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1 Introduction

The Skyrme model [1] is an effective low energy nonlinear theory of pions, in which baryons

correspond to solitons. Given that the model has only a small number of parameters, it has

been reasonably successful in providing a qualitative description of a range of phenomena

in nuclear physics [2]. However, the standard Skyrme model fails to provide a good quan-

titative match to some aspects of nuclei, particularly regarding nuclear binding energies.

A long-standing problem is that Skyrmions are far too tightly bound [3] in comparison to

experimental data. Recently, there has been some significant progress, with the discovery

of a variety of modified Skyrme models that can alleviate the large binding energy problem.

One promising example is the lightly bound model studied in [4], where numerical results

show that it is indeed possible to select the parameters of the (3+1)-dimensional theory in

such a way that soliton binding energies are in reasonable quantitative agreement with the

experimentally known values for nuclei.

The aloof baby Skyrme model, introduced in [5], is the (2+1)-dimensional analogue

of the lightly bound Skyrme model. In both models, the force between solitons exhibits

repulsion at short range but attraction at long range. This creates a new length scale,

associated with the optimum distance between solitons in the static multi-soliton cluster

structures. This new length scale can be tuned independently of the size of a single soliton

and determines the magnitude of soliton binding energies. Static energy minimizing multi-

soliton solutions have been computed in the aloof baby Skyrme model for soliton numbers

from two to twelve [5], together with a large number of stable local energy minima. These

additional static solutions often have energies that are very close to those of the minimal

energy solitons, indicating an intricate energy landscape. A binary species point particle

model, based on the assumption that soliton orientations are either maximally attractive

or repulsive, has proved to be a useful approximation for studying these static solitons and

their energy landscape.

The purpose of the present paper is to provide the first results on soliton dynamics in

the aloof baby Skyrme model. The main motivation is to provide an understanding of the
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type of dynamical phenomena that appear in lightly bound Skyrme models. In addition

to performing numerical simulations of the full nonlinear field theory, we also introduce

a dynamical version of the binary species point particle model and demonstrate that it

provides a reasonable approximate description of the dynamics. Both aspects should be

helpful for any future investigations of soliton dynamics in the related (3+1)-dimensional

lightly bound Skyrme model [4], where studies to date have been limited to static solitons.

The paper is organised as follows. In section 2 we describe the model and briefly review

some of the main results concerning static solitons and their point particle approximation

using a binary species model. For a more detailed description of the aloof baby Skyrme

model and its static solutions we refer the reader to [5]. In section 3 we study the dynamics

of two solitons and introduce our dynamical version of the point particle model. In section 4

we present results on the scattering of a single soliton on a higher charge soliton cluster and

make a comparison with the predictions of the dynamical point particle model. Finally, in

section 5 we present our conclusions.

2 The aloof baby Skyrme model

The aloof baby Skyrme model, introduced in [5], is defined by the Lagrangian density

L =
1

2
∂µφ · ∂µφ−

1

4
(∂µφ× ∂νφ) · (∂µφ× ∂νφ)−m2(1− φ3)

(
1 + (1− φ3)3

)
, (2.1)

where the field φ = (φ1, φ2, φ3) is a three-component unit vector. The spacetime coordi-

nates are xµ, with µ = 0, 1, 2; and m is the mass of the fields φ1 and φ2, associated with

elementary excitations around the vacuum φ = (0, 0, 1). To agree with the choice in [5], we

fix m2 = 0.05 from now on.

Finite energy imposes the boundary condition that φ tends to its vacuum value at

spatial infinity. This compactification implies that there is a conserved integer-valued

topological charge, or soliton number, given explicitly by

N = − 1

4π

∫
φ · (∂1φ× ∂2φ) d2x. (2.2)

This soliton number is equal to the degree of the map φ from the compactified spatial

plane to the target two-sphere.

The N = 1 soliton, positioned at the origin, takes the radially symmetric form

φ = (sin f cos(θ + χ), sin f sin(θ + χ), cos f), (2.3)

where ρ and θ are polar coordinates in the plane, with f(ρ) a monotonically decreasing

radial profile function satisfying the boundary conditions f(0) = π and f(∞) = 0. The

arbitrary constant angle χ is an internal phase associated with the global SO(2) symmetry

of the Lagrangian density (2.1), that rotates the φ1 and φ2 components. The energy

of the 1-soliton is E1 = 20.27, which is obtained by numerically solving for the profile

function f(ρ).

