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Abstract Owing to the increased deployment and the favorable range and Doppler resolutions,
orthogonal frequency-division multiplexing (OFDM)-based L band digital aeronautical communication
system type 1 (LDACS1) stations have become attractive systems for target surveillance in passive radar
applications. This paper investigates the problem of joint parameter (position and velocity) estimation of a
Rician target in OFDM-based passive radar network systems with multichannel receivers placed on moving
platforms, which are composed of multiple OFDM-based LDACS1 transmitters of opportunity and multiple
radar receivers. The modified Cramér-Rao lower bounds (MCRLBs) on the Cartesian coordinates of target
position and velocity are computed, where the received signal from the target is composed of dominant
scatterer (DS) component and weak isotropic scatterers (WIS) component. Simulation results are provided
to demonstrate that the target parameter estimation accuracy can be improved by exploiting the DS
component. It also shows that the joint MCRLB is not only a function of the transmitted waveform
parameters, target radar cross section, and signal-to-noise ratio but also a function of the relative geometry
between the target and the passive radar networks. The analytical expressions of MCRLB can be utilized as
a performance metric to access the target parameter estimation in OFDM-based passive radar networks in
that they enable the selection of optimal transmitter-receiver pairs for target estimation.

1. Introduction
1.1. Background and Motivation
Distributed radar network systems, also known as spatial distributed multiple-input multiple-output (MIMO)
radar systems [Haimovich et al., 2008; Li and Stoica, 2009; Pace, 2009], attract contentiously growing attention
nowadays and are on a path from theory to practical use due to signal and spatial diversities. Moreover, con-
siderable research has been conducted into the potential use of radar networks for achieving performance
improvement in various contexts such as target detection [Fisher et al., 2006; Naghsh et al., 2013], target local-
ization [Niu et al., 2012], target tracking [Godrich et al., 2012b], waveform design [Chen et al., 2013], sensor
selection [Godrich et al., 2012a], and information extraction [Song et al., 2012].

Recently, extensive research [Chen et al., 2015; Daout et al., 2012; Gogineni et al., 2014a; Griffiths and Long,
2014a; Howland et al., 2005; Stinco et al., 2012] has been conducted in passive radar systems that utilize illu-
minators of opportunity owing to their advantages of low implementation costs, low probability of intercept
[Shi et al., 2015, 2016c; Zhang et al., 2015], and so on. The two-dimensional target localization problem is
investigated for the WiFi-based multistatic passive radar [Falcone et al., 2014], and different target localization
schemes are proposed based on different sets of available measurements. Alam and Jamil [2015] propose a
novel localization algorithm based on maximum likelihood (ML) for multistatic passive radar systems employ-
ing range-only measurements, which are solved by both gradient and Newton’s decent methods. The work
in [Yi et al., 2015] presents a target tracking strategy to solve the measurement-to-transmitter association
problem for a single frequency network-based MIMO passive radar, which can achieve low complexity and
nearly optimal performance. Gogineni et al. [2014b] calculate the ambiguity functions for multistatic passive
radar systems utilizing universal mobile telecommunications systems (UMTS) signals, in which both nonco-
herent and coherent processing modes are considered in the Cartesian domain. In Samczynski et al. [2015],
the concept of passive radar using noncooperative pulse radars is proposed, and the experiment results are
also provided. Furthermore, the authors in Shi et al. [2016b] propose two transmitter of opportunity subset
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selection strategies for frequency modulation (FM)-based distributed passive radar network systems, which
are formulated as knapsack problems and tackled with greedy selection approaches. Overall speaking, the
previous studies have laid a solid foundation for the research of passive radar systems, and it should be men-
tioned that multiple signals of opportunity can be exploited as illuminators to remarkably improve the system
performance.

The Cramér-Rao lower bound (CRLB) is an important performance metric for analyzing the local parameter
estimation accuracy, which provides the smallest variance estimates of any unbiased estimators. It is intro-
duced in Godrich et al. [2010] that the mean square error (MSE) of the maximum likelihood estimator (MLE) is
close to the CRLB when certain conditions are satisfied. Recently, significant attention has been drawn to the
CRLB for target parameter estimation with both noncoherent and coherent observations [Godrich et al., 2010;
He and Blum, 2010a; He et al., 2010b, 2016; Wei et al., 2010; Zhao and Huang, 2016]. In [Godrich et al., 2010],
the closed-form expressions of CRLB are derived for noncoherent and coherent MIMO radar systems, and it is
demonstrated that the CRLB is inversely proportional to the carrier frequency and signals averaged effective
bandwidth. He et al. [2010b] investigate the target parameter estimation performance for MIMO radar, and
the joint position and velocity CRLB is derived. Later, they present the coherent processing case for joint tar-
get position and velocity estimation in MIMO radar [He and Blum, 2012], where it is shown that the coherent
processing mode outperforms the noncoherent processing mode significantly. In Wei et al. [2010], the results
in He et al. [2010b] are extended and the CRLB for multitarget noncoherent MIMO radar systems is computed.
The work in He and Blum [2010a] studies the target localization accuracy for MIMO radar systems with static
phase errors. Zhao and Huang [2016] compute the CRLBs for the joint time delay and Doppler stretch estima-
tion of an extended target, which analyzes the effects of waveform parameters on the CRLB of both the time
delay and the Doppler stretch for the extended target. In Gogineni et al. [2014b], Stinco et al. [2012], Filip and
Shutin, 2016, He and Blum, 2014, 2016, Javed et al. [2016], and Shi et al. [2016a], the CRLB has been investi-
gated and applied to passive radar systems employing Gaussian pulse signals, FM commercial radio signals,
UMTS signals, global system for mobile communications (GSM) signals, and orthogonal frequency-division
multiplexing (OFDM)-based L band digital aeronautical communication system type 1 (LDACS1) communi-
cation signals as signals of opportunity for the passive radar networks implementation. In He et al. [2016], a
generalized CRLB and mismatched CRLB for distributed active and passive radar networks are derived, where
it is assumed that the approximation state of the target is unknown without previous target detection. Shi
et al. [2016a] presents the CRLB analysis for the joint target estimation of position and velocity in FM-based
passive radar networks. In Filip and Shutin [2016], Gogineni et al. [2014a], and Stinco et al. [2012], the modified
CRLB (MCRLB) is used as a good alternative to the classical CRLB due to the presence of random parame-
ters in the transmitted waveforms, which has been shown to provide a looser bound in practical applications.
The authors in Javed et al. [2016] address the target estimation performance of a UMTS-based passive multi-
static radar system in a Rice fading environment, where the received signal from the target is composed of a
dominant scatterer (DS) component and weak isotropic scatterers (WIS) component.

