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Effective bounds of linear series on
algebraic varieties and arithmetic varieties

By Xinyi Yuan at Berkeley and Tong Zhang at Edmonton

Abstract. In this paper, we prove effective upper bounds for effective sections of line
bundles on projective varieties and hermitian line bundles on arithmetic varieties in terms of
the volumes. They are effective versions of the Hilbert–Samuel formula and the arithmetic
Hilbert–Samuel formula. The treatments are high-dimensional generalizations of [25] and [26].
Similar results are obtained independently by Huayi Chen [7] with less explicit error terms.

1. Introduction

The initial motivation for our first paper [25] is to obtain some arithmetic version of the
classical Noether inequality on minimal surfaces. We have achieved the goal by a rescaling
method. As the project goes on, it turns out that this rescaling method, naturally arising from
Arakelov geometry, can be also used to prove new results in the geometric setting. For example,
we have treated fibered surfaces in [26]. Moreover, by constructing fibrations, such an idea can
be used to treat projective varieties of arbitrary dimensions by inductions. These geometric
results in turn are the basis of the arithmetic versions in arbitrary dimension. These are the
main ideas of the current paper.

1.1. Geometric case. Let X be a projective variety of dimension n over a field k, that
is, an n-dimensional integral scheme projective over k. Let L be a line bundle on X . The
volume of L is defined to be

vol.L/ WD lim sup
N!1

h0.NL/

N n=nŠ
:

Here we write NL for L˝N . In fact, we take the convention of writing tensor products of line
bundles additively throughout this paper.
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2 Yuan and Zhang, Effective bounds of linear series

It is known that the “lim sup” on the right-hand side is actually a limit. See [15] for
example. Then we have the following expansion:

h0.NL/ D
1

nŠ
vol.L/N n

C o.N n/; N !1:

The goal of this paper in the geometric case is to provide an effective version of the expansion
in the “�” direction.

To introduce the result, we first introduce a basic invariant ".L/ of L. Recall that a line
bundle M on X is pseudo-effective if

M � A1 � � �An�1 � 0

for any nef line bundles A1; : : : ; An�1 on X . Let B be any big and base-point-free line
bundle on X . Denote by �L;B the smallest non-negative real number such that �L;BB � L is
pseudo-effective. We define

".L;B/ WD .�L;B C 1/
n�1Bn:

Define
".L/ WD inf

B
".L;B/;

where the infimum is taken over all big and base-point-free line bundles B on X . The main
result in the geometric case is as follows.

Theorem 1.1. Let X be a geometrically integral projective variety of dimension n over
a field k. Let L be a line bundle on X . Then

h0.L/ �
1

nŠ
vol.L/C n ".L/:

When n D 1, the theorem is just the classical h0.L/ � deg.L/C 1. When n D 2, it gen-
eralizes the classical Noether inequality on surfaces. One can also compare it with the result of
Shin [22], which is quoted as Theorem 3.10 in our current paper. We refer to the introductions
of [25, 26] for more historical accounts.

The theorem is an effective version of the asymptotic expansion of h0.NL/. In fact, it is
easy to have

".NL/ � N n�1".L/:

Then the result for NL gives

h0.NL/ �
1

nŠ
vol.NL/C n ".NL/ �

1

nŠ
vol.L/N n

C n ".L/N n�1:

This gives an effective version of the asymptotic expansion.
If L is big and base-point-free, then vol.L/ D Ln and

".NL/ � ".NL;L/ D .N C 1/n�1Ln:

It follows that the theorem becomes

h0.NL/ �
1

nŠ
N nLn C n.N C 1/n�1Ln:
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Yuan and Zhang, Effective bounds of linear series 3

This is an effective version of the Hilbert–Samuel formula. One can compare it with the main
result of Kollár–Matsusaka in [14] and [18]. Under similar assumptions on L and assuming
that k has characteristic zero, their result asserts thatˇ̌̌̌

h0.NL/ �
1

nŠ
N nLn

ˇ̌̌̌
� Qn.L

n; Ln�1KX ; N /;

whereQn is a (universal) polynomial of three variables whose degree in the third variable is at
most n � 1. Our result here gives an explicit and simple form of Qn for the upper bound part,
which does not involve Ln�1KX , as expected by them.

The result of Kollár–Matsusaka is generalized by Luo [17] to the case that L is big and
nef, whereQn is replaced by a polynomial inN of degree at most n � 1, whose coefficients are
determined by Ln and Ln�1KX . To compare our result with it, we raise the question whether
".L/ can be bounded in terms of Ln and Ln�1KX if L is big and nef.

On the other hand, it is worth noting that our theorem is true for any line bundle L, which
does not restrict to multiples of the same line bundle.

The theorem is accurate when L is “large”, but it is not so when L is “small”. In the latter
case, we propose a more delicate bound.

Theorem 1.2. LetX be a smooth and geometrically integral projective variety of dimen-
sion n over a field k of characteristic zero. Let L be a line bundle on X . Assume that !X � L
is pseudo-effective. Then

h0.L/ �
1

2.nŠ/
vol.L/C n ".L/:

When n D 1, the theorem is essentially Clifford’s theorem

h0.L/ �
1

2
deg.L/C 1

for special line bundles. When n D 2, it is very close to the main theorem of [26]. We still refer
to [26] for more historical accounts.

The theorem is also proved in the recent work [29] by one of our authors, but with a more
complicated “error term”. As in [29], one can apply the above result to prove Severi’s conjec-
ture in high dimensions.

Besides the major assumption that!X�L is pseudo-effective, there are two extra assump-
tions in the theorem. First, the assumption of characteristic zero is made to use Hironaka’s
resolution of singularities. Second, the assumption thatX is smooth can be weakened to thatX
has canonical singularities by applying resolution of singularities. Because resolution of singu-
larities is known for algebraic 3-folds of positive characteristics (cf. [1, 9–11]), the theorem is
true in the case that char.k/ > 0 and n D 3.

1.2. Arithmetic case. Now we describe our arithmetic versions of the above theorems.
LetK be a number field. Let X be an arithmetic variety of dimension n overOK , i.e., X

is an n-dimensional normal scheme, projective and flat overOK such that the generic fiber XK

is geometrically connected. We assume that dim X � 2 throughout this paper.
By a hermitian line bundle on X, we mean a pair L D .L; k � k/, where L is an invertible

sheaf on X, and k � k is a continuous metric of the line bundle L.C/ on X.C/, invariant under
the complex conjugation.
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4 Yuan and Zhang, Effective bounds of linear series

For any hermitian line bundle L D .L; k � k/ on X, denote the set of effective sections as
follows: bH 0.L/ WD ¹s 2 H 0.X;L/ W ksksup � 1º:

Define bh0.L/ WD log #bH 0.L/:

Recall L is called effective ifbh0.L/ > 0. The arithmetic volume function is defined as

cvol.L/ WD lim sup
N!1

bh0.NL/

N n=nŠ
:

Recall that a hermitian line bundle L is called big if cvol.L/ > 0.
Recall that a hermitian line bundle L over X is called nef if it satisfies the following

conditions:

(1) We have bdeg.LjZ/ � 0 for any integral one-dimensional subscheme Z on X.

(2) The metric of L is semi-positive, i.e., the curvature current of the pull-back j �L via
any holomorphic map j W �! X.C/ from an open complex ball � of dimension n � 1
is positive.

The arithmetic nefness, introduced by Moriwaki [19], generalizes the arithmetic ampleness of
S. Zhang [28]. In fact, it is the limit notion of the arithmetic ampleness.

Many results in the geometric case have been proved in the current setting (under sub-
stantially more efforts). The following is a list of them (in chronological order) that are most
related to the subject of this paper.

� If L is ample, then cvol.L/ D L
n

. In other words, one has the arithmetic Hilbert–Samuel
formula bh0.NL/ D

1

nŠ
L
n
N n
C o.N n/; N !1:

This is essentially due to Gillet–Soulé [12,13] and S. Zhang [28]. See [23, Corollary 2.7]
for a brief account. It is worth noting that [12, 13] treated the case that X.C/ is smooth
and the metric of L is smooth and positive, and obtained the error term O.N n�1 logN/
in this case.