The force between two well-separated solitons depends crucially on their relative in-

ternal phase χ = χ1 − χ2, where χ1 and χ2 are the phases of the two individual solitons.

– 2 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
5

Figure 1. Left image: the interaction potentials U0 (upper curve) and Uπ (lower curve). Right

image: a plot of the field φ3 for the static 2-soliton. The size of the displayed area is 20 × 20 and

the colour coding shown here will be used throughout the paper.

Let Eχ(r) denote the energy of two N = 1 solitons separated by a distance r with relative

phase χ. The interation energy is the difference between this energy and twice the energy

of a single soliton, that is, it is given by Uχ(r) = Eχ(r) − 2E1. In our earlier work [5] the

interaction energy was computed numerically for χ = 0 (the repulsive channel) and χ = π

(the attractive channel) and the data used to fit a Padé approximant of order [3/4] in each

case. These Padé approximants are plotted in the left image in figure 1, and we refer the

reader to [5] for the associated explicit constants in the two Padé approximants.

From this plot we see that two solitons that are in phase (χ = 0) are repulsive at all

separations, whereas two solitons that are exactly out of phase (χ = π) have a long-range

attraction and a short-range repulsion. This produces an optimal separation r = r? ≈ 5 at

which the energy is minimized and found to be E2 = 39.84 < 2E1. This minimal energy

2-soliton is displayed in the right image in figure 1, by plotting the field φ3. Although the

two solitons form a bound state they keep their individual identities, remaining aloof. The

solitons are only lightly bound, with a binding energy of the order of one percent of the

total energy. The locations of the component solitons are defined to be the points where

φ = (0, 0,−1), which is the point on the target two-sphere that is antipodal to the vacuum

value. It is evident from this figure that the separation between the two component solitons

is indeed r? ≈ 5.

Minimal energy solitons for larger values of N have a similar cluster structure, com-

posed of single solitons, and were studied in detail in [5] for N ≤ 12. Examples of particular

relevance to the present work are the minimal energy N -solitons with N = 5, 6, 8, 9, which

respectively take the form of a linear chain, a hexagon, an octagon and a 3 × 3 square.

In each case, all constituent solitons are exactly out of phase with all nearest neighbours,

so that all these pairs of interactions are in the attractive channel. This property extends

not only to all the minimal energy solitons, but also to the large number of local energy

minima that exist in this theory and have energies that are only slightly above the minimal

energy values.

As we have seen, the attractive channel for two solitons is when the relative phase

between the two solitons is equal to π. This suggests that the constituent single solitons in
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an N -soliton solution can be allocated into two groups, where all solitons in a given group

have the same phase and there is a relative phase of π between two solitons in different

groups. An appropriate arrangement of the solitons will then allow a large number of

attractive channel pairings, with repulsive pairings being suppressed by optimal spatial

positioning.

The binary species point particle approximation, introduced in [5], makes use of the

above property by considering N particles, with positions x(1), . . . ,x(N), such that each

particle is either blue or red, as follows. Blue particles represent single solitons with an

internal phase χ = 0 and red particles model solitons with an internal phase χ = π. Two

particles of different colours are therefore in the attractive channel and their interaction

potential is given by Uπ(r), where r is the distance between the two particles. Similarly,

two particles of the same colour are in the repulsive channel and their interaction potential

is U0(r). The total interaction energy for the particle system is the sum over all pairs of

interactions, that is

I =

N∑
i=2

i−1∑
j=1

Uχij

(
|x(i) − x(j)|

)
, (2.4)

where χij is 0 or π depending on whether the particles with positions x(i) and x(j) have the

same or different colours. Minimizing the energy I yields configurations of point particles

that are in remarkable agreement with the soliton results, upon setting the difference

between the number of blue and red particles to be N mod 2.

In the following section we discuss the dynamics of two single solitons and describe a

dynamical extension of the binary species point particle model.