1.2. Major Contributions
On the basis of the previous works, almost all the studies focus on stationary platforms. In this study, we
use the OFDM-based LDACS1 communication signals as signals of opportunity, which are exemplary OFDM
signals with favorable range and Doppler resolutions. In addition, the Rician target model can cover a broad
range of Swerling 0-V target radar cross section (RCS) models [Patzold and Rafiq, 2014]. To the best of the
authors’ knowledge, the CRLB for the joint position and velocity estimation of a Rician target in OFDM-based
passive radar networks with multichannel radar receivers placed on moving platforms, which has not been
considered, needs to be investigated. The OFDM-based passive radar networks are composed of multiple
OFDM-based LDACS1 transmitters of opportunity and multiple radar receivers, and it is assumed that the
scattered echoes from the target due to different OFDM-based illuminators of opportunity can be received
and separated at the multichannel receivers. Since the transmitted data symbols are nondeterministic, we
will compute the MCRLB for the joint Rician target estimation in a passive radar network, which can provide
a quantitative measure of the networks performance.

To be specific, the contributions of this paper are as follows:

1. The joint MCRLB on the Cartesian coordinates of target position and velocity for OFDM-based passive radar
networks in a Rice fading environment is computed, which is composed of multiple OFDM-based LDACS1
transmitters of opportunity and multiple radar receivers with antennas placed on moving platforms.
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The main work of this paper are the derivations of the parameters needed to calculate the OFDM-based
MCRLB in a Rice fading environment, which are a much more generalized case than that in Filip and Shutin
[2016] and quite different from the results in Javed et al. [2016]. It is worth mentioning that the obtained
results are valid for any general OFDM signals.

2. The analytical expressions of MCRLB can be utilized as a unified performance metric to access the target
parameter estimation in any passive radar network systems employing OFDM-based signals of oppor-
tunity. Since the DS component may exist only for a subset of transmitter-receiver pairs, the choice
of a transmitter-receiver pair has remarkable effect on the target estimation accuracy. Therefore, the
geometry-dependent MCRLB will open up a new dimension for OFDM-based passive radar network
systems by aiding the selection of optimal transmitter-receiver pairs to achieve a required estimation
performance.

3. We also reveal the relationships between the joint MCRLB and various factors. It is shown that the joint
MCRLB is a function of the transmitted waveform parameters as well as the relative geometry between the
target and the passive radar networks. Moreover, it is also dependent on the target’s RCS and SNR.

1.3. Outline of the Paper
The remainder of this paper is organized as follows. In section 2, the signal and system model for OFDM-based
passive radar networks is introduced. Furthermore, the closed-form expressions of the joint MCRLBs for the
Rician target position and velocity are computed in section 3. Numerical simulations are provided to demon-
strate our analytical results in section 4. Finally, section 5 concludes this paper with potential future work.

Notation: The superscript † represents the transpose operator; E{⋅} and (⋅)∗ represent the expectation and
conjugation operators, respectively. | ⋅ | denotes the absolute value, and ℜ{⋅} is the real part. Ui(f ) denotes
the Fourier transform of ui(t).

2. Signal Model

Let us consider a passive radar network architecture in a two-dimensional Cartesian space consisting of Nt

transmitters and Nr multichannel receivers. We suppose that the ith transmitter and the jth receiver are located

at
−→
pt

i = [xt
i , yt

i ] and
−→
pr

j = [xr
j , yr

j ], respectively. The target position and velocity are supposed to be deterministic

unknown and denoted by −→p = [x, y] and −→v = [vx , vy]. We define the target state vector to collect the target
position and velocity as follows:

𝚯 = [x, y, vx , vy]†. (1)

Without loss of generality, we will focus on a single target scenario. However, the results can be extended
to multiple targets. The baseband signal transmitted by the ith transmitter can be expressed as [Filip and
Shutin, 2016]:

ui(t) =
L−1∑
l=0

Nu∕2−1∑
k=−Nu∕2

ckle
j2𝜋kΔf (t−Tcp−lTs)w(t − lTs)ej2𝜋iBt, (2)

where ckl denotes the transmitted data symbols, L is the total number of the transmitted OFDM symbols, Nu is
the number of subcarriers, Δf is the subcarrier spacing, Ts is the total symbol duration, Tcp is the cyclic prefix
in OFDM signal, and B is the signal bandwidth. w(t) stands for the standard raised-cosine window given as

w(t) =

⎧⎪⎪⎨⎪⎪⎩

1
2

(
1 + cos

(
𝜋

Tw
(t − Tw)

))
, 0 ≤ t < Tw,

1, Tw ≤ t < Ts,

1
2

(
1 + cos

(
𝜋

Tw
(t − Ts)

))
, Ts ≤ t < Ttot,

0, elsewhere,

(3)

where Tw is the windowing duration and Ttot is the total length of one OFDM symbol. For uncorrelated data
symbols over both the subcarrier and symbol indices we have

E
{

cklc
∗
mn

}
=

1
LNu(Ts−Tw∕4)

, k = m, l = n,

0, elsewhere.
(4)

It is assumed that the signals from different transmitters can be perfectly estimated at each receiver from
the direct path reception and separated in some domain (for example, different frequency spectra) [Gogineni
et al., 2014a].
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Let 𝜏ij represent the bistatic time delays corresponding to the path between the ith OFDM-based transmitter
of opportunity, moving target, and the jth radar receiver with the target located at −→p = [x, y]:

𝜏ij =

√(
xt

i − x
)2 +

(
yt

i − y
)2 +

√(
xr

j − x
)2

+
(

yr
j − y

)2

c

=

‖‖‖‖−→p −
−→
pt

i

‖‖‖‖ + ‖‖‖−→p −
−→
pr

j
‖‖‖

c
,

(5)

where c is the speed of light,
‖‖‖‖−→p −

−→
pt

i

‖‖‖‖ is the distance from the ith transmitter to the target, and ‖‖‖−→p −
−→
pr

j
‖‖‖ is

the distance from the target to the jth receiver, respectively. In this paper, the multichannel radar receiver j
moves with velocity

