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Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics
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We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is
coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τC . To explore the resulting
interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier
studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or
deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate
perturbations. It dominates for relatively small values of τC and is a simple generalization of the instability
known previously without polymer. The second is an elastomeric mode, associated with strain perturbations,
which dominates at large τC and persists even as τC → ∞. We explore the dynamical states to which these
instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one
dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τC → ∞. Adding
polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a
type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is
examined numerically, revealing a rich array of spontaneously flowing states.
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I. INTRODUCTION

Examples of active matter include bacterial swarms, the
cellular cytoskeleton, and in vitro cell extracts that comprise
only polymeric filaments, molecular motors, and a fuel
supply [1–4]. Such materials not only are of direct biophysical
significance, but also represent a wider class of systems in
statistical physics in which strong deviations from thermal
equilibrium emerge at the collective macroscopic scale due to
the underlying active dynamics of the system’s microscopic
subunits (rotating bacterial flagella, marching molecular mo-
tors that bridge cytoskeletal filaments, etc.). Arising at the level
of the microscopic subunits, this driving is distinct from the
macroscopic boundary driving of, for example, an imposed
shear flow.

For an active particle subject to no externally imposed
force, the simplest perturbation it can exert on the local fluid
environment is that of a force dipole. Depending on the sign
of this dipole, the activity is classified as extensile (where
the two forces act from the center of mass of the dipole
outward towards the fluid) or contractile (where the opposite
applies). Collectively, a fluid of these active particles can
exhibit nonequilibrium emergent phenomena on macroscopic
length scales that greatly exceed the particle size or spacing.
These include activity-induced ordering and bulk fluid flows
that arise spontaneously even in the absence of external
driving. Depending on the strength of the activity, these flows
may remain steady and laminar at the scale of the system,
show oscillatory limit cycles at that scale or below, or exhibit
spatiotemporal chaos. The latter effect closely resembles
conventional inertial turbulence in a passive Newtonian fluid
and is accordingly often termed active turbulence or bacterial
turbulence [2,5–9]. However, its mechanism is distinct from
that of inertial turbulence: It stems from a balance between
active stress and orientational relaxation, rather than between
inertia and viscosity.

Depending on their symmetry, ordered phases of active
fluids can be described by either a polar [10,11] or a nematic

order parameter [1,12,13]. In this work we consider the latter
case and throughout denote the nematic order parameter by
Q. Indeed, many theoretical descriptions of active matter are
based on simple continuum models for the hydrodynamics of a
suspension of rodlike objects, originally developed to describe
a passive liquid crystal [14,15]. To describe an active material,
such a model is then augmented by the leading-order terms
characterizing the violations of time-reversal symmetry that
arise from activity. In particular, this gives an additional active
contribution �A = −ζQ to the fluid’s stress tensor, where
the activity parameter ζ is positive for extensile systems and
negative for contractile ones.

Even without detailed knowledge of the value of ζ , the
approach just described is capable of robust predictions. For
example, beyond a critical threshold level of activity an
initially quiescent fluid is generically predicted to become
unstable to the formation of a spontaneously flowing state [12].
This threshold, for a finite system size, depends on whether
the system is extensile or contractile. However, in both cases it
decreases with increasing system size [10], tending to zero in
the limit of a bulk sample. Any level of activity, however small,
can then trigger the formation of spontaneous flows. Consistent
with these analytical predictions, numerical solutions of active
nematic continuum models [5,7–9] have indeed revealed a
host of spontaneously flowing states resembling experimental
observations in bacterial swarms [2] and microtubule-based
cell extracts [4]. Both of these are extensile nematics, to which
we restrict ourselves in our numerical study below [11].

Active nematic fluids are often referred to informally
as active gels [5,10], particularly in a biological context.
However, while all liquid crystals are somewhat viscoelastic,
for example, due to the slow motion of topological defects,
most existing models of active matter assume fast local
relaxations and so fail to model gels in the conventional
sense of the term, as understood by polymer or colloid
physicists [16,17]. Certainly the standard continuum models
of active matter [1,13] do not capture the types of slow
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viscoelastic dynamics that one might expect in the cytoskele-
ton, which contains long-chain flexible polymers and other
cytoplasmic components that are expected to have long
intrinsic relaxation times (or even divergent ones in the case of
a cross-linked network). This is a major shortcoming, because
this slow viscoelastic dynamics would be expected to couple
strongly to the active liquid-crystalline dynamics and thereby
potentially radically modify the effects of activity.

The effect of a viscoelastic polymeric background is also
likely to play an important role in modifying active flows
and diffusion [18] at a supracellular level. Indeed, long-chain
molecules are present in mucus, saliva, and many other
viscoelastic fluids both inside and outside the body that are
susceptible to colonization by swarms of motile bacteria.
Moreover, many bacteria secrete their own polymers [19],
particularly during biofilm formation (which, however, is
not the topic of this paper). This suggests an evolutionary
advantage for bacteria in controlling the viscoelasticity of
their surroundings, supporting the view that viscoelasticity
and active motion are coupled in a nontrivial way.

With this motivation, the aim of this paper is to study
in greater depth the predictions of a model first presented
in Ref. [20], which addresses at a continuum level the
interplay between active liquid-crystalline dynamics and slow
polymeric modes of relaxation. This approach is distinct from,
but complements, recent studies of individual swimmers in
viscoelastic fluids [21–25], which show that swimming speeds
can be either enhanced or suppressed relative to those in a
Newtonian solvent, depending on details of the swimming
mechanism and particle geometry. Such details do not enter
our continuum picture, however, which focuses on emergent
and potentially universal many-body behavior at larger length
scales.

In a biological context, active matter is often found in
confined geometries such as the interior of a cell. Indeed, it has
been argued that the confinement of subcellular active matter
may in part be responsible for cytoplasmic streaming [26,27],
an important process whereby coherent fluid flows facilitate
the circulation of nutrients and organelles within the cell [28].
At a larger scale, a recent study of cell migration in artificial
channels observed increases in mean cell velocity and flow
coherence as the channel was narrowed [29]. Also, suspensions
of B. subtilis were observed to form stable spiral structures
when confined in a droplet [30]. In view of these observations,
it is important that any numerical study should consider
carefully the effects of system size. In what follows we choose
a rectangular channel geometry of fixed aspect ratio bounded
by a pair of parallel hard walls. The size of this channel is
notionally fixed in simulation units, but we study finite-size
effects by then varying instead the microscopic length scales
in the problem.

As we will explore in detail below, the interplay of active
and polymeric dynamics leads to a host of exotic spontaneous
flow states. These include oscillatory shear-banded states in
one dimension, while in two dimensions we find activity-
driven turbulence even in the limit of infinite viscoelastic
relaxation time in which our model describes an active
elastomer. In other regimes we find that adding polymer
can have calming effects, increasing the net throughput of
spontaneous flow along a channel in a type of drag reduction.

The paper is structured as follows. In Sec. II we review
the equations of motion that describe the coupled dynamics
of an active nematic with a viscoelastic polymer, as derived
in Ref. [20]. In Sec. III we discuss the simulated sample
geometry and give details of our numerical methods. In Sec. IV
we perform a linear stability analysis to derive the threshold
of instability to spontaneous flow. The results of this linear
calculation then provide a route map for performing full
nonlinear simulations in Secs. V and VI. In Sec. V we restrict
those simulations to one spatial dimension for simplicity, while
in Sec. VI we perform full two-dimensional (2D) simulations.
Section VII contains a summary of our results and the outlook
for future work.

II. MODEL EQUATIONS

In this section we remind the reader of the model equations,
as developed originally in Ref. [20]. The state of liquid-crystal
(nematic) ordering is denoted by a traceless symmetric tensor
Q = q〈n̂n̂ − 1

3 I〉, where n̂ is the nematic director and q is the
degree of ordering. The polymeric conformation is similarly
denoted by the symmetric tensor C = 〈rr〉, where r is the end-
to-end vector of a chain (or subchain, depending on the level
of description used), normalized so that C = I in equilibrium.
We adopt a single-fluid description in which the concentration
fields of polymer and liquid crystal are assumed to remain
uniform (in contrast to a two-fluid approach as taken by,
for example, Ref. [31]). Accordingly, all three components—
liquid crystal, polymer, and solvent—share the same center-
of-mass velocity v. The symmetric and antisymmetric parts of
the velocity-gradient tensor (∇v)ij ≡ ∂ivj are denoted by D
and �, respectively. For any other tensors the symmetric, anti-
symmetric, and traceless parts carry superscripts S, A, and T .

We introduce a free-energy density f = fQ(Q,∇Q) +
fC(C) + fQC(Q,C), where fQ and fC are the standard forms
for nematics [14] and dumbbell polymers [32], respectively.
Accordingly we have

fQ = GQ

[
(1 − γ /3)

2
TrQ2 − γ

3
TrQ3 + γ

4
(Tr Q2)2

]

+ K

2
(∇iQjk)2, (1)

in which GQ sets the scale of the bulk free-energy density, K

is the nematic elastic constant, and γ is a control parameter
for the isotropic-nematic transition. Likewise

fC = GC

2
(TrC − ln det C), (2)

where GC is the polymer elastic modulus.
The lowest-order passive coupling between Q and C is

fQC = κ Tr(C − I)Tr(Q2) + 2χ Tr(CQ), (3)

where both terms vanish for undeformed polymers (C = I).
Here κ controls how the polymer pressure shifts the isotropic-
nematic transition and for simplicity we set κ = 0 throughout.
The second term makes it energetically preferable for Q and C
to align with major axes parallel for χ < 0 and perpendicular
for χ > 0.
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From the volume-integrated free energy F = ∫
f dV , the

nematic molecular field H ≡ −[δF/δQ]ST follows as

H = −GQ

[(
1 − γ

3

)
Q − γ Q2 + γ Q3

]
− GQγ

I
3

Tr(Q2)

+K∇2Q − 2κTr(C − I)Q − 2χCT. (4)

The corresponding molecular field B ≡ −[δF/δC]S for the
polymer obeys

B = −GC(I − C−1)/2 − κI Tr(Q2) − 2χQ. (5)

Using these molecular fields, we follow Ref. [20] in
developing minimally coupled equations of motion for Q and
C that respectively reduce to the Beris-Edwards liquid-crystal
theory and the Johnson-Segalman (JS) polymer model in
appropriate limits [14]. We then allow for conformational
diffusion in the polymer sector [33], which adds a gradient term
in C of kinetic origin [20]. (Alternatively, one can incorporate
a nonlocal term in the polymer free energy, though this then
produces a more complex form for the polymer stress [34].) To
this is added a minimal set of active terms [12], supposing for
simplicity that the polymers are not themselves active, but that
the origin of the activity resides entirely in Q. This is enough
to capture, for example, the effect of adding polymer to a
cell extract or the collective dynamics of bacterial suspensions
in mucus. (A contrasting approach is to build a system of
polymers directly from active elements [35].) There remain
two active terms linear in Q. One of these can be absorbed
into fQ and the other is the familiar active deviatoric stress
�A = −ζQ [12].

The resulting equations of motion for Q and C are

(∂t + v · ∇)Q = Q� − �Q + 2ξ

3
D + 2ξ [QD]ST

− 2ξQTr(QD) + τ−1
Q H/GQ, (6)

(∂t + v · ∇)C = C� − �C + 2a[CD]S

+ τ−1
C (2[BC]S/GC + 
2

C∇2C). (7)

Here ξ is the flow-alignment parameter of the nematic [36]
and a is the slip parameter of the JS model. Setting a = 1
recovers the Oldroyd-B model [37]. Each controls the relative
tendency of molecules to align with streamlines versus rotating
with the local vorticity. The parameters τQ and τC are intrinsic
local relaxation times for the nematic and polymer, while 
C

governs conformational diffusion in the JS sector [33].
The velocity field v obeys the Navier-Stokes equation for

an incompressible fluid

ρ(∂t + vβ∂β)vα = ∂β�αβ, (8)

∂αvα = 0. (9)

Here the total stress � = −P I + 2ηD + �A + �Q + �C

combines an isotropic pressure P , a contribution from a
Newtonian solvent of viscosity η, two reactive stresses

�Q = −K(∇Q) : (∇Q) + 2[QH]A

− 2ξ

3
H − 2ξ [QH]ST + 2ξQTr(QH), (10)

�C = −2a[CB]S + 2[CB]A, (11)

and the active stress �A = −ζQ. The colon in Eq. (10) denotes
contraction over the second and third Cartesian indices. In what
follows we assume inertialess (creeping) flow and set ρ = 0
in Eq. (8).

Having set out this model in which the dynamics of
the polymer and liquid crystal are fully coupled, we now
consider certain limits in which the coupling between them
is diminished. Clearly, setting the constants χ and κ to zero
in Eq. (3) eliminates any thermodynamic coupling between
Q and C. It is important to understand, however, that even in
this case of zero thermodynamic coupling, Q and C remain
nontrivially coupled in a purely kinematic way: any changes
in C or Q perturb the stress �, which in turn perturbs the
flow field v, which in turn drives both Q and C. Accordingly,
even without any thermodynamic coupling, we find in what
follows a rich array of regimes in which the dynamics of Q
and C show strong coupling. We therefore defer the case of
true thermodynamic coupling to Sec. VI C.

As already noted, in the limit in which we simply remove the
polymeric and active components (GC = κ = χ = ζ = 0),
the model reduces to the Beris-Edwards theory of liquid
crystals. Removing instead the liquid-crystalline compo-
nent (GQ = K = κ = χ = 0) recovers the Johnson-Segalman
model of polymeric fluids. These separate models have been
studied comprehensively in the earlier literature and we do not
consider them further here.

Note finally, and importantly, that in the limit τC → ∞ our
polymer behaves as an elastomer, without any local mechanism
for stress relaxation. At zero activity, our model then describes
a passive nematic elastomer [38].

III. SIMULATION DETAILS

A. Geometry and boundary conditions

We consider a 2D slab of active viscoelastic matter confined
between parallel plates separated by a distance Ly in the y

direction and of length Lx in the x direction. At the plates we
choose boundary conditions of no slip and no permeation for
the fluid velocity v,

vα = 0 at y = {0,Ly} ∀α,

and zero-gradient boundary conditions for Q and C,

∂yQαβ = ∂yCαβ = 0 at y = {0,Ly} ∀α,β.