3 The dynamics of a soliton pair

To study soliton dynamics in the aloof baby Skyrme model we numerically solve the

second order nonlinear field equations that follow from the variation of the Lagrangian

density (2.1). A numerical approach to simulate soliton dynamics in the usual (3+1)-

dimensional Skyrme model is discussed extensively in [3] and we follow that method rela-

tively closely here. Specifically, we use fourth-order accurate finite difference approxima-

tions for spatial derivatives on a square grid containing 8002 lattice points, with a lattice

spacing ∆x = 0.1 and time step ∆t = 0.01. At the boundary of the grid the fields are set

to the vacuum value φ = (0, 0, 1). To reduce the radiation reflecting from the boundary of

the grid we apply the adiabatic damping technique described in [6], where damping on the

field momenta is applied at the lattice sites near the boundary of the grid. Note that in the

figures that follow, we include only some relevant portion of the complete computational

grid, which has an area of 80× 80.

Two coincident solitons form a static radially symmetric solution that is unstable and

has an energy that is very close to twice that of a single soliton. It is therefore to be

expected that two well-separated single solitons in the attractive channel will coincide in

a head-on collision, if given a small initial velocity towards each other. This is indeed

the case, as demonstrated in figure 2, where at time t = 0 (first image) each soliton has
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Figure 2. The head-on scattering of two solitons at t = 0, 118, 236, 354, 420. Each soliton has an

initial speed 0.05 and moves parallel to the y-axis. The size of the displayed area is 40 × 40.

an initial speed 0.05 and moves parallel to the y-axis. At t = 118 (second image) the

solitons are coincident and form an almost radially symmetric configuration. The two

solitons then scatter at right angles to the initial direction of approach, as is familiar from

the scattering of two solitons in the standard baby Skyrme model [7]. As this interaction

generates radiation, the two solitons no longer have enough energy to escape to infinity,

with the given initial speed. They remain trapped, with an energy that is insufficient to

allow another formation of coincident solitons, so no further right-angle scatterings can

take place. The soliton pair now oscillate around the minimal energy separation (last three

images), moving along a line perpendicular to the original direction of motion, until they

eventually settle at the static 2-soliton solution shown in the right image in figure 1.

The right-angle scattering of two topological solitons is generic, and in these types of

theories it is a consequence of the geometry of a finite-dimensional space of 2-soliton field

configurations [8, 9]. Right-angle scattering is a solitonic phenomenon and is not captured

by simple point particle dynamics. However, it turns out (see the following section) that

such solitonic features don’t play a significant role in aloof soliton scattering that involves

higher charge soliton clusters. The reason is that a soliton cluster involves multiple solitons

with phases that differ by π between nearest neighbours. This means that a single soliton

scattering on a cluster encounters both attractive and repulsive channel interactions, unlike

the case of a pair of solitons, where all interations can be made attractive. The upshot

is that any attractive interaction is screened by neighbouring solitons in the repulsive

channel and the formation of coincident solitons, that would result in right-angle scattering,

appears to be non-generic, even in head-on scattering processes. Fortunately, this allows

an approximate point particle treatment of the dynamics of aloof solitons.

Aloof solitons are characterised by small binding energies and a large number of local

energy minima, that often have energies that are very close to those of the minimal energy

solitons. This means that even relatively low energy scattering events may possess enough

energy to explore a large part of the intricate energy landscape. Such explorations indeed

take place and result in some exotic scattering processes, as described in section 4. A

crucial factor in determining the range of exploration is the amount of energy radiated

by the solitons during their interactions with each other. To investigate the elasticity of

soliton interactions we perform a simulation in which a pair of solitons initially at rest in

the attractive channel are placed at a separation much larger than the optimal value r? ≈ 5.

figure 3 displays the resulting evolution of the separation as a function of time (thick black
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Figure 3. The separation as a function of time for two initially static solitons in the attractive

channel (thick black curve). The point particle approximation to this motion is also shown (thin

red curve).

curve) for an initial separation of 20. This figure shows that there is a reasonable decrease

in the amplitude of the oscillation over the first cycle, when the separation gets significantly

below the optimal value r?, but that later oscillations are fairly elastic, with only a very

small decrease in the amplitude of the oscillation.