−→
vr

j = [vr
x,j, vr

y,j]. With the mentioned positions/velocities of the target and radar receivers
above, the Doppler shift of the moving target corresponding to the ijth path can be calculated as follows:

fDij
=

fc

c

⎡⎢⎢⎢⎣
𝜕
‖‖‖‖−→p −

−→
pt

i

‖‖‖‖
𝜕t

+
𝜕
‖‖‖−→p −

−→
pr

j
‖‖‖

𝜕t

⎤⎥⎥⎥⎦ , (6)

where fc represents the carrier frequency. The terms
𝜕‖−→p−

−→
pt

i ‖
𝜕t

and
𝜕‖−→p−

−→
pr

j ‖
𝜕t

stand for the relative velocities for
the ith transmitter of opportunity and the jth radar receiver, respectively. Thus, we can obtain

fDij
=

fc

c

⎡⎢⎢⎢⎣vx

⎛⎜⎜⎜⎝
x − xt

i‖‖‖‖−→p −
−→
pt

i

‖‖‖‖
+

x − xr
j‖‖‖−→p −
−→
pr

j
‖‖‖
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ +

fc

c

⎡⎢⎢⎢⎣vy

⎛⎜⎜⎜⎝
y − yt

i‖‖‖‖−→p −
−→
pt

i

‖‖‖‖
+

y − yr
j‖‖‖−→p −
−→
pr

j
‖‖‖
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

+
fc

c

⎡⎢⎢⎣vr
x,j

x − xr
j‖‖‖−→p −
−→
pr

j
‖‖‖ + vr

y,j

y − yr
j‖‖‖−→p −
−→
pr

j
‖‖‖
⎤⎥⎥⎦ .

(7)

It is worth mentioning that these transformation relations between the delay-Doppler space and the Cartesian
coordinates are necessary while computing the MCRLB [Gogineni et al., 2014a].

3. Joint MCRLB

In this section, the MCRLB for the joint target parameter estimation in OFDM-based passive radar networks
is computed by deriving the modified Fisher information matrix (MFIM) expression, where it is assumed that
the echoes scattered off the target due to different transmitters of opportunity can be separated at the multi-
channel radar receivers. Here using the Rician target model [Javed et al., 2016], the attenuation coefficients 𝜉ij

can be modeled as a complex Gaussian random variable with mean aij and variance 𝜎2, i.e., 𝜉ij ∼  (aij, 𝜎
2),

which is composed of a DS and many independent WIS. The signal arriving at the jth receiver due to the signal
transmitted from the ith OFDM-based transmitter of opportunity is written as

yij(t) = 𝜉ijui(t − 𝜏ij)e
j2𝜋fDij

(t−𝜏ij) + nij(t), (8)

where nij(t) represents zero-mean white Gaussian noise of variance 𝜎2
n corresponding to the ijth path, i.e.,

nij ∼  (0, 𝜎2
n), independent to 𝜉ij . The parameters aij ,𝜎

2 and𝜎2
n are supposed to be deterministic and known.

It should be pointed out that the transmitted symbol c is not deterministic. Following the derivations in Filip
and Shutin [2016], Javed et al. [2016], and Van Trees [2001], the MLE of the unknown target state vector 𝚯
can be found by examining the likelihood ratio for the hypothesis pair, with H1 corresponding to the target
presence hypothesis and H0 corresponding to the noise only hypothesis. Thus, for a given transmitted symbol
c, the likelihood ratio corresponding to the ijth transmitter-receiver pair is

Λij(yij(t)|c) = exp
{

𝜎2

𝜎2 + 𝜎2
n

|||||∫
+∞

−∞
yij(t)u∗

i (t − 𝜏ij)e
−j2𝜋fDij

(t−𝜏ij)dt
|||||

2

− 1
𝜎2 + 𝜎2

n

|||||∫
+∞

−∞
ayij

u∗
i (t − 𝜏ij)e

−j2𝜋fDij
(t−𝜏ij)dt

|||||
2

+ 2
𝜎2 + 𝜎2

n

ℜ
[
∫

+∞

−∞
yij(t)u∗

i (t − 𝜏ij)e
−j2𝜋fDij

(t−𝜏ij)dt × a∗
yij

ui(t − 𝜏ij)e
j2𝜋fDij

(t−𝜏ij)dt

]}
+

(
𝜎2

n

𝜎2 + 𝜎2
n

)
(9)
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where ayij
represents the mean of the received signal yij(t), i.e., ayij

= aijui(t − 𝜏ij)e
j2𝜋fDij

(t−𝜏ij). Then, the
log-likelihood ratio can be expressed as

Lij(yij(t)|c) = 𝜎2

𝜎2 + 𝜎2
n

|||||∫
+∞

−∞
yij(t)u∗

i (t − 𝜏ij)e
−j2𝜋fDij

(t−𝜏ij)dt
|||||

2

− 1
𝜎2 + 𝜎2

n

|||||∫
+∞

−∞
ayij

u∗
i (t − 𝜏ij)e

−j2𝜋fDij
(t−𝜏ij)dt

|||||
2

+ 2
𝜎2 + 𝜎2

n

ℜ
{
∫

+∞

−∞
yij(t)u∗

i (t − 𝜏ij)e
−j2𝜋fDij

(t−𝜏ij)dt × a∗
yij

ui(t − 𝜏ij)e
j2𝜋fDij

(t−𝜏ij)dt

}
+ ln

(
𝜎2

n

𝜎2 + 𝜎2
n

)
(10)

Note that yij(t) are mutually independent for different transmitter-receiver pairs due to the fact that the trans-
mitters of opportunity and radar receivers are widely separated. Hence, the joint log-likelihood ratio across all
the transmitter-receiver pairs can be written as the sum of the individual log-likelihood ratios:

L(y(t)|c) = Nt∑
i=1

Nr∑
j=1

Lij(yij(t)|c), (11)

where

y(t) =
[

y11(t), y12(t),… , yNt Nr
(t)
]†

(12)

is the observed signals from the entire set of the receivers.

