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The mammalian hippocampal formation provides neuronal representations

of environmental location but the underlying mechanisms are unclear. The

majority of cells in medial entorhinal cortex and parasubiculum show spatially

periodic firing patterns. Grid cells exhibit hexagonal symmetry and form

an important subset of this more general class. Occasional changes between

hexagonal and non-hexagonal firing patterns imply a common underlying

mechanism. Importantly, the symmetrical properties are strongly affected by

the geometry of the environment. Here, we introduce a field–boundary inter-

action model where we demonstrate that the grid cell pattern can be formed

from competing place-like and boundary inputs. We show that the modelling

results can accurately capture our current experimental observations.
1. Introduction
Grid cells represent a cell class in medial entorhinal cortex (mEC) which is

active in multiple fields spanning the entire environment and arranged in a

grid of equilateral triangles exhibiting hexagonal symmetry [1]. Initial exper-

iments suggested that they preserve their symmetry across different familiar

environments changing only the offsets of their fields relative to the boundaries

of the environment [1,2]. However, further studies indicated that the geometry

of the environment can influence the hexagonal grid cell pattern even in fam-

iliar environments [3]. Perhaps, the most extreme example of this effect is the

pattern of grid cell firing on a linear track [4].

It has been suggested that grid cells provide a ‘metric system’ for navigation

because their periodic pattern is invariant to animal’s speed and behaviour

during exploration [1,5]. Notably, hexagonal symmetry is not a fundamental

requirement for metric representation of the environment. For instance, a pattern

with 908 symmetry could equally well form the basis for a metric system (a grid).

Indeed, before grid cells were discovered, a square lattice was used in earlier robot

navigational models to represent the metric system for place cell generation [6,7].

How is the grid cell firing pattern generated? On the one hand, it could be

driven predominantly by self-motion cues whereby an animal tracked the dis-

tance it moved in a particular direction (e.g. by step counting) and summed

these distances across time [5,8–13]. Such path-integration-based navigation is

inherently susceptible to idiothetic noise and the accumulation of errors. Hence,

it has been widely suggested that the accumulating error can be corrected with

a cue-driven feedback coming from place cells and/or boundary vector cells

[5,8–14]. In addition, sensory-driven feedback might also serve as ‘an anchor’

that fixes grid offset resulting in a reproducible grid cell pattern during multiple

visits to the same environment. It should be noted that in this type of model, grid

cells are generated primarily from self-motion cues and sensory-driven infor-

mation serves exclusively as a supporting signal to stabilize the grid cell pattern.
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Figure 1. Boundary and field force profiles. Typical examples of boundary force profiles in (a) a circular, (b) a square and (c) a trapezoidal environment. The forces are
shown on a logarithmic scale. (d ) A typical example of a field-to-field interaction force along a single direction (see main text for equation (2.1)). (e) Fields converging to
stable positions governed by boundary-to-field and field-to-field interaction forces. Red dots represent randomly assigned starting positions of the fields, red curving lines
correspond to their convergence trajectories and crosses represent their stable final positions. Axes are shown in 2.5 cm bins. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130188

2

 on December 23, 2013rstb.royalsocietypublishing.orgDownloaded from 
Alternatively, it has been suggested that the grid pattern

may be generated primarily from sensory-cue-driven inputs

[15]. In this case, place-like representations may arise from

external visual cues [16–18] and other sensory modalities

(especially when the visual cues are not available) and serve

as a primary input to drive the grid response [15].

Here, we further reconsider what main factors may con-

tribute to grid cell pattern formation and how these factors

interact to create the final grid cell response. In our model,

we put forward the idea that a grid cell pattern emerges

from the interaction between inputs related to the boundary

of the environment (which essentially defines its geometry)

and place-like inputs which can either derive primarily from

sensory-driven cell responses (as in [15]) or could also be gen-

erated mainly using self-motion cues (as in [19]) or potentially

have access to both. The idea is inspired by the experimental

observation that grid cells can have non-hexagonal sym-

metrical properties and that their symmetry can be strongly

influenced by the geometry of the environments [20]. We intro-

duce a mathematical model which describes the interaction

between fields and boundaries to study how differently

shaped environments affect the grid cell pattern. We also pre-

sent some experimental evidence demonstrating the validity

and the power of this model.
2. Material and methods
Eight male Lister hooded adult rats were used for the experiments.

Under surgical anaesthesia, they were chronically implanted in the

left hemisphere with a microdrive (Axona Ltd) loaded with four

tetrodes. Tetrodes were aimed at the superficial layers of the

medial part of dorso-caudal mEC and adjacent PaS (4.3–4.4 mm
lateral to the midline; 0.3–0.4 mm anterior to the sinus and at an

angle between 08 and 48 to the front plane; 1.5 mm below the pia).

