γ(p) is pro-finite free; otherwise, Γ(p) has finitely many generators and
only one (the Demushkin) relation of a very special form.

In [1, 2, 3] the author introduced new techniques (nilpotent Artin-
Schreier theory) which allowed us to study p-extensions of characteristic
p with Galois groups of nilpotent class < p. Such groups come from
Lie algebras via classical equivalence L 7→ G(L) of the categories of Lie
Fp-algebras and p-groups of period p of the same nilpotent class s0 < p,
[11]. This equivalence can be briefly explained as follows.

Suppose Q[[X, Y ]] is a free associative algebra in two (non-commuting)
variables X and Y with coefficients in Q. Then the classical Campbell-
Hausdorff formula

X ◦ Y = log(exp(X) · exp(Y )) = X + Y + (1/2)[X, Y ] + . . .
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has p-integral coefficients modulo p-th commutators. If L is a finite
(resp., profinite) Lie Fp-algebra of nilpotent class < p, we can introduce
the finite (resp., profinite) group G(L) which equals L as a set and
is provided with the Campbell-Hausdorff composition law l1 ◦ l2 =
l1 + l2 + (1/2)[l1, l2] + . . . . The correspondence L 7→ G(L) induces the
above equivalence of categories. Under this equivalence any morphism
of Lie algebras L1 −→ L is at the same time a group homomorphism
G(L1) −→ G(L). In particular, I is an ideal in L iff G(I) is a normal
subgroup in G(L); any l1, l2 ∈ L are congruent modulo the ideal I iff
these elements (when considered as elements of the group G(L)) are
congruent modulo the subgroup G(I).

Suppose K is a complete discrete valuation field of mixed charac-
teristic containing a primitive p-th root of unity ζ1. Let K<p be the
maximal p-extension of K in Ksep with Galois group of nilpotent class
< p and period p. Then Γ<p = Gal(K<p/K) has finitely many gener-
ators and one relation. (This terminology makes sense in the category
of p-groups of nilpotent class < p and period p.)

In this paper we use the nilpotent Artin-Schreier theory and the field-
of-norms functor to obtain an explicit construction of a Lie Fp-algebra
L and a group identification Γ<p = G(L). The group G(L) starts
reflecting all essential information about the field K when provided

with the filtration by the ramification subgroups Γ
(v)
<p = G(L(v)), v > 0,

cf. [12, 4, 5]. (Here Γ
(v)
<p are the images of the ramification subgroups

Γ(v) in Γ and all L(v) are ideals in L.) In the second part [7] of this paper
we describe the ramification filtration L(v), v > 0, and find an explicit
form of the Demushkin relation in terms related to this filtration. Note
that a similar technique ([6] and papers in progress) can be used to
treat not only the similar quotients Γ<p(M) of Γ of period pM but also
the case of higher local fields K.

For the first approach to ramification filtration cf. [16], where the
ramification filtration in ΓpC2(Γ)/ΓpC3(Γ) was studied under some re-
strictions to the basic field K. The methods and techniques from [16]
could not be applied to a more general situation. The principal advan-
tage of our method is that we work with the whole group Γ<p rather
than with the quotients of its central series.

0.1. Main steps.
Notation. If G is a topological group and s ∈ N then Cs(G) is

the closure of the subgroup of commutators of order > s. With this
notation, G/GpCs(G) is the maximal quotient of G of period p and
nilpotent class < s. Similarly, if L is a topological Lie Fp-algebra
then Cs(L) is the closure of the ideal of commutators of order > s
and L/Cs(L) is the maximal quotient of nilpotent class < s. For any
topological Fp-module M we use the notation LM = L⊗̂FpM. In
particular, if σ is the Frobenius automorphism of k ' FpN0 then idL⊗σ
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acts on Lk. For simplicity, we denote idL ⊗ σ just by σ. Note that
Lk|σ=id = L.

a) Relation to the characteristic p case.

Let π0 be a fixed uniformizer in K and K̃ = K({πn | n ∈ N}), where

πpn = πn−1. If X is the field-of-norms functor [15], then X(K̃) = K is a
complete discrete valuation field of characteristic p with residue field k
and fixed uniformizer t = lim←− πn. The functor X induces identification

of G = Gal(Ksep/K) with ΓK̃ = Gal(K̄/K̃). This gives us the following
fundamental short exact sequence in the category of p-groups (where
G<p := G/GpCp(G) and τ0(π1) = ζ1π1)

(0.1) G<p
ι<p−→ Γ<p −→ Gal(K(π1)/K)

(
= 〈τ0〉Z/p

)
−→ 1 .

b) Nilpotent Artin-Schreier theory.

This theory allows us to fix an identification η0 : G<p ' G(L), where
L is a profinite Lie Fp-algebra. The identification η0 depends on the
uniformizer t and a choice of α0 ∈ k such that Trk/Fp(α0) = 1. Note
that Lk appears with the system of generators

{Dan | a ∈ Z+(p), n ∈ Z/N0} ∪ {D0} ,
where Z+(p) = {a ∈ N | gcd(a, p) = 1} and for any a, σ(Dan) = Da,n+1.
We will treat D0 in the context of all Dan by setting for all n ∈ Z/N0,
D0n = (σnα0)D0.

c) Ramification filtration in G<p.
With respect to the above identification η0 the ramification sub-

groups G(v)
<p come from the ideals L(v) of L. In [1, 2, 3] we constructed

explicitly the elements F0
γ,−N ∈ Lk with non-negative γ ∈ Q and

N ∈ Z, such that for any v > 0 and sufficiently large N > Ñ(v),

L(v) is the minimal ideal in L such that F0
γ,−N ∈ L

(v)
k for all γ > v.

d) Fundamental sequence of Lie algebras.

Using the above equivalence of the categories of p-groups and Lie
algebras we replace (0.1) by the exact sequence of Lie Fp-algebras

(0.2) 0 −→ L̄ −→ L −→ Fpτ0 −→ 0 ,

where L̄ = L/L(p), G(L(p)) = Ker ι<p and G(L) = Γ<p. If τ<p is
a lift of τ0 to L then the structure of (0.2) can be described via the
differentiation adτ<p on L̄.

e) Replacing τ0 by h ∈ AutK.

When studying the structure of (0.2) we can approximate τ0 by a
suitable h ∈ AutK. This automorphism can be defined in terms of
the expansion of ζ1 in powers of π0. Then the formalism of nilpotent
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Artin-Schreier theory allows us to specify a lift τ<p, to find the ideal
L(p) and to introduce a recurrent procedure of obtaining the elements
adτ<p(Dan) := [Dan, τ<p] ∈ L̄k and adτ<p(D0) := [D0, τ<p] ∈ L̄.

f) Structure of L.

Analyzing the above recurrent procedure modulo C2(L̄)k we will see
that the knowledge of adτ<p(Dan) allows us to kill all generators Dan

of L̄k with a > e∗ := eKp/(p − 1). (Here eK is the ramification index
of K over Qp.) In other words, Lk has a minimal system of generators
{Dan | 1 6 a < e∗, n ∈ Z/N0} ∪ {D0} ∪ {τ<p}. On the other hand,
adτ<p(D0) ∈ C2(L̄) ⊂ C2(L) and, therefore, gives us the Demushkin
relation in L.

The following two steps will be done in the second part [7].

g) Ramification ideals L(v) in L.

For v > e∗, all ramification ideals L(v) are contained in L̄ and come
from the appropriate ideals L(v′), where the upper indices v and v′ are

related by the Herbrand function ϕK̃/K of the field extension K̃/K.
As one of immediate applications we found for 2 6 s < p, the biggest
upper ramification numbers v[s] of the maximal p-extensions K[s] of K
with the Galois groups of period p and nilpotent class 6 s. We obtain
the remaining ramification ideals L(v) with v 6 e∗ by specifying “good”
lifts τ<p (i.e. such that τ<p ∈ L(e∗)) of τ0.

h) Explicit formulas for adτ<p with “good” τ<p.

The formulas for adτ<p(Dan) and adτ<p(D0) are obtained modulo
C3(Lk) as a second central step in the recurrent procedure from e),
cf. Subsection 3.6 of this paper. In [7] we obtain a general formula for
adτ<p(D0). This will give us an explicit form of the Demushkin relation
in terms of the ramification generators F0

γ,−N from c).

As a matter of fact, in both papers we work mostly with the auto-
morphism h and only in the very end prove that all results obtained in
the context of h also hold with τ0.

0.2. Main results. Introduce the weights wt(l) of elements l ∈ Lk by
setting wt(Dan) = s ∈ N if (s− 1)e∗ 6 a < se∗.

Theorem 0.1. a) L(p) = {l ∈ L | wt(l) > p};
b) if L(s) = {l ∈ L | wt(l) > s} then Cs(L) = L(s)/L(p).

Suppose for all a, Va0 ∈ L̄k are such that adτ<p(Da0) = Va0. In
particular, V00 = α0V0, where V0 = (adτ<p)D0 ∈ L̄. The knowledge
of these elements determines uniquely the differentiation adτ<p (note
that for all n, adτ<p(Dan) = σn(Va0)).

Suppose E(X) = exp(X + Xp/p + · · · + Xpn/pn + . . . ) ∈ Zp[[X]] is
the Artin-Hasse exponential.
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Let ω(t) ∈ k[[t]] be such that E(ω(π0)) = ζ1 mod p.

Theorem 0.2. The elements Va0 can be found from the following re-
current relation in L̄K

σc1 − c1 +
∑

a∈Z0(p)

t−aVa0 =

−
∑
k>1

1

k!
t−(a1+···+ak)ω(t)p[. . . [a1Da10, Da20], . . . , Dak0]

−
∑
k>2

1

k!
t−(a1+···+ak)[. . . [Va1 , Da20], . . . , Dak0]

−
∑
k>1

1

k!
t−(a1+···+ak)[. . . [σc1, Da10], . . . , Dak0],

where in all last three sums the indices a1, . . . , ak run over the set
Z0(p) := Z+(p) ∪ {0}.

In the above system of equations we are looking for the solutions of
the form {c1 ∈ L̄K, {Va0 ∈ L̄k | a ∈ Z0(p)}}. These solutions corre-
spond to different choices of the lift τ<p of τ0, in particular, c1 is a strict
invariant of a lift τ<p. Actually, we have more: if c1 =

∑
i∈Z c1(i)ti with

all c1(i) ∈ L̄k, then c1(0) is a strict invariant of τ<p.

The content of this paper is arranged in a slightly different order
compared to above principal steps a)-f). In Section 1 we briefly discuss
auxiliary facts and constructions from the characteristic p case. In
Section 2 we study an analogue Gh of Γ<p which appears if we replace
τ0 by a suitable h ∈ AutK; we also describe the commutator subgroups
of Gh and, in particular, find the ideal L(p). In Section 3 we develop
the techniques allowing us to switch the languages of p-groups and Lie
algebras. Finally, in Section 4 we prove that all our results obtained
for the group Gh actually hold in the context of the group Γ<p.

Acknowledgements. The author expresses deep gratitude to the ref-
eree: his advices allowed the author to avoid a considerable amount
of inexactitudes and improve significantly the quality of the original
exposition.

1. Preliminaries

1.1. Covariant nilpotent Artin-Schreier theory. Suppose K is a
field of characteristic p, Ksep is a separable closure of K and G =
Gal(Ksep/K). We assume that the composition g1g2 of g1, g2 ∈ G is
such that for any a ∈ Ksep, g1(g2a) = (g1g2)a.