The CRLB indicates the smallest variance estimate of any unbiased estimate [Filip and Shutin, 2016; Gogineni
et al., 2014a; He et al., 2010b], which can be utilized as a performance metric in parameter estimation prob-
lems due to the fact that the CRLB is close to the MSE of the MLE when the high signal-to-noise ratio (SNR) is
satisfied. In the classical CRLB, the joint probability density function of the received signal and the parameter
vector is utilized, while in MCRLB the expectation is taken on the conditional probability density function of
the received signal conditioned on the transmitted symbols [Javed et al., 2016]. Since the transmitted symbols
ckl are random, it is not feasible to calculate the classical CRLB in our study. Hence, the MCRLB is employed
as a good alternative method by averaging the MFIM over the conditional probability density function of the
received signal conditioned on the transmitted symbols, which shows a much looser bound than the clas-
sical CRLB in realistic scenarios. In this paper, we will compute the MCRLB for the joint position and velocity
estimation of a Rician target in a OFDM-based passive radar network.

Given this statistical model, the MFIM is a 4 × 4 matrix related to the second-order derivatives of the joint
log-likelihood function:

J(𝚯) =
(
▽𝚯𝚿†) J(𝚿)

(
▽𝚯𝚿†)†

=
(
▽𝚯𝚿†) (−Ey(t)|c {▽𝚿

[
▽𝚿L(y(t)|c)]†})(

▽𝚯𝚿†)†
,

(13)

where 𝚿 is an alternative representation of the unknown parameter vector defined as

𝚿 =
[
𝜏ij, fDij

]†
(∀i, j). (14)

We first derive (▽𝚯𝚿†) that corresponds to the change of variables. The derivatives of the time delays with
respect to the target positions can be obtained as

𝜕𝜏ij

𝜕x
≡ 1

c

⎛⎜⎜⎜⎝
x − xt

i‖‖‖‖−→p −
−→
pt

i

‖‖‖‖
+

x − xr
j‖‖‖−→p −
−→
pr

j
‖‖‖
⎞⎟⎟⎟⎠ , (15)

𝜕𝜏ij

𝜕y
≡ 1

c

⎛⎜⎜⎜⎝
y − yt

i‖‖‖‖−→p −
−→
pt

i

‖‖‖‖
+

y − yr
j‖‖‖−→p −
−→
pr

j
‖‖‖
⎞⎟⎟⎟⎠ . (16)
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Figure 1. Target and the passive radar networks configuration used in the numerical simulations.

The derivatives of the time delays with respect to the target velocities are

𝜕𝜏ij

𝜕vx
≡ 0, (17)

𝜕𝜏ij

𝜕vy
≡ 0. (18)

Similarly, the derivatives of the Doppler shifts with respect to the target positions can be given by

𝜕fDij

𝜕x
≡ fc

c

⎧⎪⎪⎨⎪⎪⎩
vx

⎡⎢⎢⎢⎢⎣
(

y − yt
i

)2

‖‖‖‖−→p −
−→
pt

i

‖‖‖‖3
+

(
y − yr

j

)2

‖‖‖−→p −
−→
pr

j
‖‖‖3

⎤⎥⎥⎥⎥⎦
+ vy

⎡⎢⎢⎢⎢⎣
−

(
x − xt

i

) (
y − yr

j

)
‖‖‖‖−→p −

−→
pt

i

‖‖‖‖3
−

(
x − xr

j

)(
y − yr

j

)
‖‖‖−→p −

−→
pr

j
‖‖‖3

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣vr

x,j

(
y − yr

j

)2

‖−→p −
−→
pr

j‖3
− vr

y,j

(
x − xr

j

)(
y − yr

j

)
‖−→p −

−→
pr

j‖3

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ ,

(19)

𝜕fDij

𝜕y
≡ fc

c

⎧⎪⎪⎨⎪⎪⎩
vy

⎡⎢⎢⎢⎢⎣
(

x − xt
i

)2

‖‖‖‖−→p −
−→
pt

i

‖‖‖‖3
+

(
x − xr

j

)2

‖‖‖−→p −
−→
pr

j
‖‖‖3

⎤⎥⎥⎥⎥⎦
+ vx

⎡⎢⎢⎢⎢⎣
−

(
x − xt

i

) (
y − yr

j

)
‖‖‖‖−→p −

−→
pt

i

‖‖‖‖3
−

(
x − xr

j

)(
y − yr

j

)
‖‖‖−→p −

−→
pr

j
‖‖‖3

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣−vr
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(20)

Table 1. Transmitters of Opportunity Positions

Transmitter Position (m)

1 [0, 0]
2 [2000, 1500]
3 [4000, 2000]
4 [3000, 4000]
5 [1000, 3000]
6 [6000, 3000]
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Table 2. Multichannel Receivers Positions and Velocities

Receiver Position (m) Velocity (m/s)

1 [2000, 0] [30, 50]
2 [5000, 0] [10, 70]
3 [0, 2000] [60, 50]
4 [0, 3500] [80, 20]

and the derivatives of the Doppler shifts with respect to the target velocities are obtained as

𝜕fDij

𝜕vx
≡ fc

c

⎛⎜⎜⎜⎝
x − xt

i‖‖‖‖−→p −
−→
pt

i

‖‖‖‖
+

x − xr
j‖‖‖−→p −
−→
pr

j
‖‖‖
⎞⎟⎟⎟⎠ , (21)

𝜕fDij

𝜕vy
≡ fc

c

⎛⎜⎜⎜⎝
y − yt

i‖‖‖‖−→p −
−→
pt

i

‖‖‖‖
+

y − yr
j‖‖‖−→p −
−→
pr

j
‖‖‖
⎞⎟⎟⎟⎠ , (22)

where the derivatives of (19) and (20) are provided in Appendix A.

Figure 2. RMCRLB in the target position dimensions versus SNR with different h: (a) x position dimension; (b) y position
dimension.
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Figure 3. RMCRLB in the target velocity dimensions versus SNR with different h: (a) x velocity dimension; (b) y velocity
dimension.