In the direction x parallel to the plates we adopt periodic
boundary conditions for all variables.

The adoption of a zero-gradient boundary condition for
the polymeric conformation tensor C is standard practice
in the literature on shear banding, though it remains to be
justified microscopically. A zero-gradient boundary condition
on the nematic order parameter, allowing free rotation of
Q at the wall, has been used in some previous studies of
active materials [39,40], whereas other studies have adopted
anchoring boundary conditions [41]. Recent work comparing
both these boundary conditions has shown the essential
physics to be qualitatively unchanged by the choice made [5],
particularly at large activities where flowing states develop
structure on a length scale much smaller than the system size.

Despite this, we attach the following note of caution. In
Sec. IV below we calculate the critical threshold activity
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required for the onset spontaneous flow, starting from an
initial base state of no flow and a perfectly ordered director
field. Crucially, we will find this threshold to depend strongly
on the orientation of the director in that initial state: States
where the director is initially aligned in the x and y directions
become separately unstable at activities an order of magnitude
apart. That observation in turn has important implications for
the boundary condition on Q, because a boundary condition
that favors anchoring of the director parallel (perpendicular)
to the walls would be likely to favor an initial condition in
which the director is aligned in the x (y) direction, leading to
different threshold activities in each case. This suggests that,
in some instances, the choice of boundary conditions can have
an important effect on the system’s behavior. Indeed, recent
experiments demonstrate that living liquid crystals, in which
conventional liquid crystals are made active by the addition of
swimming bacteria, can be influenced by anchoring boundary
conditions [42].

On the other hand, the adoption of a zero-gradient boundary
condition considerably simplifies our linear stability analysis
below, because it permits a spatially homogeneous base state.
This in turn means that heterogeneous perturbations to that
base state can easily be expressed in a cosine basis. In contrast,
anchoring boundary conditions could lead to inhomogeneous
base states, complicating the analysis. Accordingly, we work
with zero-gradient boundary conditions throughout.

We restrict the fluid velocities to lie in the x-y plane, setting
vz = 0, and assume translational invariance of all variables
along z. In some calculations we further assume translational
invariance along x, restricting our states to vary only in one
dimension, along y. However, we work throughout with 3D
tensors for both Q and C, allowing nonzero components Qαβ

and Cαβ for α,β = x,y,z. In principle, this could allow the
principal axis (director) of Q and/or C to point out of the
x-y plane of the simulation. Analyzing our numerical results,
however, we find in practice that in most of our simulations
Q and C do remain confined to the x-y plane [43,44].
We therefore expect the key physics to be robust to the
dimensionality of the order parameter tensors [45].

B. Units and parameters

We work in units of length such that the gap size Ly = 1, of
time such that the liquid crystal’s local relaxation time τQ = 1
and of mass such that its characteristic modulus GQ = 1. The
value of the parameter ηQ = GQτQ that controls the passive
nematic viscosity is then also equal to unity. We work in the
creeping flow limit of zero Reynolds number, setting ρ → 0.
We use a cell aspect ratio Lx/Ly = 4.

To enable a direct comparison with previous numerical
studies of active matter without polymer present [5], we fix
the solvent viscosity η = 0.567 throughout. In the Q sector of
the dynamics we set the isotropic-nematic control parameter
γ = 3 so that the passive liquid crystal lies well within
its nematic phase.1 We set the flow-alignment parameter at
ξ = 0.7, which lies within the flow-aligning regime.

1This value in fact corresponds to the spinodal stability limit of the
isotropic phase.

TABLE I. List of key dimensionless parameters. Hereafter we
drop the tildes for clarity.

Symbol Values explored Parameter

ζ̃ = ζ

GQ
0.001 → 10 extensile activity

�̃ ≡ K

GQL2
y

10−5 → 6.4 × 10−4 diffusion constant

τ̃C ≡ τC

τQ
10−2 → 106 → ∞ ratio of relaxation times

G̃C ≡ GC

GQ
ηC/τC = 10−6 → 102 polymer modulus

χ̃ ≡ χ

GQ
0 � χ 	 GQ,GC explicit coupling strength

In the polymer sector we set the slip parameter a = 1 such
that the Johnson-Segalman model reduces to the Oldroyd-B
model. This eliminates any possibility of a shear-banding
instability originating purely from the polymer dynamics.
Theoretical studies suggest that this value, which is widely
adopted for flexible polymers, may also be reasonable for
dense cross-linked filaments [46,47].

With many of the model’s parameters having been fixed
as just described, there remain only four to be explored
numerically: the activity ζ , a diffusivity parameter � (defined
below) that governs relaxation of spatial gradients in the
system, the polymer relaxation time τC and its modulus GC ,
and (when nonzero) the coupling constant χ . In our chosen
units, these are adimensionalized as summarized in Table I.
The tildes denote adimensional quantities, but our units have
been chosen to make the tildes redundant and we now drop
them.

Table I also shows the representative ranges that we explore
numerically for these parameters. While these are chosen
on the basis of order-of-magnitude estimates at best, they
might reasonably describe the recent experiments of Sanchez
et al. on an extensile kinesin-microtubule mixture akin to a
cytoskeletal gel [4], where the level of activity was varied
via the concentration of ATP. In Ref. [48], the modulus of
a (contractile) actin gel was found to increase by a factor
of 10 compared to the passive case in the presence of myosin
motor activity, suggesting an upper bound to the dimensionless
activity parameter of ζ/GQ ≈ 10.

In our model, the polymer could in principle describe
a range of viscoelastic behaviors within the cell, including
the effects of the cytosol, which comprises entangled protein
filaments and organelles [49]. To encompass this diversity,
we vary the polymer relaxation time from τC = 10−2, for
which the polymeric dynamics are rapid and only contribute
extra viscosity to the fluid as a whole, to τC → ∞, where the
polymer effectively acts as an elastomeric solid.

Throughout most of what follows we assume a constant
value of ηC ≡ GCτC , which controls the polymer viscosity,
setting ηC = 1. To maintain this between runs in which the
polymer relaxation time τC changes, the polymer elastic
modulus GC must change in inverse proportion to τC .
This assumption of a constant polymer viscosity, however,
is relaxed in those sections where we consider the “true”
elastomeric limit τC → ∞ (at a fixed value of GC) of an active
nematic in a cross-linked polymeric background.

The crossover length scale at which elastic distortions in
a passive nematic compete with its bulk free energy is 
Q ≡
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√
K/GQ. Recasting the Q constitutive equation (6) in this

notation, the diffusive term in the molecular field then becomes

2
Q

τQ
∇2Q. The diffusive JS model prescribes an analogous term

in the polymer sector, with coefficient 
2
C/τC [33]. In most of

our numerical runs we assume these to be equal, setting

K

ηQ

≡ 
2
Q

τQ

= 
2
C

τC

≡ �. (12)

Note that taking the elastomeric limit τC → ∞ at a fixed
value of the diffusivity parameter � means taking l2

C → ∞ in
tandem. In some places below we instead consider fixed lC =
lQ. Taking the elastomeric limit in that case then eliminates
the diffusive term �C = l2

C/τC from the polymer dynamics;
setting lC = lQ is then the same as setting lC = 0 in this limit.
However, many of our 2D simulations then show an unphysical
instability that leads to structure on the scale of the numerical
grid. The retention of finite �C = � as τC → ∞ avoids this
problem; we discuss the issue further in Sec. VI B.

Values for � are then selected so that the associated length
scale lQ obeys �x < 
Q 	 Ly , where �x is the numerical
grid size (for which Lx/1024 or Lx/2048 is a reasonable
lower bound, constrained by a maximum feasible number
of grid points Nx = 1024 or 2048). In this way, the spatial
structures predicted by the model are well resolved on the
scale of the numerical mesh and also fit comfortably within
the simulation box. The velocity correlation length for kinesin
microtubule mixtures has been estimated at lv ≈ 100 μm [4]
and if we assume that our length scale 
Q is an order of
magnitude smaller than this [45], the range of values of lQ that
we explore numerically would imply a channel width in the
range 400 μm–3 mm, as might describe a typical microfluidic
device.

As noted above, throughout most of what follows we disable
explicit thermodynamic coupling between Q and C by setting
χ = 0 and κ = 0. The only remaining coupling between Q
and C is then purely kinematic, caused by the two components
sharing a common fluid velocity v. In Sec. VI C we move
finally to address the case of explicit thermodynamic coupling
with χ �= 0.

C. Numerical details

In our numerical scheme we evaluate spatially local terms
in both constitutive equations using an explicit Euler time-
stepping scheme. To solve the Stokes equation we use a stream
function formulation, with a hybrid numerical scheme in which
gradient terms in the x and y directions are computed using
Fourier and Crank-Nicolson methods, respectively [50,51].
Spatially diffusive terms in the constitutive equations are
likewise solved using this hybrid approach. Advective terms
are computed using third-order upwind differencing.

We performed the following checks of our numerics. For
each run we verified the results to be robust against halving
either the spatial mesh size or the time step. Note, however,
that because of the erratic (and quite possibly chaotic) nature of
many of the dynamical states explored, converging individual
trajectories is not a realistic prospect. We instead performed
convergence tests on time-averaged quantities and on the
overall characteristics of states in the phase diagram. Finally,

in our nonlinear runs we have carefully checked the behavior
in the early stages of instability for consistency with the growth
rates found from our linear stability analysis.

IV. LINEAR STABILITY ANALYSIS

In this section we perform a linear stability analysis of
an initially homogeneous, nonflowing base state to determine
the regions of parameter space in which such a state is
linearly unstable to the formation of a heterogeneous state
with spontaneous flows. Doing so enables us to understand
the key instabilities present in the model and to form a helpful
roadmap in selecting parameter values for the much more
computationally expensive nonlinear runs in later sections. We
set the explicit thermodynamic couplings to zero throughout
this section: κ = χ = 0.

A. General procedure

We consider an initially homogeneous, quiescent, uniaxial
base state with

Qαβ = q(nαnβ − δαβ), (13a)

Cαβ = δαβ, (13b)

∂αvβ = 0. (13c)

Here q is the magnitude of the nematic order parameter
and nα its director. We consider two alternative choices for
the initial director field: n̂ = (1,0,0) and (0,1,0), oriented
parallel and perpendicular to the walls, respectively. Note that,
although we have specified the Qαβ of this initial base state
to be uniaxial, our calculations for departures from the base
state do not impose that restriction. The polymer is initially
undeformed, consistent with the absence of velocity gradients;
with our boundary conditions this absence also implies vα = 0
in the base state such that the fluid is initially at rest.

We now examine the linear stability of this base state to
perturbations that are heterogeneous in one spatial dimension,
with wave vector in the flow gradient direction y. Within
this 1D assumption, the condition of fluid incompressibility
further demands that the only element of the velocity gradient
tensor that might become nonzero is γ̇ ≡ ∂yvx . To simplify the
notation, we collect all the relevant variables into the quantity
φ = (Q,C,γ̇ ). To the base state φ = (Q,C,γ̇ ) prescribed in
Eq. (13) above, we then add Fourier-mode perturbations

φ = φ +
∑

k

φk(t)cos(ky), (14)

with small amplitudes φk = (Qk,Ck,γ̇ k). Our boundary condi-
tions at y = 0,Ly require that the wave vector k takes discrete
values k = πm/Ly , with integer m.

Substituting Eq. (14) into the model equations derived in
Sec. II and expanding in powers of the mode amplitudes gives,
at first order, a linearized equation set for the dynamics of the
perturbations:

∂tpk = Mk · pk, (15)

where pk ≡ (Qk
xx,Q

k
xy,Q

k
yy , Ck

xx,C
k
xy,C

k
yy)T . Note that pk

contains only a subset of the full list of variables originally
specified in φk . The reasons for this are twofold. First, the

032702-5



E. J. HEMINGWAY, M. E. CATES, AND S. M. FIELDING PHYSICAL REVIEW E 93, 032702 (2016)

Stokes equation requires ∇ · � = 0, with � the total stress
tensor. This enables us to express γ̇ k directly in terms of Qk

and Ck as

γ̇ k = −1

η

(
�k

A + �k
Q + �k

C

)
xy

,

in an obvious notation. This eliminates γ̇ k as a dynamical vari-
able: Physically, the shear rate is enslaved to the viscoelastic
stress components by the requirement of instantaneous force
balance in the limit of creeping flow.

Second, we find that the set of components Qk
αz and Ck

αz

evolve independently from the xx, xy, and yy components
contained in p; this z-related set furthermore always has
negative eigenvalues, rendering them stable. Accordingly, the
only dynamical variables relevant to us are those listed in p
above.

The eigenvalues of the matrix Mk then determine whether
the initial base state is stable or unstable to the growth
of perturbations. Any eigenvalue with a positive real part
corresponds to an unstable mode that grows exponentially
(in this linear regime), taking the system away from the
initial homogeneous nonflowing base state and towards a
heterogeneous state with a spontaneous flow.

In what follows we seek a threshold value of the activity
at which the base state first becomes linearly unstable, with
the values of the other model parameters held fixed. Sweeping
the activity level upward, the critical threshold ζc at which
instability first sets in is the value at which

Re(ω+) = 0, (16)

where ω+ is the eigenvalue with the largest real part.
It is possible to show that the only nontrivial (potentially

unstable) modes of Mk have eigenvalues ω± given by

2ω± = −b ±
√

b2 − 4c, (17)

where

b = a2GC

η
+ �

η

(
2GQ�
2

Qk2 − ζ
) + 1 + 
2

Ck2

τC

+ 
2
Qk2

τQ

(18)

and

c = 
2
Qk2

τQ

a2GC

η
+ �

η

1 + 
2
Ck2

τC

(
2GQ
2

Qk2� − ζ
)

+ 
2
Qk2

τQ

1 + 
2
Ck2

τC

, (19)

with

� =
{

(5ξ − 3)/12 for n̂ = (1,0,0)

(5ξ + 3)/12 for n̂ = (0,1,0).
(20)

For each value of �, then, two different modes of instability are
possible as determined by Eq. (17). We term these the viscous
and elastomeric instabilities and explore them in the next
two sections, respectively. For each such mode of instability,
the activity threshold depends on �. This in turn depends
on whether the initial director obeys n̂ = (0,1,0), for which
the growing mode involves a bend deformation, or obeys
n̂ = (1,0,0), for which it involves splay.