For any point particle model to reproduce the features of aloof soliton dynamics, even

qualitatively, it must include a reasonable description of the energy lost by a soliton to radi-

ation during interactions. The simplest way to incorporate such a mechanism is to include

a damping term in the particle equations of motion, that depends upon the separation be-

tween the particles. As we shall only consider scattering events with modest soliton speeds,

we ignore relativistic corrections and consider the following Galilean invariant equations of

motion for the binary species point particles

M ẍ(i) + κ
∑
j 6=i

e−ν|x
(i)−x(j)|

(
ẋ(i) − ẋ(j)

)
= − ∂I

∂x(i)
. (3.1)

The point particle mass is taken to be the energy of a static single soliton M = E1 and I
is the binary species interaction energy (2.4). The constant κ controls the strength of the

damping term and we take a simple exponential dependence on the particle separation,

with a scale parameter ν.

We solve the system (3.1) numerically using a fourth-order Runge-Kutta method. To

fix the two parameters κ and ν in the point particle model we compare the two particle case

with the oscillating soliton pair displayed as the thick black curve in figure 3. Fitting the

results yields the parameters κ = 3.2 and ν = 1.25, with the resulting particle approxima-

tion displayed as the thin red curve in figure 3. This result shows that the simple particle

model (3.1) indeed provides a reasonable description of both the oscillation period and the

decay of the amplitude. The period is accurate to within around 10%, but of course this

means that over a large number of oscillations the particle approximation drifts in and

out of phase with the soliton result. Nevertheless, this simple approximation is surpris-

ingly accurate and should provide at least a qualitative description of soliton dynamics.
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Figure 4. Solitons (top images) at t = 0, 88, 200, 275 and particles (bottom images) at t =

0, 74, 163, 259. The initial distance between the centre of mass of the 5-soliton and the 1-soliton

is 20 and the 1-soliton has an initial speed 0.15. The size of the displayed area is 40 × 40.

In the following section we present some more complicated examples of soliton dynamics,

involving scattering of solitons on higher charge clusters, and compare the results with the

dynamical particle model.

4 Soliton scattering on a cluster

In this section we present some symmetric examples of the scattering of a single soliton

on the initially static minimal energy N -soliton, with N = 5, 8, 9. We have performed a

large number of simulations, but the chosen examples highlight the type of novel scattering

phenomena that occur.

The minimal energy 5-soliton is a linear chain and can be seen in the first image in

the top row of figure 4, together with a well-separated single soliton. The scattering event

we investigate involves the single soliton moving with an initial speed 0.15 along a line

perpendicular to the line of the chain. The 1-soliton is aimed at the middle of the chain in

an attractive channel with the soliton that it is aimed at. The first image in the bottom

row of figure 4 displays the corresponding initial point particles. The diameter of the discs

is equal to the optimal separation r? and the blue or red colour represents a phase of either

0 or π. The phase of each soliton is not apparent in a plot of φ3 for the soliton image, but

the point particle image makes it clear which soliton pairs are in the attractive channel

(different colours) and which are in the repulsive channel (same colours).

The additional images in figure 4 show the resulting evolution of the solitons (top

row) and the particles (bottom row). The solitons initially group into three pairs but

subsequently form a hexagonal structure that is a deformation of the regular hexagon

formed by the minimal energy 6-soliton. However, the hexagon then reverts to another

triplet of pairs, with a more vertical alignment. This pattern of oscillation, between a

hexagon and a triplet of pairs, continues with a large amplitude for much longer times
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than shown in figure 4, as one expects from the long-lived oscillations seen in figure 3 for

a soliton pair. As this cluster of solitons is moving towards the boundary of the numerical

grid then there is a time limit on the length of the field theory simulation, as boundary

effects become significant as the solitons approach the edge of the grid. The amplitude

of oscillation is still large at this time, so the field theory simulations cannot be followed

long enough to reveal a rigid moving cluster. However, given the oscillation is around the

minimal energy hexagonal 6-soliton, then the expectation is that the final state of this

scattering is a hexagonal 6-soliton moving with constant speed.

