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Abstract

In numerical analysis the failure of engineering materials is controlled through specify-
ing yield envelopes (or surfaces) that bound the allowable stress in the material. However,
each surface is distinct and requires a specific equation describing the shape of the surface
to be formulated in each case. These equations impact on the numerical implementation,
specifically relating to stress integration, of the models and therefore a separate algorithm
must be constructed for each model. This paper presents, for the first time, a way to
construct yield surfaces using techniques from non-uniform rational basis spline (NURBS)
surfaces, such that any isotropic convex yield envelope can be represented within the same
framework. These surfaces are combined with an implicit backward-Euler-type stress inte-
gration algorithm to provide a flexible numerical framework for computational plasticity.
The algorithm is inherently stable as the iterative process starts and remains on the yield
surface throughout the stress integration. The performance of the algorithm is explored
using both material point investigations and boundary value analyses demonstrating that
the framework can be applied to a variety of plasticity models.

Keywords:
elasto-plasticity, constitutive modelling, non-uniform rational basis spline (NURBS),
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1. Introduction

Constitutive models provide stress versus strain relationships for different engineering
materials and are at the heart of any numerical boundary value simulation method (such
as the finite element method). The majority of boundary value solvers are strain-driven in
that they require a model to return an updated stress state given a previous stress state
and a strain increment. However, constitutive models are typically constructed in rate
form and therefore a stress integration algorithm is required to perform this process.
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There is a vast array of constitutive models available in literature and the library
of available models is continually expanding. It is therefore not possible to provide a
comprehensive review of all of these models within this paper. Instead focus is placed
on general classes on stress integration techniques used to implement these models. For
a more general review of constitutive modelling for various materials see Yu [40], see the
work of Simo and Hughes [29] regarding their numerical implementation and specifically
focused on their implementation within the finite element method see the work of Kojić
[15].

The numerical implementation of constitutive models can be broadly split into three
categories: (i) explicit, (ii) implicit and (iii) exact stress integration methods. Explicit
methods stem from the work of Ilyushin’s [13] method of successive elastic solutions and
was subsequently applied to the Prandtl-Reuss constitutive model (von Mises yield surface
with linear isotropic elasticity) by Mendelson [21]. Nayak and Zienkiewicz [24] were the
first to formulate a general explicit stress integration procedure for use within the finite ele-
ment method and several models have been subsequently implemented using their method.
However, the major drawback of these methods is that they do not enforce the consistency
condition at the end of the stress-strain path [37].

Implicit stress integration methods were first proposed by Wilkins [39] who used a radial
return method for a Prandtl-Reuss model. Implicit techniques use a predictor-corrector
methodology where the problem is split into an elastic prediction followed by a (typically,
iterative) plastic correction for states that violate the yield criteria. See [9, 29] for a
detailed review of implicit methods for computational plasticity. Several other implicit
stress integration procedures have been proposed over the last 50 years, including [14–
16, 25, 30], in addition to some analytical integration methods [6, 7, 10]. The major
advantage of these implicit approaches is that the consistency conditions are enforced at
the updated stress state. However, they are computationally more complex compared to
explicit methods and require derivatives of both the flow rule and the hardening laws that
can become involved for advanced models.

Exact stress integration is only possible for a small sub-set of plasticity models, such as
the widely used Prandtl-Reuss and Drucker-Prager models, for example (see the works of
[17–20, 35, 38]). Although these models provide useful benchmarks for other approximate
methods they are generally considered to be too computationally expensive for general
use in finite element analyses [20]. However, computational efficiency aside, the major
drawback of these approaches is the bespoke algorithm required in each case and the
limited number of models that these techniques can be applied to.

Several papers have compared explicit and implicit approaches to stress integration
including [1, 19, 27], amongst others. Implicit methods have some significant advantages
over, simpler, explicit methods in that they: allow for larger strain increments to be applied,
rigorously enforce the consistency conditions (see Section 2.1) and allow the derivation of
the algorithmic consistent tangent [22, 32] that facilitates optimum convergence of the
boundary value simulation.
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In the vast majority of constitutive models the failure is controlled through specifying
yield envelopes (or surfaces) that bound the allowable stress in the material. Simple exam-
ples include the prismatic von Mises (circle) and Tresca (hexagon) yield surfaces. However,
each surface is distinct and requires a specific equation describing the shape of the surface
to be formulated in each case. This yield equation impacts on the stress integration and
therefore a specific algorithm must be constructed for each model. The approach followed
in this paper is to construct a yield envelope using a non-uniform rational basis spline
(NURBS) surface and combining this with an implicit stress integration algorithm such
that any isotropic convex yield surface can be described and integrated using the same
numerical framework.