In [1, 2, 3] the author developed a nilpotent analogue of the classi-
cal Artin-Schreier theory of cyclic field extensions of characteristic p.
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The main results of this theory (which will be called the contravariant
nilpotent Artin-Schreier theory) can be briefly explained as follows.

Let G0 be the group such that G0 = G as sets but for any g1, g2 ∈ G
their composition in G0 equals g2g1. In other words, we assume that
G0 acts on Ksep via (g1g2)a = g2(g1(a)).

Let L be a Lie Fp-algebra of nilpotent class < p. Then the absolute
Frobenius σ and G0 act on LKsep through the second factor. We have

LKsep |σ=id = L and (LKsep)
G0 = LK.

For any e ∈ G(LK), the set of f ∈ G(LKsep) such that σ(f) = f ◦ e
is not empty. Define the group homomorphism π0

f (e) : G0 → G(L) by

setting for any g ∈ G0, π0
f (e) : g 7→ g(f) ◦ (−f).

Remark. Strictly speaking g(f), where g ∈ G0, should be written in
the form (idL⊗g)f but in most cases we use the first notation. On the
other hand, we would prefer the second notation if, say, g ∈ AutKsep
and g|K 6= idK. (Similarly, we have already agreed in the Introduction
to use the notation σ instead of idL ⊗ σ.)

We have the following properties:

a) for any group homomorphism η : G0 → G(L) there are eη ∈ G(LK)
and fη ∈ G(LKsep) such that σ(fη) = fη ◦ eη and η = π0

fη
(eη);

b) two homomorphisms π0
f (e) and π0

f1
(e1) from G0 to G(L) are con-

jugated via some element from G(L) iff there is an x ∈ G(LK) such
that e1 = (−x) ◦ e ◦ σ(x).

The covariant version of the above theory can be developed quite
similarly. We just use the relations σ(f) = e ◦ f and g 7→ (−f) ◦ g(f)
to define the group homomorphism πf (e) : G −→ G(L). Then we have
the obvious analogs of above properties a) and b) with the opposite
formula e1 = σ(x) ◦ e ◦ (−x) in the case b).

In this and next paper we use the covariant theory but need some re-
sults from [3] which were obtained in the contravariant setting. These
results can be adjusted to the covariant theory just by replacing all in-
volved group or Lie structures to the opposite ones, e.g. cf. Subsection
1.4 below.

1.2. Lifts of analytic automorphisms. Let AutK and AutKsep be
the groups of continuous automorphisms of K and Ksep, respectively.
For h ∈ AutK, let hsep ∈ AutKsep be a lift of h, i.e. hsep|K = h.

Suppose L is a Lie Fp-algebra of nilpotent class < p. Let e ∈ G(LK),
choose f ∈ G(LKsep) such that σ(f) = e ◦ f , set η = πf (e) and Ke =
KKer η
sep . Then Ke does not depend on a choice of f : if f ′ ∈ G(LKsep) is

such that σ(f ′) = e ◦ f ′ then f ′ = f ◦ l with l ∈ G(L) and Ker η =
Ker πf ′(e).

Proposition 1.1. Suppose η : G −→ G(L) is epimorphic. Then the
following conditions are equivalent:
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a) hsep(Ke) = Ke;
b) there are c ∈ G(LK) and A ∈ AutL such that (idL ⊗ hsep)f =

c ◦ (A⊗ idKsep)f .

Proof. Let e1 = (idL ⊗ h)e, f1 = (idL ⊗ hsep)f and η1 = πf1(e1). Then
for any g ∈ G, we have η1(g) = (−f1) ◦ g(f1) =

(idL ⊗ h)((−f) ◦ (h−1
sep g hsep)f) = η(h−1

sep g hsep).

Therefore, η1 is equal to the composition of the conjugation by hsep on G
(we shall denote it by Adhsep below) and η. Then hsep(Ke) = Ke means
that Ker η = Ker η1. This implies the existence of an automorphism
A of the group G(L) (which is automatically automorphism of the Lie
algebra L) such that η1 = Aη.

Now let f ′ = (A ⊗ idKsep)f and e′ = (A ⊗ idK)e. Then πf ′(e
′)g =

(A⊗ idKsep)((−f) ◦ g(f)) = (Aη)g = η1(g). This means that f ′ and f1

give the same morphisms G → G(L) and there is c ∈ G(LK) such that
f1 = c ◦ f ′, that is a) implies b). Proceeding in the opposite direction
we can deduce b) from a). �

Remark. From the proof of the above proposition it follows that a
choice of the lift hsep uniquely determines its ingredients c ∈ LK and
A ∈ AutLieL. Indeed, A appears as Ad(hsep|Ke) (with respect to the
identification G/Ker η = G(L) induced by η) and c is recovered then
as (idL ⊗ hsep)f ◦ (A⊗ idKsep)(−f). This shows that the couple (c, A)
depends only on the restriction hsep|Ke and we can consider the map
hsep|Ke 7→ (c, A) from the set of all lifts of h to Ke to the set of appro-
priate couples (c, A). But the knowledge of (c, A) allows us to recover
uniquely the element (idL ⊗ hsep)f and the Galois group Gal(Ke/K)
acts strictly on the set of all such elements. Therefore, any couple
(c, A) appears from no more than one lift of h to Ke, that is the map
hsep|Ke 7→ (c, A) is injective. We will study this map in more details
below, cf. Proposition 2.3.

1.3. The identification η0. Let K = k((t)) be a complete discrete
valuation field of Laurent formal power series in variable t with coeffi-
cients in k ' FpN0 , N0 ∈ N. Choose α0 ∈ k such that Trk/Fpα0 = 1.

Denote by L̃k a free pro-finite Lie algebra over k with the set of free
generators {Dan | a ∈ Z+(p), n ∈ Z/N0} ∪ {D0}. As earlier, denote

by the same symbol σ, the σ-linear automorphism of L̃k such that
σ : D0 7→ D0 and for all a ∈ Z+(p) and n ∈ Z/N0, σ : Dan 7→ Da,n+1.

Then L̃0 := L̃k|σ=id is a free pro-finite Lie Fp-algebra and L̃k = L̃0
k.

Let L = L̃0/Cp(L̃0).
For any n ∈ Z/N0, set D0n = σn(α0)D0.
Let e =

∑
a∈Z0(p) t

−aDa0 ∈ G(LK) and fix a choice of f ∈ G(LKsep)
such that σ(f) = e ◦ f . Then the morphism η = πf (e) induces the
isomorphism of topological groups η0 : G<p := G/GpCp(G)−̃→G(L).
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In the remaining part of the paper we use (without additional notice)
the above introduced notation e, f , η and η0. The appropriate field Ke
coincides with KG

pCp(G)
sep and will be denoted by K<p.

Note that f ∈ G(LK<p). In particular, if h1, h2 ∈ AutKsep are such
that h1|K = h2|K and (idL ⊗ h1)f = (idL ⊗ h2)f then h1|K<p = h2|K<p ,
cf. Remark at the end of Subsection 1.2. Therefore, the appropriate
choice of the ingredients c ∈ LK and A ∈ AutL from Proposition 1.1
can be used to describe efficiently the lifts of automorphisms h of K to
automorphisms h<p of K<p.

We also use in Subsection 2.2 and [7], Subsection 2.5, the following
interpretation of this property:

– if L1 ⊂ L is ideal and KG(L1)
<p = K1 then f modL1K<p ∈ (L/L1)K1,

or equivalently, f ∈ LK1 + L1K<p .

Note that η : G −→ G(L) induces (use f modL1K<p) the identifica-
tion Gal(K1/K) ' G(L/L1).

If h ∈ AutK then its lifts to AutK<p will be denoted usually by h<p.
As we have already pointed out, G(L) acts transitively on the set of all
lifts h<p of a given h: for any l ∈ G(L), h<p 7→ h<p ∗ l = h<p η

−1
0 (l).

1.4. The ramification subgroups in G<p. For v > 0, let G(v)
<p be the

image of the ramification subgroup G(v) of G in G<p. This subgroup
corresponds to some ideal L(v) of the Lie algebra L with respect to the
identification η0.

When working with the above standard generators of Lk we very
often denote them by Dan, where n ∈ Z, by having in mind that they
depend only on the residue of n modulo N0, i.e. Dan := Da,nmodN0 .

For γ > 0 and N ∈ N, introduce F0
γ,−N ∈ Lk such that

F0
γ,−N =

∑
16s<p
ai,ni

a1η(n1, . . . , ns)[. . . [Da1n1 , Da2n2 ], . . . , Dasns ]

Here:

— a1p
n1 + a2p

n2 + · · ·+ asp
ns = γ;

— if 0 = n1 = · · · = ns1 > · · · > nsr−1+1 = · · · = nsr > −N then
η(n1, . . . , ns) = (s1! . . . (sr − sr−1)!)−1; otherwise, η(n1, . . . , ns) = 0.

Theorem 1.2. For any v > 0, there is Ñ(v) such that if N > Ñ(v) is
fixed then the ideal L(v) is the minimal ideal in L such that its extension

of scalars L(v)
k contains all F0

γ,−N with γ > v.

The appropriate theorem in the contravariant setting was obtained
in [1] (or in a more general form in the context of groups of period pM in
[3]) and uses the elements Fγ,−N given by the same formula but with the
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factor (−1)s−1. Indeed, when switching to the covariant setting all com-
mutators of the form [. . . [Da1n1 , Da2n2 ], . . . , Dasns ] should be replaced
by [Dasns , . . . , [Da2n2 , Da1n1 ] . . . ] = (−1)s−1[. . . [Da1n1 , Da2n2 ], . . . , Dasns ].

2. The groups G̃h and Gh
2.1. The automorphism h. Let c0 ∈ pN. Denote by h a continuous
automorphism of K such that h|k = id and

h(t) = t

(
1 +

∑
i>0

αi(h)tc0+pi

)
,

where all αi(h) ∈ k and α0(h) 6= 0. This automorphism will be fixed
in the remaining part of the paper.

As earlier, E(X) = exp
(∑

i>0X
pi/pi

)
∈ Zp[[X]].

Proposition 2.1.
a) There is ωh ∈ tc0/pO∗K such that h(t) = tE(ωph);
b) For any n > 0, hn(t) ≡ tE(nωph) mod t1+pc0.

Proof. For part a), ωh appears as a unique element from tk[[t]] such
that E(ωh) = 1 +

∑
j>0 σ

−1(αj(h))tc0/p+j. (Use that x 7→ E(x) − 1 is

bijective on tk[[t]].) For part b), note that h(t) ≡ tmod tc0 implies that
h(tc0+pi) ≡ tc0+pi mod tpc0 and, therefore, h(ωph) ≡ ωph mod tpc0 . Now
apply induction on n. If our proposition is proved for n > 1 then

hn+1(t) ≡ h(t)h(E(nωph)) ≡ tE(ωph)E(nωph) ≡ tE((n+ 1)ωph) mod tpc0+1

(use that E(X + Y ) ≡ E(X)E(Y ) mod deg p). �

Remark. In all applications below the knowledge of the automor-
phism h will be essential only modulo t1+pc0 and, therefore, in the
above proposition we can use instead of E(X) the truncated exponen-
tial ẽxp(X) = 1 +X + · · ·+Xp−1/(p− 1)! .

2.2. Operators R and S. Suppose M is a profinite Fp-module. De-
fine the continuous Fp-linear operators R,S : MK −→MK as follows.

Suppose α ∈Mk.
If n > 0 then set R(tnα) = 0 and S(tnα) = −

∑
i>0 σ

i(tnα).