B. Viscous instability

For the first mode of instability, the discriminant b2 − 4c in
Eq. (17) remains positive and the eigenvalues of Mk are purely
real. The condition Re(ω+) > 0 for the onset of instability
then simplifies to the condition c < 0. Predividing c by the
final term on the right-hand side of Eq. (19) and multiplying
by η then gives the conditions for instability as

a2GCτC

1 + 
2
Ck2

+ �


2
Qk2/τQ

(
2GQ
2

Qk2� − ζ
) + η < 0. (21)

We identify the four terms on the left-hand side as the wave-
vector-dependent zero-shear viscosities associated with the
polymer, the passive nematic stress, the active nematic stress,
and the solvent, respectively. We can therefore rewrite this
criterion as

ηk
total = ηk

C + ηk
Q,passive + ηk

Q,active + ηk < 0, (22)

where in fact ηk
Q,passive and ηk are independent of k. Each term

in Eq. (22) is positive, apart from the term ηk
Q,active. A simplified

analysis, which casts the full tensorial nematic order parameter
Q in a simplified form in terms of a director n̂ with a fixed
degree of nematic ordering [52], then suggests that

ηk
Q,active = −ζ × �


2
Qk2/τQ

= ∂�k
Q,active

∂nk
× ∂nk

∂γ̇ k
, (23)

where the multiplication symbols serve to emphasize the
correspondence of terms between the two expressions. In
this equation, an initial base state director orientation along
x̂ is linked to a director perturbation δn in the y direction,
corresponding to a splay instability, whereas an initial base
state director along ŷ is linked to a perturbation δn in the
x̂ direction, corresponding to a bend instability. Recall that
the perturbation wave vector k is in the ŷ direction in all
these 1D calculations. [Note that all other analytical and
numerical results employ the full Q formulation, with the
exception of Eq. (27), where we make the analogous argument
for the elastomeric instability.] Within Eqs. (22) and (23)
we recognize the mechanism that drives this instability as
follows: A perturbation in the shear rate causes a perturbation
in the director orientation, which in turn causes a perturbation
in the active contribution to the stress field, which must
provide a counterbalancing contribution from the other stress
components to maintain force balance. The two shear rate
perturbations in this loop are in the same sense, signifying
positive feedback. Rearranging Eq. (21), we find the critical
activity for the onset of instability to be

ζ visc
c = 
2

Qk2
/
τQ

�

[
a2GCτC

1 + 
2
Ck2

+ 2GQτQ�2 + η

]

= rQ

�

[
ηk

C + ηk
Q,passive + ηk

]
, (24)

where we recognize rQ ≡ 
2
Qk2/τQ as the on-diagonal rate

of relaxation of a perturbation to the director field at
wavelength k.

For values of the activity just above threshold, the pertur-
bations grow very slowly. They furthermore do so without
any oscillatory component because the eigenvalues are real
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in this case. Relative to this slow growth, the fluid’s intrinsic
relaxation time scales τC and τQ become infinitely fast as one
approaches the threshold. Accordingly, the fluid’s resistance to
this instability appears only via its zero-frequency viscosities
ηC and ηQ: The relaxation times τC and τQ cannot appear
in Eq. (22) independently of these viscosities. The effect of
the polymer is therefore simply to increase the fluid’s overall
viscosity, delaying the onset of instability. The dependence of
the threshold on ηC = GCτC is thus independent of whether
τC is varied at fixed GC or GC at fixed τC . Accordingly, we
call this mode the viscous instability in what follows.

In view of the relatively trivial role of the polymer in
determining the onset of this viscous instability, we expect
the result just obtained to match the one in the earlier literature
for a purely nematic active fluid, without polymer. Indeed,
substituting K ≡ 
2

QGQ recovers the criterion in the form
originally derived in Refs. [10,40], with an additional term
to account for the extra viscosity contributed by the polymer.

In the limit of infinite system size, k → 0 in Eq. (24),
we further recover the prediction ζ visc

c → 0, implying that a
bulk active nematic will be unstable for any level of activity,
however small [10,12]. One important prediction of the present
work is that this generic instability of a bulk active nematic
persists even with polymer present.

C. Elastomeric instability

An alternative mode of instability arises when the discrimi-
nant b2 − 4c in Eq. (17) is negative and the eigenvalues of Mk

have an imaginary part, suggesting a Hopf bifurcation with
oscillatory dynamics [53]. The criterion Re(ω+) = 0 for the
onset of instability then simplifies to the condition

b = a2GC

η
+ �

η

(
2GQ�
2

Qk2 − ζ
) + 1 + 
2

Ck2

τC

+ 
2
Qk2

τQ

< 0.

(25)

At a given wave vector k, we identity the five terms in
b as being respectively proportional to (i) the rate of change
of polymer stress during an impulsive strain, (ii) the rate of
change of passive nematic stress during an impulsive strain,
(iii) the rate of change of active nematic stress during an
impulsive strain, (iv) the on-diagonal rate of relaxation rc ≡
(1 + 
2

Ck2)/τC for a perturbation in the polymer conformation,
and (v) the on-diagonal rate of relaxation rQ for a perturbation
in the director field.

Therefore, we write the criterion for the onset of instability
as

1

η

d�k
C

dγ
+ 1

η

d�k
Q,passive

dγ
+ 1

η

d�k
Q,active

dγ
+ rC + rQ < 0.

(26)
Among the terms on the left-hand side, each is always
positive apart from the third. Following the approach described
previously for the viscous instability, in which we rewrite the
derivative in terms of the director field n, the third term reads

∂�k
Q,active

∂nk

∂nk

∂γ k
. (27)

We recognize the mechanism that drives this instability as
follows: A perturbation in the shear strain field causes a

perturbation in the director orientation, which in turn causes a
perturbation in the shear stress field, which in turn must cause
a perturbation in the strain field to maintain force balance.
The two shear strain perturbations in this loop are in the same
sense, signifying positive feedback. Indeed, this is essentially
the same mechanism as for the viscous instability above, but
with the strain rate replaced by the strain. Accordingly, we call
this mode the elastomeric instability.

Rearranging Eq. (25), we get an expression for the critical
activity for the onset of instability as

ζ elast
c = η

�

[
a2GC

η
+ 2GQ

�2

η
l2
Qk2 + 1 + l2

Ck2

τC

+ l2
Qk2

τQ

]

= 1

�

[
d�k

C

dγ
+ d�k

Q,passive

dγ
+ η(rC + rQ)

]
. (28)

In contrast to the viscous instability discussed above, at the
threshold of this new instability the perturbations grow subject
to a superposed oscillatory component that has a time period
prescribed by the imaginary part of the eigenvalue τω =
2π/Im(ω+). The presence of this time scale means that the
relative value of the polymer’s relaxation time is relevant to this
instability, in contrast to its unimportance to the viscous one:
τC enters Eq. (28) directly rather than merely via the viscosity
τCGC . Put differently, the polymer’s viscoelasticity is impor-
tant to this new instability, in contrast to the viscous instability,
which depends only on its viscosity. Two distinct thresholds
again arise for the elastomeric instability according to whether
the deformation corresponds to a bend or a splay in the director
field, which is in turn determined by whether the initial director
lies in the y or x direction as set by � [see Eq. (20)].

D. Viscous-elastomeric crossover

As described in the previous two sections, viscoelastic
active matter is predicted to exhibit two distinct modes of
instability: a viscous mode and an elastomeric one. The activity
thresholds for these two modes are compared in the phase
diagrams of Figs. 1 and 2.

As can be seen, the thresholds for the two instabilities
display qualitatively different dependences on the polymer
relaxation time τC and on the system size. Indeed, taking the
elastomeric limit τC → ∞ for any fixed GC and fixed 
C = 
Q

raises indefinitely the threshold for the viscous instability:
ζ visc
c → ∞. The fluid’s viscosity approaches infinity in this

limit, switching off the viscous instability entirely. In contrast,
the threshold for the onset of the elastomeric instability
remains finite even in the purely elastomeric limit τC → ∞:

lim
τC → ∞,

k → 0

ζ elast
c = a2GC

�
(29)

(where we have also taken the infinite system size limit for
clarity of expression). Crucially, then, this second instability
can arise even in the limit of an elastomeric solid, because it
involves perturbations in strain rather than strain rate.

Now consider instead fixing τC,GC , so that the polymer
viscosity remains finite, and taking the limit 
C = 
Q → 0.
This is equivalent to taking the limit of infinite system size
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10-4 10-3 10-2 10-1 100 101 102

ζ
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100
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104
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τC

decreasing
lQ / Ly

FIG. 1. Phase diagram showing the threshold activity for the onset
of the splay mode of the viscous (solid lines) and elastomeric (dashed
lines) instabilities, for k = π/Ly . The unstable region is to the right
of the threshold curve in each case. The dotted lines enclose the
regime in which the eigenvalues have an imaginary contribution,
signifying oscillatory dynamics. Sets of curves from left to right have

2

C = 
2
Q = 10n with n = −5,−4,−3,−2. For all curves the polymer

modulus GC = 0.1.

Ly → ∞, for which the threshold for the viscous instability
tends to zero: For a bulk system, any level of activity, however
small, triggers this instability. In contrast, the activity threshold
for the elastic instability remains finite even in this bulk limit.
These two facts can be seen in Fig. 1.

The physical origin of this important difference in system-
size dependence can be understood by comparing the driving
terms for the two modes. The term ∂n/∂γ̇ in the viscous crite-
rion [recall Eq. (23)] scales as 1/k2, because an infinitesimal
shear rate perturbation can cause finite rotation of the director
field in the limit of k → 0. (This stems from the Goldstone

10-3 10-2 10-1 100 101 102 103

ζ
10-2

100

102

104

106

τC
bend splay

FIG. 2. Phase diagram showing the threshold activity for the onset
of the viscous (solid lines) and elastomeric (dashed lines) instabilities,
for k = π/Ly . Leftmost (black lines) and rightmost (red lines) curves
correspond to the bend and splay modes of instability, respectively.
The unstable region is to the right of the threshold curve in each case.
The dotted lines enclose the regime in which the eigenvalues have
an imaginary contribution, signifying oscillatory dynamics. For all
curves GC = 0.1 and l2

C = l2
Q = 10−4.

mode associated with the spontaneously broken rotational
symmetry. A nematic phase exerts no restoring force against
global rotations of a state of uniform Q, implying by continuity
that the force likewise vanishes in the limit k → 0 [54].) In
contrast, the term ∂n/∂γ in the elastic criterion [recall Eq. (27)]
is finite at low k, because small strain perturbations cause only
small changes in director, even in the limit of zero wave vector.

With these remarks in mind, we now see that dominance of
the viscous instability over the elastomeric one (or vice versa)
will depend on the ratio τC/τQ of the polymer and nematic
relaxation times and also on the system size, measured in
relation to the lengths lQ,lC (as set by the gradient terms in
the equations of motion). For any fixed system size, below
a critical value of the polymer relaxation time τC = τ ∗

C the
viscous instability threshold ζ visc

c lies below the elastic one:
The viscous instability arises first on increasing the activity and
ζ visc
c sets the stability criterion for our base state. In contrast, for

τC > τ ∗
C the elastomeric instability arises before the viscous

one and ζ elast
c sets the relevant criterion.

This crossover value τ ∗
C can easily be shown to obey

τ ∗
C ≈ (

1 + 
2
Ck2

) τQ


2
Qk2

, (30)

which for large system sizes simplifies to τ ∗
C ≈ τQ/
2

Qk2. This
form can be understood as follows. The quantity τQ/
2

Qk2 is the
orientational relaxation time for long-wavelength distortions
in the nematic phase, which diverges as k → 0. (Recall that
this is a Goldstone mode, with no penalty for global rotations
in the director field.) For polymer relaxation times faster than
this τC < τ ∗

C , the polymer behaves in a viscous way relative
to the nematic mode and the viscous instability dominates.
In the opposite case the polymer behaves elastically and the
elastomeric instability dominates.

In the limit of infinite system size the crossover value
diverges: τ ∗

C → ∞. In this bulk limit the viscous instability is
triggered first (at zero activity threshold) for all values of τC ,
whereas the threshold of the elastomeric instability remains
finite even for a bulk sample. As noted in the Introduction,
however, many biological environments are strongly confined.
This motivates the use of a finite box size in our simulations and
a correspondingly careful exploration of both the viscous and
elastomeric instabilities. For our typical choice of parameter
values given in Table I, the crossover between the two
instabilities occurs at τ ∗

C ≈ ηQ/Kk2 = O(103τQ).

V. NONLINEAR DYNAMICS (ONE DIMENSION)

In the previous section we derived the activity threshold for
linear instability to a state of spontaneous flow in an active
nematic with added polymer. We now use those results as a
roadmap to explore the model’s full nonlinear dynamics. We
shall restrict ourselves in this section to 1D calculations, with
heterogeneity in the y direction only, deferring a study of 2D
effects to Sec. VI below. In each run we initialize the system in
the homogeneous base state given by Eq. (13), with the director
n̂ aligned in the x direction. Accordingly, any instabilities that
arise below originate from splay deformations. We subject
this base state to small added perturbations at the start of
the run of the form δ ˜̇γ = ∑N

m=1 δAm cos(πmy/Ly), where
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δ ∼ O(10−10), Am is a random number drawn from a uniform
distribution on [−1,1], and N = 32. In this way, the early-
time regime of these nonlinear runs acts as an independent
cross-check of the linear stability calculations in the previous
section.

Our model has three competing local relaxation times:
the liquid-crystal relaxation time τQ, the polymer relaxation
time τC , and the active forcing time scale τa = η/ζ , which
was identified in Ref. [55] by balancing the active modulus
ζ against the solvent viscosity η. As discussed previously,
the first of these, τQ, is our unit of time. We now examine
the competition between the second and third time scales by
producing phase diagrams in the (ζ,τC) plane. Related to τa is
the active time scale τ̄a = η/(ζ − ζc), with the denominator
shifted to account for the fact that in a finite system the
critical threshold for the onset of activity is nonzero. (Note
that τ̄a → τa as Ly → ∞ or ζ → ∞.)