Due to the geometric nature of the method presented in this manuscript, the majority
of the paper is presented in principal stress and strain space with the following ordering of
the principal stresses

σ1 ≥ σ2 ≥ σ3,

with tensile stresses taken as positive. Note that although the equations are presented in
principal stress space we can do this without loss of generality of the final result as the
principal quantities are simply transferred back to generalised quantities at the end of the
algorithm. Generalised, 6-component, stress and strain quantities are denoted using (̂·).
The paper also uses a mixture of tensor and matrix notation with the use of matrices
restricted to aspects relating to numerical implementation.

The layout of the paper is as follows: Section 2 details a plasticity theory based on
yield envelopes constructed from NURBS surfaces, Section 3 provides the numerical imple-
mentation of this theory including an implicit stress integration algorithm and consistent
tangent, Section 4 provide numerical examples both at a material point level and within
boundary value finite element analyses, conclusions are drawn in Section 5.

2. NURBS plasticity

This section provides the essential equations required to define a NURBS surface and
include it within a plasticity framework. For more detailed information on the construction
of NURBS-based surfaces see the work of Piegl and Wayne [26].

A NURBS surface can be expressed as

Sk(ξ, η) =

n∑
i=0

m∑
j=0

Ri,j(ξ, η)(Ck)i,j , (1)
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where k is the physical index and the NURBS basis functions are give by

Ri,j(ξ, η) =
Ni,p(ξ)Nj,q(η)wi,j

n∑
k=0

m∑
l=0

Nk,p(ξ)Nl,q(η)wk,l

(2)

and Ck are the control point positions, Ni,p and Nj,q are the pth and qth-degree B-spline
basis functions (see [8, 26], amongst others), ξ and η are the local positions within the two
Knot vectors that describe the surface and wi,j are the weights associated with the control
points.

2.1. NURBS-based yield envelopes

Starting from the equation for a NURBS surface (1), a NURBS-based yield envelope
can be expressed as

f =
(
σi − Si(ξ, η)

)
(S,σ )i = 0, (3)

where (S,σ )i is the surface outward normal and σi the principal stress state (that is, the
partial derivative of S with respect to stress). The yield surface separates stress space into
two regions: an elastic region where f < 0 and an inadmissible region where f > 0. The
boundary between these two regions (f = 0) is used to define material failure and points
on this surface will undergo elasto-plastic deformation. The outward normal to the yield
envelope can be obtained through the cross product of the two local derivatives

(S,σ )i = (S,η ×S,ξ )i = εijk(S,η )j(S,ξ )k, (4)

where εijk is the Levi-Civita tensor1. See [26] for efficient algorithms for the calculation
of the derivatives of the NURBS surface with respect to the local coordinates. For associ-
ated flow plasticity theory the outward normal to the yield surface also provides the flow
direction, that is

ε̇p
i = γ̇(S,σ )i, (5)

where γ̇ is the scalar plastic multiplier (or consistency parameter). This plastic multiplier
must satisfy the Kuhn-Tucker-Karush consistency conditions

f(σi) ≤ 0, γ̇ ≥ 0 and f(σi)γ̇ = 0. (6)

These conditions enforce that the material must either be on the yield surface undergoing
elasto-plastic deformation (f = 0 and γ̇ ≥ 0) or inside the yield surface with purely elastic
behaviour (f ≤ 0 and γ̇ = 0).

1εijk = 0 if i = j, j = k or k = i, εijk = 1 for even permutations of i, j and k and εijk = −1 for odd
permutations of i, j and k.
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2.2. Stress integration

The central problem in computational plasticity is; given a previously converged elastic
strain state, (εe

n)i (or equivalently a converged stress state, σni ), that is subjected to a strain
increment, ∆εi, what is the updated elastic strain state, (εe

n+1)i? The strain increment
comes from the boundary value simulation under consideration. The problem stems from
the fact that inelastic constitutive relationships are constructed in rate form and must be
integrated to create such an incremental relationship.

In this paper we consider an implicit elastic predictor, plastic corrector scheme. Within
this framework the elastic trial strain is given by

σti = σni + ∆σi, where ∆σi = De
ij∆εj and σni = De

ij(ε
e
n)j . (7)

σni is the stress state from the previous load (or time) step in the global solution algorithm,
∆εi is the strain increment from associated with the global boundary value displacement
and De

ij contains the principal components of the linear elastic stiffness matrix.
If the trial elastic stress state exceeds the yield envelope (f > 0) then it must be

corrected back onto the yield surface using a plastic stress increment

σri = σti −∆σp
i , where ∆σp

i = De
ij∆ε

p
j (8)

and ∆εpj is the plastic strain increment obtained from the incremental form of (5). Once
this correction has been applied the updated elastic strain can be obtained from

(εe
n+1)i = (εe

n)i + ∆εi −∆εp
i . (9)

The next section adopts a closest point projection (CPP) implicit stress integration algo-
rithm to arrive at the updated stress, and strain, state.

