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ABSTRACT
Discrepancies between the observed and model-predicted radio flux ratios are seen in a number
of quadruply-lensed quasars. The most favoured interpretation of these anomalies is that cold
dark matter (CDM) substructures present in lensing galaxies perturb the lens potentials and
alter image magnifications and thus flux ratios. So far no consensus has emerged regarding
whether or not the predicted CDM substructure abundance fully accounts for the lensing
flux anomaly observations. Accurate modelling relies on a realistic lens sample in terms
of both the lens environment and internal structures and substructures. In this paper, we
construct samples of generalized and specific lens potentials, to which we add (rescaled)
subhalo populations from the galaxy-scale Aquarius and the cluster-scale Phoenix simulation
suites. We further investigate the lensing effects from subhaloes of masses several orders of
magnitude below the simulation resolution limit. The resulting flux-ratio distributions are
compared to the currently best available sample of radio lenses. The observed anomalies
in B0128+437, B0712+472 and B1555+375 are more likely to be caused by propagation
effects or oversimplified/improper lens modelling, signs of which are already seen in the data.
Among the quadruple systems that have closely located image triplets/pairs, the anomalous
flux ratios of MG0414+0534 can be reproduced by adding CDM subhaloes to its macroscopic
lens potential, with a probability of 5–20 per cent; for B0712+472, B1422+231, B1555+375
and B2045+265, these probabilities are only of a few per cent. We hence find that CDM
substructures are unlikely to be the whole reason for radio flux anomalies. We discuss other
possible effects that might also be at work.

Key words: gravitational lensing: strong – galaxies: haloes – galaxies: structure – cosmology:
theory – dark matter.

1 IN T RO D U C T I O N

Understanding the radio flux ratios of multiply-imaged quasars has
been a long-standing problem. In these systems, standard paramet-
ric models of the lens mass distribution (e.g. a singular isothermal
ellipsoid plus external shear, hereafter ‘SIE+γ ’) can fit the im-
age positions well, but not their flux ratios. This is known as the
‘anomalous flux ratio’ problem (Kochanek 1991).

� E-mail: usolizw18@gmail.com

A number of solutions have been proposed. For example, some of
the flux-ratio anomalies could be accommodated by adding higher
order multipoles to the ellipsoidal potential of the lensing galaxy.
However, the required amplitudes are deemed to be unreasonably
larger than typically observed in galaxies and halo models (Evans
& Witt 2003; Kochanek & Dalal 2004; Congdon & Keeton 2005;
Yoo et al. 2006).

Propagation effects in the interstellar medium, such as galactic
scintillation and scatter broadening, could also cause anomalous
flux ratios. If so, one would expect a strong wavelength dependence
of the anomalies measured at radio wavelengths, which was not seen
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(Koopmans et al. 2003; Kochanek & Dalal 2004). Moreover, neither
of the two solutions proposed above could explain the observed
parity dependence of the flux anomalies (e.g. Metcalf & Madau
2001; Schechter & Wambsganss 2002; Keeton 2003; Kochanek &
Dalal 2004).

Currently the most favoured explanation of the radio flux-ratio
anomalies invokes the perturbation effects from small-scale struc-
tures hosted by lensing galaxies. In the cold dark matter (CDM)
model of structure formation a large population of dark matter sub-
haloes is predicted to survive inside larger ‘host’ haloes. In galaxies
like the Milky Way, their number vastly exceeds the number of
observed satellites (about two dozen have been discovered in the
Milky Way to date). On the one hand, part of this discrepancy can
be readily understood on the basis of standard ideas, e.g. photo
reionization and stellar feedback on galaxy formation (Bullock,
Kravtsov & Weinberg 2000; Benson et al. 2002; Bovill & Ricotti
2009; Cooper et al. 2010; Font et al. 2011; Guo et al. 2011). The
gap was also narrowed by the discovery of a population of ultrafaint
satellites from the Sloan Digital Sky Survey (SDSS; Tollerud et al.
2008; Koposov et al. 2008, 2009). Despite this, several controversies
still exist on small scales regarding the abundance (‘missing satel-
lite’ problem, e.g. Klypin et al. 1999; Moore et al. 1999; Kravtsov,
Gnedin & Klypin 2004) and the density profiles (‘the cusp/core’
problem, see Ludlow et al. 2013) of these dark matter subhaloes
that are predicted to exist but somehow failed to make galaxies.