For n = 0, set R(α) = α0Trk/Fpα, S(α) =
∑

06j<i<N0
(σjα0)σiα.

If n = −n1p
m < 0 with gcd(n1, p) = 1 then set R(tnα) = t−n1σ−mα

and S(tnα) =
∑

16i6m σ
−i(tnα).

The proof of the following lemma is straightforward.

Lemma 2.2. For any b ∈MK,

a) b = R(b) + (σ − idMK)S(b);

b) if b = b1 + σb2 − b2, where b1 ∈
∑

a∈Z+(p) t
−aMk + α0M and

b2 ∈MK then b1 = R(b) and b2 − S(b) ∈M.
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Remark. A typical situation where we refer to the above lemma ap-
pears as follows: suppose N ⊂M is an Fp-submodule and

b =
∑

a∈Z+(p)

t−aba + α0b0 + σc− c ,

with all ba ∈ Mk, b0 ∈ M and c ∈ MK; if b ∈ NK then all ba ∈ Nk,
b0 ∈ N and c ∈M + NK.

2.3. Specification of h<p. We are going to specify a lift h0
<p of h to

K<p by using formalism of nilpotent Artin-Schreier theory. Recall that
for any lift h<p of h, we have a unique c ∈ LK and A = Adh<p ∈ AutL
such that (idL ⊗ h<p)f = c ◦ (A ⊗ idK<p)f . The map h<p 7→ (c, A) is
injective, cf. Subsection 1.2. The following proposition describes the
image of this map.

Proposition 2.3. The correspondence Π : h<p 7→ (c, A) induces a
bijection of the set of all lifts h<p of h and the set of pairs (c, A) ∈
LK × AutL such that

(2.1) (idL ⊗ h)e ◦ c = σc ◦ (A⊗ idK)e .

Proof. If Π(h<p) = (c, A) then

(idL ⊗ h)e ◦ (idL ⊗ h<p)f = (idL ⊗ h<p)(e ◦ f) = (idL ⊗ h<p)σf =

σc ◦ (A⊗ idK<p)σf = σc ◦ (A⊗ idK)e ◦ (A⊗ idK<p)f

= σc ◦ (A⊗ idK)e ◦ (−c) ◦ (idL ⊗ h<p)f .
This proves that (c, A) satisfies identity (2.1).

Let l′ ∈ L. Then η−1
0 (l′) ∈ Gal(K<p/K) and h<p η

−1
0 (l′) is again a lift

of h to K<p. Therefore, we have a transitive action h<p 7→ h<p ∗ l′ :=
h<pη

−1
0 (l′) of G(L) on the set of all lifts h<p.

At the same time, if (c, A) satisfies (2.1) then the new couple
(c, A) ∗ l′ := (c ◦ (l′ ⊗ 1), (Adl′)A) is again a solution of (2.1). Indeed,

(idL ⊗ h)e ◦ c ◦ (l′ ⊗ 1) = (σc) ◦ (A⊗ idK)e ◦ (l′ ⊗ 1)

= σ(c ◦ (l′ ⊗ 1)) ◦ (−l′ ⊗ 1) ◦ (A⊗ idK)e ◦ (l′ ⊗ 1) ,

and (−l′ ⊗ 1) ◦ (A ⊗ idK) ◦ (l′ ⊗ 1) acts on LK as (Adl′)A ⊗ idK, i.e.
Ad(l′ ⊗ 1) : LK −→ LK is K-linear. (Indeed, one of most known
properties of Campbell-Hausdorff formula, cf. [8], Ch.II, Section 6.5,
gives that

(−l′ ⊗ 1) ◦ l ◦ (l′ ⊗ 1) =
∑

06i<p

[. . . [l, l′ ⊗ 1], . . . , l′ ⊗ 1︸ ︷︷ ︸
i times

]/i!

depends linearly on l ∈ LK. )
This defines the action (c, A) 7→ (c, A) ∗ l′ of G(L) on all solutions

(c, A) of (2.1). Verify that the map Π is compatible with above defined
G(L)-actions. Indeed, if Π(h<p) = (c, A) then h<p ∗ l′ sends f to

h<p(f ◦ (l′ ⊗ 1)) = c ◦ (A⊗ idK<p)f ◦ (l′ ⊗ 1) =
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(c ◦ (l′ ⊗ 1)) ◦ (−l′ ⊗ 1) ◦ (A⊗ idK<p)f ◦ (l′ ⊗ 1)

and therefore, Π(h<p∗l′) = (c, A)∗l′. So, our proposition will be proved
if we show that G(L) acts transitively on the set of all solutions (c, A)
of (2.1).

Suppose (c, A) and (c′, A′) are solutions of (2.1). Then the existence
of l′ ∈ G(L) such that (c′, A′) = (c, A) ∗ l′ will be implied by the
following lemma.

Lemma 2.4. For any 1 6 s 6 p, there is l′s ∈ G(L) such that if
(c′s, A

′
s) = (c, A) ∗ l′s then cs ≡ c′modCs(LK) and As ≡ A′modCs(L).

Proof of lemma. Use induction on s.
If s = 1 there is nothing to prove.
Suppose lemma is proved for some 1 6 s < p.
Let c′ = c′s + δ and A′ = A′s + A, where δ ∈ Cs(LK) and A ∈

HomFp−mod(L, Cs(L)). Then we have modulo Cs+1(LK):

(idL ⊗ h)e ◦ c′ ≡ (idL ⊗ h)e ◦ c′s + δ ,

(σc′) ◦ (A′ ⊗ idK)e ≡ (σc′s) ◦ (A′s ⊗ idK)e+ σ(δ) + (A⊗ idK)e .

Because (c′s, A
′
s) and (c′, A′) are solutions of (2.1) we obtain

σδ − δ +
∑

a∈Z+(p)

t−aAk(Da0) + α0A(D0) ∈ Cs+1(LK) ,

where Ak = A ⊗ k ∈ Homk−mod(Lk, Cs(Lk)). Now Lemma 2.2b) (cf.
also remark b) after that lemma) implies that δ ≡ δ0 modCs+1(LK),
where δ0 ∈ Cs(L) ⊗ 1, all Ak(Da0) ∈ Cs+1(Lk) and A(D0) ∈ Cs+1(L).
Therefore, modulo Cs+1(Lk) the automorphisms A′ and A′s coincide on
generators of Lk (use that Ak(Dan) = σnAk(Da0) for all n ∈ Z/N0)
and A′ ≡ A′s modCs+1(L).

So, for (c, A) ∗ (l′s ◦ δ) = (c′s, A
′
s) ∗ δ = (c′s+1, A

′
s+1), we have that

c′s+1 = c′s ◦ δ ≡ c′s + δ ≡ c′modCs+1(LK)

and

A′s+1 = (Ad δ)A′s ≡ (Ad δ)A′ ≡ A′modCs+1(L) .

The lemma and Proposition 2.3 are completely proved. �

�

Remark. Suppose (c1, A1) and (c2, A2) satisfy the identity (2.1) and
c1 ≡ c2 modCs(LK). Then (A1 ⊗ idK)e ≡ (A2 ⊗ idK)emodCs(LK) and
this implies that A1 ≡ A2 modCs(L). In particular, if Π(h<p) = (c, A)

then the restriction h<s of h<p to KCs(L)
<p is uniquely determined by the

residue cmodCs(LK). Now from the proof of the above proposition it

follows that all lifts of a given h<s to automorphisms h<s+1 of KCs+1(L)
<p

are uniquely determined by the residues (c+δ, A) modCs+1(LK), where
δ ∈ Cs(L).
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Using the above proposition and operators R and S from Subsection
2.2 we can specify a unique choice h0

<p in the set of all lifts of h by

specifying a unique solution (c0, A0) of (2.1) as follows.
Suppose 1 6 s < p and we have chosen (cs, As) ∈ LK × AutL such

that the identity (2.1) holds modulo Cs(LK). If s = 1 we just choose
c1 = 0 and A1 = idL. Then we can find the solution (cs+1, As+1) ∈
LK × AutL of (2.1) modulo Cs+1(LK) by setting cs+1 = cs + Xs and
As+1 = As + Bs where Xs ∈ Cs(LK) and Bs ∈ HomFp-mod(L, Cs(L))
must satisfy the relation

(2.2) σXs −Xs +
∑

a∈Z0(p)

t−aBs(Da0) ≡

(idL ⊗ h)e ◦ cs − σcs ◦ (As ⊗ idK)emodCs+1(LK) .

By Lemma 2.2b) the recurrence relation (2.2) uniquely determines
the elements Bs(Da0) modCs+1(Lk) but the element Xs is determined
only up to elements of Cs(L) modCs+1(L). (This will affect the right-
hand side of (2.2) at the next (s+ 1)-th step and so on.) Note that the
knowledge of the elements Bs(Da0) modCs+1(Lk) determines uniquely
the automorphism As+1 modulo Cs+1(L) because for all n ∈ Z/N0,
As+1(Dan) = σnAs+1(Da0). By Proposition 2.3 all solutions Xs cor-

respond to different extensions of a given automorphism of KCs(L)
<p to

an automorphism of KCs+1(L)
<p (cf. also the remark after the proof of

that proposition). In particular, we can uniquely specify the lift h0
<p

by specifying (idL ⊗ h0
<p)f if we take at each s-th step the solutions of

(2.2) in the form
∑

a∈Z0(p) t
−aBs(Da0) = R(Bs) and Xs = S(Bs), where

Bs is the RHS in (2.2). As a result, the pair (c0, A0) := (cp, Ap) satisfies
the identity (2.1) and defines the lift h0

<p.

Remark. It is not easy to control the lifts h<p because condition (2.2)
contains highly non-trivial Campbell-Hausdorff operation ◦. In Section
3 we resolve this problem by introducing the procedure of linearization.

2.4. The group G̃h. Denote by G̃h the group of all lifts h̃<p ∈ AutK<p
of the elements h̃ of the closed subgroup in AutK generated by h.

Use the identification η0 from Subsection 1.3 to obtain a natural
short exact sequence of profinite p-groups

(2.3) 1 −→ G(L) −→ G̃h −→ 〈h〉 −→ 1

For any s > 2, Cs(G̃h) is a subgroup in G(L) and, therefore, Lh(s) :=

Cs(G̃h) is a Lie subalgebra of L. Set Lh(1) = L. Note that for any
s1, s2 > 1, we have [Lh(s1),Lh(s2)] ⊂ Lh(s1 + s2).
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Recall that the weight filtration L(s), s ∈ N, in L was defined
by setting wt(Dan) = s if (s − 1)c0 6 a < sc0. With this no-
tation L(s)k is generated over k by all [. . . [Da1n1 , Da2n2 ], . . . , Darnr ]
such that

∑
i wt(Daini) > s. For any s1, s2 > 1, we also have that

[L(s1),L(s2)] ⊂ L(s1 + s2).

Theorem 2.5. For all s ∈ N, Lh(s) = L(s).

Proof. Let h0
<p be the lift constructed at the end of Subsection 2.3.

Then h0
<p ∈ G̃h is a preimage of h in short exact sequence (2.3).

Let Llin = (
∑

a,n kDan)|σ=id be “the subspace of linear terms” of L.
We have the following properties:

• L(s+ 1) = Llin ∩ L(s+ 1) + L(s+ 1) ∩ C2(L);

• L(s+ 1) ∩ C2(L) =
∑

s1+s2=s+1 [L(s1),L(s2)];

• Lh(s+1) is the ideal in L generated by [Lh(s),L] and the elements
of the form (Adh0

<p)l ◦ (−l), where l ∈ Lh(s).