� Moriwaki [20] proves the continuity of cvol, and extends the result cvol.L/ D L
n

to any
nef line bundle L.

� Chen [4] proves that the “lim sup” in the definition of cvol is a limit. Thus we have the
following expansion:

bh0.NL/ D
1

nŠ
cvol.L/N n

C o.N n/; N !1:

See Yuan [24] for a proof in terms of Okounkov bodies.
� Chen [5] and Yuan [24] prove the arithmetic Fujita approximation theorem for big hermit-

ian line bundles.
� Chen [6] proves the differentiability of the arithmetic volume function, based on the

bigness theorem of Yuan [23], the log-concavity of Yuan [24], and the arithmetic Fujita
approximation theorem above.

� On arithmetic surfaces, the arithmetic Zariski decomposition is proved by Moriwaki [21].
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Yuan and Zhang, Effective bounds of linear series 5

To state our main theorem in the arithmetic setting, we need to introduce one more
invariant.

Let X be an arithmetic variety of dimension n over OK , and let L be a hermitian line
bundle on X. Define the volume derivative

dvol.L/ D sup
.X0;A/

deg.AK/ D sup
.X0;A/

An�1
K ;

where the supremum is taken over every pair .X0;A/ consisting of an arithmetic variety X0

endowed with a birational morphism � W X0 ! X and a nef Q-line bundle A on X0 such that
��L �A is effective.

Some basic properties of the volume derivative are as follows:
� dvol.L/ > 0 if L is big.
� If L is nef, then dvol.L/ D Ln�1

K .
� If dim X D 2 and L is big, then dvol.L/ D deg.PK/, where P is the positive part of L

as in the arithmetic Zariski decomposition of Moriwaki [21].

The definition of dvol sits in the setting of the arithmetic Fujita approximation of Chen [5]
and Yuan [24]. Furthermore, in the sense of Chen [6], the definition is actually a positive inter-
section number, and thus

dvol.L/ D
1

nŒK W Q�
lim
t!0

1

t

�cvol.L.t// �cvol.L/
�
;

where L.t/ denotes the hermitian line bundle obtained by multiplying the hermitian metric
of L by the constant e�t (at every archimedean place). This is the reason for the name “volume
derivative.”

One can also interpret dvol.L/ as some volume function of some graded linear series
on the generic fiber XK encoding certain arithmetic property of L. See Lemma 3.4. For more
properties of dvol.L/, we refer to Section 3.2.

Finally, we are ready to state our first main theorem in the arithmetic case.

Theorem 1.3. Let X be an arithmetic variety of dimension n over OK . Let L be a big
hermitian line bundle on X. Thenbh0.L/ � � 1

nŠ
C
.n � 1/".LK/

dvol.L/

�cvol.L/C 4r log.3r/:

Here r D h0.LQ/ D ŒK W Q�h
0.LK/.

During the preparation of this paper, similar upper bounds of h0.L/ and bh0.L/ were
obtained by Huayi Chen [7] independently. In comparison, the error terms in our Theorem 1.1
and Theorem 1.3 are more explicit than those in [7, Theorem 1.2] and [7, Theorem 1.1]. In
comparison with [7, Theorem 1.3], our proof also gives

rX
iD1

max¹�i .H 0.X;L/; k � ksup/; 0º �

�
1

nŠ
C
.n � 1/".LK/

dvol.L/

�cvol.L/:

Here �i is the i th successive minimum of the normed module .H 0.X;L/; k � ksup/. To keep
this paper as accessible as possible, we do not write our treatment in this setting but leave it to
interested readers.
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6 Yuan and Zhang, Effective bounds of linear series

Note that in the theorem, the term ".LK/, introduced in the geometric case, depends only
on the generic fiber LK on XK . Furthermore, if L is nef, then the term dvol.L/ also depends
only on the generic fiber LK on XK .

Let us see the asymptotic of Theorem 1.3. For any integer N > 0, by

".NLK/ � N
n�2".LK/ and dvol.NL/ D N n�1dvol.L/;

the theorem gives

bh0.NL/ �

�
1

nŠ
C
.n � 1/".LK/

N � dvol.L/

�cvol.L/N n
C 4rN log.3rN /:

Here rN D h0.NLQ/ can also be effectively bounded by Theorem 1.1. Hence, we see the
effectivity of the theorem.

If L is big and nef with a base-point-free generic fiber LK , then as in the geometric case,
the theorem gives

bh0.NL/ �
1

nŠ
N nL

n
C .n � 1/N.N C 1/n�2L

n
C 4rN log.3rN /;

where
rN

ŒK W Q�
�

1

.n � 1/Š
N n�1Ln�1

K C .n � 1/.N C 1/n�2Ln�1
K

by Theorem 1.1.
When n D 2, if the generic fiber of X has positive genus, with a minor assumption,

[25, Theorem B] actually gives

bh0.L/ � 1

2
cvol.L/C 4r log.3r/:

In another word, the “error term” disappears here. However, Theorem 1.3 applies to any big
line bundles in any dimensions. It is a philosophy that appropriate assumptions of general
type should make the “error term” cleaner, but it is really complicated to carry it out for high
dimensions. However, in dimension three, see the clean result in Theorem 1.6.

Similar to Theorem 1.2, we have the following more delicate bound when L is “small”
(on the generic fiber). It is a generalization of [25, Theorem C].

Theorem 1.4. Let X be an arithmetic variety of dimension n over OK . Let L be a big
hermitian line bundle on X. Assume that XK is smooth, and !XK

�LK is pseudo-effective.
Then bh0.L/ � � 1

2.nŠ/
C
.n � 1/".LK/

dvol.L/

�cvol.L/C 4r log.3r/:

Here r D h0.LQ/ D ŒK W Q�h
0.LK/.

Remark 1.5. A related result is the upper bound of the arithmetic degree of the
push-forward of L to OK by Bost [2]. The result is based on the Chow stability method,
which can be viewed as an arithmetic version of Hilbert stability of Cornalba–Harris [8]. We
refer to [25] for some comparisons for arithmetic surfaces.

At last, we present a clean theorem for arithmetic 3-folds (under more assumptions).
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Yuan and Zhang, Effective bounds of linear series 7

Theorem 1.6. Let X be an arithmetic 3-fold over OK such that the Kodaira dimension
�.XK/ of XK is non-negative and that XK has no elliptic or hyperelliptic pencil. Let L be
a nef hermitian line bundle on X such that the natural rational map

�LK
W XK Ü P .H 0.LK//

is generically finite. Then

bh0.L/ � �1
6
C

2

dK

�
L
3
C 4r log.3r/:

Here dK D deg.LK/ and r D h0.LQ/.

1.3. Ideas of proofs. The major ideas to prove the theorems are still the rescaling
method in [25, 26]. However, we do have many innovations to overcome the difficulties in
high dimensions.

The rescaling method. For the readers’ convenience, we first sketch the rescaling
method here. Take Theorem 1.3 for example. Assume that L is nef for simplicity here, and
we will come back to discuss the extension to the general case later. We need to give a suitable
upper bound of

�.L/ Dbh0sef.L/ �
1

nŠ
L
n
:

Herebh0sef.L/ counts the strictly effective sections, which is very close to but more convenient
than the numberbh0.L/. We first find the largest constant c � 0 such that

L.�c/ D .L; eck � k/

is still nef on X. It is easy to control �.L/ by �.L.�c//. Then the problem is reduced
to L.�c/.

The key is that bH 0
sef.L.�c// is never base-point-free. By blowing-up the base locus, we

obtain a birational morphism � W X1 ! X with a decomposition

��L.�c/ D L1 C E1:

Here E1 is an effective hermitian line bundle associated to the base locus of ��L.�c/, and L1

is base-point-free whose strictly effective sections are bijective to those of L.�c/. Then it is
easy to control �.L.�c// by �.L1/. And the problem is reduced to L1.