If they do exist as CDM predicted, they could then be probed
through their gravitational lensing effects. Earlier studies from e.g.
Mao & Schneider (1998), Metcalf & Madau (2001) and Metcalf &
Zhao (2002), proposed that substructures (on scales much smaller
than image separations of 1 arcsec for typical lens and source red-
shifts) could explain the radio flux-ratio anomalies in quadruply-
lensed quasar images. Later studies showed that the presence of sub-
structures in lensing galaxies can also explain the observed tendency
for the brightness of the saddle image to be suppressed (Schechter
& Wambsganss 2002; Keeton 2003; Kochanek & Dalal 2004). The
perturbations by subhaloes have therefore emerged as one of the
most convincing explanations for the radio flux-ratio anomalies.
If true, such an explanation could have important implications for
cosmology since it provides a direct and crucial test of the CDM
model.

To date, there are about a dozen studies that use N-body sim-
ulations to test if the predicted CDM substructures have the right
amount to explain the observed frequency of anomalous lenses in
currently available samples. However, no consensus has emerged.
While some of the studies (e.g. Dalal & Kochanek 2002; Bradač
et al. 2004; Dobler & Keeton 2006; Metcalf & Amara 2012) suggest
consistency between the CDM model and observations, others (e.g.
Mao et al. 2004; Amara et al. 2006; Macciò et al. 2006; Macciò
& Miranda 2006; Chen, Koushiappas & Zentner 2011) including
those by us (Xu et al. 2009, 2010) find that subhaloes from CDM
simulations are actually insufficient to explain the observed radio
flux-anomaly frequency.

To tackle this problem from the numerical simulation point of
view, one needs to model a realistic sample of the lens population,
from their larger-scale environment to their internal structures and
substructures. Any numerical experiment in this regard is facing
several major issues that directly affect the accuracy of the study.
For example, as shown by Keeton, Gaudi & Petters (2003), flux
ratios are quite sensitive to the ellipticity of the main lens. Metcalf
& Amara (2012) also pointed out that one of the reasons that our
previous studies (Xu et al. 2009, 2010) did not reproduce enough
perturbations to match observations could be due to our adoption

of a restricted ellipticity instead of the full range of ellipticities in
the main lens models.

Secondly, the lack of a proper subhalo population may have
distorted our previous conclusion. Previously we exclusively used
the Milky Way-sized haloes from the Aquarius project (Springel
et al. 2008). However, massive elliptical galaxies, which comprise
80–90 per cent of observed lenses (Keeton, Kochanek & Falco 1998;
Kochanek et al. 2000; Rusin et al. 2003) are more likely to occur
in group-sized haloes which are generally ten times more massive.
Since the subhalo abundance increases rapidly with increasing host
halo mass (e.g. De Lucia et al. 2004; Gao et al. 2004; Zentner et al.
2005; Wang et al. 2012), the adoption of subhalo populations hosted
by Milky Way-sized haloes could underestimate the probability of
flux-ratio anomalies.

Thirdly, at present, even the best cosmological N-body simula-
tions only resolve subhaloes down to 106–7 h−1 M� so the lens-
ing effects from subhaloes of masses beyond such resolution limit
cannot be readily studied using these N-body simulations. In the
CDM cosmogony, low mass subhaloes are much more abundant
than their higher mass counterparts. Should we expect more per-
turbation effects from the low-mass subhaloes? Or what could be
the observational signatures of these substructures predicted to exist
at the lower levels of the hierarchy of cosmic structures? Specifi-
cally, down to which mass levels would the dark matter subhaloes
still be able to affect the image brightness and flux ratios at radio
wavelengths?