Whenever the active time scale is shorter than the two
relaxation times, we can expect oscillatory dynamics [55].
We will confirm this expectation: first (in Sec. V A) for a
material of fixed polymer viscosity ηC = 1, where we find the
dominant period of oscillation τosc to be set by τC , and then
(in Sec. V B) for an elastomeric material with τC → ∞, where
instead we find τosc ∝ τ̄a . In a biological context, oscillatory
states have been observed in fibroblast cells [56] with a period
of oscillation proportional to the myosin motor activity. Similar
states have also been studied in Drosophila embryos [57],
where oscillations are thought to play a key role in cell shape
formation (morphogenesis).

A. Phase diagram: Fixed viscosity

We begin by considering the case of a fixed poly-
mer viscosity ηC = GCτC = 1. (Recall that the passive
nematic viscosity ηQ = 1 by our choice of units and the
solvent viscosity η = 0.567 for consistency with Ref. [5].)
Between runs we vary the polymer relaxation time τC and
in tandem therefore also vary GC = 1/τC . This will allow us
to confirm the direct role of the polymer relaxation time τC

in the dynamics, while removing any potential complications
arising from variations in the overall viscosity. In varying τC

in this section we choose to keep 
C = 
Q fixed. Note that
this effectively eliminates the diffusivity �C = 
2

C/τC from
the polymer dynamics in the elastomeric limit τC → ∞. The
predictions of our linear stability analysis in this case are
shown in the (ζ,τC) plane in Fig. 3, with four sets of curves
corresponding to different values of 
C = 
Q.

The results of our nonlinear simulations at fixed 
Q =

C = 0.004 are shown in Fig. 4, with the linear stability
thresholds also repeated on the same axes for comparison. The
green shaded region indicates when oscillatory instabilities
are expected from the linear stability analysis at any point
in the discrete spectrum of modes k = mπ/Ly (cf. Fig. 3
where oscillatory instabilities are also marked with shaded
regions, but where we instead fix k = π/Ly and plot multiple
values of 
Q = 
C). As can be seen, the nonlinear results
are consistent with those of the linear stability analysis. For
values of the activity below ζc = min(ζ visc

c ,ζ elast
c ) we observe

quiescent states (black crosses) in our nonlinear simulations,
consistent with the analytical prediction of a stable base state

10-4 10-2 100 102
ζ

100

102

104

106

τC

decreasing
lQ / Ly

FIG. 3. Phase diagram showing the threshold activity for the onset
of the viscous (solid lines) and elastomeric (dashed lines) instabilities
in the splay mode, for k = π/Ly . The unstable region is to the right
of the threshold curve in each case. The dotted curves enclose the
regime in which the eigenvalues have an imaginary contribution,
signifying oscillatory dynamics (shaded regions are both oscillatory
and unstable for k = π/Ly). Sets of curves from left to right have
l2
C = l2

Q = 10−5,−4,−3,−2. For all curves the polymer viscosity ηC =
GCτC = 1.

in this regime. For values of the activity above ζc we observe
spontaneously flowing shear-banded states (black circles).

These spontaneously flowing states may be categorized
according to whether they approach a steady state at long times

10-3 10-2 10-1 100

ζ
100

102

104

106

τC

ζc
elast

ζc
visc

       _
200 τa

FIG. 4. Phase diagram showing the competing effects of the
activity ζ and the polymer’s viscoelastic relaxation time scale τC , for
fully nonlinear runs in one dimension with fixed polymer viscosity
ηC = 1. Marked are the critical activities ζ visc

c [Eq. (22)] (black line)
and ζ elast

c [Eq. (28)] (red line) predicted by the linear stability analysis.
Nonlinear states are denoted by symbols: quiescent (crosses), static
bands (open circles), oscillating bands (striped circles), or oscillating
and flipping bands (closed circles) where the flow switches direction.
In the green shaded regions our linear stability analysis predicts
unstable oscillatory growth, at some wave vector k. Examples of the
states highlighted with the triangle and square are given in Fig. 5 (left
and right, respectively). Oscillations are observed for τC/τ̄a > 200
(blue curve). The parameters are ηC = 1 and 
Q = 
C = 0.004.
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FIG. 5. Space-time plots corresponding to the blue triangle and red square in the phase diagram of Fig. 4. The color scale represents ηγ̇

(top row) and �C
xy (bottom row). The left column shows the state with oscillating interface (ζ = 3.2 and τC = 103) and the right column the

state with oscillating interface and switching flow direction (ζ = 3.2 and τC = 106).

or instead oscillate. In particular, for activity values exceeding
the threshold for the viscous instability, but below that for
the elastomeric instability, we observe steady shear-banded
states (open circles), as seen in earlier studies of the model
in the absence of polymer [5]. In contrast, for values of the
activity that also exceed the threshold for the elastomeric
instability and roughly correspond to τC/τ̄a > 200 (blue line
in Fig. 4), we find time-dependent states in which the shear
bands oscillate with a period set by the viscoelastic relaxation
time scale τC . No counterpart to these oscillatory states
was observed in the earlier study without polymer [5]. This
confirms our view that the polymer relaxation time is integral
to their dynamics.

The separation of time scales (large τC/τa) required to see
these oscillations is reminiscent of earlier work addressing
rheological chaos [58]. Intuitively, if the active time scale
τa = η/ζ is sufficiently long, then both polymer and liquid
crystal can relax any activity-driven deformation and the
resulting shear-banded steady state is time independent.
Conversely, if the polymer cannot relax, the activity-induced
stress quickly enough, the polymer dynamics lag behind,
resulting in oscillations. This is also somewhat analogous to
the mechanism described in Ref. [55], although in that case the
coupling was to a slowly diffusing concentration field rather
than a slowly relaxing polymer.

To gain further insight into these oscillatory shear-banded
states, we now explore in detail two particular examples
denoted, respectively, by the blue triangle and red square in
the phase diagram of Fig. 4.

(i) Oscillatory interface with a fixed flow direction. The first
example, denoted by the blue triangle in Fig. 4, corresponds
to a time-dependent state in which the position of the interface
between two shear bands oscillates as a function of time. See
Fig. 5 for a space-time plot of the shear rate γ̇ (top left) and
of the polymer shear stress �C

xy (bottom left). The time period
is set by the polymer relaxation time τC , making it clear that
these oscillations are governed by the viscoelastic dynamics of
the polymer. As the interface position deviates from the center,
large polymeric stresses are seen to develop in the narrower
band until eventually the interface turns around and returns

in the opposite direction, relaxing the polymer somewhat. The
total shear stress and integrated throughput � = ∫ Ly

0 vxdy also
have time-dependent signals (not shown) with a period set
by τC .

In this example the sign of the throughput, i.e., the overall
direction of the flow, remains constant in time. This can be
seen by noting that the region of negative shear rate remains
always below the one of positive shear rate in Fig. 5 (top
left), meaning that the velocity profile is always overall nose
shaped and pointing to the left. (Note that a state with sustained
throughput to the right could equally well have developed had
we made small changes in the initial conditions.)

(ii) Oscillatory interface with a switching flow direction.
The second example is denoted by the red square in Fig. 4,
with space-time plots of γ̇ and �C

xy in Fig. 5 (right). Here
two distinct kinds of oscillation are seen in the course of any
run. On a slow time scale ≈2τC the flow periodically reverses
direction, as evidenced by the up-down switching between
the bands of positive and negative shear rate. Another, more
rapid, oscillation is evident: The throughput direction remains
the same, but the position of the interface fluctuates with
a mechanism resembling the one discussed in the previous
example above.

As already noted above, in this section we have kept
the values of 
C = 
Q fixed as the polymer relaxation time
changes. Had we instead chosen to keep 
2

Q/τQ = 
2
C/τC ≡ �

fixed as τC varied, the initial linear instability would not
be oscillatory. While a oscillatory linear instability does not
necessarily imply oscillatory nonlinear dynamics, our results
in this section demonstrate a reasonable correlation between
the two [compare the green region in Fig. 4 with oscillatory
banded states (shaded and closed circles)].

B. Spontaneous flow in elastomeric solids

The case of an active elastomeric solid can be approached
within our formalism by more than one route, yielding slightly
different limiting descriptions that may be appropriate to
different physical cases. One choice concerns the way in which
the infinite viscosity limit is taken; a second and independent
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FIG. 6. Phase diagram showing the threshold activity for the onset
of the viscous (solid lines) and elastomeric (dashed lines) instabilities
in the splay mode, for k = π/Ly . The unstable region is to the right
of the threshold curve in each case. Sets of curves from left to right
have �C = �Q = 10−5,−4,−3,−2. For all curves the polymer modulus
GC = 0.1.

choice concerns the behavior of the polymer stress diffusivity
�C . In the previous section we studied the dependence of
the model’s behavior on the polymer relaxation time τC at
fixed polymer viscosity ηC = GCτC = 1. We also fixed the
values of the microscopic length scales 
C = 
Q, in relation to
the macroscopic system size. In the regime of large polymer
relaxation times (τC � 106) we found sustained oscillations
in the system’s long-time response. Such large values of τC

correspond for all practical purposes to an elastomeric solid,
but with a tiny modulus GC to maintain the overall constraint
of fixed polymer viscosity ηC = GCτC = 1.

In this section we consider instead taking the “true” limit of
an elastomeric solid τC → ∞ at a fixed value of the polymer
modulus GC so that the polymer viscosity ηC = GCτC now
also diverges as τC → ∞. We also fix the value of the
diffusivity parameter 
2

Q/τQ = 
2
C/τC = �. In this way, taking

the limit τC → ∞ means taking the limit lC → ∞ also.
Our choice of nonzero polymer stress diffusivity �C =

� > 0 in the elastomeric limit is not obvious, since physically
there is no reason for lC to diverge in that limit. However,
we have found that in our 2D nonlinear work setting �C = 0
generally leads to a short-scale numerical instability unless
prohibitively small time- and spatial-step sizes are used. We
explore this issue further in Sec. VI B, but even there set
�C = � to retain direct comparability of parameters between
the 1D and 2D numerics.

The predictions of our linear stability analysis in this case
are shown in Fig. 6 in the (ζ,τC) plane, for fixed GC = 0.1
and various fixed values of �. In this figure, τC → ∞ is
approached by taking the ordinate to infinity. Note how Fig. 6,
which has fixed GC and �C , differs from Fig. 1, which
had fixed GC and 
C . In particular, the viscous instability is
not eliminated when the elastomeric limit is taken at fixed
�C in Fig. 6, apparently because the polymer stress can
still redistribute itself spatially by diffusion despite having
a divergent local viscoelastic relaxation time τC . (The latter
ensures that the volume-averaged polymer stress cannot decay;

10-2 100 102

ζ
10-4

10-2

100

GC

FIG. 7. Phase diagram showing the threshold activity for the
onset of the viscous (solid lines) and elastomeric (dashed lines)
instabilities in the splay mode, for k = π/Ly . The unstable region
is to the right of the threshold curve in each case. The dotted line
shows the locus where b2 − 4c = 0; when 
2

Q/τQ = 
2
C/τC = � this

quantity never becomes negative and therefore the linear instability is
never oscillatory. Sets of curves from left to right have �C = �Q =
10−5, −4, −3, −2. For all curves the polymer relaxation time τC = ∞.

see Sec. VI B for further discussion.) Furthermore, the regime
in which an oscillatory instability is predicted has been
eliminated in Fig. 6 compared to its strong presence in Fig. 1.
Linear stability results calculated in the limit τC = ∞, again
at various fixed �Q = �C ≡ �, are shown in the plane of
polymer modulus and activity (ζ,GC) in Fig. 7.

With these linear stability results in mind, we now perform
nonlinear runs in the elastomeric limit τC = ∞ for the par-
ticular case of GC = 0.1 and � = 10−4. For these parameters
the critical activity threshold is ζc = 2.41. Accordingly, we
simulate a sequence of activity values ζ = 2–3.2 straddling
this threshold. The results are shown in Fig. 8. Figure 8(a)
shows the time evolution of the (largest mode of the)
perturbation to the base state, clearly showing exponential
decay (linear stability) for activity values ζ < ζc and early
time exponential growth (linear instability) for ζ > ζc, giving
way to saturation at long times due to nonlinear effects. We
have checked that the slopes of the lines in Fig. 8(a) correspond
to the eigenvalues predicted by the linear stability analysis.

For the particular run ζ = 3.2 we now examine the system’s
behavior at long times, once it has settled to the ultimate
nonlinear attractor of the dynamics. As before, we find states
that are shear banded. Note, however, that conventional static
shear bands are forbidden by the elastomeric nature of the
polymer: A static band with a fixed nonzero shear rate would
indefinitely load the polymer, leading to divergent polymer
stresses. Indeed, inspecting the shear-rate profiles γ̇ (y,t) in
Fig. 8(b), we see instead traveling bands of local shear
rate γ̇ = ±0.15 such that the fluid at any location in the
flow cell is alternately sheared forward and then backward.
Corresponding to this, the shear component Cxy of the polymer
stress [Fig. 8(b)] also alternates in sign. These results are
reminiscent of traveling density bands seen experimentally
in cytoskeletal extracts [59]. Note that the initial linear
instability is not oscillatory, consistent with the prediction in
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FIG. 8. One-dimensional simulations with infinite polymer re-
laxation time. (a) Evolution of shear-rate perturbations for a range of
activities ζ , showing growth for ζ > ζc (solid lines) and decay for
ζ < ζc (dashed lines). (b) and (c) Space time plots for ζ = 3.2 > ζc.
The color scale is (b) shear rate ∂yvx = γ̇ and (c) Cxy . The parameters
are τC → ∞, GC = 0.1, and � = 10−4.

our linear stability analysis that eigenvalues are purely real for

2

Q/τQ = 
2
C/τC = �; recall Figs. 6 and 7.

Because the polymer relaxation time scale τC is infinite in
these runs, the period of oscillation τosc must now be set by a
separate time scale. To identify this time scale we performed
simulations for a range of values of the activity ζ and solvent
viscosity η. In each, we measured τosc via the largest peak in
the Fourier series of the throughput as a function of time (see
Fig. 9 inset). Collecting the data from all these runs in Fig. 9,
we find reasonable evidence for the scaling

τosc ∝ τ̄a ≡ η/(ζ − ζc). (31)

Physically τ̄a is related to the time scale of active forcing
identified in Ref. [55]. As discussed in that study, if the active
forcing is faster than the relaxation time scales τ̄a < τQ 	
τC , both the nematic and polymer lag behind, resulting in
oscillatory behavior. Note, however, that for large values of
the activity the flow becomes increasingly aperiodic and τosc

becomes less clearly defined, resulting in minor deviations
from the suggested scaling law.