Recordings took place in a familiar square (1.3 � 1.3 m (seven

rats) or 0.9 � 0.9 m (one rat)) enclosure while the animals foraged

for sweetened rice.
3. Field – boundary interaction model
In this model, we describe the firing patterns of classical hexa-

gonal grid cells and other spatially periodic non-grid cells as

an asymptotic state of interacting fields with Gaussian-tuned

responses. First, we assume an abstract semi-infinite two-

dimensional plane with N number of fields. Each field interacts

with the other field via ‘force’ Ufield described by a modified

Lennard–Jones formula (which was originally proposed by

John Lennard–Jones to describe the interaction between a

pair of neutral atoms or molecules; figure 1d )

UfieldðrÞ ¼
A
r3
� B

r2
; ð2:1Þ

where r is a distance between field centres; A and B are fixed

parameters related to the optimal spacing between the fields

which defines its scale. The attractive and repulsive interaction

forces are balanced (i.e. a total force reaches zero) when the

fields are at rscale distance from each other

rscale ¼
A
B
: ð2:2Þ

The main idea of our model is that place field inputs

compete with each other by simultaneously attracting each

other but also trying to suppress one another when they are

too close. The suppression is mediated by the network of

inhibitory neurons. The interaction is best approximated
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when in addition to repulsive force (described by A/r3 in

equation (2.1)) there is an attractive force (described by B/r2

in equation (2.1)) which keeps the place-like firing at an optimal

distance from each other.

In the simulations, we initially distribute the centres of the

fields randomly across the environment. Given the interaction

described in equation (2.1), they should depart from their

initial positions, and finally reach the equilibrium state

(figure 1e) at rscale distance from each other. The resulting

stable pattern would exhibit a hexagonal symmetry appearing

as a grid cell pattern with a scale defined by rscale. The number

of fields is defined by cell-intrinsic properties (such as its inte-

gration time constant or intrinsic oscillation frequency [21]).

Can we capture cases where spatially periodic cells show

a periodic band-like pattern? Indeed, if the force Ufield is

equal across all the directions then it would be impossible

to result in periodic band-like firing as observed in [20]. To

account for that, an additional directional input is required.

Equation (2.1) should be modified

Ufieldðr;aÞ ¼ UfieldðrÞ � fðaÞ; ð2:3Þ

where f(a) is a direction-dependent function similar to a head

direction response function or a combination of such functions.

Now let us suppose that the semi-infinite abstract space is

perturbed by introducing some boundaries (e.g. a circle, a

square, etc.) which affect each field with the exponentially

decreasing ‘force’ Uboundary described as

UboundaryðrÞ ¼ Ce�r=D; ð2:4Þ

where C and D are fixed parameters representing the strength

and the profile of this interaction. The repulsive boundary

force field Uboundary is generated at every environment

point by all the boundaries and is directed perpendicularly

to the corresponding boundary (figure 1a–c). Depending

on the parameters A, B, C and D, the fields’ distribution

within the boundaries can exhibit the whole range of possible

symmetrical properties. Thus, we can experimentally probe

the same cell in different shape environments (e.g. a circle,

a square, etc.), estimate these parameters and in principle

be able to predict how this pattern may be transformed in

other shaped enclosures (e.g. a trapezoid, a linear track,

etc.) assuming the values of the A, B, C and D parameters

remain constant.

We have simulated patterns in circular, square and trape-

zoidal environments using the same parameter set (100 000

simulations for each shape). Interestingly, while equilibrium

state mostly exhibits hexagonal symmetry in square and circu-

lar environments (figure 2a–c,e,f ), the symmetry significantly

departs from hexagonal in a trapezoidal enclosure (figure 2d,g).

Another important observation was revealed by these

simulations: namely, one of the main Fourier components

should tend to align to one of the walls. As a result, in a

circle environment the grid pattern may show any preferred

orientation (figure 3a,d ). However, in a square environment

one of the main Fourier components should tend to cluster

around 08 or 908 orientation (aligned to a vertical or a horizon-

tal wall, respectively). In this case, if different grid cell modules

act independently [22], there should exist two different grid cell

populations rotated by 308 (figures 2b,c and 3b,d).

A trapezoidal environment presents a more complex case

(100 000 simulations). In our simulations, we used a trapezoid

with dimensions of 190 cm � 20 cm � 80 cm (as in figure 1c).