Last but not least, the cosmological simulations that have been
used in these studies contain only dark matter but no baryons, the
inclusion of which might change the subhalo survival rate as well
as their density profiles/concentration, that in turn might lead to a
different conclusion.

In this paper, we accommodate the first three issues above and
find that for systems with image triplets/pairs of larger separation,
whose flux ratios are less susceptible to density fluctuations, their
observed anomalies are more likely to be caused by propagation
effects or simplified lens modelling; for systems with closely located
triplets/pairs, CDM substructures alone can only account for the
observed flux ratios with per cent-level probabilities; therefore they
may not be the entire reason. We point out that other possible
sources, e.g. inadequate lens modelling again, as well as baryonic
substructures may also be at work. To this end, high-resolution
hydrodynamic simulations are in great need to help us identifying
other possible culprits for the radio flux-ratio anomalies.

This paper is organized as follows: in the first part, we show that
using generalized lens models and simulated subhalo populations
in group-sized haloes will indeed increase the flux anomaly fre-
quency. Specifically, in Section 2 we review the generic relations
in cusp (Section 2.1) and fold (Section 2.2) lenses, and present
our observational sample of eight systems, all of which have ra-
dio measurements for both cusp and fold relations (Section 2.3). In
Section 3, we present the method to model massive elliptical lenses
and their subhalo populations. For the former (in Section 3.1), we
use a technique similar to that of Keeton et al. (2003). For the latter
(in Section 3.2), we rescale the subhalo populations from two sets
of high-resolution cosmological CDM simulations – the Aquarius
(Springel et al. 2008) and Phoenix (Gao et al. 2012), and add them
to the smooth lens potentials.

In the second part of this paper, i.e. in Section 4, we focus on in-
dividual observed systems, taking the best-fitting macroscopic lens
models and populate not only the rescaled Aquarius and Phoenix
subhalo populations above 107 h−1 M� (in Section 4.2) but also
a low-mass subhalo population down to masses two orders of
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magnitudes below (in Sections 4.3 and 4.4). The observational sig-
natures of very low-mass subhaloes and the dependence on source
sizes are also studied and results are presented in Section 4.5. The
probabilities to reproduce the observed flux ratios are given in Sec-
tion 4.6. Finally, a discussion and our final conclusions are given in
Section 5.

The cosmology we adopt here is the same as that for both sets
of simulations that we use in this work, with a matter density
�m = 0.25, cosmological constant �� = 0.75, Hubble constant
h = H0/(100 km s−1 Mpc−1) = 0.73 and linear fluctuation ampli-
tude σ 8 = 0.9. These values are consistent with cosmological con-
straints from the WMAP 1- and 5-yr data analyses (Spergel et al.
2003; Komatsu et al. 2009), but differ from the Planck 2013 results
(Planck Collaboration XVI 2014), where h = 0.67 and σ 8 = 0.83.
We do not expect these differences in cosmological parameters to
have significant consequences for our conclusions.

2 G ENERIC RELATIONS IN CUSP LENSE S
A N D F O L D L E N S E S

There are three generic configurations of four-image lenses (see
Fig. 1 ): (1) a source located near a cusp of the tangential caustic
will produce a ‘cusp’ configuration, where three images form close
to each other around the critical curve on one side of the lens; (2) a
source located near the caustic and between two adjacent cusps will
produce a ‘fold’ configuration, where a pair of images form close to
each other near the critical curve; (3) a source located far away from
the caustic, i.e. in the central region of the caustic, will produce a
‘cross’ configuration, where all four images form far away from
each other and away from the critical curve. Close triple images in

Figure 1. Three basic image configurations: fold (top), cusp (middle) and
cross (bottom), with respect to the tangential critical curves in the image
plane (on the left), and corresponding source positions with respect to the
central caustics in the source plane (on the right). The image separation θ1

of a close pair is labelled for the fold configuration; image opening angle
�φ and separation θ of a close triplet are labelled for the cusp configuration.

cusp lenses and close pair images in fold lenses are the brightest
images among the four, as they form close to the (tangential) critical
curve.