Let (Adh0
<p)D0 = D̃0 and for all a ∈ Z+(p), (Adh0

<p)Da0 = D̃a0.

Lemma 2.6. We have:

a) D̃0 ≡ D0 mod (L(3) + L(2) ∩ C2(L));

b) if a ∈ Z+(p) and wt(Dan) = s then

D̃a0 ≡ Da0−
∑
i>0

αi(h)aDa+c0+pi,0 mod (L(s+2)k+L(s+1)k∩C2(Lk)) ,

where αi(h) ∈ k are such that h(t) = t(1 +
∑

i>0 αi(h)tc0+pi).

We prove this Lemma below after finishing the proof of Theorem 2.5.
Clearly, Lemma 2.6 has the following corollaries:

(c1) if l ∈ L(s) then (Adh0
<p)l ◦ (−l) ∈ L(s+ 1);

(c2) if l ∈ Llin ∩ L(s+ 1) then there is an l′ ∈ Llin ∩ L(s) such that
Adh0

<p(l
′) ◦ (−l′) ≡ lmodL(s+ 1) ∩ C2(L) (use that α0(h) 6= 0).

Prove theorem by induction on s > 1.
Clearly, Lh(1) = L(1).
Suppose s0 > 1 and for 1 6 s 6 s0, Lh(s) = L(s).
Then [Lh(s0),L] = [L(s0),L(1)] ⊂ L(s0 + 1) and applying (c1) we

obtain that Lh(s0 + 1) ⊂ L(s0 + 1).
In the opposite direction, note that by inductive assumption,

L(s0 + 1) ∩ C2(L) =
∑

s1+s2=s0+1

[Lh(s1),Lh(s2)] ⊂ Lh(s0 + 1)

and then from (c2) we obtain that Llin ∩ L(s0 + 1) ⊂ Lh(s0 + 1). So,
L(s0 + 1) ⊂ Lh(s0 + 1) and Theorem 2.5 is completely proved. �
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Proof of Lemma 2.6. Let

N =
∑
s>1

t−c0sL(s)m,

where m is the maximal ideal of the valuation ring OK of K. Clearly,
N has the structure of Lie algebra over Fp.

Let
ẽ := (Adh0

<p ⊗ idK)e =
∑

a∈Z+(p)

t−aD̃a0 + α0D̃0 .

Then recovering ẽ from the following relation

(2.4) (idL ⊗ h)e ◦ c0 = (σc0) ◦ ẽ ,
where c0 ∈ G(LK), is a part of the procedure of specifying h0

<p described

at the end of Subsection 2.3, i.e. ẽ = (A0 ⊗ idK)e.
Now note that e ∈ N and the operators R and S map N to itself.

Therefore, when following the procedure of specifying h0
<p at each step

we obtain that Bs,R(Bs),S(Bs) ∈ N and, therefore, ẽ, c0, σc0 ∈ N .
For any i > 0, introduce the ideals N (i) := tc0iN of N . Note that

for all i > 0, the operators R and S map N (i) to itself.
Consider the following properties:

a) (idL ⊗ h)e = e+ e1 modN (2), where e1 = e+
1 + e−1 ∈ N (1) with

e−1 = −
∑
i>0

a∈Z+(p)

t−aaαi(h)Da+c0+pi,0, e
+
1 = −

∑
i>0

0<a<c0+pi

aαi(h)t−a+c0+piDa0

(note that e+
1 ∈ Lm and, therefore, R(e+

1 ) = 0);

b) the congruence (idL⊗h)e ≡ emodN (1) implies that ẽ ≡ emodN (1)
and c0, σc0 ∈ N (1): indeed, in the procedure of specifying h0

<p we have
for all s, that cs, σcs ∈ N (1) and (As ⊗ idK)e ≡ emodN (1);

c) ẽ = (−σc0)◦(idL⊗h)e◦c0 ≡ (c0−σc0)+e+e1 modN (2)+tc0Ñ (2),

where Ñ (2) :=
∑

s>2 t
−sc0(L(s) ∩ C2(L))m (use that [N (1),N (1)] ⊂

N (2) and [N (1),N ] ⊂ tc0Ñ (2));

d) R(N (2) + tc0Ñ (2)) ⊂ N (2) + tc0Ñ (2), R(ẽ− e− e−1 ) = ẽ− e− e−1 ,
R(c0 − σc0 + e+

1 ) = 0 and, therefore, c) implies that

ẽ ≡ e+ e−1 modN (2) + tc0Ñ (2)

or, more explicitly,

ẽ ≡
∑

a∈Z+(p)

t−a

(
Da0 − a

∑
i>0

αi(h)Da+c0+pi,0

)
+α0D0 modN (2)+tc0Ñ (2) .

It remains to prove that this congruence is equivalent to the state-
ment of our lemma. Note that any element l ∈ LK can be uniquely
presented as l =

∑
b∈Z t

blb, where all lb ∈ Lk and lb → 0 if b→ −∞.
Suppose s > 1 and −(s− 1)c0 > b > −sc0.
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Then it follows directly from definitions that:

— if l ∈ N then lb ∈ L(s)k;

— if l ∈ N (2) then lb ∈ L(s+ 2)k;

— if l ∈ tc0Ñ (2) then lb ∈ L(s+ 1)k ∩ C2(Lk).
It remains to compare the coefficients in the last congruence for ẽ. �

2.5. The group Gh. Let

M := N + L(p)K =
∑

16s<p

t−sc0L(s)m + L(p)K

M<p :=
∑

16s<p

t−sc0L(s)m<p + L(p)K<p

where m<p is the maximal ideal of the valuation ring of K<p.
Then M has the induced structure of a Lie Fp-algebra (use the Lie

bracket from LK) and for i > 0,M(i) := tic0M is a decreasing filtration
of ideals in M. Note that e ∈ M. Similarly, M<p is a Lie Fp-algebra
(containing M as its subalgebra) and for i > 0, M<p(i) := tic0M<p is
a decreasing filtration of ideals in M<p, M<p(i) ∩M =M(i).

There is a natural embedding of M̄ := M/M(p − 1) into M̄<p :=
M<p/M<p(p−1), and the induced decreasing filtrations of ideals M̄(i)
and M̄<p(i) (where M̄(p− 1) = M̄<p(p− 1) = 0) are compatible with
this embedding. Note that for all i > 0, (idL ⊗ h− idM)iM⊂M(i).

Lemma 2.7. f, σf ∈M<p.

Proof. Prove by induction on 1 6 s 6 p that f, σf ∈M<p + L(s)K<p .
If s = 1 then f ∈ LK<p =M<p + L(1)K<p .
Suppose 1 6 s0 < p and f, σf ∈M<p + L(s0)K<p .
For 1 6 s 6 s0 + 1 let js = rkFp(L/L(s)). Then 0 = j1 < j2 <
· · · < js0+1. Let l1, . . . , ljs0+1 ∈ L be such that for all 1 6 s 6 s0 + 1,
ljs+1, . . . , ljs0+1 give an Fp-basis of L(s) modulo L(s0 + 1). This means
that for all such s, the elements ljs+1, . . . , ljs+1 form Fp-basis of L(s)
modulo L(s+ 1).

With above notation for 1 6 j 6 js0+1, there are unique bj ∈ K<p
such that f ≡

∑
j bjlj modL(s0 + 1)K<p . By inductive assumption, if

s < s0 and lj ∈ L(s) \ L(s + 1) then bj, σbj ∈ m<pt
−c0s and we must

prove that if lj ∈ L(s0) then bj ∈ m<pt
−c0s0 .

Let e◦f = e+f +X(f, e). Then X(f, e) ∈ M<p+L(s0 +1)K<p (use
that e ∈ M<p and [M<p,L(s0)K<p ] ⊂ L(s0 + 1)K<p) and, therefore,
σf − f ∈M<p + L(s0 + 1)K<p .

Thus, σf − f ≡
∑

j ajlj, where for all s 6 s0 and js < j 6 js+1, we

have aj ∈ m<pt
−c0s. In particular, for the indices js0 < j 6 js0+1, we

have σbj − bj ∈ m<pt
−c0s0 . Therefore,

σ(bjt
c0s0/p)− tc0s0(1−1/p)(bjt

c0s0/p) ∈ m<p ,
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and this implies that bjt
c0s0/p ∈ m<p and σbj, bj ∈ m<pt

−c0s0 . Lemma
2.7 is proved. �

Let Gh = G̃h/G̃phCp(G̃h).
Proposition 2.8. Exact sequence (2.3) induces the following exact se-
quence of p-groups

(2.5) 1 −→ G(L)/G(L(p)) −→ Gh −→ 〈h〉mod 〈hp〉 −→ 1

Proof. Consider the orbit of f̄ := f modM<p(p − 1) with respect to

the natural action of G̃h ⊂ AutK<p on M̄<p. Then the stabilizer H
of f̄ equals G̃phCp(G̃h). This fact and the remaining part of the proof
appear as just a special case of the proof of Proposition 3.5 in [6]. �

Corollary 2.9. If Lh is a Lie algebra over Fp such that Gh = G(Lh)
then (2.5) induces the exact sequence of Lie Fp-algebras

0 −→ L̄(= L/L(p)) −→ Lh −→ Fph −→ 0 .

3. Structure of Lh

Recall that we use the notation h<p for arbitrary lifts of h to K<p,
in particular, we do not require that h<p coincides with h0

<p from the

end of Subsection 2.3. We will use the notation K(p) := KG(L(p))
<p and

h(p) := h<p|K(p). Because G(L(p)) = Cp(G̃h) the elements of G̃h map

K(p) to itself and we have a natural inclusion G̃h/G(L(p)) ⊂ AutK(p).

The conjugations Adh(p) on G(L̄) ⊂ G̃h/G(L(p)) allow us to recover

the group structure on G̃h/G(L(p)). There are also induced conjuga-

tions (still denoted by Adh(p)) on Gh = G̃h/G̃phG(L(p)) which can be
used as well to study the structure of the group Gh and its Lie algebra
Lh from Corollary 2.9.

The conjugations Adh(p) appear as unipotent automorphisms of the
Lie algebra L̄ and we can introduce a differentiation adh(p) of L̄ by
the relation Adh(p) = ẽxp(adh(p)), where ẽxp is the truncated expo-
nential, cf. Subsection 2.1. So, the knowledge of the Lie algebra Lh
is equivalent to the knowledge of the differentiation adh(p). The lift
h(p) of h can be fully desribed via the nilpotent Artin-Schreier the-
ory by the use of the element f modL(p)K<p ∈ L̄K(p). As a matter of
fact, the identification Gal(K(p)/K) ' G(L̄) is given by the correspon-
dence τ 7→ (−f̄) ◦ τ(f̄), where f̄ = f modM<p(p− 1), and the natural
identification L̄ = M̄<p|σ=id.

3.1. Interpretation of the action of idL̄ ⊗ h on M̄. Consider the
induced action of idL̄ ⊗ h on M̄ (and agree to use for this action the
same notation). Recall that h(t) = tE(ωph), where

ωph =
∑
i>0

Ai(h)tc0+pi



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS, I 17

with all Ai(h) ∈ k, A0(h) 6= 0, cf. Subsection 2.1.
Let H be a linear continuous operator on LK such that for all a ∈ Z

and l ∈ Lk, H(tal) = ataωphl. Then on M̄ we have idL̄ ⊗ h = ẽxp(H)
(use that Hp = 0 on M̄ and E(X) ≡ ẽxp(X) mod deg p).