Keep the reduction process. We obtain L2, L3, etc. The key property for the construction
is the strict inequality bh0sef.L/ >

bh0sef.L1/ >bh0sef.L2/ > � � � :

It follows that the process terminates after finitely many steps. We eventually end up with Ln

such that Ln.�cn/ has no strictly effective sections. It leads to the proof of the theorem.

New ingredients. The following are some major innovations in this paper.

(1) The interaction between the geometric case and the arithmetic case. Our proofs of the
geometric case are inspired by the rescaling method from the arithmetic case. To apply the
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8 Yuan and Zhang, Effective bounds of linear series

method to the geometric case, we construct a fibration of the ambient projective variety
over a curve, which mimics the arithmetic setting. To pass from the fibers to the ambient
variety, an induction argument is used naturally. On the other hand, the proofs in the
arithmetic case use the results in the geometric case.

(2) We introduce the invariant ".L/ to bound the “error terms.” It really simplifies the esti-
mates and makes it possible to write down the final inequalities in very general settings
in high dimensions.

(3) In the arithmetic case, the proofs of Theorem 1.3 and Theorem 1.4 for nef L, based on
Theorem 1.1 and Theorem 1.2, are more or less similar to the proofs in [25]. However,
the proofs for general L are more subtle. In fact, even formulations of the theorems
are not obvious. Our new idea is to introduce the derivative volume dvol.L/, as a basic
invariant of L. Then the proof is extended to the general case by the arithmetic Fujita
approximation of Chen [5] and Yuan [24] and differentiation theorem of the arithmetic
volume function of Chen [6].

Acknowledgement. The authors would like to thank Huayi Chen and the anonymous
referees of our article [25], who bring insights of the current high-dimensional setting. We are
also indebted to the referees of the current article for their invaluable comments.

2. Geometric case

The goal of this section is to prove Theorem 1.1 and Theorem 1.2. After introducing the
filtration of line bundles, we finish the proofs by collecting the numerical inequalities.

By passing to the algebraic closure, we can assume that k is algebraically closed every-
where in this section.

2.1. Filtration of line bundles. This subsection is a high-dimensional analogue of the
construction in [26]. We include all the details here for completeness.

Basic construction. LetL be any line bundle on a projective varietyX with h0.L/ > 0.
There is a canonical way to separate L from its base locus by blowing-up X , which is essential
in our proof. So we recall it here.

Let Z be the base locus of L in X , i.e., the closed subscheme defined by the ideal sheaf
given by the image of the composition

H 0.X;L/ � L_ ! L � L_ ! OX :

Note that Z has positive codimension by h0.L/ > 0. Let � W X1 ! X be the normalization of
the blow-up of X along Z. Let Z1 be the exceptional divisor on X1, which is the zero locus of
the inverse image of the ideal sheaf of Z. Define a line bundle

L1 D .�
�L/˝OX1

.�Z/

on X1. By abuse of notation between line bundles and divisors, we write

��L D L1 CZ1:
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Yuan and Zhang, Effective bounds of linear series 9

By definition, the base locus of ��L is Z1. We have the following properties:

� There is a canonical isomorphism

H 0.X1; L1/! H 0.X1; �
�L/:

� The line bundle L1 is base-point-free on X1, and thus it is nef.

� If furthermore X is normal, then the pull-back map gives an isomorphism

H 0.X;L/! H 0.X1; �
�L/:

For the last property, the right-hand side is equal to H 0.X; ���
�L/, but

���
�L D L˝ ��OX1

D L:

The construction is trivial if L is base-point-free. In the following, we are going to use
fibrations to get non-trivial constructions.

The filtration. By a fibration over a field k, we mean a projective, flat, and geometri-
cally connected morphism f W X ! C , where C is a smooth projective curve over k, and X
is a projective variety over k.

Let f W X ! C be a fibration over an algebraically closed field k. For any nef line
bundle L on X , denote by eL the positive integer such that

� L � eLF is not nef,

� L � eF is nef for any integer e < eL.

Here F denotes a general fiber ofX over C , and we write L � eF for the line bundle L.�eF /.
Note that L � eLF is not base-point-free since it is not nef. So we can perform the basic

construction to get a base-point-free line bundle L1, which has “the same” global sections
as L � eLF . Keep doing the process on L1, and we have the following iterated process.

Theorem 2.1. Let f W X ! C be a fibration over an algebraically closed field k. LetL
be a nef line bundle on X with h0.L/ > 0. Then we have a sequence of quadruples

¹.Xi ; Li ; Zi ; ai / W i D 0; 1; : : : ; N º

with the following properties:

� .X0; L0; Z0; a0/ D .X;L; 0; eL0
/.

� For any i D 0; : : : ; N � 1, we have ai D eLi
and �i W XiC1 ! Xi is the normalization

of the blow-up of Xi along the base locus of Li � aiFi , which gives a decomposition

��i .Li � aiFi / D LiC1 CZiC1:

HereZiC1 is the exceptional divisor of �i , the divisor FiC1 D ��i Fi and F0 is a general
fiber of X0 over C .

� We have

h0.L0/ � h
0.L1/ > h

0.L2/ > � � � > h
0.LN / > h

0.LN � aNFN / D 0:

Here aN D eLN
.
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10 Yuan and Zhang, Effective bounds of linear series

Proof. Apply the basic construction repeatedly. For i � 1, since Li is base-point-free
and ei > 0, we have

h0.Li / > h
0.Li � eiFi / D h

0.LiC1/:

Since h0 decreases strictly, the whole process will terminate after finitely many steps.

Numerical inequalities. Resume the notations in Theorem 2.1. Denote n D dimX0.
Denote

L0i D Li � aiFi ; ri D h
0.Li jFi

/; di D .Li jFi
/n�1

for i D 0; : : : ; N .

Proposition 2.2. For any j D 0; 1; : : : ; N ,

Ln0 � n

jX
iD0

aidi � nd0;

h0.L0/ � h
0.L0j /C

jX
iD0

airi :

Proof. Recall that

��i L
0
i D LiC1 CZiC1 D L

0
iC1 C aiC1FiC1 CZiC1:

It implies
��i .L

0
i C Fi / D .L

0
iC1 C FiC1/C aiC1FiC1 CZiC1:

Note that both L0i C Fi and L0iC1 C FiC1 are nef, and Zi is effective. We have

.L0i C Fi /
n
� ..L0iC1 C FiC1/C aiC1FiC1/

n
D .L0iC1 C FiC1/

n
C naiC1diC1:

Summing over i D 0; 1; : : : ; j � 1, we have

.L00 C F0/
n
� .L0j C Fj /

n
C n

jX
iD1

aidi � n

jX
iD1

aidi :

It follows that

Ln0 D .L
0
0 C F0/

n
C n.a0 � 1/d0 � n.a0 � 1/d0 C n

jX
iD1

aidi :

This proves the first inequality.
For the second inequality, use the exact sequence

0! H 0.LiC1 � FiC1/! H 0.LiC1/! H 0.LiC1jFiC1
/:

Then
h0.LiC1 � FiC1/ � h

0.LiC1/ � h
0.LiC1jFiC1

/ D h0.LiC1/ � riC1:

By induction, we have

h0.L0iC1/ D h
0.LiC1 � aiC1FiC1/ � h

0.LiC1/ � aiC1riC1 D h
0.L0i / � aiC1riC1:

Furthermore,
h0.L0/ � h

0.L00/C a0r0:

The inequality is proved by summing over i D 0; : : : ; j � 1.
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Yuan and Zhang, Effective bounds of linear series 11

In the following, we give a bound of Ln0 in terms of just d0.

Lemma 2.3. With the above notation, we have

Ln0 � d0

 
NX
iD1

ai C na0 � n

!
� d0

 
NX
iD0

ai � 1

!
:

Proof. For i D 0; : : : ; N � 1, denote by

�i D �i ı � � � ı �N�1 W XN ! Xi

the composition of blow-ups and denote �N D idXN
W XN ! XN .