There are some universal magnification relations for the triple
and pair images in cusp and fold systems in smooth lens poten-
tials. Without detailed lens modelling for individual systems, these
generic relations assist one in identifying small-scale perturbations,
which cause violations of these generic magnification relations.

2.1 The cusp relation

In any smooth lens potential that produces multiple images (of
a single source) of a cusp configuration, a specific magnification
ratio (i.e. also flux ratio) of the image triplet will approach zero
asymptotically, as the source approaches a cusp of the tangential
caustic. This is known as the ‘cusp relation’ (Blandford & Narayan
1986; Mao 1992; Schneider & Weiss 1992; Zakharov 1995; Keeton
et al. 2003), mathematically defined as

Rcusp ≡ μA + μB + μC

|μA| + |μB | + |μC | → 0 (�β → 0), (1)

where �β is the offset between the source and the nearest cusp of
the caustic, μA, B, C denote the triplet’s magnifications, whose signs
indicate image parities.

Because �β cannot be directly measured, we therefore follow the
practice of Keeton et al. (2003), using �φ and θ/θEin to quantify
a cusp image configuration. As labelled in Fig. 1, �φ is defined
as the angle between the outer two images of a triplet, measured
from the position of the lens centre; θ/θEin is the maximum image
separation among the triplet, normalized by the Einstein radius θEin.
In general, when the source moves towards the nearest cusp, both
�φ and θ/θEin will decrease to zero.

In particular small-scale structures, either within the lens or pro-
jected by chance along the line of sight, will perturb the lens poten-
tial and alter fluxes of one or more images. In this case, Rcusp will
become unexpectedly large. The cusp relation, i.e. Rcusp → 0 when
�β → 0, will then be violated.

2.2 The fold relation

For an image pair in a fold configuration produced by any smooth
lens potential, there is also a generic magnification relation, namely
the ‘fold relation’ (Blandford & Narayan 1986; Schneider & Weiss
1992; Schneider, Ehlers & Falco 1992; Petters, Levine & Wamb-
sganss 2001). In this paper, we take the form as in Keeton et al.
(2005):

Rfold ≡ μmin + μsad

|μmin| + |μsad| → 0 (�β → 0), (2)

where �β is the offset of the source from the fold caustic, μmin, sad

denote magnifications of the minimum (μ > 0) and saddle (μ < 0)
images. To quantify a fold image configuration, similar to the prac-
tice of Keeton et al. (2005), we use θ1/θEin to indicate how close the
pair of images are. As labelled in Fig. 1, θ1/θEin is defined as the
separation, in unit of the Einstein radius θEin, between the saddle
image and the nearest minimum image.

Once again, when small-scale structures are present, Rfold will
also become unexpectedly large; the fold relation, i.e. Rfold → 0
when �β → 0, will then be violated. In principle, one can study
the perturbing small-scale structures by investigating the violations
of the cusp and fold relations in extreme systems where �β ∼ 0.
However, the detection of such systems is rare. For observed lenses,
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�β �= 0; and the exact values of Rcusp and Rfold depend on �β, as
well as the lens potentials. Without detailed lens modelling, one can
identify cases of violations as outliers of some general distributions
of Rcusp and Rfold for smooth lenses. A series of comprehensive and
detailed studies on this topic have been carried out by e.g. Keeton
et al. (2003, 2005), whose methods are largely followed in this work
(Section 3.1).