2.3. CPP & energy mapped stress space

Simo and Hughes [29] showed that the backward Euler (bE) integration corresponds to
the minimisation of (

σri − σti
)
Ce
ij

(
σrj − σtj

)
, (10)

with respect to the return stress σri , where Ce
ij is the principal elastic compliance matrix.

(·)t and (·)r denote quantities associated with the trial state and the return state respec-
tively. The minimisation (10) is subject to the standard Kuhn-Tucker-Karush consistency
conditions (6). Despite this process being referred to as a CPP, the return stress is not
generally the closest point geometrically in standard stress space, but rather the stress that
minimises the energy square norm (10).

In this paper we make use of energy-mapped ςi space [10] to convert this CPP minimi-
sation into a problem of finding the geometrically closest point on the yield envelope to a
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trial point outside of the surface, where

1

E
ςiςi = σiC

e
ijσj , (11)

and E is the Young’s modulus of the isotropic material. This allows us to find the geometric
closest point (in ςi space) through use of the following transformation

ςi = Tijσj . (12)

For isotropic linear elasticity, Tij is solely a function of Poisson’s ratio ν. Given the standard
isotropic linear-elastic compliance matrix

Ce
ij =

1

E

(
−ν +

1 + ν

2
δij

)
(13)

the transformation tensor Tij that can be used to convert between the stress spaces becomes

Tij =
(√

1− 2ν −
√

1 + ν
)
/3 + δij

√
1− ν. (14)

This mapping leads to a squashing and a stretching of the yield surface in the hydrostatic
and deviatoric directions respectively. The transformation is shown in Figure 1 for a
spherical yield surface with ν = 0, ν = 0.2 and ν = 0.4.

Once the closest point solution in energy-mapped stress space has been found, the
solution can be transformed back to conventional stress space. For a NURBS yield surface
we only need to map the control point locations, Ck, into energy-mapped space, the rest of
the NURBS information remains unchanged. Also, we reduce the number of unknowns by
one, replacing the return stress state σri with the local positions within the Knot vectors,
ξ and η in (3) as the primary unknowns in the CPP problem.

3. Numerical implementation

In this paper we combine an initial coarse subdivision algorithm with a local Newton-
Raphson approach to find the closest point on the NURBS surface to a trial stress state
outside of the yield envelope. This is consistent with other approaches to finding the
geometrically closest point to NURBS surfaces used in other fields [11, 12, 36, 41].

3.1. NURBS subdivision

The backward Euler (bE) search algorithm requires an initial starting point for the
iterative process. For conventional plasticity models integrated using a bE approach, the
starting point is taken to be the trial stress state outside of the yield envelope. However, in
this paper the unknowns are the local positions ξ and η within the Knot vectors defining
the surface. Therefore we need an initial estimate of the return ξ and η for a given trial
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state outside of the yield envelope. The subdivision algorithm described in this section
provides the, otherwise known, initial starting point for the iterative implicit bE stress
integration process.

The following steps are taken to arrive at the starting point for the bE algorithm:

1. determine the unique Knot vector locations in the two local coordinates (ξ, η) and
calculate the distance between the trial point and the Knot positions;

2. select the closest Knot (cK) location, (ξcK , ηcK);

3. with a = 1 consider a new Knot interval

ξ ∈
[
ξcK−1 − ξcK

2a
+ ξcK , ξcK +

ξcK+1 − ξcK
2a

]
and

η ∈
[
ηcK−1 − ηcK

2a
+ ηcK , ηcK +

ηcK+1 − ηcK
2a

]
;

4. grid the interval with the nine combinations of the centre of the interval (ξcK , ηcK)
and its limits, then determine the distance between the trial point and the subdivided
Knot positions; and

5. repeat steps 2 through 4 whilst incrementing a = 1, 2, 3, . . . , ns, where ns is the
number of subdivisions applied.

This process is shown in Figure 2 for a spherical yield surface with ν = 0 so that
conventional and energy-mapped stress space are equivalent. Figure 2 (i) shows the first
subdivision step (a = 1), where the initially closest Knot location is at A and the closest
subdivision position is at B (highlighted by the large grey shaded circle). The control point
locations are shown by shaded circles and the grid for the first subdivision by black-shaded
circles. The second subdivision is shown in Figure 2 (ii), in this case the previous closest
point (B) remains the closest point to the trial location. The grid of subdivided points is
shown by the white-shaded squares.

Figure 2 (iii) demonstrates the subdivision process in the local Knot coordinates for the
first three subdivisions. After the first and second subdivisions the closest point is located
at B and C, respectively. In the limit as ns → ∞ the subdivision closest point converges
to the return stress state in energy-mapped stress space (ςcKi → ςri ).

3.2. Stress integration algorithm

The output from the subdivision algorithm, (ξcK , ηcK), can be taken as the initial
estimate for a Newton-Raphson process that is used to converge to a specified tolerance on
the geometrically closest point on the yield surface (ςri ) to a trial location (ςti ) in energy-
mapped stress space.