After lengthy algebraic derivations, the closed-form expression of the total MFIM J(𝚿) over all the
transmitter-receiver pairs is given as

J(𝚿) = −Ey(t)|c {▽𝚿L(y(t)|c)[▽𝚿L(y(t)|c)]†} = −Ey(t)|c {▽𝚿[▽𝚿L(y(t)|c)]†}
=

Nt∑
i=1

Nr∑
j=1

8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) [
1 + 2hij +

2hij(
𝜎2∕𝜎2

n

)] ×
[
𝜀i 0
0 𝜂ij

]
,

(23)

where the terms 𝜀i and 𝜂ij are dependent on the transmitted signals, which are computed as follows
[Filip and Shutin, 2016]:

𝜀i ≡ E

{
∫

+∞

−∞
f 2 ||Ui(f )||2 df −

|||||∫
+∞

−∞
f ||Ui(f )||2 df

|||||
2}

=
3 + Δf 2Tw(4Ts − Tw)(N2

u − 1)
12Tw(4Ts − Tw)

,

(24)

𝜂ij ≡ E

{
∫

+∞

−∞
t2 ||ui(t)||2 df −

|||||∫
+∞

−∞
t ||ui(t)||2 df

|||||
2}

=
4𝜋2L2T 3

s − 𝜋2(L2 + 2)T 2
s Tw − (𝜋2 − 6)T 3

w

12𝜋2(4Ts − Tw)
+

(𝜋2 − 8)TsT 2
w

𝜋2(4Ts − Tw)
.

(25)
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Figure 4. RMCRLB in the target position dimensions versus SNR with different h when [x, y] = [3000, 5000]m: (a) x
position dimension; (b) y position dimension.

The derivation of J(𝚿) in (23) is given in Appendix B. The analysis in Filip and Shutin. [2016] expresses the MFIM
as a combination of the constituent bistatic FIMs. Therefore, we can write the MFIM for OFDM-based passive
radar networks as follows:

J(𝚯) =
Nt∑

i=1

Nr∑
j=1

8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) (
1 + 2hij +

2hij(
𝜎2∕𝜎2

n

)) Jij(𝚯), (26)

where hij = |aij|2∕(2𝜎2). The final expressions for the elements of the bistatic MFIM Jij(𝚯) corresponding to
the ijth transmitter-receiver pair are shown in Appendix C. It can be observed from (26) that the MFIM is a
linear combination of the components contributing from DS and WIS, which can be factored into two terms:
one term accounting for the effect of the DS component and another term incorporating the effect of the WIS
component. Define the SNR as

SNR = 𝜎2

𝜎2
n

. (27)

Then, the MFIM in (26) can be rewritten as follows:

J(𝚯) =
Nt∑

i=1

Nr∑
j=1

8𝜋2SNR2

1 + SNR

(
1 + 2hij +

2hij

SNR

)
Jij(𝚯). (28)
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Figure 5. RMCRLB in the target velocity dimensions versus SNR with different h when [x, y] = [3000, 5000]m: (a) x
velocity dimension; (b) y velocity dimension.

The MCRLB matrix for the joint estimation of a Rician target position and velocity can be obtained by taking
the inverse of MFIM in (28) as

MCRLB(𝚯) = J−1(𝚯). (29)

Furthermore, the joint MCRLBs for the estimation of target position and velocity are determined by the four
diagonal elements of the MCRLB matrix such that{

MCRLBx(𝚯) =
[
J−1(𝚯)

]
1,1

,MCRLBy(𝚯) =
[
J−1(𝚯)

]
2,2

,

MCRLBvx (𝚯) =
[
J−1(𝚯)

]
3,3

,MCRLBvy (𝚯) =
[
J−1(𝚯)

]
4,4

.
(30)

Remark 1: It can be observed from (30) that the MCRLB depends on several factors. It not only depends on
the relative geometry between the target and the passive radar network system but also depends on the
transmitted waveform parameters such as symbol duration and the number of OFDM symbols. In addition, it
shows dependence on the target’s RCS and the SNR.

Remark 2: As indicated in Javed et al. [2016], we can adopt h
′

ij = hij∕(1 + hij) for the categorization of the

Swerling RCS models. Specifically, h
′

ij = 0, 0.75, and 1 correspond to the Swerling I/II models, Swerling

III/IV models, and Swerling 0/V models, respectively. In addition, h
′

ij = 0 indicates that the target RCS with
WIS component follows Rayleigh fluctuations in a noncoherent mode for all the transmitter-receiver pairs,
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Figure 6. RMCRLB in the target position dimensions versus waveform parameters when SNR = 0 dB with different h:
(a) L; (b) Ts.

whereas h
′

ij=1 means that the target is a point target in a coherent mode, which has a fixed amplitude RCS
value for all the transmitter-receiver pairs.

4. Numerical Simulations and Analysis

In the following, some numerical simulation results are provided to verify the accuracy of the theoretical
derivations and reveal the effects of several factors on the MCRLBs.

4.1. Description
In this paper, we consider a passive radar network with Nt = 6 OFDM-based LDACS1 transmitters of
opportunity and Nr=4 multichannel receivers. The passive radar network architecture studied here and
the corresponding geometry between the target and the passive radar network system are depicted
in Figure 1.

The positions of the transmitters are given in Table 1. The positions and velocities of the radar receivers are
given in Table 2. The target moving with x-y velocity [60, 90] m/s is located at [6000, 5000]m. We choose the
same OFDM signal parameters as in Javed et al. [2016] for the simulations: the total number of subcarriers
Nu = 64, the subcarrier spacing Δf = 9.7 kHz, the total symbol duration Ts = 120 μs, the windowing duration
Tw = 12.8 μs, the number of OFDM symbols L = 384620, and the carrier frequency fc = 971.5 kHz.
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Figure 7. RMCRLB in the target velocity dimensions versus waveform parameters when SNR = 0 dB with different h:
(a) L; (b) Ts.

4.2. Numerical Results
Herein, without loss of generality, we assume that hij is the same for all transmitter-receiver pairs, i.e., hij = h.
It can be observed in Figure 2 the curves of the square root of MCRLB (RMCRLB) in the x position and y posi-
tion dimensions versus SNR with different h. Similarly, it is depicted in Figure 3 that the velocity RMCRLB is
a function of the varying SNR. These figures show that the values of RMCRLB reduce as the SNR increases,
where it can be seen that the RMCRLBs in the y dimension are greater than those in the x dimension for the
position, while the RMCRLBs is lower in the y dimension for the velocity.