To summarize, we have shown both by linear stability
analysis and also by full nonlinear simulations (so far in

1900 2000t
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τa = η / (ζ − ζc)
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η = 1.134

FIG. 9. Dominant period of oscillation τosc versus the active time
scale τ̄a [Eq. (31)]. The inset shows the throughput time series for
ζ = 6.4 and η = 0.567, with τosc marked. The parameters are η =
0.284 (red circles), 0.567 (green squares), 1.134 (blue diamonds),
τC → ∞, GC = 0.1, and � = 10−4.

one spatial dimension) that an elastomeric active nematic
generically undergoes instability towards a spontaneously
flowing state that must be oscillatory, otherwise the polymers
would suffer infinite loading.

VI. NONLINEAR DYNAMICS (TWO DIMENSIONS)

In the previous section we saw a rich array of dynamical
states with heterogeneity in one spatial dimension. These
would clearly have been forbidden in any description that con-
strained the system to remain homogeneous in all directions
(zero dimensions). We now increase the dimensionality fur-
ther, to consider spatiotemporal dynamics in two dimensions.
Two features are immediately anticipated that were forbidden
in one dimension. One is the presence of ± 1

2 point defects
in the director field [8,9,45]. The other is the possibility of
extensional flow, which was forbidden by the constraint of fluid
incompressibility in a 1D flow field of the form v = v(y)x̂.

Consistent with these expectations, an earlier study of
active nematics (without polymer) indeed found a much richer
spectrum of phase behavior in two dimensions than in one
dimension [5]. We now briefly remind the reader of those
earlier findings, as a starting point from which to understand
the effects of polymer below. Accordingly, the model’s phase
behavior without polymer is summarized in Fig. 10 (top) in
the plane of (ζ,�), where � ≡ 
2

Q/τQ. The solid line shows
the linear instability threshold (22) for the onset of the 1D
viscous bending instability, given a homogeneous initial state
with the director n̂ along y. The dotted line is the counterpart
for the 1D viscous splay mode, given an initial director along
x. As expected, the instability manifests itself at high ζ and
low �, consistent with the fact that smaller system sizes (large
�) tend to be stabilizing.

In the same diagram, the results of numerical
runs performed without polymer in two dimensions
are shown by symbols. Runs are initialized
with n̂ along y, with a perturbation δQ̃αβ =∑32

n

∑32
m δAmn

αβ cos (πmy/Ly) cos (2πnx/Lx + θn
αβ), where
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FIG. 10. Phase diagrams in the plane of diffusivity � and activity
ζ , without polymer (top panel) and with polymer of relaxation time
τC = 4 and viscosity ηC = 1 (bottom panel). The solid line is the
threshold for the onset of a 1D bending instability starting from a
homogeneous initial state with the director n̂ along y. The dotted
line is the counterpart for a 1D splay instability given an initial
director along x. Symbols show the results of 2D numerical runs
with the director n̂ initially aligned along y (subject to perturbations
as described in the text). Triangles show 1D banded states, squares
oscillatory states, and circles unsteady or chaotic states. The dashed
line is the numerically observed crossover line ζ 2D

c beyond which
1D states always destabilize to the formation of 2D flows. Open and
closed symbols denote states with zero and nonzero net throughput,
respectively.

δ = 10−10, Amn
αβ is a randomly selected magnitude drawn

from a uniform distribution on [−1,1], and θn
αβ ∈ [0,2π ) is

a randomly selected phase (analogous perturbations are also
added to Cαβ when present). In the region where no linear
instability is predicted the system remains homogeneous and
quiescent (no spontaneous flow), even in these 2D runs. In
contrast, beyond the threshold of the (bend) instability we
find spontaneously flowing states, as expected. For activities
only just above threshold, the ultimate solution corresponds
to a steady 1D shear-banded state (triangular symbols), even
though these runs in principle allow heterogeneity in two
dimensions. In contrast, further into the unstable regime
we find fully 2D spontaneous flow states. At intermediate
activities we observe a range of oscillatory states, including
states in which defect pairs undulate along the channel;
these we denote by squares in Fig. 10. Spatially, these states
exhibit repeating structures at a length scale roughly set by
the channel width Ly . As the activity is increased (or �

decreased), these oscillatory states gain additional frequency
components when plotting a given scalar observable (e.g.,
throughput) against time. When there is no longer any
discernible periodicity in this signal, we term the state
aperiodic. In this limit the characteristic length scale of the
resulting nematic texture decreases [45,60] and the order
parameter fields lose any obvious spatial periodicity. The
numerically observed crossover line ζ 2D

c separating 1D from
2D states is shown as a dashed line.

In each run, once the system has attained its ultimate
attractor we measure the net throughput of fluid along the
channel in the main flow direction x. The criterion that

we adopt to represent significant throughput is discussed in
the Appendix. States meeting this throughput criterion are
represented in Fig. 10 by closed symbols and those without
significant throughput are shown by open symbols. As might
be expected, the 1D laminar banded states show significant
throughput. In contrast, most of the 2D states, with just
a few exceptions, lack any coherent throughput: The more
complicated velocity rolls associated with them have no overall
flow direction.

With the above discussion in mind, we now consider the
effects of adding polymer. We start in Sec. VI A by considering
a viscoelastic polymer with a fixed viscosity ηC = GCτC .
We then turn to the elastomeric limit τC → ∞ in Sec. VI B.
In Secs. VI A and VI B we restrict ourselves for simplicity
to the case of zero thermodynamic coupling between the
nematic and polymer, χ = κ = 0. (As discussed previously,
a strong kinematic coupling is however still present.) Finally,
in Sec. VI C we consider the effects of including explicit
thermodynamic coupling.

A. Viscoelastic active matter

In this section we consider a polymer with a finite vis-
coelastic relaxation time scale τC . To avoid any complications
associated with changing the overall viscosity, we consider
fixed ηC = GCτC . (Accordingly, between runs in which τC

progressively increases, GC is progressively decreased in
tandem.) We first explore the effects of polymer on the 2D
nonlinear dynamics by revisiting the (ζ,�) phase diagram
discussed above.

1. Long-time behavior: Active drag reduction

The bottom panel of Fig. 10 shows the phase diagram
of the model, with polymer now included, for a polymer
relaxation time τC = 4.0. Compared to the polymer-free case
(top panel), a dramatic difference is immediately apparent.
Whereas without polymer the regime of significant throughput
is confined predominantly to that of laminar 1D banded states,
with added polymer even the majority of the more complicated
2D time-dependent flow states show a significant throughput.
Three representative snapshot states with a significant through-
put are shown in Fig. 11.

To explore this further, we pick a single set of parameters
ζ = 3.2 and � = 2 × 10−5 representative of the regime of
fully developed active turbulence in Fig. 10 (for both τC = 0.0
and τC = 4.0) and perform a separate series of runs across
which we vary the value of the polymeric relaxation time
τC , exploring the full range from the Newtonian limit (for
the polymer) τC → 0 to the elastomeric limit τC → ∞.
(Recall that the polymer modulus GC must decrease in inverse
proportion to τC , given our fixed value of ηC = GCτC = 1;
likewise 
2

C must increase in proportion to τC to keep a fixed
value of �.)

For this series of runs, we plot in Fig. 12 the root-mean-
square fluid velocity vrms ≡

√
〈|v|2〉x, the mean throughput,

and the mean defect density [61]. (Each such quantity is time-
averaged across a run, after discarding the initial transient.)
As expected, in the regime of small τC where the polymer
acts simply as an additional solvent, none of these quantities
change with τC .
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FIG. 11. Representative snapshot states with net throughput, from
the τC = 4 phase diagram (Fig. 10 bottom panel): banded (ζ =
0.025 and � = 10−5), oscillatory (ζ = 0.6 and � = 6.4 × 10−4),
and chaotic (ζ = 1.75 and � = 8 × 10−5); the color scale indicates
(nxny)2. Defects of topological charge ±1/2 are identified by green
dots (+) and red squares (−).

In contrast, once τC > τQ the active stress has to work
against an increasingly elastic fluid and vrms decreases with
increasing polymer relaxation time. Indeed, for τC → ∞ the
polymer effectively arrests the flow altogether. (This holds only
for the final behavior, after discarding the initial transient; we
show below that this transient can in fact be long lived and
have its own rich dynamics.)

Despite this monotonic decrease of the root-mean-square
fluid velocity, the mean throughput has a nonmonotonic depen-
dence on τC . For small τC , the throughput is essentially zero,
consistent with the model’s limiting behavior in the absence
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FIG. 12. (a) Root-mean-square velocity vrms =
√

〈|v|2〉x and
mean throughput �. (b) Mean defect density n. Each quantity is
time averaged across a run, after discarding the run’s initial transient,
with the vertical bars denoting the standard deviation of the time
series. The parameters are ζ = 3.2, � = 2 × 10−5, and ηC = 1.

of polymer discussed above. As τC increases to become
comparable with τQ the throughput increases dramatically,
suggesting a more coherent flow state capable of sustaining a
net flow in one direction. (Indeed, not only does the mean
throughput increase but the fluctuations of the throughput
about this mean decrease.) Finally, for large τC the throughput
again decreases as the overall flow arrests.

This gradual transition with increasing τC to a state
of significant throughput, followed by arrest, suggests a
progressive increase in the spatial coherence of the flow with
increasing τC . Consistent with this, we see in Fig. 12(b) that
the defect density n in the nematic’s director field markedly
falls with increasing τC , with the onset of this decline roughly
coinciding with the peak in throughput. A strong correlation
between vrms and defect density has been noted previously in
Refs. [45,60,62].

We have demonstrated, then, that adding polymer to a
fluid showing fully developed active turbulence calms the
short-scale structure of the spontaneous active flow, decreasing
the nematic defect density and thereby increasing the flow
correlation length to give a more organized flow state, often
with a sustained net throughput [20,63].

For a passive Newtonian fluid displaying conventional
inertial turbulence in a pressure-driven pipe flow at high
Reynolds number [64], the addition of a small amount of
long-chain polymer is known to calm the flow and reduce
the ratio of imposed pressure gradient to throughput [65], in
an effect known as polymer drag reduction. The phenomenon
just described for our active fluid, whereby (zero-Reynolds-
number) active turbulence is calmed by the addition of
polymer, is strongly reminiscent of that effect and we term
it active drag reduction accordingly. The persistent coherent
motion to which it leads may have a biophysical analog
in cytoplasmic streaming, where it is believed that active
cytoskeletal materials such as actomyosin play a role in
generating coherent flows, facilitating the transport of nutrients
and organelles within the cell [26,27].

2. Transient dynamics: Extensional catastrophe

In the previous section we discussed the long-time behavior
of viscoelastic active matter in two dimensions, ignoring
the initial transient en route to the ultimate attractor of the
dynamics. We now turn to consider that initial transient.

Again we pick a single set of parameters (ζ = 2.2 and � =
4 × 10−5), representative of the regime of fully developed
active turbulence in the phase diagram of Fig. 10. We then
perform a series of runs, varying the polymer relaxation time
τC across the full range from τC → 0 to the elastomeric limit
τC → ∞. We again fix both the overall polymer viscosity
(ηC = 1) and the diffusivity �.

In each run we initialize the system as usual in a state that
is homogeneous and quiescent, with the polymer undeformed,
C = I. For the given parameters we expect perturbations to
grow exponentially until nonlinear effects become important;
this is confirmed in the early time growth dynamics in Fig. 13.
(Note that the time signals in Fig. 13 do not appear chaotic
until the turbulent state becomes fully developed, i.e., at later
times in the run.)
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FIG. 13. (a) Spatially averaged Deborah number. Marked as a
dashed line is the threshold Dec = 1

2 above which we might expect
nonlinear exponential growth in the polymer strain. (b) Spatial
average of Tr(C − I), quantifying the mean polymer strain. When
〈De〉 > Dec in (a), we indeed observe nonlinear exponential loading
of the polymer in (b). Upward curves have τC from 10−2 (red line) to
104 (blue line) with logarithmic spacing. The parameters are ζ = 2.2,
� = 4 × 10−5, ηC = 1.

The degree to which the polymer becomes deformed by this
instability, as measured by the growth in Tr(C − I), increases
with increasing τC . This is to be expected: Polymeric strains
build up at a rate set by the velocity gradients in the fluid
and relax at a rate set by 1/τC . Indeed, a polymer obeying the
Oldroyd-B equation will, if subject to an indefinitely sustained
simple shear flow of rate γ̇ , acquire a shear strain γ̇ τC and, if
subject to an indefinitely sustained extensional flow of rate
ε̇, acquire an extensional strain ε̇τC/(1 − 2ε̇τC) [66]. The
latter is an infamous result, predicting the polymers to suffer
unbounded deformation for any sustained extensional flow of
rate ε̇ > 1/2τC . (In reality this growth would ultimately be
cut off by finite chain extensibility or chain rupture, neither of
which is captured by the Oldroyd-B model.)

Although the actively turbulent flow states that develop
here do not subject any given fluid element to an indefinitely
sustained extensional flow, they do nonetheless include regions
with significant extension rates. To characterize these, we de-

fine a local extensional Deborah number De = τC

√
1
2 (D : D)

and take its spatial average 〈De〉. In view of our above
discussion of the Oldroyd-B model’s extensional catastrophe,
we might then reasonably expect a dramatic growth of polymer
strain in any regime where 〈De〉 > Dec ≈ 1

2 .
In confirmation of this, the time evolution of 〈De〉 is plotted

in Fig. 13(a) for each in our series of runs. For small τC (warm
colors), 〈De〉 remains small and the spatially average polymer
strain 〈Tr(C − I)〉 likewise remains modest. In contrast, for
larger τC (cold colors) 〈De〉 exceeds Dec ≈ 1

2 , leading to
a dramatic effect on the polymer conformation: Following
the initial linear instability, we observe a second period of

exponential chain stretching that generates huge polymer
strains [see Fig. 13(b)].