The unknowns in the implicit backward Euler stress integration process are the local
positions on the NURBS surface

{x} = {ξ η}T . (15)
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Two corresponding residuals can be defined knowing that the return direction must be
orthogonal to the tangent vectors of the NURBS surface

{r} =
{

(ςti − ςni )(S,ξ )i (ςti − ςni )(S,η )i

}T
. (16)

where the tangent vectors, (S,ξ )i and (S,η )i, are obtained by taking the derivatives of
the NURBS surface with respect to the local coordinates (see [26] for efficient algorithms
for computing these derivatives). Using these residuals we can apply a standard Newton
process

{δx} = −
[
∂r

∂x

]−1

{r} and {xn} = {xn−1}+ {δx}, (17)

where n is the Newton-Raphson iteration number with the initial condition that ξ0 = ξcK
and η0 = ηcK . The Hessian matrix in (17) is obtained by taking the derivative of the
residuals with respect to the local Knot positions[

∂r

∂x

]
=

[
−(S,ξ )i(S,ξ )i + (ςti − ςni )(S,ξξ )i −(S,η )i(S,ξ )i + (ςti − ςni )(S,ξη )i

−(S,ξ )i(S,η )i + (ςti − ςni )(S,ηξ )i −(S,η )i(S,η )i + (ςti − ςni )(S,ηη )i

]
, (18)

again see [26] for efficient algorithms for computing these second-order derivatives. The
Newton process continues until the L2 norm of the residuals converge to a given tolerance.

A common problem in implicit stress integration is the stability of the algorithm due to
the form of the yield function outside of the yield envelope [5]. Unless care is taken when
specifying the yield equation it is possible to obtain a form that contains local minima,
or even ancillary f = 0 loci in the inadmissible region of stress space. These undesirable
features can trap the return path resulting in non-convergence, or more dangerously con-
vergence to a spurious f = 0 surface outside of the intended yield envelope. These issues
are removed in the this work as the iterative process starts and remains in the NURBS sur-
face throughout the NR return algorithm providing a inherently stable process for smooth
convex yield surfaces2.

A Pseudo-code for the stress integration algorithm, covering both the subdivision al-
gorithm and the Newton process, is given in Figure 4. The input for the algorithm is the
trial location in energy mapped stress space along with the NURBS surface information,
the function returns the closest point in energy mapped stress space. The tolerance on
the NR process, tol, is typically set to 1× 10−9, the maximum number of NR iterations,
maxNRit, to 10 and the number of subdivisions, ns, to 5.

2Note that it is necessary to construct the NURBS surfaces from at least quadratic NURBS splines to
ensure that the second derivatives of the surface exist. Care must also be taken at repeated Knot locations
to ensure that the derivatives are finite (see Section 3.4)
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3.3. Algorithmic consistent tangent

To achieve optimal convergence within a boundary value simulation it is essential to
linearise the stress integration algorithm to form the algorithmic consistent tangent [32]
(that is, the fourth order material stiffness tensor that is consistent with the stress-strain
algorithm). This section provides that tangent following the approach of Clausen et al.
[2–4]. The tangent is first constructed in principal stress space and then transformed into
six-component stress space using the eigenvectors associated with the trial elastic strain
state (see Appendix B for details).

The principal algorithmic consistent tangent for the stress integration algorithm given
in this paper can be expressed as

Dalg
ij = Dc

ij −
Dc
ik(S,σ)k(S,σ)lD

c
lj

(S,σ)aDc
ab(S,σ)b

(19)

The modified elastic stiffness matrix is given by

Dc
ij = AikD

e
kj , (20)

where the modification matrix is given by

Aij =
(
δij + ∆γDe

ik(S,σσ )kj

)−1
. (21)

The increment in the plastic multiplier can be obtained from

∆γ =
||∆σp

i ||
||De

ij (S,σ )j ||
, (22)

where ∆σp
i = σti − σri is the plastic stress increment and || · || denotes the euclidean norm

of the tensor.
The second derivative of the NURBS surface with respect to stress is

(S,σσ )ij =
(
εikl(S,η )k(S,ξξ )l + εikl(S,ηξ )k(S,ξ )l

)
(ξ,σ )j +(

εikl(S,η )k(S,ξη )l + εikl(S,ηη )k(S,ξ )l

)
(η,σ )j , (23)

where derivatives of the local Knot coordinates with respect to stress can be obtained
from the inversion of the Jacobian matrix linking the local NURBS coordinates with the
principal stress directions

[J ] =

[
∂σ

∂ξ

]
=
[
(S,ξ )i (S,η )i (S,σ )i

]
. (24)

The normal to the NURBS surface, (S,σ )i provides the third direction, orthogonal to the
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tangent vectors, in the transformation.