Five main Fourier components were observed (figures 2d
and 3c): two aligned to each of the longer walls (I and II), two

other components rotated by 608 and 1208 with respect to the

first one and one additional component aligned to the shorter

walls (III at 1808). The components aligned to the longer walls

(I and II, figures 2d and 3c) are separated by 128 which is also

the angle between the orientations of the longer walls. Interest-

ingly, the component aligned to the shorter walls did not evoke

the generation of two more components rotated by 608 and 1208
from it. Hence, it suggests that by changing the ratio between

shorter and longer walls, we should be able to change the

weights of main Fourier components and even observe new

ones oriented by 308 or 608 to the existing ones.
4. Effects of environment geometry on grid cell
pattern: experimental observations versus
theoretical predictions

It has been suggested that grid cells represent a subset of a

more general group of spatially periodic cells which together

comprise the majority of cells in the superficial layers of mEC

and parasubiculum (PaS) [20]. In circular and rectangu-

lar enclosures, hexagonal symmetry was shown to be the

most stable firing pattern, hence many cells in mEC represent

the classic grid cells (75/156 or 48%, Nrats ¼ 5). However,

occasionally spatially periodic cells undergo a pattern trans-

formation whereby they lose or gain hexagonal symmetry.

Spontaneous transformation (i.e. when no experimental con-

dition is changed) is quite rare (approx. 11% in a 1.3 � 1.3 m2

square environment [20]). On the other hand, the transform-

ation probability becomes significantly higher between two

geometrically different enclosures (approx. 32%).

We also investigated whether orientations of the main Four-

ier components tend to align along the walls of a square

environment as predicted by the field–boundary interaction

model. Figure 3e shows that one of the main grid orientations

(out of three) is always aligned to one of the walls (Nrats ¼ 8;

NGCmodules¼ 9). In one case where we simultaneously recorded

two different grid cell modules (with different scales and main

orientations rotated by 308 from each other), both modules

were aligned along different walls of the environment [20].
5. Model predictions
Although at this stage the field–boundary interaction model

has a purely descriptive nature, it can already explain some

existing experimental observations and make explicit predic-

tions with regard to some untested grid cell response properties:

(1) The model predicts that the geometry of the environment

should have a strong effect on the symmetrical properties

of the grid cell firing. For instance, in a quite irregular

environment, for example a trapezoid, grid cells should

often lose their hexagonal symmetry and gain main com-

ponents aligned to one of the walls or aligned at

multiples of 608 to the walls. The length of the wall can

affect the strength of its related components.

(2) The immediate consequence of the first prediction is that in

a square environment two different grid cell populations

rotated by approximately 308 should exist aligned to hori-

zontal and vertical walls. In a novel square or circular

environment, grid cells should initially emerge as less

http://rstb.royalsocietypublishing.org/
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regular and over time converge to hexagonally symmetrical

patterns as the animal gains experience in this environment.

(3) In novel environments of identical geometry, grid cells

should have different offsets. This follows from the

fact that the offset depends on the initial condition

and these will differ in novel environment but not in

familiar environments.

(4) Because of the inhibitory ‘force’ coming from the bound-

ary, we predict some inhibitory neurons firing only at the

border (inhibitory border cells) and projecting to CA1

place cells. These projections could come either from

mEC [23] or from subiculum [24].

(5) Grid cells with different scales should respond differently

to the geometry of the environment. This is owing to the

fact that the shape of the force-tuning curve (equation

(2.1); figure 1d ) will vary with different grid scales.

(6) The insertion of the boundary into a square environment

should result in the shift and rearrangement of grid fields

away from the inserted boundary. The degree of rearrange-

ment should depend on the ratio between the length of the

inserted boundary and the grid scale. Grid cells with very

small scale compared with the boundary size should be

perturbed mostly in the vicinity of the boundary, whereas
grid cells with scales much larger than the boundary size

should not be affected very much. The strongest effect

should be observed on grid cells with scales close to the

size of the boundary.

6. A possible physiological implementation
A possible physiological mechanism underlying the field–

boundary interaction model is outlined in figure 4. Here,

the field-like inputs are received from competing place cell net-

works which are all connected to each other via inhibitory

interneurons. Afferent place cells with adjacent fields compete

with each other till only the ones firing at distance approxi-

mately rscale remain active. Additionally, boundary cells from

subiculum or mEC [25,26] project to the local place cell inhibi-

tory network selectively inhibiting as a function of distance

to the boundaries. Alternatively, a new cell type, inhibitory

boundary cells, could send projections to place cells. Indirect

observations suggesting the existence of the inhibitory bound-

ary cells come from the recordings of ‘boundary-off cells’ [24].