Set for 0 6 i < p, hi := Hi/i! : M̄ −→ M̄ and for i > p, hi = 0.
Then for any j > 0, hi(M̄(j)) ⊂ M̄(i + j) and for any natural n,
(idL̄⊗h)n =

∑
i>0 n

ihi. An analogue of these properties appears below

when we study the action of idL̄ ⊗ h(p) on f̄ ∈ M̄<p.

3.2. General situation. The situation from Subsection 3.1 can be
formalized as follows.

Suppose M is an Fp-module (actually we can assume that M is a
module over any ring where (p−1)! is invertible). Suppose g : M −→M
is an automorphism of M such that gp = idM. Assume that

• for any m ∈M, there are gi(m) ∈M, where 1 6 i < p, such that
for all n > 0, gn(m) = m+

∑
16i<p gi(m)ni.

Set g0(m) = m and gi(m) = 0 if i > p.

Proposition 3.1. With above notation we have:

a) for all i > 0, gi : M −→M are unique linear morphisms;

b) for all i > 0, gi(M) ⊂ (g − idM)i(M);

c) if i1, . . . , is > 0 then (gi1 · . . . · gis)(M) ⊂ (g − idM)i1+···+is(M);

d) the map gU =
∑

i>0 gi ⊗ U i : M −→M ⊗ Fp[[U ]] determines the
action of the formal additive group Ga = Spf Fp[[U ]] on M;

e) if 1 6 i < p then gi = gi1/i! (here gi1 = g1 · . . . · g1︸ ︷︷ ︸
i times

).

Proof. For any m ∈M, g1(m), . . . , gp−1(m) are unique solutions of the
non-degenerate system of equations∑

16i<p

gi(m)ni = gn(m)−m

where n = 1, . . . , p − 1. Therefore, all gi(m) are unique and depend
linearly on m. This proves a).

For i > 0 and F ∈M⊗Fp[[U ]], define the i-th differences (∆iF )(U) ∈
M⊗ Fp[[U ]] by setting ∆0F = F and

(∆i+1F )(U) = (∆iF )(U + 1)− (∆iF )(U).

In particular, for 0 6 j < i, ∆i(m⊗U j) = 0 and (∆i)(m⊗U i) = i!m.
Therefore, for any i > 0,

(3.1) (∆igU(m))|U=0 = i!gi(m) +
∑
j>i

fijgj(m),
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where all fij ∈ Fp. Note that for every value n0 > 0,

(∆1gU)(m)|u=n0 = g(gU(m)|u=n0)− gU(m)|u=n0 ∈ (g − idM)(M),

(∆2gU)(m)|u=n0 = g((∆1gU)(m)|u=n0)−(∆1gU)(m)|u=n0 ∈ (g−idM)2(M)

and so on. Therefore, for any i > 0,

(∆igU)(m)|U=n0 ∈ (g − idM)iM .

Then (3.1) implies (use i = p−1) that gp−1(m) ∈ (g− idM)p−1(M) and
then by descending induction on i that gi(m) ∈ (g − idM)i(M). This
proves b).

In c) use induction on s. The case s = 1 is proved in b). If s > 1
then we must prove with j = i2 + . . . is that

gi1((g − idM)jM) ⊂ (g − idM)i1+jM .

This can be obtained from a) by replacing M to (g − idM)jM.
For any natural numbers n1, n2 the relation gn1+n2(m) = gn2(gn1(m))

means that ∑
06i<p

(n1 + n2)igi =
∑

06i1,i2<p

ni22 n
i1
1 gi2 ◦ gi1 ,

and implies that we have the appropriate identity of formal power series

(gU ⊗ idGa) ◦ gU = (idM ⊗∆Ga) ◦ gU ,
with the coaddition ∆ = ∆Ga in Ga such that ∆(U) = U ⊗ 1 + 1⊗ U .
This proves d).

If i > 1 the above identity for gU implies the identity

(gU ⊗ idGia) ◦ · · · ◦ (gU ⊗ idGa) ◦ gU = (idM ⊗∆(i)) ◦ gU ,
where ∆(i) = (∆⊗ idGi−1

a
) ◦ · · · ◦ (∆⊗ idGa) ◦∆ is the i-th coaddition

Fp[[U ]] −→ Fp[U ]⊗i for Ga. Then e) can be obtained by compairing
the coefficients for U⊗i in this identity. �

Definition. dgU := g1 ⊗ U : M −→M⊗ U is the differential of g.

By Proposition 3.1e) the action of g on M can be uniquely recovered
from its differential dgU .

3.3. Auxiliary statement. Suppose L is a finite Lie Fp-algebra and
A = A(L) is its enveloping algebra. Then there is a canonical em-
bedding L −→ A and A can be provided with a coalgebra structure
∆ : A −→ A⊗A by setting ∆(l) = l ⊗ 1 + 1⊗ l for all l ∈ L.

Let J = J(L) be the augmentation ideal of A generated by all l ∈ L.
Note that A⊗A can be identified with the enveloping algebra of L⊕L
and the appropriate augmentation ideal equals J(L⊕L) = J⊗A+A⊗J .

Suppose L has nilpotent class < p. Then we have the following
interpretation of the Campbell-Hausdorff operation ◦ on L in the en-
velopping algebra A:

α) L = {a ∈ Amod J(L)p | ∆a ≡ a⊗ 1 + 1⊗ a mod J(L⊕ L)p};
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β) the truncated exponential ẽxp establishes a group isomorphism
ι : G(L) −→ D(L), where

D(L) = {a ∈ 1 + J(L) mod J(L)p | ∆a ≡ a⊗ amod J(L⊕ L)p}

is the group of “ diagonal elements of A modulo degree p” with respect
to the operation induced by the multiplication in A;

γ) ι−1 : D(L) −→ G(L) is given via the truncated logarithm l̃og.

Let l1, . . . , lr be an Fp-basis of L. Then by the Poincare-Birkhoff-
Witt Theorem, B1 = {li1 . . . lis | s > 0, i1 6 · · · 6 is} is an Fp-basis
of A and Amod J(L)p can be identified with the submodule M1 of A
generated by the elements of B<p1 := {li1 . . . lis ∈ B1 | s < p}.

For similar reasons, use the basis {(li, 0), (0, li) | 1 6 i 6 r} of L⊕L
to construct the Fp-basis for A⊗A in the form

B2 = {li1 . . . lis ⊗ lj1 . . . ljt | s, t > 0, i1 6 · · · 6 is, j1 6 . . . 6 jt} .

Then A ⊗ Amod J(L ⊕ L)p can be identified with the module M2

generated by the subset B<p2 of B2 consisting of elements with s+t < p.
Let δ+ = ∆− idA ⊗ 1− 1⊗ idA. Then δ+(M1) ⊂M2 and it is easy

to see that:

• L ⊂ Ker δ+;

• if l ∈ B<p1 \ L then l /∈ Ker δ+;

• if l′, l′′ ∈ B<p1 \ L then δ+(l′) and δ+(l′′) are linear combinations of
disjoint groups of elements of B<p2 .

In other words, we have a direct sum of non-zero submodules

δ+(M1) = ⊕
l∈B<p1 \L

Fpδ+(l) .

The above facts prove α). The verification of β) and γ) is formal.

In this paper we are dealing with more elaborate situation.
Suppose L is provided with a decreasing filtration of ideals {Li}i>0

such that L0 = L and Li = 0 if i > p. Define the weight function on L
by setting wt∗(0) =∞ and wt∗(l) = i if l ∈ Li \ Li+1.

Assume in addition that the filtration {Li} is “central”, i.e. for any
i, j > 0, [Li,Lj] ⊂ Li+j.

Suppose the Fp-basis {li | 1 6 i 6 r} of L is compatible with the
filtration {Li}i>0, i.e. there are 0 = j0 6 j1 6 · · · 6 jp = r such that
for any i > 0, {lj | ji < j 6 r} is an Fp-basis of Li. Use again B1 as
a basis of A over Fp. Extend wt∗ to A by setting for every non-zero
Fp-linear combination,

wt∗

( ∑
i1,...,is

αi1...isli1 . . . lis

)
= min{wt∗(li1)+· · ·+wt∗(lis) | αi1...is 6= 0} .
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Let Ai = {a ∈ A | wt∗(a) > i}. Then for any i, j > 0, AiAj ⊂ Ai+j
(use that {Li} is “central”). In particular, {Ai}i>0 is a decreasing
filtration of ideals of A. Obviously, Ai ∩ L = Li.

Let B be a Zp-linear operator on L such that for any l ∈ Li, B(l) ≡
lmodLi+1. For l ∈ L and n ∈ N, set in the appropriate p-group G(L),
l[n] := l ◦B(l) ◦ · · · ◦Bn−1(l).

Proposition 3.2. Suppose l ∈ L1. For 1 6 i 6 p−1 there are (unique)
li ∈ Li such that for any n > 0, l[n] = l1n+ l2n

2 + · · ·+ lp−1n
p−1.

Proof. Prove the existence of li ∈ Li. (For the uniqueness of li, proceed
similarly to Proposition 3.1a).)

Clearly, B = ẽxp(B), where B is a linear operator on L such that for
all i, B(Li) ⊂ Li+1. If for 0 6 i 6 p−1, l′i = Bi(l)/i! then l′i ∈ Li+1 and
for any m > 0, Bm(l) = ẽxp(mB)(l) =

∑
i>0 l

′
im

i. (We set 00 = 1.)
Let E : L −→ A be the map given by the truncated exponential.

Then for i > 0, there are di ∈ Ai+1 such that for any m > 0,

E(Bm(l)) = 1 +
∑
i>0

dim
i .

Therefore, E(l)E(B(l)) . . . E(Bn−1(l)) =

1 +
∑

16s<n
i1,...,is>0

( ∑
06m1<···<ms<n

mi1
1 . . .m

is
s

)
di1 . . . dis .

Let d(i1, . . . , is) := i1 + · · ·+ is + s and∑
06m1<···<ms<n

mi1
1 . . .m

is
s = fi1...is(n) .

Note that di1 . . . dis ∈ Ad(i1,...,is).

Lemma 3.3. If s > 1, i1, . . . , is > 0 and d(i1, . . . , is) < p then there
are polynomials Fi1...is ∈ Zp[U ] such that:

a) for all n, Fi1...is(n) = fi1...is(n);

b) Fi1...is(0) = 0;

c) degFi1...is = d(i1, . . . , is).

Proof of Lemma. First, consider the case s = 1.
Apply induction on i1.
If i1 = 0 then f0(n) = n and we can take F0 = U .
Suppose i1 > 1, d(i1) < p (i.e. 0 6 i1 6 p − 2) and our Lemma is

proved for all indices j < i1.
For any m < n we have,

(m+ 1)i1+1 −mi1+1 =
∑

06j6i1

Cj(i1)mj ,
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where all Cj(i) ∈ Zp. Therefore, for any n > 0,

ni1+1 =
∑

06j6i1

Cj(i1)fj(n) =
∑

06j<i1

Cj(i1)Fj(n) + (i1 + 1)fi1(n)

and we can take as Fi1(U) the polynomial

1

i1 + 1

(
U i1+1 −

∑
06j<i1

Cj(i1)Fj(U)

)
=
∑
j6i1+1

Aj(i1)U j ∈ Zp[U ] .