3.3.1. Six-component stress space

The plasticity model presented in this paper has been expressed in principal compo-
nents. It is therefore necessary to detail the mapping between of this model into gener-
alised 6-component space. The equations to convert the stress and strain measures into
6-component space are given in Appendix B, the appendix also details the transformation
of the algorithmic (or elasto-plastic) stiffness matrix. However, before this can be achieved
it is necessary to specify the shear components of the algorithmic stiffness matrix. For
convenience we switch to matrix notation in this section.

The shear terms of the modified elastic stiffness matrix are given by

[Dc
G] = [AG][De

G], (25)

where [De
G] is a three-by-three matrix containing the shear components of the elastic stiff-

ness matrix, the modification matrix for the shear components is given by [4]

[AG] =


1 +

∆σp
1−∆σp

2
σr
1−σr

2
0 0

0 1 +
∆σp

1−∆σp
3

σr
1−σr

3
0

0 0 1 +
∆σp

2−∆σp
3

σr
2−σr

3

 . (26)

The stiffness matrix used in (B.1) is therefore

[D] =

[
[Dalg] [0]

[0] [Dc
G]

]
, (27)

where [0] is a three-by-three matrix full of zeros and [Dalg] is the principal elastic stiffness
matrix from (19).

The full NURBS plasticity constitutive approach is summarised using the pseudo-code
given in Figure 5.

3.4. Corners

Several classical yield surfaces are only C0 continuous and contain sharp corners, Tresca
and Mohr-Coulomb are two such examples. However, the algorithm presented in this paper
is limited to smooth convex surfaces where the second derivative is defined. It is therefore
necessary to introduce local rounding to any corners or apexes.

Consider the following open Knot vector that interpolates between five control points
(as shown in Figure 3(i)), where

Ξ = {0, 0, 0, 1, 1, 2, 2, 2} and w = {1, 1, 1, 1, 1}. (28)

10



At ξ = 1 the NURBS curve is geometrically only C0 continuous. One solution that removes
the point on the line when the normal is undefined is to introduce two additional control
points and an additional interval in the Knot vector. This allows the corner to be rounded
using a circular arc tangent to the two segments. For the case shown in Figure 3 (ii) the
Knot vector and weights are

Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 3} and w = {1, 1, 1, cos(φ/2), 1, 1, 1}. (29)

The weight of the corner control point is only dependent on the internal angle between
the two straight segments. The position of the additional control points can be specified
as some portion, α, of the distance between the corner control point and its neighbour, l,
as shown in Figure 3. Rounding of apexes on NURBS surfaces can be achieved by simply
rounding the compounded NURBS curves. The consequence of this local round on stress
integration accuracy is explored in Section 4.1.

4. Numerical simulations

This section presented numerical simulations using the NURBS plasticity framework.
In all of the analyses the tolerance on the NR process, tol, was set to 1 × 10−9, the
maximum number of NR iterations, maxNRit, to 10 and the number of subdivisions, ns, to
5.

4.1. Stress return error analysis

This section presents stress return error analyses for two yield envelopes represented
using NURBS, namely the cylindrical von Mises yield surface and the prismatic hexagonal
yield surface of Tresca.

4.1.1. von Mises plasticity

The perfect plasticity von Mises yield envelope combined with linear isotropic elasticity
serves as a useful benchmark due to the availability of an exact stress integration algorithm
[19]. The NURBS Knot vector and weights for the von Mises yield surface are provided in
Appendix A.1. The yield envelope for the model can be defined as

f = ρ− ρy = 0, (30)

where the deviatoric stress is ρ =
√

2J2 with J2 = 1
2sijsji and sij = σij − 1

3σkkδij , ρy is
the yield stress of the material and defines the radius of the von Mises cylinder. Here the
yield stress was taken to be ρy = 1MPa, the Young’s modulus was E = 100MPa and the
Poisson’s ratio was ν = 0.2.

The stress integration errors for a von Mises yield surface using the NURBS integration
procedure described in Section 2.2 are shown in Figure 6. The stress state is initially located
on the shear meridian in the σzz > σyy > σxx sextant of stress space. This point is then

11



subjected to a stress increment that will take the trial stress state outside of the yield
envelope into one of the three sextants shown in Figure 6. The space of trial states was
explored for ρt/ρy ∈ [1, 6] and the errors associated with the trial state shown on the right
of Figure 6. The normalised error measure used is

error =
||{σNURBS} − {σe}||

||σe||
, (31)

where {σNURBS} is the stress return location associated with the NURBS model and {σe}
is the exact stress return [19].

Although errors of over 20% are present in the model, exactly the same level of errors are
observed in the von Mises yield surface integrated with a conventional bE stress integration
procedure. As expected with any predictor-correction stress integration algorithm, the
error increases as the tangential proportion of the stress increment increases.