There is no boundary limitation in the simulations of the dynamics of the point par-

ticle model and an evolution to t = 20000 indeed reveals a hexagonal 6-soliton as the final

outcome of this scattering event. As demonstrated by the bottom row of images in figure 4,

the particle model provides a good qualitative description of the soliton dynamics, but the

exact time scale is not reproduced: note that the snapshots are shown at different times

for the soliton and particle systems. It is not surprising that the particle model has some

quantitative deficiencies, given its simplistic form and inclusion of only 2-particle interac-

tions and fixed relative phases, but it does provides a useful qualitative approximation.

In particular, it correctly predicts the different conformations obtained in the scattering

process and the order in which they appear.

The fact that the scattering of a 1-soliton on the minimal energy 5-soliton ultimately

produces the minimal energy 6-soliton is not a novel feature for soliton dynamics. However,

the mechanism for this production is unusual, in that it involves a very long-lived and large

amplitude oscillatory state. This is a characteristic feature of aloof solitons, due to their

low binding energies and plethora of local energy minima, and clearly has implications for

the formation of resonance states in nuclear scattering described by a (3+1)-dimensional

aloof Skyrme model.

In figure 5 we provide an illustrative example in which a single soliton scatters on a

cluster in the repulsive channel. Again the top row of images are the soliton field theory

computations and the botton row of images are the results from the particle approximation.

As in the previous example, the two sets of images are shown at different times to highlight

the qualitative correspondence between the two systems, despite the fact that the timings

disagree. The selected example is the scattering of a single soliton on the minimal energy

8-soliton, which is a regular octagon of solitons with alternating phases that differ by π.

The 1-soliton has an initial speed of 0.35 and is in the repulsive channel with the soliton

in the octagon that it is directed towards. This is clearly seen in the first point particle

image, where both these solitons are blue, representing the same phase and hence repulsion

between them.

The resulting evolution displayed in figure 5 is a novel scattering process in which the

first stage is the formation of a configuration that is close to the minimal energy 9-soliton:

a 3×3 square of nine solitons with each nearest neighbour pairing in the attractive channel

(see the first image in figure 6). This is created by the incoming soliton pushing the soliton

it approaches into the centre of the octagon and taking its place in the outer ring. The

momentum transferred to the inner soliton means that it continues through to the opposite

side of the cluster where it pushes a soliton from the edge of the structure and takes its
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Figure 5. Solitons (top images) at t = 0, 48, 193, 297 and particles (bottom images) at t =

0, 48, 116, 149. The initial distance between the centre of mass of the 8-soliton and the 1-soliton

is 20 and the 1-soliton has an initial speed 0.35. The size of the displayed area is 60 × 60.

place. This results in the escape of a 1-soliton that leaves behind a deformed and oscillating

octagon. The octagon eventually relaxes to the minimal energy 8-soliton, so in terms of

initial and final states only, an observer may be fooled into believing that the single soliton

has simply passed straight through the 8-soliton. However, as we can see from both the

soliton simulations and the point particle approximation, the dynamics is novel and more

interesting than the corresponding in and out states might suggest. In particular, the 1-

soliton that escapes in the out state is not the same 1-soliton that appears in the in-state.

In typical soliton scattering events it is usually not possible to make statements about the

fate of an individual soliton because solitons merge and it is not well-defined to assign a

position to any given soliton throughout the scattering process. However, as aloof solitons

generally remain distinct throughout a scattering event then we are able to refer to the

evolution of individual solitons.

The next process we illustrate is the formation of an excited state of a static solution

that is only a local energy minimum rather than the global minimal energy soliton. Figure 6

displays the attractive channel scattering of a 1-soliton with speed 0.25 on the minimal

energy 9-soliton (a 3 × 3 square). This results in a highly excited state that is a large

amplitude oscillation around a static charge 10 solution with triangular C3 symmetry, in

which three arms each containing three solitons with alternating phases are joined to a

central soliton. The static C3 symmetric charge 10 solution is stable, but it has a slightly

higher energy than the regular decagon that is the C10 symmetric 10-soliton with minimal

energy. The large amplitude oscillation of the C3 symmetric solution can be seen in the

third and fourth images in figure 6 (both top and bottom) and corresponds to a flapping

of two of the three arms.