Write b D a1C� � �CaN andZ D ��1Z1C� � �C�
�
NZN . We have the following numerical

equivalence on XN :
��0L

0
0 �num L

0
N C bFN CZ:

Since L00 C F0 and L0N C FN are both nef, it follows that

.L00 C F0/
n
D .��0L

0
0 C FN /

n�1.L0N C FN C bFN CZ/

� .��0L
0
0 C FN /

n�1.L0N C FN /C b.�
�
0L
0
0 C FN /

n�1FN

� bd0:

Combining with
Ln0 � .L

0
0 C F0/

n
D n.a0 � 1/d0;

the proof of the first inequality is finished. The second one is just because a0 � 1.

Basic properties of ".L/. Let L be a line bundle on X . In the following, we will list
some basic numerical properties of ".L/.

Lemma 2.4. For any line bundle L on X , the following are true:

(1) ".L/ � 1,

(2) ".L/ � ".L0/ if L � L0,

(3) ".NL/ � N n�1".L/ for any integer N > 0.

Proof. LetB be any big and base-point-free line bundle onX . By the definition of ".L/,
it is enough to prove the corresponding inequalities for ".L;B/.

Let �L;B be as in the introduction. For (1),

".L;B/ D .�L;B C 1/
n�1Bn � Bn � 1:

Part (2) follows from the easy fact that �L;B � �L0;B . For (3), note that N�L;BB �NL is
pseudo-effective. We have �NL;B � N�L;B , and thus

".NL;B/ D .�NL;B C 1/
n�1Bn

� N n�1.�L;B C 1/
n�1Bn

D N n�1".L;B/:
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12 Yuan and Zhang, Effective bounds of linear series

2.2. Proofs of the main theorems. Here we prove Theorem 1.1 and Theorem 1.2.
We are going to prove them by induction on n D dimX . Note that the case n D 1 is known.
Assume n � 2 in the following.

Nef line bundles and fibrations. Recall that Theorem 1.1 asserts that

h0.L/ �
1

nŠ
vol.L/C n ".L/:

First, it is easy to reduce the problem to the case thatL is nef. Assume h0.L/ > 0, or there
is nothing to prove. By the basic construction, we have a birational morphism � W X1 ! X and
a decomposition

��L D L1 CZ1

with L1 nef and Z1 effective. Furthermore,

h0.L/ � h0.��L/ D h0.L1/;

vol.L/ D vol.L1 CZ1/ � vol.L1/ � Ln1;

".L/ � ".��L/ � ".L1/:

It follows that the result on L1 implies that on L.
Second, it is also easy to reduce it to the case that there is a fibration on X . Let B be any

big and base-point-free line bundle on X . We need to prove

h0.L/ �
1

nŠ
vol.L/C n ".L;B/:

We will reduce it to the case that there is fibration f W X ! C such that

.B � F / � Ln�1 D .B � F / � Bn�1 D 0;

where F denotes a general fiber of X above C .
In fact, since B is big and base-point-free, the map X ! P .H 0.X;B// is a generically

finite morphism. Take two different irreducible elements W1; W2 2 jBj, and let � W X 0 ! X

be the blow-up of X along the intersectionW1 �W2. Denote by T the exceptional divisor. Then
the divisors ��W1 � T; ��W2 � T 2 H 0.X 0;D/ are disjoint. DenoteD D ��B ˝OX 0.�T /,
and denote by s1 and s2 the sections ofH 0.X 0;D/ defining ��W1 � T; ��W2 � T . These two
sections define a morphism f W X 0 ! P1, which is the fibration. By construction, D is the
linear equivalence class of fibers of f , and ��B �D D T is effective.

Replace .X;L;B/ by .X 0; ��L; ��B/. Then we have the desired fibration on X .

General case. By the above argument, Theorem 1.1 is reduced to the following:

Theorem. Let f W X ! C be a fibration over an algebraically closed field k. Let L
be a nef line bundle on X , and let B be a big and base-point-free line bundle on X . Denote
n D dimX and denote by F a general fiber of X above C . Assume

.B � F /Ln�1 D .B � F /Bn�1 D 0:

Then
h0.L/ �

1

nŠ
Ln C n ".L;B/:
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Yuan and Zhang, Effective bounds of linear series 13

Now we prove this statement by induction on n. Apply the construction in Theorem 2.1
to .X; C;L; F /. Still use the same notations as the theorem. By Proposition 2.2,

Ln0 � n

NX
iD0

aidi � nd0;

h0.L0/ �

NX
iD0

airi :

Here we recall ri D h0.Li jFi
/ and di D .Li jFi

/n�1. The difference gives

h0.L0/ �
1

nŠ
Ln0 �

NX
iD0

�
ri �

di

.n � 1/Š

�
ai C

d0

.n � 1/Š
:

By induction on n, we have

ri �
di

.n � 1/Š
C .n � 1/".Li jFi

/:

Therefore,

h0.L0/ �
1

nŠ
Ln0 � .n � 1/

NX
iD0

ai ".Li jFi
/C

d0

.n � 1/Š
:

It suffices to estimate ".Li jFi
/.

Let � � 0 be the smallest real number such that �B�L is pseudo-effective. By definition,

".L;B/ D .�C 1/n�1Bn:

Denote by Bi the pull-back of B D B0 from X D X0 to Xi . Note that �Bi � Li is pseudo-
effective, and so is �.Bi jFi

/ � Li jFi
. Thus

".Li jFi
/ � ".Li jFi

; Bi jFi
/ � .�C 1/n�2.Bi jFi

/n�1 D .�C 1/n�2Bn D
".L;B/

�C 1
:

Therefore, we have

h0.L0/ �
1

nŠ
Ln0 � .n � 1/

".L;B/

�C 1

NX
iD0

ai C
d0

.n � 1/Š
:

It remains to bound a0 C � � � C aN and d0.
We first treat the case Ln > 0. Apply the assumptions on B . Then the pseudo-effective-

ness of �B � L has the following consequences:

(1) It implies Ln � �Ln�1B D �d0, and thus d0 > 0. By Lemma 2.3,

NX
iD0

ai �
Ln0
d0
C 1 � �C 1:

(2) It implies that
d0 D L

n�1B � �Ln�2B2 � � � � � �n�1Bn:

Therefore, if Ln > 0, we have

h0.L0/ �
1

nŠ
Ln0 � .n � 1/".L;B/C

�n�1Bn

.n � 1/Š
� n".L;B/:
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14 Yuan and Zhang, Effective bounds of linear series

Next, we treat the case Ln D 0. Denote by W an irreducible element of jBj. Consider
the exact sequence

0! H 0.L � B/! H 0.L/! H 0.LjW /:

Since L is not big, we have H 0.L � B/ D 0. It follows that

h0.L/ � h0.LjW /:

By induction, we have

h0.L/ �
Ln

nŠ
� h0.LjW / �

Ln�1B

.n � 1/Š
C .n � 1/".LjW ; BjW /

�
�n�1Bn

.n � 1/Š
C .n � 1/.�C 1/n�2Bn

� n ".L;B/:

This completes the proof.

Small case in characteristic zero. The above proof can be easily modified to prove
Theorem 1.2. Recall that we have extra conditions that X is smooth and k is of characteristic
zero, and the crucial assumption that !X � L is pseudo-effective. We need to strengthen the
above result to

h0.L/ �
1

2.nŠ/
vol.L/C n ".L/:

Still use the induction method. If n D 1, then the assumption that !X � L is pseudo-
effective is just deg.L/ � deg.!X /. The inequality becomes

h0.L/ �
1

2
vol.L/C 1:

This is Clifford’s theorem. It is well known to be true in the case that L is special, i.e.,
both h0.L/ > 0 and h0.!X � L/ > 0. But the case h0.!X � L/ D 0 can be proved by the
Riemann–Roch theorem.

To mimic the above induction method for general n � 2, we need to keep track of the
pseudo-effectivity of !X � L under blow-ups and fibrations.

For any birational morphism � W X 0 ! X with both X and X 0 smooth, it is a basic result
that the ramification divisor !X 0 � ��!X is effective (or zero). It follows that the pseudo-
effectivity of !X � L implies that of !X 0 � ��L. Hence, we can always replace .X;L/ by
.X 0; ��L/ for any smooth variety X 0 with a birational morphism to X .