Clearly, the degree of Fi1 equals i1 + 1 = d(i1) and Fi1(0) = 0. The
case s = 1 is considered.

Suppose s > 1 and use induction on s. Then for any m < n,

fi1...is(m+1)−fi1...is(m) =
∑

06m1<···<ms=m

mi1
1 . . .m

is
s = misFi1...is−1(m) .

By the inductive assumption we have

Fi1...is−1(U) =
∑

j6d(i1,...,is−1)

Aj(i1, . . . , is−1)U j ∈ Zp[U ] .

Then for any n > 1 (note that d(i1, . . . , is)− 1 = d(i1, . . . , is−1) + is),

fi1...is(n) =
∑

is6j6d(i1,...,is)−1

Aj−is(i1, . . . , is−1)Fj(n) ,

and we can take Fi1...is =
∑

is6j6d(i1,...,is)−1Aj−is(i1, . . . , is−1)Fj. Clearly,

the degree of Fi1...is equals d(i1, . . . , is) and Fi1...is(0) = 0. �

The above lemma implies that for all n > 1,

E(l[n]) = 1 +
∑

16i6p−1

d′in
i + a(l, n) ,

where all d′i ∈ Ai and a(l, n) ∈ Ap (recall that Ap ⊃ J(L)p).
Applying to this equality the truncated logarithm we obtain that

l[n] = d′′1n+ · · ·+d′′p−1n
p−1 + b(l, n), where all d′′i ∈ Ai and b(l, n) ∈ Ap.

Therefore, for all 1 6 n 6 p−1, we have d′′1n+ · · ·+d′′p−1n
p−1 ∈ L+Ap.

This implies that all d′′i ∈ L +Ap (use that det(ni)16n,i<p 6≡ 0 mod p),
i.e. d′′i ∈ Ai∩ (L+Ap) = Li+Ap (use that for 0 6 i < p, Ai∩L = Li).
Finally, if li ∈ L are such that d′′i − li ∈ Ap then

l[n]− (l1n+ l2n
2 + · · ·+ lp−1n

p−1) ∈ L ∩ Ap = 0 .

The proposition is proved. �

As a matter of fact, the proof of Proposition 3.2 gives the following
result:

• If i0 > 1 and l ∈ Li
0

then for 1 6 i 6 p − i0 there are unique
li ∈ Li+i

0−1 such that for any n > 0, l[n] = l1n+ · · ·+ lp−i0n
p−i0 .

We should formally follow the above proof of Proposition 3.1. Then
l ∈ Li0 implies that all l′i ∈ Li+i0 , di ∈ Ai+i0 . Lemma 3.3 remains



22 VICTOR ABRASHKIN

unchanged and, finally, all d′i ∈ Ai+i0−1 and all li ∈ Ai+i
0−1 ∩ L =

Li+i0−1 if i 6 p− i0.
This allows us to state the following result.

Proposition 3.4. There are linear maps πi : L1 −→ L1 such that for
any j > 0, πi(L

j) ⊂ Li+j−1 (in particular, πi = 0 if i > p) and for any
l ∈ L1 and n ∈ N, l[n] =

∑
i πi(l)n

i.

3.4. Lie algebra M̄f and the action of idL̄ ⊗ h(p). Here we study
the action of idL̄ ⊗ h(p) on f̄ = f modM<p(p− 1) ∈ M̄<p.

Note that if h0
<p is the lift from the end of Subsection 2.3 then

h0
<p(f) = c0 ◦ (Adh0

<p ⊗ idK<p)f , where c0 ∈ N (1) ⊂ M(1), cf. the
proof of Lemma 2.6 step b).

Suppose h<p is any lift of h. Then there is l ∈ L = L(1) such that
h<p = h0

<pη
−1
0 (l): if (idL⊗h<p)f = c◦(A⊗ idK<p)f then by Proposition

2.3, c = c0 ◦ l ∈ L(1)k +M(1). In other words, generally c /∈ N (1) but
it always belongs to L(1)k +M(1) ⊂M.

Proceeding in M̄ we have for h(p) = h<p|K(p),

(idL̄ ⊗ h(p))f̄ = c̄ ◦ (Ā⊗ idK(p))f̄ ,

where we set c̄ = cmodM(p − 1) ∈ M̄ and Ā = AmodL(p) =
Adh(p) = ẽxp(adh(p)).

For n ∈ N, let

(3.2) (idL ⊗ hn<p)f = c(n) ◦ f(n) ,

where c(n) = (idL ⊗ hn−1)(c ◦ (A ⊗ h−1)c ◦ · · · ◦ (A ⊗ h−1)n−1c) and
f(n) = (An ⊗ idK<p)f .

Proceeding similarly to Subsection 3.1 we obtain that

f̄(n) := f(n) modM<p(p− 1) =
∑
i>0

f̄ (i)ni ,

where f̄ (0) = f̄ and for all 1 6 i < p, f̄ (i) = (adih(p) ⊗ idK(p))f̄/i! ∈
(Ā⊗ idK(p) − idM̄<p

)iM̄<p ⊂ M̄<p(i) .
Define the new filtration M[i] on M by setting M[0] := M and

for i > 1, M[i] := L(i)k +M(i). Consider the appropriate filtrations
M̄[i] = M[i] modM(p − 1) on M̄ and M̄<p[i] = M̄[i] + M̄<p(i) on
M̄<p.

Proposition 3.5. There are ci ∈M[i] such that for all n ∈ N, c(n) ≡∑
i>1 cin

i modM(p− 1).

Proof. Consider the Lie algebra L = M̄ with filtration Li := M̄[i].
Clearly, L and its filtration {Li}i>0 satisfy the assumptions from Sub-
section 3.3 and c̄ ∈ L1 (cf. the beginning of this Subsection). It remains
to apply Proposition 3.2. �
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Corollary 3.6. For all n ∈ N,

(idL̄ ⊗ h(p)n)f̄ =
∑
i>0

f̄in
i ,

where f̄0 = f̄ and all f̄i ∈ M̄<p[i].

Definition. M̄f is the minimal Lie subalgebra in M̄<p containing M̄
and all the elements (Adn h(p)⊗ idK(p))f̄ with n ∈ N.

Note that M̄f does not depend on a choice of the lift h(p). We can
also define M̄f as the minimal subalgebra in M̄<p containing M̄ and
all f̄ (i), 1 6 i < p. Clearly, idL̄ ⊗ h(p) acts on M̄f (use that A⊗ idK(p)

and idL̄ ⊗ h(p) commute) and this action is completely determined
by the knowledge of (idL̄ ⊗ h(p))f̄ . Roughly speaking, M̄f is much
smaller than M̄<p but it is still provided with a strict action of Gh.
In addition, the filtration M̄<p[i] induces the Gh-equivariant filtration
M̄f [i] on M̄f , and for all i, f̄ (i) and f̄i belong to M̄f [i].

Now we can apply the results of Subsection 3.2 and introduce the
appropiate action idL̄⊗h(p)U : M̄f −→ M̄f ⊗Fp[[U ]] of Ga,Fp on M̄f .
This action appears as the extension of the action idL̄ ⊗ hU : M̄ −→
M̄⊗ Fp[[U ]] from Subsection 3.1 by setting

(idL̄ ⊗ h(p)U)f̄ =
∑
i>0

f̄i ⊗ U i .

By Proposition 3.1 the action of h(p) is completely determined by the
differential d(idL̄ ⊗ h(p)U).

3.5. Differential d(idL̄⊗h(p)U). Using the calculations from Subsec-
tion 3.4 we obtain

idL̄ ⊗ h(p)U : f̄ 7→ c̄(U) ◦ f̄(U) ,

where c̄(U) =
∑

i>1 ciU
i modM(p− 1) and f̄(U) = f̄ +

∑
i>1 f̄

(i)U i.
Introduce the formal operator

AdUh(p) : L̄ −→ L̄ ⊗ Fp[[U ]]

such that for any l ∈ L̄ = L/L(p), AdUh(p)l =
∑

i>0 liU
i, where

li = 0 if i > p and for any n ∈ N, AdUh(p)|U=n = Adnh(p). Similarly
to Subsection 3.2, for all i > 0, li = adih(p)(l)/i! and AdUh(p) ≡
idL̄ + adh(p)U modU2. This gives the following formal identity (note
σU = U):

(3.3) (idL̄ ⊗ hU)(e) ◦ c̄(U) = (σc̄)(U) ◦
∑

a∈Z0(p)

t−a(AdUh(p)⊗ idk)Da0 .

The proof formally goes along the lines of the proof that (c, A) satisfies
identity (2.1) in Proposition 2.3.
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As a result, we can specify (idL̄⊗h(p)U)f̄ by the following lineariza-
tion of (3.3). Recall, cf. Subsection 2.1, that

h(t) = tE(ωph) ≡ tẽxp(ωph)mod tpc0+1 ,

where ωph =
∑

i>0Ai(h)tc0+pi, all Ai(h) ∈ k and A0(h) 6= 0. Then by

Proposition 2.1, hU(t) ≡ tẽxp(Uωph) mod tpc0+1 and

d(idL̄ ⊗ hU)e = −
∑

a∈Z0(p)

t−aωphaDa0 ⊗ U modM(p− 1) .

Proposition 3.7. We have the following recurrent congruence modulo
M(p−1) for c̄1 = c1 modM(p−1) and Va0 := adh(p)(Da0) modL(p)k,
a ∈ Z0(p),

(3.4) σc̄1 − c̄1 +
∑

a∈Z0(p)

t−aVa0 ≡

−
∑
k>1

1

k!
t−(a1+···+ak)ωph[. . . [a1Da10, Da20], . . . , Dak0]

−
∑
k>2

1

k!
t−(a1+···+ak)[. . . [Va10, Da20], . . . , Dak0]

−
∑
k>1

1

k!
t−(a1+···+ak)[. . . [σc̄1, Da10], . . . , Dak0]

(the indices a1, . . . , ak in all above sums run over Z0(p)).

Proof. The following properties are very well-known from the Campbell-
Hausdorff theory. Suppose X and Y are generators of a free Lie Q[[U ]]-
algebra. Then

(UY ) ◦X ≡ X ◦

U∑
k>0

1

k!
[. . . [Y,X], . . . , X︸ ︷︷ ︸

k times

]

 ,

X + UY ≡ X ◦

U∑
k>1

1

k!
[. . . [Y,X], . . . , X]︸ ︷︷ ︸

k−1 times

 modU2

For the first formula cf. [8], Ch.II, Section 6.5 or Exercise 1 for Ch.II,
Section 6. The second congruence is much more important; it can be
extracted from [8], Ch.II, Section 6.5, Prop.5 or Ch.II, Exercise 3 for
Section 6.

Using that the coefficients in the above formulas are p-integral in
degrees < p we can use them in the context of Lie Fp-algebras in the
following form (where E0(x) = (ẽxp(x)− 1)/x):

(3.5) (UY ) ◦X = X ◦ (U ẽxp(adX)(Y )) modU2

(3.6) X + UY = X ◦ (U E0(adX)(Y )) modU2
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Remark. a) In the above formulas and this paper we use the following
notation: (adX)Y = [Y,X] and (AdX)Y = (−X)◦Y ◦X (this notation
is opposite to the notation from [8]).

b) Note the following easy rules: X ◦ (Y + U2Z) ≡ X ◦ Y modU2

and (UX) ◦ (UY ) ≡ U(X + Y ) modU2.