The examples presented in this section illustrate the novel scattering processes that

arise for aloof solitons and suggest general features that are expected to appear in similar

models in (3+1)-dimensions. A particularly distinctive feature is the formation of large

– 9 –
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Figure 6. Solitons (top images) at t = 0, 38, 235, 600 and particles (bottom images) at t =

0, 38, 166, 372. The initial distance between the centre of mass of the 9-soliton and the 1-soliton

is 20 and the 1-soliton has an initial speed 0.25. The size of the displayed area is 60 × 60.

amplitude and long-lived oscillatory states based on vibrational modes of stable static

arrangements of solitons, including (but not limited to) minimal energy solitons. We have

demonstrated that a simple dynamical version of a binary species point particle model can

provide a good qualitative description of aloof soliton dynamics. It is rather surprising

that such a simple model works so well, in particular given that it assumes that all relative

phases between solitons are either zero or π. The reason that this appears to be a sufficient

approximation is that neighbouring solitons remain locked to the out of phase attractive

channel even when perturbed.

To illustate this behaviour, we consider the evolution presented in figure 7, in which a

single soliton with initial speed 0.15 moves parallel to the y-axis, but with a large impact

parameter that means it is not on a collision course with the static mininal energy 9-soliton.

The 1-soliton is in the repulsive channel with the bottom right soliton in the 3 × 3 square

and hence is deflected away from the 9-soliton. This is shown in the top two images by

plotting the field φ3. To observe the phases of the solitons, the images in the bottom row

display the field φ2 at the corresponding times. In these plots, red denotes a positive value

of φ2, blue a negative value and green is where φ2 is close to zero. The φ2 field of a

radially symmetric single soliton has a dipole pattern, with a red and a blue region, and

the internal phase is the angle between the blue to red axis and the y-axis. The attractive

channel between two solitons, where the relative phase is π, corresponds to two solitons

overlapping a region of the same colour in plots of φ2. In particular, the left image in

the bottom row of figure 7 confirms that all neighbouring pairs in the static 9-soliton are

in the attractive channel. In the second plot in the bottom row (after the 1-soliton has

been deflected) the 9-soliton has been perturbed by the interaction and we observe that all

the phases of the solitons within the perturbed 9-soliton have changed by approximately

π/2. However, the relative phases between all neighbouring pairs remain equal to π, as

the soliton pairs remain locked in the attractive channel. Thus, although internal phases

– 10 –
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Figure 7. The field φ3 (top images) and φ2 (bottom images) at t = 0 (left images) and t = 285

(right images) when a single soliton with initial speed 0.15 is deflected by the initially static 9-soliton.

The size of the displayed area is 60 × 60.

can vary, which is not captured by the particle model, relative phases between solitons in

close proximity remain equal to zero or π, so the simple particle model can capture this

qualitative behaviour. Note that the deflected 1-soliton does not have a relative phase

of zero or π with respect to any of the solitons in the 9-soliton cluster. However, it is

not a concern that the point particle model fails to capture this aspect, at least for the

issues studied in this paper, because solitons that are far from each other have a negligible

interaction. If well-separated solitons eventually move into close proximity then they will

again lock to the out of phase attractive channel, which is within the description of the

particle model.

5 Conclusion

In this paper we have studied the dynamics of aloof baby Skyrmions using both field

theory simulations and a point particle approximation. The numerical field theory studies

demonstrate that aloof solitons generally retain their individual identities and hence it is

possible to follow individual solitons through the scattering process, which is not possible

for standard solitons. The dynamics involving the scattering of a single soliton on a cluster

is rather exotic. The observed outcomes include the replacement of one soliton by another

and the formation of larger oscillating clusters, which may or may not be perturbed versions

of the global minimal energy soliton. Furthermore, the point particle model correctly

reproduces the qualitative features of all these phenomena and is useful for predicting the

final state of scattering events where long relaxation times make field theory simulations

prohibitive. We expect similar dynamical behaviour in the (3+1)-dimensional version of
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the theory [4] and it would be interesting to investigate this via field theory simulations

and to predict the results with a point particle approximation.

Finally, we have seen that the scattering of aloof solitons can generate internal phase

rotations even when the solitons remain quite distinct. These internal phase rotations are

the analogues of isospin rotations in the (3+1)-dimensional Skyrme model and therefore

the aloof baby Skyrme model may be a good system in which to investigate the ideas on

the spin-orbit force described recently in [10].
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