Moreover, it is apparent from Figures 2 and 3 that as the value of h increases, the RMCRLBs decrease for both
the target position and velocity estimates, which is due to the fact that the increase in h provides a rise in tar-
get RCS [Javed et al., 2016]. Consequently, the SNR goes up at the radar receiver. The RMCRLB will achieve a
maximum value when DS component does not exist, i.e., h = 0, where the target RCS follows Rayleigh fluctu-
ations in a noncoherent mode for all the transmitter-receiver pairs. In contrast, the RMCRLB will be minimum
at an asymptotic limit, i.e., h → ∞, and the target is idealistically a point target in a coherent mode, which has
a fixed amplitude RCS value for all the transmitter-receiver pairs. For the rest of the other cases, the RMCRLB
lies in between these two values.

Furthermore, in order to examine the effect of the relative geometry between the target and the passive
radar network systems on the RMCRLB, we change the target position to [3000, 5000]m. It is evident from
Figure 4 that the RMCRLBs are different from the earlier case. This is because the relative geometry between
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Figure 8. RMCRLB versus SNR with different number of transmitter-receiver pairs with DS component: (a) target position
dimension; (b) target velocity dimension.

the moving target and the OFDM-based passive radar networks has a significant effect on the derivatives of
Ψ in (13) [Gogineni et al., 2014; Shi et al., 2016a]. In Figure 4, it can be noticed that the values of RMCRLBs for
target position are decreased as the SNR goes up. To be specific, the RCRLB at 1.65 dB is 45.3 m for x dimension
and 50.98 m for y dimension in Figure 2. As the geometry between the target and the radar networks changes,
the RCRLB values are changed and become 28.39 m for x dimension and 23.74 m for y dimension in Figure 4.
Also, the RMCRLBs are larger in the x dimension than those in the y dimension, which is different from the
case when the true target position was [6000, 5000]m. In addition, as we can see in Figure 5, the values are
different from the earlier case and the same holds true for the target velocity RMCRLBs. Specifically, in Figure 3,
the RCRLB at 3.1 dB is 1.271 m/s for x dimension and 1.075 m/s for y dimension, while the RCRLBs are changed
in Figure 5 and become 0.861 m/s for x dimension and 0.6404 m/s for y dimension.

In Figures 6 and 7, the RMCRLBs for target position and velocity dimensions are plotted against the waveform
parameters when SNR = 0 dB with different h. Specifically, how the number of transmitted OFDM symbols
L and the total symbol duration Ts impact the joint estimation performance is described exactly. We can
observe from Figures 6 and 7 that the RMCRLBs decrease with the increase of the waveform parameters, which
confirms that a waveform with a larger data set can provide better target parameter estimation accuracy.
Therefore, we can conclude that the joint MCRLB is a function of the transmitted waveform parameters as well
as the geometry between the target and the passive radar networks, the target’s RCS and SNR.
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Figure 8 illustrates the RMCRLBs for target position and velocity dimensions versus SNR with different number
of transmitter-receiver pairs with DS component, i.e., N. One can see that the RMCRLBs are reduced as the
number of transmitter-receiver pairs with DS component goes up, which confirms that the number of the DS
components has significant effect on the target parameter estimation performance.

5. Conclusion

In a realistic scenario, the Rician target with both the DS and WIS components is more favorable than the
Rayleigh target only with WIS component. This is because the Rician model is practical and can be utilized to
approximate a broad range of Swerling 0-V target models. In this study, we investigated the problem of joint
position and velocity estimation of a Rician target in OFDM-based passive radar networks with multichannel
receivers on moving platforms, which consist of multiple OFDM-based LDACS1 transmitters of opportunity
and multiple radar receivers. The joint MCRLB on the Cartesian coordinates of target position and velocity
in a Rice fading environment has been computed. It is shown in numerical simulation results that the joint
target parameter estimation accuracy of the passive radar networks can be significantly improved with the
exploitation of the DS component. Furthermore, it is worth pointing out that the joint MCRLB is a function
not only of the transmitted waveform parameters but also of the relative geometry, which incorporates the
positions of the transmitters, receivers, and the target in a Cartesian space. Also, it shows dependence on
the target RCS and SNR. Note that only single target is considered in this paper. However, the model and
derivations can be extended to a multiple targets scenario, and the conclusions obtained in this study suggest
that similar results would be achieved for the multiple targets case. Future work will focus on the problem of
optimal transmitter-receiver pair selection for the OFDM-based passive radar network systems.

Appendix A: The Derivation of (19) and (20)

Here, we derive the derivatives of the Doppler terms with respect to the target positions (19) and (20) by
utilizing Doppler shift (7). As we have
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Hence, the derivative of the Doppler term with respect to the target position x can be obtained as follows:

𝜕fDij
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Similarly, the derivative of the Doppler term with respect to the Cartesian position y is calculated as
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Therefore, we have
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Appendix B: The Derivation of J(𝚿)
Here, we derive the closed-form expressions for the elements of the MFIM matrix J(𝚿). From (10) and (11),
we have
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where T 1
ij , T 2

ij and T 3
ij represent the first, second, and third terms in (11), respectively. Then, we can obtain
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Let us suppose 𝛿ij = ∫ +∞
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𝛿∗ij

𝜕𝛿ij

𝜕𝜏ij
+ 𝛿ij

𝜕𝛿∗ij

𝜕𝜏ij

)
= 2𝜎2

𝜎2
n(𝜎2 + 𝜎2

n)
×ℜ

(
𝛿ij ∫

+∞

−∞
y∗ij (t)

𝜕ui(t − 𝜏ij)
𝜕𝜏ij

e
j2𝜋fDij

(t−𝜏ij)
) (B3)

To compute the expectation with respect to the second-order derivative, we have

−E

(
𝜕2T 1

ij

𝜕𝜏2
ij

)
= −

2𝜎2
(
𝜎2 + a2

ij

)
𝜎2 + 𝜎2

n

× E

[
ℜ

(|||||∫
+∞

−∞
ui(t − 𝜏ij)

𝜕u∗
i (t − 𝜏ij)
𝜕𝜏ij

dt
|||||

2

+∫
+∞

−∞
|ui(t − 𝜏ij)|2dt ∫

+∞

−∞
u∗

i (t − 𝜏ij)
𝜕2ui(t − 𝜏ij)

𝜕𝜏2
ij

dt

)]
.