Any growth in the polymer strain gives a corresponding
growth in the polymeric contribution �C = GC(C − I) to the
stress. Recalling that GC = 1/τC for this series of runs, the
large values of τC for which dramatic chain stretching occurs
have correspondingly small values of GC . Accordingly, as long
as the polymer strain remains O(1), the polymeric contribution
to the stress will remain small. In contrast, in the regime of
dramatic chain stretch the polymer strains become huge and the
polymer stress then becomes comparable to the nematic and
Newtonian ones, despite the small polymer modulus GC . This
in turn feeds back on the flow field, mitigating the extensional
flows and halting the divergence of the polymer stress.

3. Limit cycle

In the previous two sections we considered state points
(ζ,�) deep in the active-turbulent region of the phase diagram
in Fig. 10 (which has τC = 4.0). While the transient dynamics
of corresponding runs at much larger τC revealed that polymer
deformation proliferates due to the appreciable extensional
component of the turbulent activity-driven flow field, it is
unclear how this phenomenon manifests in the long-time
dynamics. Therefore, we consider a point (ζ,�) in Fig. 10 with
a more moderate activity (which is less deeply turbulent) and
again perform a corresponding run at a much larger τC = 1000
(once again at fixed ηC = 1), where we now run the simulation
until long times tmax ∼ O(10τC).

The results are shown in Fig. 14. In this case the system
ultimately settles to an oscillatory state whose period is set by
the polymer relaxation time τC . Over the course of one cycle,
the system switches from a quasi-1D banded state dominated
by bending in the director field (see the snapshot at time t1)
to a different quasi-1D banded state dominated by splay (at
time t2), via a fully 2D intermediate state with velocity rolls.
A representative snapshot of such a 2D intermediate state is
shown at time t3.

Closer study of the full run reveals that the transition
from bend to splay initiates via the director, at a single
value of x midway between the plates, rotating by π/2. This
disturbance then propagates along the interface until the whole
system is splayed. (Destabilization of the bend state to form
the splay state has been seen previously in Ref. [67].) The
splay-banded state then apparently remains stable for a time
of order τC , before developing a roll-like instability around
t3 = 4400 characterized by alternative pairs of ± 1

2 topological
defects [54] in the nematic director field.

The degree of inhomogeneity during these transitions
can be monitored quantitatively through the power spectrum
P (kx,t) of the spatial Fourier transform of the nonzero-order
parameters φ = (Qxx,Qxy,Qyy,Cxx,Cxy,Cyy):

P (kx) =
6∑

i=1

∫ Ly

0
dy|φi(kx,y)|2. (32)

Any purely 1D state would have P (kx,t) = 0 for kx > 0. As
can be seen, the quasi-1D bend and splay states indeed have
small P . The 2D roll-like states that arise during the transition
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FIG. 14. Representative state that continuously oscillates be-
tween bend and splay quasi-1D shear-banded states via an inter-
mediate roll state. Plotted are (a) the power spectrum P (kx) for
the first 20 Fourier modes kx = 1 (red) → kx = 20 (blue) and (b)
spatially averaged Tr(C − I) against time. The transitions between
states are two dimensional in nature, as shown by the periodic spikes
in P (kx). Shown on the bottom are snapshots for the times marked in
(a) and (b) that show (nxny)2 (color map), director n̂ (red lines), and
defects (symbols). The parameters are ζ = 1.24, � = 1.6 × 10−4,
τC = 1000, and ηC = 1.

between these quasi-1D states have, in contrast, a much larger
P = O(1) [see Fig. 14(a)].

This oscillating effective dimensionality of the flow state
directly influences the polymeric stretching, which we monitor
as before with a scalar extension measure 〈Tr(C − I)〉 [see
Fig. 14(b)]. The constraint of fluid incompressibility means
that an extensional component to the flow field can only arise
in the 2D states. Because of this, during times when the system
occupies a quasi-1D bend or splay state the polymer extension
relaxes on a time scale τC . In contrast, the intervening 2D roll
state contains regions of extensional flow leading to significant
polymer stretching.

It is worth noting that the nonlinear oscillatory state reported
here would not have been predicted from our 1D linear stability
analysis, for which the corresponding linear instability is not

oscillatory. However, a 2D linear stability calculation that
linearizes about one of the inhomogeneous banded states
(shown in Fig. 14) may well predict this behavior. Note
that oscillatory dynamics in active systems is widely seen
in a biophysical context. For example, shape oscillations in
developing cells are believed to be driven by actomyosin
networks [68], which have been described theoretically using
an elastic model [57].

B. Elastomeric active matter

In the previous section we saw that adding a polymer of
even modest relaxation time has a dramatic effect on the phase
behavior of confined active nematics. For example, it gives rise
to an unusual drag-reduction effect with strong enhancements
in the flow field’s coherence and net throughput, for a fixed
level of activity. We also explored the effect of changing the
polymeric relaxation time τC , moving towards the elastomeric
limit of large τC . We did so at a fixed overall polymer viscosity
ηC = 1, with GC decreasing in inverse proportion to τC .

In this section we consider the “true” elastomeric limit, in
which τC → ∞ is taken at finite GC so that the polymeric
viscosity diverges. Physically, this could be realized by
increasing the cross-link density and/or chain length in an
entangled polymer of fixed concentration: Our model might
then describe an actomyosin cell extract in a background
of lightly cross-linked polymer gel. To implement this limit
in our simulations we simply remove the local relaxation
term prefactored by 1/τC in the polymer equation of motion.
As mentioned already for the 1D case in Sec. V B, we do
however retain finite stress diffusivity �C = 
2

C/τC , meaning
that 
C → ∞ as the elastomeric limit is taken. We discuss this
choice further at the end of this section.

The predictions of our linear instability analysis in this limit
were shown in Fig. 7. We now explore the instability more
fully by performing nonlinear 2D simulations, at infinite τC ,
for a range of polymer moduli GC = 10−8–10−1. We choose
values of the activity (ζ = 3.2) and diffusivity (� = 8 × 10−5)
for which the initially homogeneous state is predicted to be
unstable.

In each run, we find that the initial homogeneous state
indeed destabilizes to form a heterogeneous complex liquid-
crystalline texture with a high density n of defects in the
director field [see Figs. 15(a) and 16 (top)]. Associated with
this buildup of defects is a complex elastically turbulent
deformation field with regions of (transient) extensional flow,
which result in exponential stretching of the polymer [see
Fig. 15(b)]. Because in these runs the polymer modulus obeys
GC < GQ, appreciable polymer strain can develop [inset of
Fig. 15(b)] during this early-time regime before the resulting
polymeric contribution to the stress becomes comparable with
solvent and nematic stresses, which are O(1) in our units.
(A comparable phenomenon is seen in some models of
polymeric glasses [69].)

Once the polymer stress does become comparable with the
other stresses, the elastic turbulence arrests into a complex
but almost frozen defect pattern. Thereafter, the defect density
shown in Fig. 15(a) slowly coarsens over time, roughly as
t−1, which is the same as the classical result for coarsening
in a passive nematic [70]. See Fig. 16 for snapshots of the
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FIG. 15. Results from 2D runs with τC → ∞. We vary GC

from 10−8 (blue lines) to 10−1 (red lines) with logarithmic spacing.
Snapshots for GC = 10−2 are given in Fig. 16. (a) Areal defect density
n against time. Steps arise because n is discrete. (b) Scalar measure of
polymer stress GC〈Tr(C − I)〉 [the inset shows the same data but not
scaled by GC , i.e., we plot 〈Tr(C − I)〉]. The parameters are ζ = 3.2,
� = 8 × 10−5, and τC → ∞.

nematic texture during this process. Although a defect-free
state n → 0 might arise in the true steady-state limit t → ∞,
the coarsening process that leads to it is sufficiently slow that
the strain pattern created by the arrested active turbulence
might easily be mistaken for a final steady state. Note that the
mean polymer extension continues to grow in this coarsening
regime, albeit slowly (roughly logarithmically at intermediate
times) with some suggestion of eventual saturation seen in
the numerics. This elastomeric arrest of the active turbulent
flow field, where strong polymer stretching in extensional
flow regions creates strong stresses that oppose the flow,

FIG. 16. Snapshots for the points marked by triangles in
Fig. 15(a) at times t = 20,100,700. Images show (nxny)2 (color map)
and defects (symbols). The parameters are ζ = 3.2, � = 8 × 10−5,
τC → ∞, and GC = 10−2.

is mechanistically reminiscent of the drag-reduction effects
reported earlier. Note that the quasihomogeneous state that
develops at long times is drastically different from the base
state in our earlier linear stability calculation (which assumes
that the polymer is undeformed) and is therefore not subject
to the same linear instability as found there.

We now return to an issue raised previously in this section
and earlier in Sec. V B, which is our choice to retain finite
polymer stress diffusivity �C = � > 0 even in the elastomeric
limit of τC → ∞. Since �C = l2

C/τC , this requires matching
divergence of the length lC . (The physical meaning of this
length is ambiguous, but it is often assumed to be of order the
polymer coil size.)

Our reason for this choice is ultimately pragmatic: We
have found that our 2D numerical simulations become highly
unstable, at the discretization scale, if performed with �C = 0.
A credible explanation of this behavior is as follows. We have
seen that polymers encounter regions of strong elongation
in 2D active flows. These convert globular initial stress
fluctuations into threadlike ones, creating fine structure in
the transverse direction as set by the local compression axis.
Once elongation is strong, numerical instability is inevitable
unless there is a restoring term to iron out these short-scale
fluctuations. However, in the absence of thermodynamic
couplings (see the next section), the only term in the polymer
dynamics that can achieve this is �C . Thus we retain finite �C

in order to capture the short-length-scale physics of local stress
redistribution. This mechanism, whatever its details, should
not disappear for lightly cross-linked elastomers, since their
physics essentially merges with that of free chains at short
length scales (below the cross-link separation).

Note that in an elastomer of finite �C , although the mean
stress caused by an applied deformation can never relax (which
is the defining feature of a solid), any inhomogeneous polymer
stress will relax to a uniform one eventually, via the stress
diffusion term. This may seem a bit artificial, although a
similar effect can arise in many elastomeric systems by other
pathways. One of these, although absent from the present
model, is solvent permeation flow [32]. Interestingly, one
might expect that thermodynamic coupling to the Q field,
whose stress diffusivity does not vanish as τC → ∞, could also
provide enough stress redistribution to stabilize the numerics.
Indeed, we find this to be the case, as we now discuss.

C. Explicit thermodynamic coupling

Throughout the preceding results sections we set κ = χ =
0 in Eq. (3), disabling the direct thermodynamic coupling
between Q and C. In that case, the only coupling between
Q and C is purely kinematic, arising because they share a
common fluid velocity v that is influenced by both sources of
stress. In this section we study the effects of a direct coupling.

The κ term in Eq. (3) controls how the polymer pressure
shifts the isotropic-nematic transition. Our interest in this paper
lies far from the transition region, deep within the nematic
phase, so for simplicity we set κ = 0. The remaining coupling
parameter χ governs the energetics of relative orientations of
Q and C. For χ < 0, it is favorable for Q and C to align.
Indeed, experiments (in the passive limit) suggest that single
semiflexible polymers can couple to the nematic director field
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FIG. 17. Plot of tracer trajectories for parameters characteristic
of the turbulent phase for t = 0 → 200τQ. Polymer diffusion has
been disabled by setting �C = 
2

C/τC = 0. Trajectories are shown
in (a) the no-polymer limit τC → 0 and in (b) the elastomeric limit
τC → ∞. Colors are used to distinguish the separate tracer paths.
The parameters are ζ = 3.2, �Q = 10−4, �C = 0, GC = 0.1, and
χ = +0.032.

in this fashion [71]. However, such coalignment tends to arise
kinematically even when χ = 0, since Q and C both have
similar alignment tendencies in relation to the spontaneous
velocity field (at least for our choices of the flow-alignment
and slip parameters ξ and a). We therefore do not expect
substantially new physics to arise in this case. Therefore, we
focus here on antagonistic coupling χ > 0, where Q and C
now prefer to orient with their major axes perpendicular. We
do not perform an exhaustive search of parameter space but
instead present a selection of the intriguing states observed.

1. Persistent elastomeric turbulence

We have shown previously (in one dimension) that per-
sistent oscillatory states can develop in the elastomeric limit

τC → ∞ provided we keep 
C fixed. Our 2D simulations
produce significantly more complex flow fields characterized
by strong extensional components, which, as previously dis-
cussed, can be numerically problematic. Without any polymer
diffusion we found that our numerics required impractically
severe convergence criteria; with polymer diffusion retained
(by imposing �C = 
2

C/τC = �Q) the simulations are stabi-
lized but the initial turbulent solid state slowly coarsens away.

However, we might anticipate a similar stabilization to
result also from a small thermodynamic coupling between
C and Q, the latter of which retains spatial gradients even
in the limit τC → ∞. Indeed, with this coupling we have
successfully performed runs at zero polymer diffusivity, i.e.,
�C = 0, albeit using a significantly smaller space and time
steps.2 Intriguingly, we find that the transient elastomeric
turbulence discussed previously now continues indefinitely,
producing an unusual oscillatory state. This can be readily
visualized by plotting the paths of massless tracer particles as
they are advected by the flow, as shown in Fig. 17. Without
polymer present, these tracers perform a random walk as
they are advected by the turbulent flow. However, in the
elastomeric limit, the tracer trajectories remain confined to
periodic orbits for the duration of the simulation. In this
limit, the activity-driven turbulent flow field stretches and
distorts the elastic polymer background, which, at large enough
strains, reacts by producing a restoring force that undoes
any displacement, eventually returning displaced material
points to their initial location (or nearby). We also plot the
defect density n, throughput �, and rms velocity in Fig. 18.
These all apparently reach quasi-steady-state values after a
short time and show no signs of the coarsening discussed
previously for �C �= 0 in Fig. 15. Also note that the throughput
oscillates about zero, consistent with our expectation that an

2If �C = 0, the time step �t needs to be an order of magnitude
smaller than for �C �= 0 and the spatial step size �x must also be at
least halved.
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FIG. 18. Plot of (a) defect density n and (b) throughput � (lower blue line) and vrms (upper green line) in the elastomeric limit τC → ∞.
Polymer diffusion has been disabled by setting �C = 
2

C/τC = 0. The parameters are ζ = 3.2, �Q = 10−4, �C = 0, GC = 0.1, χ = +0.032,
and τC → ∞.
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elastic solid should undergo no net displacement. The severe
numerical requirements when �C = 0 restrict our discussion
to the qualitative aspects of the state; a more sophisticated
numerical implementation would be required to fully quantify
the elastomeric turbulence seen here.