If our model is correct, it suggests that place cells form a pri-

mary substrate of spatial representation generated by sensory

cues (as in [15]) and/or self-motion cues (as in [19]). We predict

http://rstb.royalsocietypublishing.org/
http://rstb.royalsocietypublishing.org/


150

(a) (b) (c)

(d) (e)

180

N
 c

om
po

ne
nt

s

N
 c

om
po

ne
nt

s

N
 c

om
po

ne
nt

s

N
 c

om
po

ne
nt

s

N
 c

om
po

ne
nt

s
210

240
270

300

orientation (angle) orientation (angle) orientation (angle)

330

30

60
90

120

0

150

180

210

240
270

300

orientation (angle)

330

30

60
90

120

0

150

180

210

240
270

300

orientation (angle)

330

30

60
90

4

2

120

0

150

180

210

240
270

300

330

30

60
90

120

III0

150

180

210

240
270

300

330

30

60
90

120

0

II I

Figure 3. Orientations of the main Fourier components of simulated grid cells firing in (a) a circle, (b) square and (c) trapezoid. In (b), red and black lines represent
orientations aligned to the horizontal (08) and vertical (908) walls, respectively. (d ) Orientations in circular (blue) and square (black) environments superimposed on
each other clearly demonstrate the significant clustering of grid cell orientations in a square but not a circle. (e) The overall distribution of means of the main Fourier
components of all grid cells in a square (recordings done in eight rats, with nine different grid cell modules). Red and black dots represent main mean orientations
from each grid module. Note the two different orientations of the grids in the same square. (Online version in colour.)

GC

PC

PCPC

BC

BC

q

qq

Figure 4. A schematic of possible underlying mechanism of the force – boundary
interaction model. Place cells are shown in blue, a spatially periodic cell including
grid cell in green, border cells in yellow and theta cells are shown in brown. Place
cells (blue) and border cells (yellow) are interconnected via inhibitory theta inter-
neuron network (brown). The ‘winner’ place cells drive the firing pattern of the
afferent grid cell (green). (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130188

5

 on December 23, 2013rstb.royalsocietypublishing.orgDownloaded from 
that CA1 and subiculum cells send direct inputs to the deep

layers of mEC and PaS where grid cells start emerging. These

grid cells then have direct projections to the superficial layers

of mEC where the grid cells are also found. Importantly,

deep layers of mEC send prominent inputs to other neocortical

areas. These afferents may serve as a substrate for combining all

the sensory information in a single spatial framework.
It still must be addressed how hippocampal place cells

receive their sensory and self-motion-driven inputs because

their strongest afferents are arriving from medial and lateral

EC [27]. Place cells can be generated in the absence of grid

cells; therefore, at least the sensory information must reach

place cells even without regular grid cell activity. This obser-

vation suggests that grid cells may serve as a relay of spatial

information from the hippocampus.
7. Conclusion
We have introduced a field–boundary interaction model

attempting to explain recent observations that the geometry of

the environment can have a profound effect on the grid cell

firing pattern beyond a simple stretching or rescaling of the

grid [3,20]. In this model, the grid cell pattern emerges from

the interaction between competing place-like inputs and bound-

ary inputs. At this stage, it must be stressed that our model is

purely descriptive. However, it allows us to make clear exper-

imentally testable predictions about the firing properties of

grid cells under different experimental conditions (e.g. different

shape enclosures, responses to barriers inside the enclosures,

etc.), which if confirmed can give invaluable insights about

what the main factors of grid cell formation are, how they

interact and what functional role grid cells may have.

The current dominant theory is that different grid cells lin-

early sum up to generate a place cell response [1,2,8,9,11,12,

28–31]. However, despite the intuitive appeal of this view,

there is actually little data currently available to support it.

Several recent experimental studies have shown that place

cells can form and exist even in the absence of grid cell
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inputs [32–34]. Interestingly, there are data to support the

opposite view, that grid cells are formed from place cells, as

grid cells are not present without the input from hippocampal

cells [35]. Moreover, in novel environments both place cells and

grid cells undergo remapping and field expansion but place

cells expand by smaller amounts and converge to their sharply

state more rapidly compared with grid cells [36]. Taken

together, these results suggest that the widespread assumption

that grid cells are the only input to place cells and linearly sum

up to generate them should be reconsidered. The existence of

place cells without grid cells and their different response

dynamics to novelty (place cells fine tune faster) of course
cannot serve as a proof that grid cells are formed from place

cells, and to date there is no obvious experiment that could

easily address this question. The observations from our model

offer such an experiment by making clear testable predictions.
All animal procedures were carried out in accordance with the UK
Animals (Scientific Procedures) Act 1986.
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