2.3 A sample of cusp and fold lenses

In order to quantify how well the CDM substructures can account for
the flux-anomaly observations, we take all the quadruple systems
with Rcusp and Rfold measured at radio wavelengths, as the fluxes
measured at optical and NIR (Sluse et al. 2013) wavelengths can be
significantly affected by stellar microlensing and dust extinction.
This forms a sample of a total of eight lenses; three ‘cusp’, and
five ‘fold’ lenses. The radio flux ratios of several other systems can
also be found in literature but are excluded from this work: three
systems have atypical nature of the lensing galaxy, i.e. the Einstein
cross Q2237+0305 (Falco et al. 1996) which is lensed by the bulge
of a spiral galaxy, the large separation system J1004+4112 (Jackson
2011) which is lensed by a galaxy cluster, and B1359+154 (Rusin
et al. 2001) which shows six images and is lensed by a group
of galaxies; we also excluded MG2016+112 (Garrett et al. 1994)
which is only triply imaged at radio wavelengths.

To quantify the image geometry, we take the basic image con-
figuration measurements, namely, �φ, θ/θEin and θ1/θEin, as well
as the measured and model-predicted flux ratios of Rcusp (for the
closest triple images) and Rfold (for the closest saddle-minimum im-
age pairs), as listed in Table 1. It can be seen that discrepancies at
different levels exist between the measured flux ratios and model
predictions. Below we give a brief description of each individual
system in our lens sample.

2.3.1 B0128+437

This is a fold system. The observed flux ratios are likely affected
by complex systematic errors, as suggested by radio-frequency-
dependent flux ratios and by very long baseline interferometry
(VLBI) imaging. The VLBI data show that the source is composed
of three aligned components, one being tentatively associated with

a flat spectrum core and the other two with steep spectrum compo-
nents of the jet. The lensed image B only barely shows the ‘triple’
structures, which are visible in images A, C and D. Hence it is likely
that image B is affected by scatter broadening (Biggs et al. 2004).
On the other hand, lens modelling using the VLBI data suggests as-
trometric perturbations of image positions by substructures (Biggs
et al. 2004).

2.3.2 MG0414+0534

This is a fold system with a pair of images very close to the criti-
cal curve (image magnifications |μ| > 15, see the lens modelling
in Section 4). The low-resolution radio observations of Lawrence
et al. (1995) lead to roughly the same Rcusp at multiple epochs and at
different frequencies with the Very Large Array (VLA), suggesting
that the time delay between the lensed images is not a concern.
However, a lower value of Rcusp was obtained from higher resolu-
tion VLBI observations of Ros et al. (2000), which resolved the
core+jet components of the source. The ratios for the core im-
ages also agree well with the one measured in mid-infrared (MIR;
Minezaki et al. 2009). The Rfold values from VLA, VLBI, MIR and
extinction-corrected optical data all agree with each other within
the measurement uncertainties. We use the VLBI results of both
Rcusp and Rfold (for the core images) in our analysis.

2.3.3 B0712+472

This is a cusp/fold system with a close image configuration of
�φ = 76.◦9. We use VLA flux ratios obtained at 5 GHz by Koopmans
et al. (2003). Those ratios were observed to be stable over 41 epochs
of monitoring spanning 8.5 months, and are compatible with VLBI
5 Ghz measurements (Jackson et al. 2000). The flux ratios deviate
significantly from the optical/NIR flux ratios, which are affected by
differential extinction and microlensing (Jackson et al. 1998, 2000).

2.3.4 B1422+231

This is a classical cusp lens with �φ = 77◦. The flux ratios taken
here were measured at different radio frequencies, at different
epochs and with different spatial resolutions [with VLA and Very

Table 1. Observed lenses with measurements of Rcusp and Rfold for the close triple images.