2. Shear bands with interfacial defects

For the remaining examples we restore �C = �Q = � and
fix a finite value of τC comparable to τQ. The first of these
(which has χ = 0.002) demonstrates an intriguing polymer-
driven disorder-order transition. Choosing parameters char-
acteristic of the chaotic state (when χ = 0), at early stages
of the run we find the defect-rich disordered state observed
without polymer [Fig. 19(c)]. However, as the simulation
progresses, ordered regions of nearly uniform director n̂ spread
in from the walls towards the center of the channel, forming an
increasingly shear-banded-like state [Fig. 19(d)]. Eventually,

10-2

10-1

100

101 102 103

0

0.05

0.1

(c) (d)
linear
instability

(a)

(b)

chaotic
banded

FIG. 19. Example where an initially chaotic state organizes into a
coherent shear-banded state with defects, which advect with the flow,
embedded in the interface. Shown is the time evolution of (a) the
power spectrum P (kx,t), averaged over y [for kx = 1 (red lines) →
kx = 20 (blue lines)] and (b) throughput �. (c)–(e) Snapshots of
(nxny)2 for the states marked left at times (c) t = 50, (d) t = 700, and
(e) t = 3800. The parameters are ζ = 3.2, � = 4 × 10−5, τC = 10,
and χ = 0.002.

the only remaining evidence of the earlier chaotic state are
pairs of defects embedded in the interface [Fig. 19(e)].

This transition can be seen quantitatively by examining
the power spectrum P (kx,t) in Fig. 19(a). During the initial
chaotic phase, the first 20 wave vectors (plotted) contribute
significantly to P (kx,t), indicating significant spatial structure
in the x direction, with dynamics aperiodic in time. At long
times, once the banded state forms, all amplitudes P (kx,t) are
attenuated, particularly at large kx . This (admittedly extreme)
example is consistent with our drag-reduction argument,
whereby polymer calms short-scale structure. Snapshots of
the evolution of this state in Figs. 19(c)–19(e) demonstrate a
clear transition from a disordered to an almost ordered state.

Correlated with this suppression of short-scale structure is
a dramatic increase in the throughput [Fig. 19(b)]. While the
chaotic state at early times has zero-mean throughput, the latter
banded state develops a strong net flow in a spontaneously
chosen direction, in this example towards the right.

Interestingly, during the intermediate phase between
chaotic and banded states, we occasionally find transient ro-
tating spiral structures, which when viewed macroscopically3

possess an integer topological charge +1 [see Fig. 19(d)].
Such structures are commonly found in polar active materi-
als [59,72–74], but not in apolar nematics, which much more
commonly display ± 1

2 defects [4], as were found above. In
general, integer defects in passive nematics tend to dissoci-
ate [54], a tendency maintained in the active case without
polymer. (One exception is in highly confined cylindrical
geometries, as studied in Ref. [26] where the authors found
a single +1 defect at low activities, which split into a pair
of + 1

2 defects only at higher activity values.) It appears that
antagonistic coupling can help promote integer defects, but the
detailed mechanism for this remains unclear.

3. Shuffling state

By increasing the activity with other parameters fixed, we
can disrupt the above shear-banded state. The result [Fig. 20
(upper snapshot)] is a state that shuffles back and forth as a
whole, with defects traveling along regions in which q, the
largest eigenvalue of Q, is small. This mechanism is similar
to that reported in Ref. [67] (without polymer), where defect
motion in walls (regions of high local distortion) was observed.
The throughput time series in Fig. 20 reveals that the flow
switches direction periodically on a time scale of the order of
the viscoelastic relaxation time scale τC , once again confirming
the direct influence of polymer on the dynamics.

4. Order-disorder coexistence

With a larger coupling constant (χ = 0.004), even more
exotic states can develop. In Fig. 20 (lower snapshot) we show
a state exhibiting coexistence between chaotic and oscillatory
regions (where the director lies in the x-y plane shown) and
pseudoquiescent regions (where the director points along z).
The active regions travel back and forth, trapped between

3Microscopically, at the heart of the structure, we find a pair of + 1
2

defects, though these are close enough that the effective director field
forms a spiral pattern of topological charge +1.
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FIG. 20. Shown on top is an exotic oscillatory state that coher-
ently shuffles alternatively left and right on a time scale O(τC). In
the middle is the coexistence of bubbling active domains and regions
where the director is out of plane (black). The bottom shows the
throughput time series for both states (black line, χ = 0.002; red
line, χ = 0.004). The parameters are ζ = 6, � = 10−4, τC = 10,
χ = 0.002 (upper snapshot), and 0.004 (lower snapshot).

the bounding walls. Repeating the simulations a number of
times with different seeds for the 2D perturbation, we find that
these pseudoquiescent regions sometimes grow to envelop the
whole system, which then remains quiescent indefinitely. Such
quiescent regions are likely made possible by our assumption
of translational invariance along the vorticity axis z. (Recall
that in our simulations we consider 3D order parameter tensors
Q and C residing in a 2D space.) It may be that fully
3D simulations are required to fully resolve the dynamical
behavior of this state, which could easily then show structure
also in the z direction. We leave such 3D investigations to
future work.

VII. CONCLUSION

We have studied in depth the linear stability and nonlinear
dynamics of the minimally coupled model for viscoelastic
active matter derived in Ref. [20]. While treating 3D structural
tensors for both the active nematic and the polymer sectors, our
studies assumed either 2D flow states (translationally invariant
along the vorticity axis z) or 1D states (invariant also along the
periodic axis x).

For appreciable activities, the phase diagram without poly-
mer is dominated by chaotic states with no net throughput [5].
Adding polymer results in an active drag-reduction effect
whereby the short-scale flow structure is calmed, resulting
in a reduced density of nematic point defects. The increased
flow correlation length is associated with net material transport
around the periodic boundary conditions of our simulation. In
fully confined geometries this would likely also help promote
long-lived steady circulation as opposed to a mixing flow [27].

While adding polymer can delay the onset of spontaneous
flow, our results predict a critical activity that does not diverge
in the elastomeric limit τC → ∞ and indeed vanishes for
large enough systems just as it does without polymer [10].
Thus activity-driven flows can occur within active materials
that are ultimately solid: These might be called true active
gels. Numerical simulation of such materials in one dimension
indeed reveals oscillatory shear-banded states where the flow
direction switches periodically as the polymer stress is loaded.
A range of complex states involving nontrivial interplay of
viscoelasticity and activity were seen in systems of large but
finite polymer relaxation time τC .

As the relaxation time of the polymer was increased,
the effect of activity-driven extensional flows was shown to
be important. When the spatially averaged Deborah number
(which describes the ratio of polymer and extensional time
scales) exceeds a critical value, we found that the initial linear
instability is followed by a period of rapid exponential defor-
mation of the polymer. For sufficiently large τC , this resulted
in oscillatory states that cycled between rapid extensional
deformation of the polymer and slow stress relaxation on a
time scale τC .

In the elastomeric limit τC → ∞ the ultimate fate of the
oscillatory and/or turbulent states that we discovered remains
sensitive to numerical details of the model. Retention of finite
stress diffusivity (which greatly improve numerical stability) in
this limit causes ultimate relaxation to a state of uniform stress;
this precludes any permanent state of oscillation or elastic
turbulence. However, numerically we were able to switch off
the stress diffusivity once thermodynamic coupling between
nematic and polymeric degrees of freedom was included. In
this case we found that the system could be truly a turbulent
solid even in steady state. That is, the coupled system shows
chaotic activity-induced velocity fields that persist indefinitely
but that reverse sign often enough locally that the elastic strain
remains bounded, as a solid requires.

More generally, we found a wide range of complex
and interesting spontaneous flow states when Q and C are
antagonistically coupled at the free-energy level. Depending
on the strength of the coupling, our simulations show that
polymer can drive a transition from active turbulence to
near-laminar banded flow, result in states with oscillatory
dynamics on a time scale τC , and create regions where director
is oriented out of the plane. Fully 3D simulations should
provide useful insight, particularly for the last of these.

Our prediction of active turbulence in soft solid materials
(τQ → ∞) arises when GC/GQ � 0.1. This looks experimen-
tally feasible for subcellular active matter (though probably
not swarms of bacteria) within a lightly cross-linked polymer
gel. The symmetry breaking characterized by net throughputs,
which we observe at moderate polymer relaxation times
(τC/τQ ≈ 10), could have particular relevance for studies of
cytoplasmic streaming, where coherent flow is crucial for
material transport within the cell. The same physics may also
apply, albeit at larger scales, to cell migration in confined
geometries [29]. Our results with explicit coupling that show
oscillatory shuffling states may also be relevant in describing
the cell shape oscillations of Ref. [56].

We hope our work will promote experiments on these and
other forms of active viscoelastic matter; while the effects
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of viscoelasticity on individual swimmers have been studied
previously [75,76], we are not aware of an equivalent study
for bulk orientationally ordered phases. One related study did
however consider the linear stability of the bulk isotropic phase
in an Oldroyd-B fluid [18]. While the specifics of that model
differ from the one presented here,4 both studies find (i) that
increasing ηC at fixed τC will always eventually suppress the
spontaneous flow instability, (ii) that at small τC the polymer
simply renormalizes the solvent viscosity (this is our viscous
limit), and (iii) a region at large τC where unstable oscillatory
behavior is predicted (this is our elastomeric limit).
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APPENDIX: THROUGHPUT CRITERION

At time t , the throughput of the system is defined as

�(t) = 1

Ly

∫ Ly

0
vx(t)dy = 〈vx(t)〉y, (A1)

which is independent of x because of fluid incompressibility.
Because this quantity generally exhibits significant fluctua-
tions in time, particularly in the chaotic regime, we define our
criterion for significant or net throughput as being when the
mean of the throughput time series μ� exceeds the standard
deviation σ� :

μ� > σ�, (A2)

4There are several differences between our study and Ref. [18]. In
that work (i) the stability analysis is about an isotropic base state, (ii)
liquid-crystalline stresses are not included, (iii) the active particles
are self-propelled, and (iv) the concentration field can vary in space
(we assume a homogeneous concentration).
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FIG. 21. Method for determining throughput �. Shown on the
left is a state with net throughput, in which the throughput direction
intermittently switches between right and left. The red bins show
the normalized histogram of �(t) and the solid black line is a fit
using two Gaussian functions centered at ±μ� . In this example,
the positive throughput state lasted for a shorter time, hence the
difference in heights (means and standard deviations are the same).
Both peaks will tend to the same height in the limit t → ∞. Here
ζ = 5, � = 3.2 × 10−4, and τC = 1. On the right is a state with no
net throughput for comparison, with ζ = 5, � = 10−5, and τC = 1.
The insets show examples of throughput time series for each run.

where

μ� = 1

t

∫ t

0
�(t ′)dt ′ (A3)

and

σ� =
√

1

t

∫ t

0
[�(t ′) − μ� ]2dt ′, (A4)

which converge to constant values as t → ∞. Note that under
this definition, states that have nonzero mean throughput will
fail the criterion if this mean is less than the standard deviation
of the time series.

In practice, we find that the flow direction can intermittently
switch (see, for example, Fig. 21, left). If naively averaged
as above, this would clearly produce zero-mean throughput,
at least in the limit t → ∞. Therefore, we instead perform
a least-squares fit, fitting the throughput histogram with two
Gaussian functions of width σ� , centered at ±μ� . We have
explicitly checked that our results are robust to the number
of histogram bins used. Examples of both throughput and
nonthroughput states are shown in Fig. 21. We mark states
satisfying criterion (A2) in the phase diagrams with closed
symbols and those failing it with open symbols.
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[18] Y. Bozorgi and P. T. Underhill, J. Rheol. 57, 511 (2013).
[19] A. W. Decho, Ocean. Mar. Biol. Annu. Rev. 28, 73 (1990).
[20] E. J. Hemingway, A. Maitra, S. Banerjee, M. C. Marchetti, S.

Ramaswamy, S. M. Fielding, and M. E. Cates, Phys. Rev. Lett.
114, 098302 (2015).

[21] E. Lauga, Phys. Fluids 19, 083104 (2007).
[22] J. M. Teran, L. Fauci, and M. J. Shelley, Phys. Rev. Lett. 104,

038101 (2010).
[23] L. Zhu, E. Lauga, and L. Brandt, Phys. Fluids 24, 051902

(2012).
[24] S. E. Spagnolie, B. Liu, and T. R. Powers, Phys. Rev. Lett. 111,

068101 (2013).
[25] E. E. Riley and E. Lauga, Europhys. Lett. 108, 34003

(2014).
[26] F. G. Woodhouse and R. E. Goldstein, Phys. Rev. Lett. 109,

168105 (2012).
[27] R. E. Goldstein and J.-W. van de Meent, Interface Focus 5,

20150030 (2015).
[28] L. R. Serbus, B.-J. Cha, W. E. Theurkauf, and W. M. Saxton,

Development 132, 3743 (2005).
[29] S. R. K. Vedula, M. C. Leong, T. L. Lai, P. Hersen, A. J. Kabla,

C. T. Lim, and B. Ladoux, Proc. Natl. Acad. Sci. USA 109,
12974 (2012).

[30] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and
R. E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013).

[31] S. Ramaswamy, R. A. Simha, and J. Toner, Europhys. Lett. 62,
196 (2003).

[32] S. T. Milner, Phys. Rev. E 48, 3674 (1993).
[33] P. D. Olmsted, O. Radulescu, and C.-Y. D. Lu, J. Rheol. 44, 257

(2000).
[34] P. Olmsted (private communication).
[35] G. Jayaraman, S. Ramachandran, S. Ghose, A. Laskar, M. S.

Bhamla, P. B. Sunil Kumar, and R. Adhikari, Phys. Rev. Lett.
109, 158302 (2012).