With this property, we can still reduce the problem to the case thatL is nef. As before, we
can assume that X is endowed with a fibration f W X ! C . Here X is assumed to be smooth
by resolution of singularity.

Now we are in the situation to perform the reduction process. Proposition 2.2 implies

h0.L0/ �
1

2.nŠ/
Ln0 �

NX
iD0

�
ri �

di

2.n � 1/Š

�
ai C

d0

2.n � 1/Š
:

Note that the general fiber F of f is also smooth, and the adjunction formula gives
!F D !X jF . It follows that the pseudo-effectivity of !X � L implies that of !F � LjF . Thus
the induction assumption applies to the line bundle LjF on F . The rest of the proof goes
through without any extra difficulty.
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Yuan and Zhang, Effective bounds of linear series 15

3. Arithmetic case

The goal of this section is to prove Theorem 1.3, Theorem 1.4 and Theorem 1.6. The
plan of this section is as follows. In Section 3.1, we recall some basic results in Arakelov
geometry. In Section 3.2, we study the basic invariant dvol and give the new interpretation in
terms of the arithmetic Fujita approximation, which will be needed to prove the main theorems.
In Section 3.3, we introduce the filtration construction of hermitian line bundles, which is
a high-dimensional version of that in [25]. In Section 3.4, we prove Theorems 1.3 and 1.4. In
Section 3.5, we prove Theorem 1.6.

3.1. Notations and preliminary results. This subsection is essentially a reproduction
of some part of [25]. But we would like to list the results here for the readers’ convenience.

Normed modules. By a normed Z-module, we mean a pair M D .M; k � k/ consisting
of a Z-module M and an R-norm k � k on MR DM ˝Z R. We say that M is a normed free
Z-module of finite rank if M is a free Z-module of finite rank. This is the case which we will
restrict to.

Let M D .M; k � k/ be a normed free Z-module of finite rank. Define

bH 0.M/ D ¹m 2M W kmk � 1º; bH 0
sef.M/ D ¹m 2M W kmk < 1º;bh0.M/ D log #bH 0.M/; bh0sef.M/ D log #bH 0

sef.M/:

The Euler characteristic of M is defined by

�.M/ D log
vol.B.M//

vol.MR=M/
;

where B.M/ D ¹x 2MR W kxk � 1º is a convex body in MR.
For any ˛ 2 R, define

M.˛/ D .M; e�˛k � k/:

Sincebh0sef.M/ is finite, it is easy to have

bh0sef.M/ D lim
˛!0�

bh0.M.˛//:

Then many results onbh0 can be transferred tobh0sef.

Proposition 3.1 ([25, Propostion 2.1]). LetM D .M; k � k/ be a normed free module of
rank r . The following are true:

(i) For any ˛ � 0, one has

bh0.M.�˛// �bh0.M/ �bh0.M.�˛//C r˛ C r log 3;bh0sef.M.�˛// �bh0sef.M/ �bh0sef.M.�˛//C r˛ C r log 3:

(ii) One has bh0sef.M/ �bh0.M/ �bh0sef.M/C r log 3:

The following filtration version is based on the successive minima of Gillet–Soulé [12].
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16 Yuan and Zhang, Effective bounds of linear series

Proposition 3.2 ([25, Proposition 2.3]). LetM D .M; k � k/ be a normed free Z-module
of finite rank. Let 0 D ˛0 � ˛1 � � � � � ˛n be an increasing sequence. For 0 � i � n, denote
by ri the rank of the submodule of M generated by bH 0.M.�˛i //. Then

bh0.M/ �bh0.M.�˛n//C

nX
iD1

ri�1.˛i � ˛i�1/C 4r0 log r0 C 2r0 log 3;

bh0.M/ �

nX
iD1

ri .˛i � ˛i�1/ � 2r0 log r0 � r0 log 3:

The same results hold for the pair .bh0sef.M/;bh0sef.M.�˛n///.

Effective sections. Let X be an arithmetic variety, and let L D .L; k � k/ be a hermitian
line bundle over X. We introduce the following notation.

Recall that the set of effective sections is

bH 0.X;L/ D ¹s 2 H 0.X;L/ W ksksup � 1º:

Define the set of strictly effective sections to be

bH 0
sef.X;L/ D ¹s 2 H

0.X;L/ W ksksup < 1º:

Denote bh0.X;L/ D log #bH 0.X;L/; bh0sef.X;L/ D log #bH 0
sef.X;L/:

We say that L is effective (resp. strictly effective) ifbh0.X;L/ ¤ 0 (resp.bh0sef.X;L/ ¤ 0). We
usually omit X in the above notations. For example, bH 0.X;L/ is written as bH 0.L/.

Note thatM D .H 0.X;L/; k � ksup/ is a normed Z-module. The definitions are compat-
ible in that bH 0.L/; bH 0

sef.L/;
bh0.L/; bh0sef.L/

are identical to bH 0.M/; bH 0
sef.M/; bh0.M/; bh0sef.M/:

Hence, the results in the last section can be applied here. For example, Proposition 3.1 gives

bh0sef.L/ �
bh0.L/ �bh0sef.L/C h

0.LQ/ log 3:

Note that if X is also defined over SpecOK for some number fieldK, then we obtain two
projective varieties XQ D X �Z Q and XK D X �OK

K, and two line bundles LQ and LK .
It is easy to have

h0.LQ/ D ŒK W Q�h
0.LK/:

Moreover, we can define the degree of LQ on XQ to be

dQ D deg.LQ/ D Ln�1
Q :

Similarly, we have

dQ D ŒK W Q�dK :
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Yuan and Zhang, Effective bounds of linear series 17

Change of metrics. For any continuous function f W X.C/! R, denote

L.f / D .L; e�f k � k/:

In particular, O.f / D .OX ; e
�f / is the trivial line bundle with the metric sending the section 1

to e�f . The case OX D O.0/ is exactly the trivial hermitian line bundle on X.
If c > 0 is a constant, one has

bh0.L.�c// �bh0.L/ �bh0.L.�c//C h0.LQ/.c C log 3/

and bh0sef.L.�c// �
bh0.L/ �bh0sef.L.�c//C h

0.LQ/.c C log 3/:

These also follow from Proposition 3.1.

Base loci. LetH denote bH 0.L/ or bH 0
sef.L/ in the following. Consider the natural map

H �L_ ! L �L_ ! OX :

The image of the composition generates an ideal sheaf of OX . The zero locus of this ideal
sheaf, defined as a closed subscheme of X, is called the base locus of H in X. The union of
the irreducible components of codimension one of the base locus is called the fixed part of H
in X.

Absolute minima. For any irreducible horizontal arithmetic curve D of X, define the
normalized height

h
L
.D/ D

bdeg.LjD/
degDQ

:

Define the absolute minimum e
L

of L to be

e
L
D inf

D
h

L
.D/:

It is easy to verify that

e
L.˛/
D e

L
C ˛; ˛ 2 R:

If L is nef, the absolute minimum e
L

is non-negative, and L.�e
L
/ is a nef line bundle

whose absolute minimum is zero. It is a very important fact in our treatment in the following.
We refer to [27, 28] for more results on the minima of L for nef hermitian line bundles.

3.2. Volume derivative. Let L be a hermitian line bundle on an arithmetic variety X

of dimension n over OK . Recall that the volume derivative is defined by

dvol.L/ D sup
.X0;A/

An�1
K ;

where X0 is any arithmetic variety endowed with a birational morphism � W X0 ! X, and A

is any nef Q-line bundle on X0 such that ��L �A is effective. The goal here is to give more
interpretations of this basic invariant.
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18 Yuan and Zhang, Effective bounds of linear series

Derivative of the arithmetic volume function. The first result is the following inter-
pretation.

Lemma 3.3. For any big hermitian line bundle L,

dvol.L/ D
1

nŒK W Q�
lim
t!0

1

t

�cvol.L.t// �cvol.L/
�
:

The lemma is an example of the differentiation of the arithmetic volume function of
Chen [6]. We start with some general notations to introduce the result.