(B4)

With the derivations in Filip and Shutin [2016] and Javed et al. [2016], hence we obtain

− E

(
𝜕2T 1

ij

𝜕𝜏2
ij

)
= 8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) (1 + 2hij)𝜀i, (B5)

where hij = |aij|2∕(2𝜎2). To calculate the expectation with respect to other second-order derivatives, we follow
the same procedure and arrive at the following closed-form expression:

− E

(
𝜕2T 1

ij

𝜕f 2
Dij

)
= 8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) (1 + 2hij)𝜂ij. (B6)
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The off-diagonal terms turn out to be zero in agreement with the derivations in (A4); that is,

− E

(
𝜕2T 1

ij

𝜕𝜏ij𝜕fDij

)
= 0. (B7)

Following the same lines, we can get the expectation of second-order derivatives of T 2
ij and T 3

ij as follows:

− E

(
𝜕2T 2

ij

𝜕𝜏2
ij

)
= 8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) (
−

2hij

𝜎2∕𝜎2
n

)
𝜀i, (B8)

− E

(
𝜕2T 2

ij

𝜕f 2
Dij

)
= 8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) (
−

2hij

𝜎2∕𝜎2
n

)
𝜂ij, (B9)

− E

(
𝜕2T 2

ij

𝜕𝜏ij𝜕fDij

)
= 0, (B10)

− E

(
𝜕2T 3

ij

𝜕𝜏2
ij

)
= 8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) ( 4hij

𝜎2∕𝜎2
n

)
𝜀i, (B11)

− E

(
𝜕2T 3

ij

𝜕f 2
Dij

)
= 8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) ( 4hij

𝜎2∕𝜎2
n

)
𝜂ij, (B12)

− E

(
𝜕2T 3

ij

𝜕𝜏ij𝜕fDij

)
= 0. (B13)

Therefore, using (13), J(𝚿) can be correspondingly expressed as follows:

J(𝚿) = −Ey(t)|c {▽𝚿L(y(t)|c)[▽𝚿L(y(t)|c)]†}
= −Ey(t)|c {▽𝚿[▽𝚿L(y(t)|c)]†}
=

Nt∑
i=1

Nr∑
j=1

8𝜋2𝜎4

𝜎2
n

(
𝜎2 + 𝜎2

n

) [
1 + 2hij +

2hij(
𝜎2∕𝜎2

n

)] ×
[
𝜀i 0
0 𝜂ij

]
.

(B14)

Appendix C: The Elements of MFIM Jij(𝚯)
The elements of the symmetric MFIM Jij(𝚯) corresponding to the ijth transmitter-receiver pair can be explicitly
expressed as follows:

J11
ij (𝚯) = 𝜀i

(
𝜕𝜏ij

𝜕x

)2

+ 𝜂ij

(
𝜕fDij

𝜕x

)2

, (C1)

J12
ij (𝚯) = J21

ij (𝚯)

= 𝜀i

(
𝜕𝜏ij

𝜕x

)(
𝜕𝜏ij

𝜕y

)
+ 𝜂ij

(
𝜕fDij

𝜕x

)(
𝜕fDij

𝜕y

)
,

(C2)

J13
ij (𝚯) = J31

ij (𝚯) = 𝜂ij

(
𝜕fDij

𝜕x

)(
𝜕fDij

𝜕vx

)
, (C3)

J14
ij (𝚯) = J41

ij (𝚯) = 𝜂ij

(
𝜕fDij

𝜕x

)(
𝜕fDij

𝜕vy

)
, (C4)
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J22
ij (𝚯) = 𝜀i

(
𝜕𝜏ij

𝜕y

)2

+ 𝜂ij

(
𝜕fDij

𝜕y

)2

, (C5)

J23
ij (𝚯) = 𝜂ij

(
𝜕fDij

𝜕y

)(
𝜕fDij

𝜕vx

)
, (C6)

J24
ij (𝚯) = J42

ij (𝚯) = 𝜂ij

(
𝜕fDij

𝜕y

)(
𝜕fDij

𝜕vy

)
, (C7)

J33
ij (𝚯) = 𝜂ij

(
𝜕fDij

𝜕vx

)2

, (C8)

J34
ij (𝚯) = J43

ij (𝚯) = 𝜂ij

(
𝜕fDij

𝜕vx

)(
𝜕fDij
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J44
ij (𝚯) = 𝜂ij

(
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)2

. (C10)

References
Alam, M., and K. Jamil (2015), Maximum likelihood (ML) based localization algorithm for multistatic passive radar using range-only

measurements, in 2015 IEEE Radar Conference (RadarConf), pp. 180–184, IEEE, Johannesburg, South Africa.
Chen, Q. C., et al. (2015), Indoor target tracking using high Doppler resolution passive WiFi radar, in 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 5565–5569, IEEE, South Brisbane, Queensland, Australia.
Chen, Y. F., et al. (2013), Adaptive distributed MIMO radar waveform optimization based on mutual information, IEEE Trans. Aerosp. Electron.

Syst., 49(2), 1374–1385.
Daout, F., et al. (2012), Multistatic and multiple frequency imaging resolution analysis-application to GPS-based multistatic radar, IEEE Trans.

Aerosp. Electron. Syst., 48(4), 3042–3057.
Falcone, P., et al. (2014), Two-dimensional location of moving targets within local areas using WiFi-based multistatic passive radar, IET Radar

Sonar Navig., 8(2), 123–131.
Filip, A., and D. Shutin (2016), Cramér-Rao bounds for L-band digital aeronautical communication system type 1 based passive

multiple-input multiple-output radar, IET Radar Sonar Navig., 10(2), 348–358.
Fisher, E., et al. (2006), Spatial diversity in radars-models and detection performance, IEEE Trans. Signal Process., 54(3), 823–836.
Godrich, H., A. M. Haimovich, and R. S. Blum (2010), Target localization accuracy gain in MIMO radar-based systems, IEEE Trans. Inf. Theory,

56(6), 2783–2803.
Godrich, H., A. Petropulu, and H. V. Poor (2012a), Sensor selection in distributed multiple-radar architectures for localization: A knapsack

problem formulation, IEEE Trans. Signal Process., 60(1), 247–260.
Godrich, H., A. Tajer, and H. V. Poor (2012b), Distributed target tracking in multiple widely separated radar architectures, in Proceedings of

the 7th Sensor Array and Multichannel Signal Processing Workshop, pp. 153–156, IEEE, Hoboken, N. J.
Gogineni, S., et al. (2014a), Cramér-Rao bounds for UMTS-based passive multistatic radar, IEEE Trans. Signal Process., 62(1), 95–106.
Gogineni, S., et al. (2014b), Ambiguity function analysis for UMTS-based passive multistatic radar, IEEE Trans. Signal Process., 62(11),