Then for the left-hand-side (LHS) of (3.3) modulo U2 we have:

(e+ d(idL̄ ⊗ hU)e+ . . . ) ◦ (c̄1U + . . . ) ≡

e ◦ E0(ade)(d(idL̄ ⊗ hU)e) ◦ (c̄1U + . . . ) ≡

e ◦ (E0(ade)(d(idL̄ ⊗ hU)e) + c̄1U)

Similarly, the RHS of (3.3) modulo U2 appears in the following form

((σc̄1)U + . . . ) ◦

e+ U
∑

a∈Z0(p)

t−aVa0 + . . .

 ≡
e ◦

U ∑
a∈Z0(p)

E0(ade)(t−aVa0) + U ẽxp(ade)(σc̄1)


It remains to cancel by e and equalize the coefficients for U . �

Any solution {c̄1, {Va0 | a ∈ Z0(p)}} of congruence (3.4) modulo
M(p− 1) can be uniquely lifted to a solution {c1, {Va0 | a ∈ Z0(p)}} of
(3.4) modulo L(p)K ⊂M(p−1). This follows easily from Lemma 2.2b)
because σ is nilpotent on M(p − 1) modL(p)K (use that M(p − 1) ⊂
Lm + L(p)K). In other words, we have a unique lift of

c̄1 ∈MmodM(p− 1) ⊂ LKmodM(p− 1)

to c1 ∈ LKmodL(p)K. This allows us to prove that the number of
different solutions {c̄1, {Va0 | a ∈ Z0(p)}} of (3.4) is |L/L(p)|. Indeed,
we can arrange the recurrent procedure of solving congruences (3.4)
modulo L(s)K, where s = 1, . . . , p. When s = 1 we have only trivial
solution. Then each solution modulo L(s)K gives a unique extension
for all Va modL(s + 1)k and |L(s)/L(s + 1)| different extensions for
c1 modL(s+1)K. (Compare with the calculations from Subsection 2.3.)
Finally, the number of different solutions of congruence (3.4) is equal
to the number of different lifts of h to AutK(p) which coincides with

the order |Gal(KG(L(p))
<p /K)| = |L̄|. This is not very much surprising be-

cause the lift h(p) is completely determined by f̄1U = d(idL̄⊗h(p)U))f̄
and f̄1 is uniquely recovered from the knowledge of the appropriate
solution {c1, {Va0 | a ∈ Z0(p)}} due to the following proposition 3.8
below. As a matter of fact, the above arguments give more. Suppose
c1 =

∑
i∈Z c1(i)ti, where all c1(i) ∈ L̄k. Then different solutions c1 have

different c1(0), i.e. c1(0) ∈ L̄k are strict invariants of lifts h(p).
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Recall that for m > 0,

Bm =
∑

06v6k6m

(−1)v
(
k

v

)
vm

k + 1

are the Bernoulli numbers. One of their well-known properties is that

x/(1− exp(−x)) =
∑
m>0

Bm(−x)m/m! .

Proposition 3.8. d(idL̄ ⊗ h(p)U)f̄ = f̄1 ⊗ U , where

f̄1 = (adh(p)⊗ idK(p))f̄ +
∑
n>0

(−1)n(Bn/n!)[. . . [c̄1, f̄ ], . . . , f̄︸ ︷︷ ︸
n times

] .

Proof. In earlier notation we have modulo U2 (use (3.5) and (3.6)):(
idL̄ ⊗ h(p)U

)
f̄ ≡ f̄ + f̄1U ≡ (c̄1U) ◦ (f̄ + f̄ (1)U)

≡ (f̄ + f̄ (1)U) ◦ (U ẽxp(ad f̄)c̄1)

≡ f̄ ◦ (E0(ad f̄)f̄ (1)U + ẽxp(ad f̄)c̄1U)

≡ f̄ + (f̄ (1) + E0(ad f̄)−1(ẽxp(ad f̄))c̄1)U .

It remains to note that E0(x)−1 exp(x) = x/(1− exp(−x)). �

Remark. a) As we already mentioned the above proposition implies
that the knowledge of the differential c̄1 is sufficient to recover the
element (idL̄ ⊗ h(p)U)f̄ = c̄(U) ◦ f̄(U) and therefore, the element c̄.
This fact can be obtained directly from the cocycle relation for c̄(U).

b) Suppose L′ is an ideal of L such that L′ ⊃ L(p). Then we can
repeat the above arguments to prove that the solutions of (3.4) modulo

L′K describe uniquely the lifts of h to automorphisms of KG(L′)
<p .

3.6. Special cases. Recurrent relation (3.4) describes explicitly step
by step the action of the lift h(p). We can agree, for example, to find
at each step the appropriate values of c̄1 and Va0 by the use of the
operators R and S from Subsection 2.2. This will specify uniquely the
lift h(p) together with its action by conjugation on L̄ = L/L(p) and,
therefore, will determine the structure of Lh (and of the group Gh).

Let (as earlier) ωph =
∑

i>0 Ai(h)tc0+pi, where all Ai(h) ∈ k and

A0(h) 6= 0. Then (3.4) modulo C2(L̄)K +M(p− 1) gives the following
congruence

(3.7) σc1 − c1 +
∑

a∈Z0(p)

t−aVa0 ≡ −
∑

a∈Z0(p)
i>0

Ai(h)tc0+pi−aaDa0 .

Applying the operator R, cf. Lemma 2.2, we obtain:

• V00 = (adh(p))D00 = α0adh(p)D0 ∈ α0C2(L̄);
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• for all b ∈ Z+(p),

Vb0 = (adh(p))Db0 ≡ −
∑
i>0

Ai(h)bDb+c0+pi,0 modC2(L̄)k .

The second relation means that all generators of L̄k of the form Dan

with a > c0 can be eliminated from the minimal system of generators
of Lhk. Indeed, because A0(h) 6= 0, all Db+c0,0 belong to the ideal of
second commutators C2(Lh)k = ((adh(p))Lk +C2(Lk))/L(p)k, and for
any n ∈ Z/N0, all Db+c0,n = σnDb+c0,0 also belong to C2(Lh)k. The
first relation then means that Lh has only one relation with respect to
any minimal set of generators. This terminology formally makes sense
because in the category of Lie Fp-algebras of nilpotent class < p the
algebras of the form L/Cp(L), where L is a free Lie Fp-algebra, play a
role of free objects. The same remark also can be used for the category
of, say, p-groups of period p and of nilpotent class < p. Therefore,
Gh can be treated as an object of this category with finitely many
generators and one relation.

As an illustration of Proposition 3.7, use the relation (3.7) modulo
L(2)K+M(p−1) and make the next central step to obtain the following
explicit formulas for Va0 modulo L(3)k = C3(Lh)k (the elements F0

γ,−N
are generators of ramification ideals introduced in Subsection 1.4).

Proposition 3.9. We have the following congruences modulo L(3)k:

V00 ≡ −α0

∑
i>0

06n<N0

σn(Ai(h))σn(F0
c0+pi,0) ,

and for all a ∈ Z+(p),

Va0 ≡ −
∑
n>1
i>0

σn(Ai(h)F0
c0+pi+a/pn,−n)−

∑
m>0
i>0

σ−m(Ai(h)F0
c0+pi+apm,0) .

Before sketching the proof of this proposition we explain why the
sums in the last formula are finite.

Proposition 3.10. Suppose a ∈ Z0(p). Then:

a) for any N,m > 0, F0
c0+pi+apm,−N ≡ F0

c0+pi+apm,0 modL(3)k;

b) for any N > n > 1, F0
c0+pi+a/pn,−N ≡ F0

c0+pi+a/pn,−n modL(3)k;

c) if m > 0 and c0 + pi+ apm > 2c0 − 1 then F0
c0+pi+apm,0 ∈ L(3)k;

d) if n ∈ N and (c0 − 1)(1 + p−n) < c0 then F0
c0+pi+a/pn,−n ∈ L(3)k.

Proof. a) If it is false then F0
c0+pi+apm,−N should contain a term of the

form a1[Da10, Da2n2 ], where n2 6 −1 and a1+a2p
n2 = c0+pi+apm ∈ Z;

this implies a2 = 0 and a1 = c0 +pi+apm > c0; therefore, Da10 ∈ L(2)k
and our commutator belongs to L(3)k.
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b) It is obvious if a 6= 0 – in this case both elements don’t contain
linear terms and for any second commutator a1[Da10, Da2n2 ] we should
have a2 6= 0 and n2 = −n. If a = 0 then cf. a).

c) F0
c0+pi+apm,0 can contain a linear term only if m = 0 which then

must be equal to aDc0+pi+a,0, but then c0 + pi+ a > 2c0 and it belongs
to L(3)k; if we have a second commutator a1[Da10, Da2n2 ] then the
condition a1+pn2a2 > 2c0−1 implies also that this commutator belongs
to L(3)k.

d) In this case there is no linear term, and any appeared second
commutator a1[Da10, Da2n2 ] should be such that n2 = −n, a1, a2 6 c0−1
but then a1 + a2p

n2 will be less than c0 < c0 + pi+ a/pn. �

Proof of Proposition 3.9. From (3.7) we obtain (apply the operator S
from Subsection 2.2)

c1 ≡
∑

0<a<c0+pi
i,n>0

σnAi(h)tp
n(c0+pi−a)aDan modL(2)K +M(p− 1).

(Modulo L(2)K we can ignore all terms with a > c0.) Then the right-
hand side of (3.4) modulo L(3)K +M(p− 1) appears as

−
∑
a,i

Ai(h)tc0+pi−aaDa0 −
1

2

∑
a1,a2,i

Ai(h)tc0+pi−a1−a2a1[Da10, Da20]

+
1

2

∑
a1,a2,i

Ai(h)t−(a1+a2)a1[Da1+c0+pi,0, Da20]

−
∑

a1,a2,n,i
0<a1<c0+pi

σn(Ai(h))tp
n(c0+pi−a1)−a2a1[Da1,n, Da20]

In the above sums the indices a, a1, a2 run over Z0(p), i > 0 and
n > 1. The third sum can be ignored because all Da1+c0+pi,0 ∈ C2(Lh)k
and for the similar reason we can ignore the restriction 0 < a1 < c0 +pi
in the last sum.

Now note that the terms from the first line can be grouped as follows:

— the constant terms (i.e. the coefficients for t0 = 1) appear as

−1

2

∑
i

Ai(h)
∑

a1+a2=c0+pi

a1[Da10, Da20] = −
∑
i

Ai(h)F0
c0+pi,0 ;

— the remaining terms are grouped with respect to the condition
a = c0 + pi+ b or a1 + a2 = c0 + pi+ bpm, where b ∈ Z+(p) and m > 0,
and appear as

−
∑
i

Ai(h)
∑
b,m

t−bp
mF0

c0+pi+bpm,0 ;
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The terms from the last line are grouped (modulo L(3)K) with re-
spect to the condition a1 + a2/p

n = c0 + pi + b/pn, where b ∈ Z+(p)
and n > 1, and appear as

−
∑
i

σn(Ai(h))
∑
a

t−aσnF0
c0+pi+a/pn,−n .

It remains to recover the values of Vb by applying the operator R
from Subsection 2.2. �

4. Application to the mixed characteristic case

Let K be a finite field extension of Qp with the residue field k ' FpN0

and the ramification index eK . Let π0 be a uniformising element in K.
Denote by K̄ an algebraic closure of K, set Γ = Gal(K̄/K). We assume
that K contains a primitive p-th root of unity ζ1.

Let Γ<p := Γ/ΓpCp(Γ). We are going to apply the above results for
the group Gh to the group Γ<p. Our exposition is not very far from
Section 4 of [6], but we do not discuss the structure of ramification
filtration, simplify constructions and correct some inexactitudes.