Denote by cPic.X/ the group of hermitian line bundles on X, and bycPic.X/Q D cPic.X/˝Z Q

the group of hermitian Q-line bundles on X. Denote by

bPic.X/Q D lim
�!
X0

cPic.X0/Q;

where the direct limit is taken over all arithmetic varieties X0 with a birational morphisms
X0 ! X, and the transition maps between different cPic.X0/ are just the pull-back of line
bundles.

An element of bPic.X/Q is said to be effective (resp. big or nef) if some positive multiple
of it can be represented by an effective (resp. big or nef) hermitian line bundle on some X0.
Denote by bNef .X/Q, bBig.X/Q and cEff .X/Q respectively the cone of nef, big, and effective
elements of the group bPic.X/Q.

For two elements L1 and L2, we say that L1 dominates L2 if L1 �L2 is effective.
In that case, we write L1 � L2 or L2 � L1.

The volume function extends to bPic.X/Q by homogeneity, and the intersection pairing
extends to bPic.X/Q naturally. In particular, cvol.A/ D A

n
for any A 2 bNef .X/Q.

Let L be an element of bBig.X/Q. The arithmetic Fujita approximation of Chen [5] and
Yuan [23] asserts that cvol.L/ D sup

A2cNef .X/Q
A�L

cvol.A/:

The main result of Chen [6] is the following: For any L 2bBig.X/Q and M 2bPic.X/Q,
the derivative

lim
t!0

1

t

�cvol.LC tM/ �cvol.L/
�
D n

˝
L
n�1˛
�M:

Here the positive intersection number for M 2 cEff .X/Q is defined by˝
L
n�1˛
�M WD sup

A2cNef .X/Q
A�L

A
n�1
�M:

It turns out that the positive intersection number is additive in M, and thus extends to any
M 2bPic.X/Q by linearity.

Go back to the volume derivative. Take M D O.1/. We immediately have

lim
t!0

1

t

�cvol.L.t// �cvol.L/
�
D n

˝
L
n�1˛
�O.1/;
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Yuan and Zhang, Effective bounds of linear series 19

where ˝
L
n�1˛
�O.1/ D ŒK W Q� sup

A2cNef .X/Q
A�L

An�1
K :

This proves the lemma.

Interpretation by algebraic linear series. We can also interpret dvol as the volume
function of certain graded linear series on the generic fiber XK . In the following, denote by
hbH 0.L/iK the K-linear subspace of H 0.LK/ generated by bH 0.L/.

Proposition 3.4. For any big hermitian line bundle L,

dvol.L/ D lim
N!1

dimKhbH 0.NL/iK

N n�1=.n � 1/Š
:

This essentially follows from the construction of the arithmetic Fujita approximation by
Chen [5]. Here we give another interpretation in the terminology of Boucksom–Chen [3], since
it contains more information.

We first introduce some notations. For any t 2 R, denote

R.t/ D

1M
ND0

hbH 0.NL�t /iK :

Here we write L�t for L.�t / to avoid the confusion by the multiplication by N . Then R.t/ is
a graded subring of the section ring

R.LK/ D

1M
ND0

H 0.NLK/:

Fix an algebraic point of X and a local coordinate at this point. By the construction in
Lazarsfeld–Mustaţǎ [16], we obtain the Okounkov body �.LK/ of LK , which is a convex
body in Rn�1. Furthermore, we also have an Okounkov body �.t/ for each graded ring R.t/.
Note that �.t/ � �.LK/ by definition.

From the construction of �.t/, we can see that

vol.�.0// D lim
N!1

dimKhbH 0.NL/iK

N n�1
:

A property hidden in the equality is that the right-hand side converges.
As in [3], define a function

G
L
W �.LK/! R

by
G

L
.x/ WD sup¹t 2 R W x 2 �.t/º:

Then the main result of [3] gives

1

nŠŒK W Q�
cvol.L/ D

Z
�.LK/

max¹G
L
.x/; 0º dx:

Brought to you by | University of Durham
Authenticated

Download Date | 7/21/17 1:16 PM



20 Yuan and Zhang, Effective bounds of linear series

By definition,
�.0/ D ¹x 2 �.LK/ W GL

.x/ � 0º:

It follows that we can just write

1

nŠŒK W Q�
cvol.L/ D

Z
�.0/

G
L
.x/ dx:

By definition, G
L.t/

.x/ D G
L
.x/C t . It follows that

1

nŠŒK W Q�
cvol.L.t// D

Z
�.�t/

.G
L
.x/C t / dx

D

Z
�

G
L
.x/ dx C vol.�.0//t C o.t/:

Hence,
1

nŠŒK W Q�
lim
t!0

1

t

�cvol.L.t// �cvol.L/
�
D vol.�.0//;

which is essentially the equality in the proposition.

3.3. Filtration of hermitian line bundles. This subsection is the high-dimensional
analogue of the construction in [25]. One difference is that we need blow-ups to finish the
decomposition in high-dimensional case.

The basic construction. Our goal of this subsection is to introduce a basic decompo-
sition of hermitian line bundles on arithmetic varieties, as high-dimensional generalizations
of [25, Theorem 3.2]. It is a decomposition keeping bH 0

sef.L/.

Theorem 3.5. Let X be a normal arithmetic variety, and L be a hermitian line bundle
withbh0sef.L/ ¤ 0. Then there exist a birational morphism � W X1 ! X with X1 being normal,
and a decomposition

��L D L1 C E1

where E1 is an effective hermitian line bundle on X, and L1 is a nef hermitian line bundle
on X1 satisfying the following conditions:

� There is an effective section e 2 bH 0.E1/ such that div.e/ is the base locus of bH 0
sef.�

�L/

in X1.

� The map L1 ! ��L defined by tensoring with e induces a bijection

bH 0
sef.L1/

˝e
�! bH 0

sef.�
�L/:

Furthermore, the bijection keeps the supremum norms, i.e.,

ksksup D ke ˝ sksup for all s 2 bH 0
sef.L1/:

The above result is a generalization of [25, Theorem 3.2] for the arithmetic surface case.
One can also obtain a similar decomposition keeping bH 0.L/, as a generalization of [25, The-
orem 3.1].
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Yuan and Zhang, Effective bounds of linear series 21

The proof of the theorem is very similar to that of [25, Theorem 3.2], except that we need
to blow-up the base loci in the high-dimensional case to make them Cartier divisors. In the
following, we sketch it briefly.

Denote by Z the base locus of bH 0
sef.X;L/ on X. Let � W X1 ! X be the normalization

of the blow-up of X with centerZ. Denote by E1 the line bundle on X1 associated toZ, and by
e 2 H 0.X1;E1/ the section definingZ. Define the line bundle L1 on X1 by the decomposition

��L D L1 C E1:

Define the metric k � kE1
of E1 at x 2 X1.C/ by

ke.x/kE1
D max

²
ks.x/k

ksksup
W s 2 bH 0

sef.X1; �
�L/; s ¤ 0

³
:

It is easy to see that kekE1;sup D 1. Define the metric k � kL1
on L1 by the decomposition

��L D .E1; k � kE1
/C .L1; k � kL1

/:

Set E1 D .E1; k � kE1
/ and L1 D .L1; k � kL1

/. Then the decomposition ��L D E1 CL1 sat-
isfies the theorem. The proof is similar to that of [25, Theorem 3.2], and we omit it here.

The filtration. In this subsection, the plan is to write down a filtration of hermitian line
bundles by performing the above decomposition repeatedly.

Let L be a nef hermitian line bundle. We are going to apply Theorem 3.5 to reduce L

to “smaller” nef line bundles. The problem is that the fixed part of L may be empty, and then
Theorem 3.5 is a trivial decomposition. The idea is to enlarge the metric of L by constant
multiples to create base points. To keep the nefness, the largest constant multiple we can use
gives the case that the absolute minimum is 0. The following proposition says that the situation
exactly meets our requirement.

Proposition 3.6. Let X be an arithmetic variety, and let L be a nef hermitian line
bundle on X satisfying bh0sef.L/ > 0; e

L
D 0:

Then the base locus of bH 0
sef.L/ contains a non-empty horizontal part.