4.1.2. Tresca corner rounding

Here we investigate the consequence of rounding on the errors in the stress integration
algorithm for the Tresca yield envelope. The normalised error measure (31) is used but
the exact return stress is determined from a conventional bE implementation of the model
based on the work of Clausen et al. [4]. Due to the planar nature of the Tresca yield
surface, the updated stress from the bE algorithm will be exact provided that the stress
increment should not cause the return stress state to cross between sextants of stress space.
The Tresca yield surface can be defined as

f = σ1 − σ3 − σy = 0, (32)

where σy is the yield stress of the material. Here the yield stress was taken to be σy = 1MPa,
the Young’s modulus was E = 100MPa and the Poisson’s ratio was ν = 0.2.

The maximum error for any trial location is given in Table 1 for different values of
rounding parameter, in this case the space of trial states was explored for θt ∈ [−π/6, π/6]
with ρt/σy = 1.5 as the maximum error does not depend on the radial distance from the
surface. The maximum errors are located along a ray tangent to the true Tresca surface
at the compression or tension meridians (as shown on the right of Figure 7). These points
should return to the compression/extension meridian but instead they return to a point
on the rounded surface. The maximum error is this case is αl, where for this yield surface
l = σy/2, therefore the maximum normalised error from (31) is α/2. This is verified in
Table 1 showing that the error converges linearly with the rounding parameter and for
α = 1× 10−5 the maximum error is 4.99× 10−6.

The variation of the error with trial Lode angle, θt, is shown in Figure 7 where the
stress return error has been normalised with respect to the maximum error (as given in
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Table 1). The Lode angle, θ, is defined as

θ =
1

3
arcsin

(
−3
√

3

2

J3

J
3/2
2

)
∈
[
−π/6, π/6

]
, (33)

where J3 = 1
3sijsjkski. The distribution of this normalised error is the same for all of the

explored α values.
For trial points located on the compression or extension meridians (θt = ±π/6) the

error is

corner error =
αl(1− cos(φ/2))

sin(φ/2)
,

where φ is the internal angle of the rounded corner (see Figure 3) and for the Tresca yield
surface φ = π/3. Therefore the maximum normalised error from (31) is α(1−

√
3/2), that

is 26.8% of the maximum error, α/2. This is verified by the solid black line on Figure 7.
The number of Newton-Raphson iterations (NRit) for the different trial states is also

shown by the grey dashed line in Figure 7 and the maximum number of NRits for any trial
state given in Table 1 demonstrating the robustness of the algorithm with different α.

4.2. Notched plate

Here we present the analysis of the plane strain stretching of a double-notched plate.
The problem was initially presented by Nagtegaal et al. [23] for small strain plasticity to
demonstrate the spurious response of standard finite elements and was subsequently re-
analysed in a number of papers [28, 31, 33]. The plate had a Young’s modulus of 206.9GPa,
Poisson’s ratio of 0.29 and was modelled using an elastic-perfectly plastic Prandtl-Reuss
constitutive model with yield stress of ρy = 0.45GPa. Nagtegaal et al. [23] provided
the small strain analytical limit load, controlled by the stress at the notch σlim ≈ 2.97ρy.
The specimen had a total height and width of 30mm and 10mm respectively, with a 2mm
unit linking ligament at mid height. For this geometry the small strain limit load is
f lim ≈ 2.673kN. Due to symmetry, only one quarter of the specimen was initially discretised
using 75 plane strain eight-noded elements with reduced four-point integration, as shown
in Figure 8. A displacement of 0.2mm was applied in 20 equal displacement-controlled
increments.

The problem was analysed using both the NURBS implementation of the von Mises
yield surface and the exact implementation of Prandtl-Reuss plasticity of Wei et al. [38]3.
The load versus displacement response of the two models is nearly identical (as shown in
Figure 8) and both the models converge to the analytical solution with mesh refinement.

3Note that although Wei et al. [38] were not the first to provide an exact stress return for the Prandtl-
Reuss model, that was provided by Krieg and Krieg [19], they were the first to provide the consistent
linearisation of the model allowing for optimum convergence of the global out-of-balance force therefore
their formulation is used here.
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Three different error measures are give in Table 3 for the three different discretisations.
Two are errors associated with the final limit load

e(·) =
|f lim
NURBS − f lim

(·) |
|f lim

(·) |
, (34)

where the subscripts a and e relate to the analytical limit load of f lim
a ≈ 2.673kN and the

limit load obtained through the exact implementation of the von Mises yield surface f lim
e ,

respectively. The final error, eσ, is the average of the normalised error between the NURBS
stress states at the Gauss points and that of of the exact implementation of the von Mises
model. Linear convergence is observed in the analytical limit load error whereas the other
two errors remain relatively stable with mesh refinement.

Table 2 provides the out-of-balance force values during the global Newton Raphson
(NR) process for loadsteps 5 through 8 for the NURBS model. It can be observed that
the model approaches optimum (2nd order) convergence of the global Newton process,
validating the derivation an implementation of the algorithmic consistent tangent.