4.1. Exact sequences for Γ<p. For n ∈ N, choose πn ∈ K̄ such that

πpn = πn−1. Let K̃ =
⋃
n∈NK(πn), and ΓK̃ = Gal(K̄/K̃). Then the em-

bedding ΓK̃ ⊂ Γ induces ι : ΓK̃ −→ Γ<p. Note that Gal(K(π1)/K) =

〈τ0〉Z/p, where τ0(π1) = π1ζ1.
Let j : Γ<p −→ Gal(K(π1)/K) be a natural epimorphism. The

following proposition appears as Proposition 4.1 from [6] when M = 1.

Proposition 4.1. The following sequence is exact

ΓK̃
ι−→ Γ<p

j−→ 〈τ0〉Z/p −→ 1 .

Let R be Fontaine’s ring. There is a natural embedding k ⊂ R
and t = (πn mod p)n>0 ∈ R. If K = k((t)) and R0 = FracR then K
is a closed subfield of R0 and the field-of-norms functor X, cf. [15]

Subsection 4.3, identifies X(K̃) with K and R0 with the completion
of Ksep. In particular, there is a natural inclusion ιK : Γ −→ AutR0

which induces the identification of G = Gal(Ksep/K) and ΓK̃ .
We use the results of the above sections and the appropriate notation

related to our field K, e.g. G<p = Gal(K<p/K), where K<p = KG
pCp(G)

sep .
The identification ιK |Γ

K̃
composed with the morphism ι from Proposi-

tion 4.1 induces a group homomorphism ι<p : G<p −→ Γ<p and Propo-
sition 4.1 implies the following property.

Proposition 4.2. The following sequence is exact

G<p
ι<p−→ Γ<p

j−→ 〈τ0〉Z/p −→ 1 .
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4.2. Auxiliary statements. Let vK be a unique extension of the nor-
malized valuation of K to R0. Let η be a closed embedding of K into
R0 which is compatible with vK, i.e. for any a ∈ K, vK(a) = vK(η(a)).

Let c0 := e∗(= eKp/(p − 1)). As earlier, consider the embeddings
M⊂ LK, M<p ⊂ LK<p and their analogue

MR0 =
∑

16s<p

t−sc0L(s0)mR
+ L(p)R0 ⊂ LR0 ,

where mR is the maximal ideal in R.
We know that e ∈ M, f ∈ M<p (these elements were chosen in

Subsection 1.3) and for similar reasons, if η̂ ∈ AutR0 is a lift of η then
(idL ⊗ η̂)f ∈MR0 .

Below we consider the condition (idL ⊗ η)e ≡ emod t(p−1)c0MR0 . In
particular, this congruence holds modulo LmR

+ L(p)R0 and following
the coefficient for D10 we deduce that η|k = id.

Proposition 4.3. Suppose (idL ⊗ η)e ≡ emod t(p−1)c0MR0. Then
a) there is m ∈ t(p−1)c0MR0 such that

(idL ⊗ η)e ≡ (−σm) ◦ e ◦mmodL(p)R0 ;

b) if η̂ is a lift of η to R0 then there is a unique l ∈ G(L) modG(L(p))
such that

(idL ⊗ η̂)f ≡ f ◦ lmod t(p−1)c0MR0 ;

c) there is a unique lift η(p) of η to K(p) such that (idL̄⊗η(p))f̄ = f̄ ,
where f̄ = f mod t(p−1)c0MR0.

Proof. a) Note that t(p−1)c0MR0 is an ideal in MR0 and for any i ∈ N
and m0 ∈ t(p−1)c0Ci(MR0), there is mi ∈ t(p−1)c0Ci(MR0) such that
σmi −mi ≡ m0 modL(p)R0 . (Use that σ is topologically nilpotent on
t(p−1)c0MR0/L(p)R0 .)

Therefore, there is m1 ∈ t(p−1)c0MR0 such that η(e) ≡ e − σm1 +
m1 modL(p)R0 . This implies that

σ(m1) ◦ η(e) ≡ e ◦m1 mod t(p−1)c0C2(MR0) + L(p)R0 .

Similarly, there is m2 ∈ t(p−1)c0C2(MR0) such that

σ(m1) ◦ η(e) ≡ −σm2 +m2 + e ◦m1 modL(p)R0 ,

σ(m2 ◦m1) ◦ η(e) ≡ e ◦ (m2 ◦m1)mod t(p−1)c0C3(MR0) + L(p)R0 ,

and so on. This gives mi ∈ t(p−1)c0Ci(MR0), 1 6 i < p, such that

σ(mp−1 ◦ · · · ◦m1) ◦ η(e) ≡ e ◦ (mp−1 ◦ · · · ◦m1) modL(p)R0 .

This proves a) with m = mp−1 ◦ · · · ◦m1.
b) Let (idL ⊗ η̂)f = f ′. Then for the above element m, we have

σ(m ◦ f ′) ≡ e ◦ (m ◦ f ′) modL(p)R0 and, therefore,

σ((−f) ◦m ◦ f ′) ≡ (−f) ◦m ◦ f ′modL(p)R0 .
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This implies the existence of l ∈ L such that m ◦ f ′ ≡ f ◦ lmodL(p)R0

(use that L̄R0|σ=id = L̄).
Suppose l′ ∈ L also satisfies statement b) of our lemma. Then we

have f ◦ l ≡ f ◦ l′mod t(p−1)c0MR0 , l ≡ l′mod t(p−1)c0MR0 and

l ◦ (−l′) ∈
(
t(p−1)c0MR0

)
|σ=id ⊂ (LmR

+ L(p)R0) |σ=id = L(p) .

c) This follows from part b) because Gal(K<p/K(p)) = L(p).
Proposition is proved. �

4.3. Isomorphism κ<p. Let ε = (ζn mod p)n>0 ∈ R be Fontaine’s
element (here ζ1 ∈ K is our p-th root of unity and for all n, ζpn = ζn−1).

Let ζ1 = 1 + π
c0/p
0

∑
i>0[βi]π

i
0, where all [βi] are the Teichmuller

representatives of βi ∈ k. Use the identification of rings R/tpeK '
OK̄/p, coming from the projection R −→ (OK̄/p)1. This implies

ε ≡ 1 +
∑
i>0

αit
c0+pi mod t(p−1)c0R

where all αi = βpi ∈ k, α0 6= 0 (note that peK = (p− 1)c0 and ε /∈ K).
Assume that h ∈ AutK from Subsection 2.1 is such that for all i,

αi(h) = αi (and h|k = idk). Then

h(t) ≡ tεmod t(p−1)c0+1R .

This implies that for any τ ∈ Γ, there is h̃ ∈ 〈h〉 ⊂ AutK such that

ιK(τ)|K (t) ≡ h̃(t) mod t(p−1)c0+1R. Indeed, there is m ∈ Zp such that

ιK(τ)(t) = tεm ≡ t

(
1 +

∑
i>0

αit
c0+pi

)m

≡ hm(t) mod t(p−1)c0+1R

(use that h(tp) ≡ tp mod tpc0R), and we can take h̃ = hm. Clearly, such

h̃ is unique modulo the subgroup 〈hp〉.
This means that η := ιK(τ)|Kh̃−1 : K −→ R0 satisfies the as-

sumption from Proposition 4.3. Let η(p) be the lift from part c)
of that proposition, let η̂ ∈ AutR0 be such that η̂|K(p) = η(p) and

set h̃(p) := (η̂−1ιK(τ))|K(p). Then h̃(p)|K = h̃ and by Galois theory

h̃(p) ∈ AutK(p). As a result, h̃(p) ∈ G̃h/Cp(G̃h) is a unique lift of h̃
such that

(idL̄ ⊗ ιK(τ))f̄ = (idL̄ ⊗ h̃(p))f̄ .

If h̃ is multiplied by an element of 〈hp〉 then h̃(p) is multiplied by

an element from (G̃h/Cp(G̃h))p but this will not affect (idL̄ ⊗ h̃(p))f̄ .

Therefore, the image of h̃(p) in Gh is well-defined. We obtained the
map of sets κ : Γ −→ Gh uniquely characterized by the equality

(idL̄ ⊗ ιK(τ))f̄ = (idL̄ ⊗ κ̂(τ))f̄ ,
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where κ̂(τ) ∈ G̃h/Cp(G̃h) ⊂ AutK(p) is any lift of κ(τ) ∈ Gh with

respect to the natural projection G̃h/Cp(G̃h) −→ Gh.

Proposition 4.4. κ induces a group isomorphism κ<p : Γ<p −→ Gh.

Proof. Suppose τ1, τ ∈ ΓK . Let c̄ ∈ L̄K and Ā ∈ AutL̄ be such that
(idL̄ ⊗ κ̂(τ))f̄ = c̄ ◦ (Ā⊗ idK(p))f̄ . Then

(idL̄ ⊗ κ̂(τ1τ))f̄ = (idL̄ ⊗ ιK(τ1τ))f̄ = (idL̄ ⊗ ιK(τ1))(idL̄ ⊗ ιK(τ))f̄

= (idL̄ ⊗ ιK(τ1))(idL̄ ⊗ κ̂(τ))f̄ = (idL̄ ⊗ ιK(τ1))(c̄ ◦ (Ā⊗ idK(p))f̄) =

(idL̄⊗ιK(τ1))c̄◦(Ā⊗ιK(τ1))f̄ = (idL̄⊗κ̂(τ1))c̄◦(Ā⊗idK(p))(idL̄⊗ιK(τ1))f̄

= (idL̄⊗κ̂(τ1))c̄◦(Ā⊗idK(p))(idL̄⊗κ̂(τ1))f̄ = (idL̄⊗κ̂(τ1))(c̄◦(Ā⊗idK(p))f̄

= (idL̄ ⊗ κ̂(τ1))(idL̄ ⊗ κ̂(τ))f̄ = (idL̄ ⊗ κ̂(τ1)κ̂(τ))f̄

and, therefore, κ(τ1τ) = κ(τ1)κ(τ) (use that Gh acts strictly on the
orbit of f̄). In particular, κ factors through the natural projection
Γ→ Γ<p and defines the group homomorphism κ<p : Γ<p → Gh.

Recall that we have the field-of-norms identification of ΓK̃ with G
and, therefore, κ<p identifies the groups κ(ΓK̃) and G(L̄) ⊂ Gh. Be-

sides, κ<p induces a group isomorphism of 〈τ0〉Z/p and 〈h〉Z/p. Now
Proposition 4.2 implies that κ<p is a group isomorphism. �

4.4. Properties of Γ<p = G(L). By Proposition 4.4 the results ob-
tained for the group Gh in the characteristic p case can be extended to
the Galois group Γ<p coming from the mixed characteristic case. These
results were stated independently in the Introduction. We summarize
them here briefly as follows:

— Γ<p = G(L), where L is the Lie Fp-algebra such that

0 −→ L/L(p) −→ L −→ Fpτ0 −→ 0 ;

— the Lie algebra L was defined in Subsection 1.3;

— Lk has system of generators {Dan | a ∈ Z+(p), n ∈ Z/N0}∪{D0};
— the ideals L(s), 2 6 s 6 p, are given by Theorem 2.5 and the

ideal Cs(L) of commutators of order > s in L equals L(s)/L(p);

— the structure of L is determined by a lift τ<p of τ0 and the ap-
propriate differentiation adτ<p is described via recurrent relation (3.4).
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