Lens Type �φ(◦) θ/θEin Rcusp θ1/θEin Rfold References

B0128+437† fold 123.3 1.511 −0.043 ± 0.020 (−0.090) 0.584 0.263 ± 0.014 (0.161) 1, 2
MG0414+0534 fold 101.5 1.841 0.213 ± 0.049 (0.118) 0.388 0.087 ± 0.065 (−0.029) 3, 4, 5, 6
B0712+472 cusp 76.9 1.503 0.254 ± 0.024 (0.083) 0.243 0.085 ± 0.030 (−0.037) 1, 7, 8, 9
B1422+231 cusp 77.0 1.643 0.187 ± 0.004 (0.110) 0.636 − 0.030 ± 0.004 (−0.131) 1, 10, 11, 3
B1555+375 fold 102.6 1.735 0.417 ± 0.026 (0.199) 0.365 0.235 ± 0.028 (0.023) 1, 12
B1608+656†† fold 99.0 1.997 0.492 ± 0.002 (0.568) 0.831 0.327 ± 0.003 (0.411) 13, 14
B1933+503† fold 143.0 1.605 0.389 ± 0.017 (0.040) 0.884 0.656 ± 0.009 (0.257) 15, 16, 17
B2045+265 cusp 34.9 0.762 0.501 ± 0.020 (0.030) 0.253 0.267 ± 0.027 (−0.163) 1, 9, 18, 19

Notes: the quoted Rcusp and Rfold values in Col. 5 and 7 are measured at the radio wavelengths; their uncertainties are derived from
the uncertainties in flux measurements (see Table A1 for the measured fluxes of the close triple images). Values in the parentheses
are predicted by our best-fit lens model, see Section 5.1. (†) Flux ratios are likely affected by systematic errors due to scattering.
(††) Quoted fluxes are after correction for the time delays. References: (1) Koopmans et al. (2003); (2) Phillips et al. (2000); (3)
Falco et al. (1999); (4) Lawrence et al. (1995); (5) Katz, Moore & Hewitt (1997); (6) Ros et al. (2000); (7) Jackson et al. (1998); (8)
Jackson, Xanthopoulos & Browne (2000); (9) Cfa-Arizona Space Telescope Lens Survey (CASTLES, see www.harvard.edu/castles);
(10) Impey et al. (1996); (11) Patnaik et al. (1999); (12) Marlow et al. (1999); (13) Koopmans & Fassnacht (1999); (14) Fassnacht
et al. (1996); (15) Cohn et al. (2001); (16) Sykes et al. (1998); (17) Biggs et al. (2000); (18) Fassnacht et al. (1999); (19) McKean et al.
(2007).
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Long Baseline Array (VLBA)], which all agree with each other, as
well as with MIR data (Patnaik et al. 1992, 1999; Koopmans et al.
2003; Chiba et al. 2005). Recently, with the aid of the adaptive
optics integral field spectrograph on the Keck I Telescope, Nieren-
berg et al. (2014) derived the narrow-line flux ratios, which are also
consistent with those measured in the radio.

2.3.5 B1555+375

This is a fold system, with a pair of images predicted to be very
close to the critical curve (image magnifications |μ| > 50). The
radio fluxes were obtained at 5 GHz with the VLA and averaged
over 41 epochs over 8.5 months (Koopmans et al. 2003). The HST
images of this system also suggest that it is a very flattened lens.

2.3.6 B1608+656

This is a two-lens system, and has a fold image configuration with a
relatively large opening angle. Lens models suggest that the image
magnifications are small (|μ| < 5). Many VLA data are available
(including monitoring data) for this system and show consistently
Rfold ∼ 0.32. The radio measurements of Rcusp and Rfold are larger
than observed in the optical and NIR, where the source appears
to be extended and significantly affected by differential extinction
(Surpi & Blandford 2003).

2.3.7 B1933+503

This is also a fold system and lens models suggest that the image
magnifications are small (|μ| < 5). The VLBI images presented in
Suyu et al. (2012) reveal that the cores in images 1 and 4 show two
peaks but not for image 3. This suggests that scatter broadening
may modify the radio flux ratios. The Rcusp and Rfold obtained from
this high-resolution images also agree with lower resolution VLA
and MERLIN data (Sykes et al. 1998), which are used here.