4.3. Rigid footing

This section presents the analysis of a smooth rigid strip footing under plane strain.
The footing was 1m wide and was subjected to a vertical displacement of 50mm over 50
loadsteps. Due to symmetry only half of the 10m by 5m domain was discretised using 135
eight-noded quadrilateral finite elements with reduced four-point integration (as shown on
the right of Figure 9). The mesh used is that same as that adopted by [34] and [7]. The
material was assumed to be weightless and had a Young’s modulus of E = 100MPa and
a Poisson’s ratio of ν = 0.3. The yielding of the material was governed by a Tresca yield
surface (32), where the yield stress was taken as σy = 200kPa, represented by a NURBS
surface with locally rounded corners where the rounding parameter was set to α = 1×10−5.

The normalised pressure versus displacement response is shown in Figure 9 for both
the NURBS yield surface (black-dashed line) and for a conventional backward Euler im-
plementation of the model (thick grey line) based on the work of Clausen et al. [4]. The
results are indistinguishable with both simulations having an error of 0.8% compared to
the analytical limit of

2p/σy = 2 + π,

where p is the average pressure under the footing. This demonstrates the ability of the
local rounding to reproduce the boundary values simulation results of the geometrically
exact yield envelope.

5. Conclusions

This paper has presented for the first time a NURBS-based plasticity framework that
allows for any smooth convex isotropic perfect-plasticity yield surface to be described and
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implemented using the same numerical algorithm. To use different yield envelopes only
the control point and NURBS information changes. The numerical integration technique
combines an initial coarse searching algorithm with a Newton-Raphson process to solve for
the local position within the NURBS Knot vectors. The method is inherently stable as,
unlike conventional predictor-corrector algorithms, the return stress state remains in the
yield surface during the iterative process.

The framework has been validated for two plasticity models with von Mises and Tresca
yield envelopes. In the case of von Mises plasticity the NURBS approach was compared
with an exact implementation [19, 38] demonstrating that the errors in the process are
the same as that on a convectional bE method and that for a boundary value simulation
the model has excellent agreement with the exact implementation. Asymptotic quadratic
convergence of the global out-of-balance force has also been demonstrated validating the
algorithmic consistent tangent. For the Tresca implementation local rounding has been in-
troduced into the model to avoid the difficulties of dealing with sharp corners in the Newton
process. However, the maximum error due to this local rounding converges linearly with
the rounding length and the method is stable over a wide range of rounding parameters.
Provided a small rounding parameter is adopted the errors are insignificant compared with
the standard stress integration errors. The Tresca implementation was also validated in
a boundary value simulation of a rigid footing bearing onto a weightless soil with results
indistinguishable from a conventional Tresca implementation with sharp corners.

This paper has focused on perfect plasticity yield envelopes. It would be possible to
extend the framework to include hardening/softening plasticity however, any implemented
hardening laws would have to be reformulated in terms of the movement of the control
points.
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rounding parameter, α 1× 10−1 1× 10−2 1× 10−3 1× 10−4 1× 10−5

max. error 4.31× 10−2 4.91× 10−3 4.98× 10−4 4.99× 10−5 4.99× 10−6

max. NRit 4 3 3 3 3

Table 1: Variation with maximum error with rounding parameter, α, for the Tresca yield surface.

Figure 1: energy-mapped stress space transformation for a spherical yield surface.
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Figure 2: subdivision algorithm for a spherical yield surface (where Knot positions are integers) with ν = 0:
(i) first subdivision step, (ii) second subdivision and (iii) the subdivision process in the local Knot vector
coordinates.

Figure 3: NURBS corner rounding.
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1. INPUT: {ςt}, ns & NURBS information (Ξ, ςC, w, p).

(a) NURBS surface subdivision

i. determine the distance between {ςt} and the Knot locations on the NURBS surface;

ii. select the Knot location with the minimum distance, {ξcK};
iii. FOR a = 1 : ns (number of subdivision steps)

• determine the local coordinate limits of the local search region;
• determine the distance between {ςt} and the eight subdivided Knot locations;

• select the Knot location with the minimum distance (ξcK , ηcK)

iv. END FOR

(b) backward Euler stress return algorithm using N-R

i. take {ξcK} as the initial estimate for the Knot location in the N-R process;

ii. initial error, set ||{r}|| = 2× tol

iii. WHILE (||{r}|| > tol) && (NRit < maxNRit)

• determine the first and second derivatives of the NURBS surface;

• calculate the residuals, {r}, (16);

• form the Hessian matrix, [∂r/∂x], (18);

• determine the increment in the unknowns, {δx}, and update {x} (17);

iv. END WHILE

2. OUTPUT: closest point on the NURBS surface, {ςcp}

Figure 4: Pseudo-code for the NURBS stress return (the tolerance, tol, is typically set to 1 × 10−9).

loadstep

NR iteration 5 6 7 8

1 6.581×10−2 5.089×10−2 2.721×10−2 3.582×10−2

2 8.132×10−3 1.253×10−3 3.581×10−3 3.947×10−4

3 4.182×10−6 1.397×10−6 1.294×10−5 1.554×10−7

4 7.588×10−11 2.143×10−12 4.668×10−10 1.419×10−13

Table 2: Notched plate convergence for the NURBS implementation of the von Mises yield surface.
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1. INPUT: {εt}, E, ν & NURBS information (Ξ, C, w, p).