Before the proof, we emphasize the parallelism between the geometric and the arithmetic
case. In fact, e

L
is the analogue of the eL in the geometric situation. While eL is a discrete

invariant (an integer), e
L

is a continuous invariant (a real number). This forces us treating the
limit case of Proposition 3.6.

Proof. We prove this by contradiction. Suppose the base locus of bH 0
sef.L/ is empty or

vertical. Then for any horizontal arithmetic curve D on X, we can find a non-zero section
s 2 bH 0

sef.L/ such that s does not vanish on D. Thus one has

h
L
.D/ D

1

deg.DQ/
.div.s/ �D � log ksk.D.C/// � � log ksksup:

Therefore,
e

L
� min
s2bH0sef.L/�¹0º

.� log ksksup/ > 0:

It contradicts to our assumption.
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22 Yuan and Zhang, Effective bounds of linear series

From the above proposition, we have the following total construction.

Theorem 3.7. Let X0 be a regular arithmetic variety, and let L0 be a nef hermitian
line bundle on X0. There exist an integer N � 0, and a sequence of quadruples

¹.Xi ;Li ;E i ; ci / W i D 0; 1; : : : ; N º

where Xi is a normal arithmetic variety, and Li and E i are hermitian line bundles on Xi

satisfying the following properties:

� .X0;L0;E0; c0/ D .X0;L0;OX ; eL0
/.

� For any i D 0; : : : ; N , the constant ci D eLi
� 0 is the absolute minimum of Li .

� For any i D 0; : : : ; N � 1, �i W XiC1 ! Xi is a birational morphism and

��i Li .�ci / D LiC1 C E iC1

is a decomposition of ��i Li .�ci / as in Theorem 3.5.

� bh0sef.X;Li .�ci // > 0 for any i D 0; : : : ; N � 1.

� bh0sef.LN .�cN // D 0.

The following are some properties by the construction:

� For any i D 0; : : : ; N , Li is nef and every E i is effective.

� bh0sef.L0/ �bh0sef.L1/ >bh0sef.L2/ > � � � >bh0sef.LN / >bh0sef.LN .�cN // D 0.

� For any i D 0; : : : ; N � 1, there is a section eiC1 2 bH 0.E iC1/ inducing a bijectionbH 0
sef.LiC1/! bH 0

sef.�
�
i Li .�ci //

which keeps the supremum norms.

Proof. Observe that the quadruple .XiC1;LiC1;E iC1; ciC1/ is obtained by decom-
posing ��Li .�ci /. Note that tensoring with O.�ci / is the analogue of subtracting ciF in the
geometric situation. From our construction in Theorem 3.5, one can see that for i D 1; : : : ; N ,bH 0

sef.Li / has no base locus but bH 0
sef.Li .�ci // has. It implies thatbh0sef.Li / >bh0sef.Li .�ci // Dbh0sef.LiC1/:

The process terminates if one hasbh0sef.X;Li .�ci // D 0. It always terminates sincebh0sef.L0/

is finite.

Numerical inequalities. Recall that Theorem 3.7 starts with a nef line bundle L0 and
constructs the sequence

.Xi ;Li ;E i ; ci /; i D 0; : : : ; N:

Here Li is nef and E i is effective, and ci D eLi
� 0. In particular, Li .�ci / is still nef. For

any i D 0; : : : ; N � 1, the decomposition

��i Li .�ci / D LiC1 C E iC1

gives a bijection bH 0
sef.LiC1/! bH 0

sef.�
�
i Li .�ci //;
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which is given by tensoring some distinguished element eiC1 2 bH 0.E iC1/. It is very important
that the bijection keeps the supremum norms. In the following, we denote

L
0

i D Li .�ci /; i D 0; : : : ; N:

We also denote di D deg.Li;Q/ D Ln�1
i;Q and ri D h0.Li;Q/.

Proposition 3.8. For any j D 0; : : : ; N , one has

L
n

0 � L
0n

j C n

jX
iD0

dici ;

bh0sef.L0/ �bh0sef.L
0

j /C

jX
iD0

rici C 4r0 log r0 C 2r0 log 3:

Proof. The results can be proved by the method of [25, Proposition 4.5]. We only write
a proof for the first inequality here.

By construction, we have

��i L
0

i D LiC1 C E iC1 D L
0

iC1 C E iC1 CO.ciC1/:

Here L
0

i and L
0

iC1 are nef, and E iC1 is effective. It follows that

L
0n

i �L
0n

iC1 D .E iC1 CO.ciC1// �

 
n�1X
kD0

.��i L
0

i /
k
�L

n�1�k

iC1

!

�

 
n�1X
kD0

.��i L
0

i /
k
�L

n�1�k

iC1

!
�O.ciC1/

� ndiC1ciC1:

Summing over i D 0; : : : ; j � 1, we can get

L
0n

0 � L
0n

j C n

jX
iD1

dici :

Then the conclusion follows from

L
n

0 D L
0n

0 � nd0c0:

Similar to Lemma 2.3, we still have the following result.

Lemma 3.9. In the setting of Theorem 3.7, we have

L
n

0 � d0

 
nc0 C

NX
iD1

ci

!
:

Proof. Let F i be the pull-back of E i from Xi to XN . We denote

ˇ D c1 C � � � C cN ; F D F 1 C � � � C F N ; � D �0 ı � � � ı �N�1 W XN ! X0:

Hence we have the decomposition

��L
0

0.�ˇ/ D L
0

N C F :
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Note that L
0

0.�ˇ/ is not nef any more. But we can still have a weaker bound as follows:

L
0n

0 D .�
�L
0

0/
n�1
� .L
0

N C F CO.ˇ//

� .��L
0

0/
n�1
�L
0

N C d0ˇ

� L
0n

N C d0ˇ:

Combine with
L
n
D L

n

0 D L0.�c0/
n
C nd0c0:

We have
L
n
� L

0n

N C d0ˇ C nd0c0 � d0.nc0 C ˇ/:

The result follows.

3.4. Proofs of the main theorems. In this subsection, we prove Theorem 1.3 and 1.4.

Nef case. Here we start to prove Theorem 1.3. To illustrate the idea, we first treat the
nef case.

Assume that L is nef (and big). Recall that Theorem 1.3 asserts

bh0.L/ � � 1
nŠ
C
.n � 1/".LK/

d=ŒK W Q�

�
L
n
C 4r log.3r/:

Here d D Ln�1
Q and r D h0.LQ/.

Apply the construction of Theorem 3.7 to .X0;L0/ D .X;L/. Resume the notations of
the theorem. By Proposition 3.8, we have

L
n
� n

NX
iD0

dici ;

bh0sef.L/ �

NX
iD0

rici C 4r0 log r0 C 2r0 log 3:

It follows that

bh0sef.L/ �
L
n

nŠ
�

NX
iD0

�
ri �

di

.n � 1/Š

�
ci C 4r0 log r0 C 2r0 log 3:

The key is to apply Theorem 1.1, the effective bound in the geometric case. For any
i D 0; : : : ; N ,

ri �
di

.n � 1/Š
� .n � 1/".LK/ŒK W Q�:

It follows that

bh0sef.L/ �
L
n

nŠ
� .n � 1/".LK/ŒK W Q�

NX
iD0

ci C 4r0 log r0 C 2r0 log 3:

To bound c0 C � � � C cN , by Lemma 3.9, we get

NX
iD0

ci �
1

d0
L
n
:
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It follows that

bh0sef.L/ �
L
n

nŠ
� .n � 1/".LK/ŒK W Q�

L
n

d0
C 4r0 log r0 C 2r0 log 3:

Finally, by Proposition 3.1, bh0.L/ �bh0sef.L/C r0 log 3:

This finishes the proof.
We remark that the denominator d0 > 0 in the current setting. In fact, LK is nef and big

following the assumption that L is nef and big. The nef part is trivial, and the big part is a result
of Yuan [23].

General case. Here we prove Theorem 1.3 in the full case (that the line bundle is big).
The major difficulty to carry the above proof is to seek a good formulation of Lemma 3.9. Our
idea is to use the arithmetic Fujita approximation to overcome the difficulty.