2945–2957.
Griffiths, H. D., and N. R. W. Long (1986), Television-based bistatic radar, 133, 649–657
Haimovich, A. M., R. S. Blum, and L. J. Jr. Cimini (2008), MIMO radar with widely separated antennas, IEEE Signal Process Mag., 25(1), 116–129.
He, Q., and R. S. Blum (2010a), Cramér-Rao bound for MIMO radar target localization with phase errors, IEEE Signal Process Lett., 17(1), 83–86.
He, Q., R. S. Blum, and A. M. Haimovich (2010b), Noncoherent MIMO radar for location and velocity estimation: More antennas means better

performance, IEEE Trans. Signal Process., 58(7), 3661–3680.
He, Q., and R. S. Blum (2012), Noncoherent versus coherent MIMO radar: Performance and simplicity analysis, Signal Process., 92(10),

2454–2463.
He, Q., and R. S. Blum (2014), The significant gains from optimally processed multiple signals of opportunity and multiple receive stations in

passive radar, IEEE Signal Process. Lett., 21(2), 180–184.
He, Q., et al. (2016), Generalized Cramér-Rao bound for joint estimation of target position and velocity for active and passive radar networks,

IEEE Trans. Signal Process., 64(8), 2078–2089.
Howland, P. E., D. Maksimiuk, and G. Reitsma (2005), FM radio based bistatic radar, IET Radar Sonar Navig., 152(3), 107–115.
Javed, M. N., S. Ali, and S. A. Hassan (2016), 3D MCRLB evaluation of a UMTS-based passive multistatic radar operating in a line-of-sight

environment, IEEE Trans. Signal Process., 64(19), 5131–5144.
Li, J., and P. Stoica (2009), MIMO Radar Signal Processing, Wiley, Hoboken, N. J.
Naghsh, M. M., et al. (2013), Unified optimization framework for multi-static radar code design using information-theoretic criteria,

IEEE Trans. Signal Process., 61(21), 5401–5416.
Niu, R. X., et al. (2012), Target localization and tracking in noncoherent multiple-input multiple-output radar systems, IEEE Trans. Aerosp.

Electron. Syst., 48(2), 1466–1489.

Acknowledgments
The authors would like to thank the
anonymous reviewers for their insight-
ful comments and suggestions that
have contributed to improve this
paper. We note that there are no
data sharing issues since all of the
numerical information is provided in
the figures produced by solving the
equations in the paper, which are real-
ized by MATLAB software. This work
is supported in part by the National
Natural Science Foundation of China
(grant 61371170 and 61671239), in
part by the Fundamental Research
Funds for the Central Universities
(grant NS2016038 and NP2015404),
in part by the National Aerospace
Science Foundation of China (grant
20152052028), in part by the Priority
Academic Program Development of
Jiangsu Higher Education Institutions
(PADA), and in part by Key Laboratory
of Radar Imaging and Microwave
Photonics, Ministry of Education,
Nanjing University of Aeronautics and
Astronautics, Nanjing, 210016, China.

SHI ET AL. MODIFIED CRAMÉR-RAO LOWER BOUNDS 32



Radio Science 10.1002/2016RS006158

Pace, P. E. (2009), Detecting and Classifying Low Probability of Intercept Radar, Artech House, Boston, Mass.
Patzold, M., and G. Rafiq (2014), Performance evaluation of sum-of-cisoids Rice/Rayleigh fading channel simulators with respect to the bit

error probability, Radio Sci., 49(1), 997–1007, doi:10.1002/2014RS005496.
Samczynski, P., P. Krysik, and K. Kulpa (2015), Passive radars utilizing pulse radars as illuminators of opportunity, in 2015 IEEE Radar

Conference (RadarConf), pp. 168–173, IEEE, Johannesburg, South Africa.
Shi, C. G., et al. (2015), Security information factor based low probability of identification in distributed multiple-radar system, in 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3716–3720, Brisbane, Queensland, Australia.
Shi, C. G., F. Wang, and J. J. Zhou (2016a), Cramér-Rao bound analysis for joint target location and velocity estimation in FM-based passive

radar networks, IET Sign. Process., 10(7), 780–790.
Shi, C. G., et al. (2016b), Transmitter subset selection in FM-based passive radar networks for joint target parameter estimation, IEEE Sens. J.,

16(15), 6043–6052.
Shi, C. G., J. J. Zhou, and F. Wang (2016c), LPI based resource management for target tracking in distributed radar network, in 2016 IEEE

Radar Conference (RadarConf), pp. 1–5, IEEE, Philadelphia, Pa.
Stinco, P., et al. (2012), Ambiguity function and Cramér-Rao bounds for universal mobile telecommunications system-based passive

coherent location systems, IET Radar Sonar Navig., 6(7), 668–678.
Song, X. F., P. Willett, and S. L. Zhou (2012), Optimal power allocation for MIMO radars with heterogeneous propagation losses, in 2012 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2465–2468, IEEE, Kyoto, Japan.
Van Trees, H. L. (2001), Detection, Estimation, and Modulation Theory III, Wiley, New York.
Wei, C., Q. He, and R. S. Blum (2010), Cramér-Rao bounds for joint location and velocity estimation in multi-target non-coherent MIMO

radars, in Proceedings of the 44th IEEE Annual Conference on Information Sciences and Systems (CISS), pp. 1–6, IEEE, Princeton, N. J.
Yi, J. X., et al. (2015), MIMO passive radar tracking under a single frequency network, IEEE J. Sel. Top. Sign. Proces., 9(8), 1661–1671.
Zhang, Z. K., S. Salous, H. L. Li, and Y. B. Tian (2015), Optimal coordination method of opportunistic array radars for

multi-target-tracking-based radio frequency stealth in clutter, Radio Sci., 50(11), 1187–1196, doi:10.1002/2015RS005728.
Zhao, T., and T. Y. Huang (2016), Cramér-Rao lower bounds for the joint delay-doppler estimation of an extended target, IEEE Trans. Signal

Process., 64(6), 1562–1573.

SHI ET AL. MODIFIED CRAMÉR-RAO LOWER BOUNDS 33

http://dx.doi.org/10.1002/2014RS005496
http://dx.doi.org/10.1002/2015RS005728

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