(a) Transform the trial elastic strain, {εt}, into its principal components and store the
associated eigenvectors.

(b) Calculate the principal (elastic) trial stress, {σt} = [De]{εt}.

(c) Transform the trial stress, {σt}, and the control point locations, [Cp], to energy
mapped stress space.

(d) Determine the closest point between the trial stress state, {ςt}, and the NURBS surface
in energy mapped stress space (refer to the algorithm in Figure 4)

(e) Determine the value of the yield function at the based on the closest point and the
trial state (3).

(f) IF f > tol (elasto-plastic behaviour)

i. transform the return stress state, {ςcp}, back to conventional stress space;
ii. calculate the updated elastic strain, {εen+1} = [Ce]{σn+1};
iii. determine the algorithmic consistent tangent matrix, [Da lg];

(g) ELSE (elastic behaviour)

i. updated stress equal to the trial stress, {σn+1} = {σt};
ii. updated elastic strain equal to the trial strain, {εen+1} = {εt}; and
iii. algorithmic tangent equal to the elastic tangent, [Dalg] = [De].

(h) END IF

(i) Transform the principal components back to generalised space using the eigenvectors
stored at step (a).

2. OUTPUT: {σn+1}, {εn+1} and [Dalg]

Figure 5: Pseudo-code for the NURBS constitutive model.

element size (mm) load error, ee load error, ea stress error, eσ

1.00× 10−3 8.65× 10−5 1.25× 10−1 3.24× 10−3

0.50× 10−3 6.32× 10−5 6.59× 10−2 3.22× 10−3

0.25× 10−3 4.71× 10−5 3.35× 10−2 3.02× 10−3

Table 3: Notched plate errors for the NURBS implementation of the von Mises yield surface.
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Figure 6: Stress return error analysis for a von Mises NURBS yield envelope.

Figure 7: Stress return error analysis for a Tresca NURBS yield envelope for α = 1 × 10−5.
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Figure 8: Notched plate load versus displacement comparison of the NURBS implementation of the von
Mises yield surface with the exact implementation of Wei et al. [38] for three different discretisations.
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Figure 9: Normalised pressure versus displacement response and finite element descretisation of a rigid
footing bearing onto a weightless soil.
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Appendix A. Knot vectors

Appendix A.1. von Mises yield surface

The Knot vectors for a second-order (p = 2) von Mises yield surface are

Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} and Λ = {0, 0, 0, 1, 1, 1} (A.1)

and the weights are given by

wi = {1, 1√
2
, 1,

1√
2
, 1,

1√
2
, 1,

1√
2
, 1} and wj = {1, 1, 1}. (A.2)

The control points are located at

{C}i,j =
(I1)j

3
+
√

2/3ρi

{
sin(θi − 2π/3) sin(θi) sin(θi + 2π/3)

}T
(A.3)

where

ρ = ρy

{
1
√

2 1
√

2 1
√

2 1
√

2 1
}T
, (A.4)

θ = π/12
{
−2 1 4 10 13 16 19 22

}T
, I1 = βρy

{
−1 0 1

}T
(A.5)

and β is a large constant that extends the surface sufficiently in the hydrostatic direction
to cover all possible return states.

Appendix B. Stress transformation

The following relations can be used to transform between six-component and principal
stress and strain space

{σ̂} = [Q]T

{
{σ}
{0}

}
, {ε̂} = [Q]−1

{
{ε}
{0}

}
and [D̂] = [Q]T [D][Q], (B.1)

where (̂·) denotes the six-component stress and strain quantities. The transformation
matrix is given by

[Q] =



(q1)2 (q2)2 (q3)2 q1q2 q2q3 q3q1

(q4)2 (q5)2 (q6)2 q4q5 q5q6 q6q4

(q7)2 (q8)2 (q9)2 q7q8 q8q9 q9q7

2q1q4 2q2q5 2q3q6 q1q5 + q4q2 q2q6 + q5q3 q3q4 + q6q1

2q4q7 2q5q8 2q6q9 q4q8 + q7q5 q5q9 + q8q6 q6q7 + q9q4

2q7q1 2q8q2 2q9q3 q7q2 + q1q8 q8q3 + q2q9 q9q1 + q3q7


,

(B.2)
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where the components qi are associated with the trial elastic strain eigenvectors

[q] =


q1 q4 q7

q2 q5 q8

q3 q6 q9


.

(B.3)

27