[36] H. Stark and T. C. Lubensky, Phys. Rev. E 67, 061709 (2003).
[37] R. G. Larson, Constitutive Equations for Polymer Melts and

Solutions (Butterworths, Boston, 1988).
[38] M. Warner and E. M. Terentjev, Liquid Crystal Elastomers

(Oxford University Press, Oxford, 2003).
[39] M. E. Cates, S. M. Fielding, D. Marenduzzo, E. Orlandini, and

J. M. Yeomans, Phys. Rev. Lett. 101, 068102 (2008).
[40] S. A. Edwards and J. M. Yeomans, Europhys. Lett. 85, 18008

(2009).

[41] D. Marenduzzo, E. Orlandini, M. E. Cates, and J. M. Yeomans,
J. Non-Newtonian Fluid Mech. 149, 56 (2008).

[42] S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson,
Proc. Natl. Acad. Sci. USA 111, 1265 (2014).

[43] H. See, M. Doi, and R. G. Larson, J. Chem. Phys. 92, 792
(1990).

[44] P. D. Olmsted and S. T. Milner, Macromolecules 27, 6648
(1994).

[45] E. J. Hemingway, P. M. Mishra, S. M. Fielding, and M. C.
Marchetti (unpublished).

[46] D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev. Lett.
91, 108102 (2003).

[47] C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and
P. A. Janmey, Nature (London) 435, 191 (2005).

[48] G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C.
MacKintosh, J. H. Hartwig, T. P. Stossel, and D. A. Weitz, Proc.
Natl. Acad. Sci. USA 106, 15192 (2009).

[49] M. R. Mofrad, Annu. Rev. Fluid Mech. 41, 433 (2009).
[50] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.

P. Flannery, Numerical Recipes in C: The Art of Scientific
Computing, 2nd ed. (Cambridge University Press, New York,
1992).

[51] C. Pozrikidis, Fluid Dynamics: Theory, Computation, and
Numerical Simulation, 2nd ed. (Springer, New York, 2009).

[52] D. Marenduzzo, E. Orlandini, M. E. Cates, and J. M. Yeomans,
Phys. Rev. E 76, 031921 (2007).

[53] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Ap-
plications to Physics, Biology, Chemistry, and Engineering
(Westview, Boulder, 2008).

[54] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge, 2000).

[55] L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan,
Nonlinearity 25, 2245 (2012).

[56] G. Salbreux, J.-F. Joanny, J. Prost, and P. Pullarkat, Phys. Biol.
4, 268 (2007).

[57] K. Dierkes, A. Sumi, J. Solon, and G. Salbreux, Phys. Rev. Lett.
113, 148102 (2014).

[58] A. Aradian and M. E. Cates, Europhys. Lett. 70, 397 (2005).
[59] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch,

Nature (London) 467, 73 (2010).
[60] S. P. Thampi, R. Golestanian, and J. M. Yeomans, Philos. Trans.

R. Soc. London Ser. A 372, 14 (2014).
[61] D. Huterer and T. Vachaspati, Phys. Rev. D 72, 043004 (2005).
[62] L. Giomi, Phys. Rev. X 5, 031003 (2015).
[63] Y. Bozorgi and P. T. Underhill, J. Non-Newtonian Fluid Mech.

214, 69 (2014).
[64] O. Reynolds, Philos. Trans. R. Soc. London 174, 935 (1883).
[65] C. M. White and M. G. Mungal, Annu. Rev. Fluid Mech. 40,

235 (2008).
[66] J. Rallison and E. Hinch, J. Non-Newtonian Fluid Mech. 29, 37

(1988).
[67] S. P. Thampi, R. Golestanian, and J. M. Yeomans, Europhys.

Lett. 105, 18001 (2014).
[68] L. He, X. Wang, H. L. Tang, and D. J. Montell, Nat. Cell Biol.

12, 1133 (2010).
[69] S. M. Fielding, R. G. Larson, and M. E. Cates, Phys. Rev. Lett.

108, 048301 (2012).
[70] A. Bray, Adv. Phys. 43, 357 (1994).
[71] Z. Dogic, J. Zhang, A. W. C. Lau, H. Aranda-Espinoza,

P. Dalhaimer, D. E. Discher, P. A. Janmey, R. D. Kamien,

032702-22

http://dx.doi.org/10.1103/PhysRevLett.111.118101
http://dx.doi.org/10.1103/PhysRevLett.111.118101
http://dx.doi.org/10.1103/PhysRevLett.111.118101
http://dx.doi.org/10.1103/PhysRevLett.111.118101
http://dx.doi.org/10.1209/epl/i2004-10501-2
http://dx.doi.org/10.1209/epl/i2004-10501-2
http://dx.doi.org/10.1209/epl/i2004-10501-2
http://dx.doi.org/10.1209/epl/i2004-10501-2
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1103/PhysRevLett.89.058101
http://dx.doi.org/10.1103/PhysRevLett.89.058101
http://dx.doi.org/10.1103/PhysRevLett.89.058101
http://dx.doi.org/10.1103/PhysRevLett.89.058101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1088/1367-2630/13/9/093027
http://dx.doi.org/10.1088/1367-2630/13/9/093027
http://dx.doi.org/10.1088/1367-2630/13/9/093027
http://dx.doi.org/10.1088/1367-2630/13/9/093027
http://dx.doi.org/10.1122/1.4778578
http://dx.doi.org/10.1122/1.4778578
http://dx.doi.org/10.1122/1.4778578
http://dx.doi.org/10.1122/1.4778578
http://dx.doi.org/10.1103/PhysRevLett.114.098302
http://dx.doi.org/10.1103/PhysRevLett.114.098302
http://dx.doi.org/10.1103/PhysRevLett.114.098302
http://dx.doi.org/10.1103/PhysRevLett.114.098302
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1103/PhysRevLett.109.168105
http://dx.doi.org/10.1103/PhysRevLett.109.168105
http://dx.doi.org/10.1103/PhysRevLett.109.168105
http://dx.doi.org/10.1103/PhysRevLett.109.168105
http://dx.doi.org/10.1098/rsfs.2015.0030
http://dx.doi.org/10.1098/rsfs.2015.0030
http://dx.doi.org/10.1098/rsfs.2015.0030
http://dx.doi.org/10.1098/rsfs.2015.0030
http://dx.doi.org/10.1242/dev.01956
http://dx.doi.org/10.1242/dev.01956
http://dx.doi.org/10.1242/dev.01956
http://dx.doi.org/10.1242/dev.01956
http://dx.doi.org/10.1073/pnas.1119313109
http://dx.doi.org/10.1073/pnas.1119313109
http://dx.doi.org/10.1073/pnas.1119313109
http://dx.doi.org/10.1073/pnas.1119313109
http://dx.doi.org/10.1103/PhysRevLett.110.268102
http://dx.doi.org/10.1103/PhysRevLett.110.268102
http://dx.doi.org/10.1103/PhysRevLett.110.268102
http://dx.doi.org/10.1103/PhysRevLett.110.268102
http://dx.doi.org/10.1209/epl/i2003-00346-7
http://dx.doi.org/10.1209/epl/i2003-00346-7
http://dx.doi.org/10.1209/epl/i2003-00346-7
http://dx.doi.org/10.1209/epl/i2003-00346-7
http://dx.doi.org/10.1103/PhysRevE.48.3674
http://dx.doi.org/10.1103/PhysRevE.48.3674
http://dx.doi.org/10.1103/PhysRevE.48.3674
http://dx.doi.org/10.1103/PhysRevE.48.3674
http://dx.doi.org/10.1122/1.551085
http://dx.doi.org/10.1122/1.551085
http://dx.doi.org/10.1122/1.551085
http://dx.doi.org/10.1122/1.551085
http://dx.doi.org/10.1103/PhysRevLett.109.158302
http://dx.doi.org/10.1103/PhysRevLett.109.158302
http://dx.doi.org/10.1103/PhysRevLett.109.158302
http://dx.doi.org/10.1103/PhysRevLett.109.158302
http://dx.doi.org/10.1103/PhysRevE.67.061709
http://dx.doi.org/10.1103/PhysRevE.67.061709
http://dx.doi.org/10.1103/PhysRevE.67.061709
http://dx.doi.org/10.1103/PhysRevE.67.061709
http://dx.doi.org/10.1103/PhysRevLett.101.068102
http://dx.doi.org/10.1103/PhysRevLett.101.068102
http://dx.doi.org/10.1103/PhysRevLett.101.068102
http://dx.doi.org/10.1103/PhysRevLett.101.068102
http://dx.doi.org/10.1209/0295-5075/85/18008
http://dx.doi.org/10.1209/0295-5075/85/18008
http://dx.doi.org/10.1209/0295-5075/85/18008
http://dx.doi.org/10.1209/0295-5075/85/18008
http://dx.doi.org/10.1016/j.jnnfm.2007.02.005
http://dx.doi.org/10.1016/j.jnnfm.2007.02.005
http://dx.doi.org/10.1016/j.jnnfm.2007.02.005
http://dx.doi.org/10.1016/j.jnnfm.2007.02.005
http://dx.doi.org/10.1073/pnas.1321926111
http://dx.doi.org/10.1073/pnas.1321926111
http://dx.doi.org/10.1073/pnas.1321926111
http://dx.doi.org/10.1073/pnas.1321926111
http://dx.doi.org/10.1063/1.458598
http://dx.doi.org/10.1063/1.458598
http://dx.doi.org/10.1063/1.458598
http://dx.doi.org/10.1063/1.458598
http://dx.doi.org/10.1021/ma00100a059
http://dx.doi.org/10.1021/ma00100a059
http://dx.doi.org/10.1021/ma00100a059
http://dx.doi.org/10.1021/ma00100a059
http://dx.doi.org/10.1103/PhysRevLett.91.108102
http://dx.doi.org/10.1103/PhysRevLett.91.108102
http://dx.doi.org/10.1103/PhysRevLett.91.108102
http://dx.doi.org/10.1103/PhysRevLett.91.108102
http://dx.doi.org/10.1038/nature03521
http://dx.doi.org/10.1038/nature03521
http://dx.doi.org/10.1038/nature03521
http://dx.doi.org/10.1038/nature03521
http://dx.doi.org/10.1073/pnas.0903974106
http://dx.doi.org/10.1073/pnas.0903974106
http://dx.doi.org/10.1073/pnas.0903974106
http://dx.doi.org/10.1073/pnas.0903974106
http://dx.doi.org/10.1146/annurev.fluid.010908.165236
http://dx.doi.org/10.1146/annurev.fluid.010908.165236
http://dx.doi.org/10.1146/annurev.fluid.010908.165236
http://dx.doi.org/10.1146/annurev.fluid.010908.165236
http://dx.doi.org/10.1103/PhysRevE.76.031921
http://dx.doi.org/10.1103/PhysRevE.76.031921
http://dx.doi.org/10.1103/PhysRevE.76.031921
http://dx.doi.org/10.1103/PhysRevE.76.031921
http://dx.doi.org/10.1088/0951-7715/25/8/2245
http://dx.doi.org/10.1088/0951-7715/25/8/2245
http://dx.doi.org/10.1088/0951-7715/25/8/2245
http://dx.doi.org/10.1088/0951-7715/25/8/2245
http://dx.doi.org/10.1088/1478-3975/4/4/004
http://dx.doi.org/10.1088/1478-3975/4/4/004
http://dx.doi.org/10.1088/1478-3975/4/4/004
http://dx.doi.org/10.1088/1478-3975/4/4/004
http://dx.doi.org/10.1103/PhysRevLett.113.148102
http://dx.doi.org/10.1103/PhysRevLett.113.148102
http://dx.doi.org/10.1103/PhysRevLett.113.148102
http://dx.doi.org/10.1103/PhysRevLett.113.148102
http://dx.doi.org/10.1209/epl/i2005-10011-9
http://dx.doi.org/10.1209/epl/i2005-10011-9
http://dx.doi.org/10.1209/epl/i2005-10011-9
http://dx.doi.org/10.1209/epl/i2005-10011-9
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1098/rsta.2013.0366
http://dx.doi.org/10.1098/rsta.2013.0366
http://dx.doi.org/10.1098/rsta.2013.0366
http://dx.doi.org/10.1098/rsta.2013.0366
http://dx.doi.org/10.1103/PhysRevD.72.043004
http://dx.doi.org/10.1103/PhysRevD.72.043004
http://dx.doi.org/10.1103/PhysRevD.72.043004
http://dx.doi.org/10.1103/PhysRevD.72.043004
http://dx.doi.org/10.1103/PhysRevX.5.031003
http://dx.doi.org/10.1103/PhysRevX.5.031003
http://dx.doi.org/10.1103/PhysRevX.5.031003
http://dx.doi.org/10.1103/PhysRevX.5.031003
http://dx.doi.org/10.1016/j.jnnfm.2014.09.016
http://dx.doi.org/10.1016/j.jnnfm.2014.09.016
http://dx.doi.org/10.1016/j.jnnfm.2014.09.016
http://dx.doi.org/10.1016/j.jnnfm.2014.09.016
http://dx.doi.org/10.1098/rstl.1883.0029
http://dx.doi.org/10.1098/rstl.1883.0029
http://dx.doi.org/10.1098/rstl.1883.0029
http://dx.doi.org/10.1098/rstl.1883.0029
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102156
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102156
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102156
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102156
http://dx.doi.org/10.1016/0377-0257(88)85049-3
http://dx.doi.org/10.1016/0377-0257(88)85049-3
http://dx.doi.org/10.1016/0377-0257(88)85049-3
http://dx.doi.org/10.1016/0377-0257(88)85049-3
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1038/ncb2124
http://dx.doi.org/10.1038/ncb2124
http://dx.doi.org/10.1038/ncb2124
http://dx.doi.org/10.1038/ncb2124
http://dx.doi.org/10.1103/PhysRevLett.108.048301
http://dx.doi.org/10.1103/PhysRevLett.108.048301
http://dx.doi.org/10.1103/PhysRevLett.108.048301
http://dx.doi.org/10.1103/PhysRevLett.108.048301
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505


VISCOELASTIC AND ELASTOMERIC ACTIVE MATTER: . . . PHYSICAL REVIEW E 93, 032702 (2016)

T. C. Lubensky, and A. G. Yodh, Phys. Rev. Lett. 92, 125503
(2004).

[72] K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto,
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