Recall that the theorem asserts that, for any big hermitian line bundle M on X,

bh0.M/ �

�
1

nŠ
C
.n � 1/".MK/

dvol.M/

�cvol.M/C 4s log.3s/:

Here s D h0.MQ/ D ŒK W Q�h
0.MK/.

Here we deliberately switch the notation for the line bundle in consideration from L

to M, in order to accommodate the notations in Theorem 3.7 and afterwards.
Assume thatbh0.M/ > 0. Note that M is not necessarily nef, so our first step is to use the

key decomposition to make it nef as in the geometric case. Applying Theorem 3.5 to M, we
have a decomposition

��M D L0 C E

based on a birational morphism � W X0 ! X. Here E is effective, L0 is nef, andbh0.M/ Dbh0.L0/:

Note the change of notations again.
Next, apply Theorem 3.7 to the nef bundle L0 over X0. As in the theorem, we get

a sequence of quadruples

¹.Xi ;Li ;E i ; ci / W i D 0; 1; : : : ; N º:

By the above argument, we still have

bh0sef.L0/ �
L
n

0

nŠ
� .n � 1/".LK/ŒK W Q�

NX
iD0

ci C 4r0 log r0 C 2r0 log 3:

It is easy to see that it implies

bh0sef.M/ �
1

nŠ
cvol.M/ � .n � 1/".MK/ŒK W Q�

NX
iD0

ci C 4s log s C 2s log 3:

It suffices to prove
NX
iD0

ci �
1

ŒK W Q�dvol.M/
cvol.M/:
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Note that Lemma 3.9 gives
NX
iD0

ci �
1

d0
L
n

0;

which is not strong enough. However, the result is actually true for “bigger” nef line bundles,
and the limit will give what we need.

Resume the notations in Section 3.2. Let L�1 2 bNef .X/ be an element such that

M � L�1 � L0:

Set c�1 D 0. Add .L�1; c�1/ to the beginning of the sequence ¹.Li ; ci /ºi . It is easy to see that
Lemma 3.9 can be applied to the sequence

.L�1; c�1/; .L0; c0/; .L1; c1/; : : : ; .LN ; cN /:

It is crucial that the lemma only involves intersection numbers (withoutbh0). Hence, we have

NX
iD0

ci D

NX
iD�1

ci �
1

.L�1;Q/n�1
.L�1/

n:

Note that there are plenty of elements L�1 of bNef .X/ satisfying M � L�1 � L0 by [6, Pro-
position 3.1]. In fact, by [6, Theorem 3.4, Theorem 4.3], we can find an increasing sequence
¹L�1;mºm�1 of such elements such that

lim
m!1

.L�1;m;Q/
n�1
D ŒK W Q�dvol.M/; lim

m!1
.L�1;m/

n
D cvol.M/:

This finishes the proof of Theorem 1.3.

Small case. The proof of Theorem 1.4 in the nef case is very similar, except that we
use Theorem 1.2 instead of Theorem 1.1 to bound ri in terms of di . Note that we can assume
every Xi to have smooth generic fiber by a further generic resolution of singularities. We leave
the details to interested readers.

3.5. Arithmetic 3-folds. In this subsection, we will prove Theorem 1.6. Let us resume
the general setting. Here X is an arithmetic 3-fold over OK , and L is a nef hermitian line
bundle on X such that

�LK
W XK Ü P .H 0.LK//

is a generically finite rational map.

Linear series on algebraic surfaces. Let S be an algebraic surface over an alge-
braically closed field k. We always use �.S/ to denote the Kodaira dimension of S .

Let L be a line bundle on S . Assume h0.L/ > 1. Hence we have the rational map

�L W S Ü P .H 0.L//:

We say �L is generically finite if dim�L.S/ D 2. Otherwise, dim�L.S/ D 1, and in this case
we say �L is composed with a pencil.
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Theorem 3.10 ([22, Theorem 1.2]). Assume that �.S/ � 0. If L is nef and �L is gener-
ically finite, then

h0.L/ �
1

2
L2 C 2:

This result is cleaner than the surface case of Theorem 1.1, under more assumptions.

Theorem 3.11. Assume that �.S/ � 0. Let L and M be line bundles on S . Assume
that L is nef and �L is generically finite, and that L �M is effective and �M is composed with
a pencil. Then

h0.M/ �
1

2
LM C 1:

If furthermore the pencil of �M is not elliptic or hyperelliptic, then

h0.M/ �
1

3
LM C 1:

Proof. By the basic construction in the geometric case, after blowing-up, we can assume
that �L and �M are actually morphisms. Since �M is composed with a pencil, we can write

M �num aF;

where F is a general member of the pencil and a � h0.M/ � 1. We have

LM D aLF C LZ � .h0.M/ � 1/LF:

Because S is not birationally ruled, F is not rational. Hence LF � 2 since L is base-point-free
on F . Moreover, LF � 3 if F is not elliptic or hyperelliptic.

Proof of Theorem 1.6. Now we proof Theorem 1.6. Apply Theorem 3.7 to the pair
.X0;L0/ D .X;L/. Resume the notations in the theorem. Then we have the quadruples

.Xi ;Li ;E i ; ci /; i D 0; : : : ; N:

We first analyze the proof of Theorem 1.3. Proposition 3.8 in this case gives

bh0sef.L/ �
L
3

6
�

NX
iD0

�
ri �

1

2
di

�
ci C 4r0 log r0 C 2r0 log 3:

If �Li;K
is generically finite, then Theorem 3.10 gives

ri �
1

2
di � 2;

which is exactly what we need in the proof. However, this inequality fails if �Li;K
is not

generically finite, in which case di D 0. So we need to bound ri in this case by a different
method.

Since �LK
is generically finite, we can find the biggest j 2 ¹0; 1; : : : ; N º such that �Lj;K

is generically finite. Then �Li;K
is not generically finite for i D j C 1; : : : ; N . We will bound

ri by a variant of di for such i .
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For any i D j; j C 1; : : : ; N , denote

d 0i D Lj;Q �Li;Q:

Here by abuse of notation, the right-hand side denotes the intersection of Li;Q with the pull-
back of Lj;Q to Xi;Q. In the following, we still use this method to simplify our notations.

Proposition 3.12. We have

L
03

j � 2

NX
iDjC1

d 0i ci :

Proof. For any i � j , recall the decomposition

��i L
0

i D LiC1 CO.ciC1/ D L
0

iC1 C E iC1 CO.ciC1/:

Hence,
L
0

j �L
02

i � L
0

j � .L
0

iC1 CO.ciC1//
2
D L

0

j �L
02

iC1 C 2d
0
iC1ciC1:

Summing over i D j; : : : ; N � 1, one finishes the proof.

Now we are ready to finish the proof. By Proposition 3.8,

L
3

0 � L
03

j C 3

jX
iD0

dici ;

bh0sef.L0/ �

NX
iD0

rici C 4r0 log r0 C 2r0 log 3:

Note that the first inequality concerns the filtration from 0 to j , while the second inequality
concerns the filtration from 0 to N .

By Proposition 3.12, the first inequality implies

L
3

0 � 3

jX
iD0

dici C 2

NX
iDjC1

d 0i ci :

Then the difference gives

bh0sef.L0/ �
1

6
L
3

0 �

jX
iD0

�
ri �

1

2
di

�
ci C

NX
iDjC1

�
ri �

1

3
d 0i

�
ci C 4r0 log r0 C 2r0 log 3:

By assumption, �.XK/ � 0 and XK has no elliptic or hyperelliptic pencil. Theorem 3.10
and Theorem 3.11 give

ri �
1

2
di � 2ŒK W Q�; i D 0; : : : ; j;

ri �
1

3
d 0i � ŒK W Q�; i D j C 1; : : : ; N:
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Hence,

bh0sef.L/ �
1

6
L
3
� 2ŒK W Q�

NX
iD0

ci C 4r0 log r0 C 2r0 log 3:

Apply Lemma 3.9 again. We have

bh0sef.L/ �
1

6
L
3
�

2

dK
L
n
C 4r0 log r0 C 2r0 log 3:

Combining with bh0.L/ �bh0sef.L/C r0 log 3;

the proof is complete.
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