2.3.8 B2045+265

This is a very extreme cusp lens with �φ = 34.◦9. All three im-
ages are located (symmetrically) close to the critical curve with
image magnifications |μ| > 50. The radio flux ratios are very ro-
bust at different spatial resolution (VLA, VLBA) over different
periods of time, and consistent with the H–K wavelengths (Fass-
nacht et al. 1999; Koopmans et al. 2003; McKean et al. 2007).
Koopmans et al. (2003) identified significant intrinsic variability
at radio wavelengths, but the amplitude of this effect is apparently
small, at least on a time-scale of months. The VLBA data reveals
a core+jet emission for image A, but not for the saddle point
image B, which should be brighter than A according to the models.

3 STATISTICAL FLUX-RATIO
DISTRIBU TIONS

In this section, we study the statistical impact of CDM substruc-
tures on flux ratios. For this purpose, we generate mock galaxies of
generic smooth lens potentials and with morphological properties
similar to those of galaxies from SDSS. We then add to them sub-
halo populations from the Aquarius (Springel et al. 2008) and the
Phoenix (Gao et al. 2012) simulations. This enables us to forecast
Rcusp and Rfold distribution expected for a large sample of lensed

systems and study the impact of the halo properties on these distri-
butions. In Section 3.1, we present the method to model the generic
lens potentials of massive elliptical lenses, and in Section 3.2 how
we model their substructure populations. We describe the technique
used to mock a statistical sample of quadruply-lensed quasars in
Section 3.3. Finally, results are given in Section 3.4.

3.1 Smooth lens model

To model the main lens halo (which is responsible for producing
quadruply-lensed images), we adopt the approach from Keeton et al.
(2003), with which we predict generic distributions for the cusp and
fold relations.

Keeton et al. (2003, 2005) have shown that the flux (ratio) distri-
butions have a weak dependence on the radial profile (from point
mass to isothermal) of the lens mass distribution, but are sensitive
to ellipticity e (≡ 1 − q, where q is the axis ratio), higher order mul-
tipole amplitude am and external shear γ ext. In this work, we use
a generalized isothermal ellipsoidal profile with an Einstein radius
of 1.0 arcsec and also take into account the three aspects above.
The detailed lens modelling and definitions for the parameters are
described in the appendix.

For choosing e and am, we use the result from Hao et al. (2006),
who measured ellipticities and higher order multipoles (m = 3, 4)
of galaxies from SDSS. The mean and scatter of these shape pa-
rameters (mean ē = 0.23, dispersion σ e = 0.13, mean ā3 = 0.005,
dispersion σa3 = 0.004, mean ā4 = 0.010, dispersion σa4 = 0.012)
are comparable to the values reported for the galaxy samples used
in Keeton et al. (2003, 2005).

We note that by using the observed galaxy morphology distri-
butions, we implicitly assume that the shape of dark matter (and
thus total) density profiles follows baryons in the inner parts of the
halo where strong lensing occurs. This has been supported by lens-
ing observations from e.g. Koopmans et al. (2006) and Sluse et al.
(2012).

It is also worth noting that although we draw shape parameters
(e and am) from a galaxy sample at lower redshifts (z < 0.2), as
addressed in Keeton et al. (2003, 2005), these distributions are not
expected to be significantly different from those of the observed
lensing galaxies at intermediate redshifts; observations have shown
no significant evolution in the mass assembly history of early-type
galaxies since z ≈ 1 (Thomas et al. 2005; Koopmans et al. 2006).

Finally, the lens environment (e.g. Keeton, Kochanek & Seljak
1997) is accounted for by applying an external shear γ ext drawn from
a lognormal distribution with a median of 0.05 and a dispersion of
0.2 dex, same as in Keeton et al. (2003).

When adding simulated CDM subhaloes to the generalized host
lens potentials, we take 3600 different projections of subhalo dis-
tributions (see Section 3.2), and add each projected distribution to
one of the host lens potentials. In order to maintain the possible cor-
relation between ellipticities and high-order multipoles, we draw
the combination of measured (e, a3, a4) from the observed galaxy
sample of Hao et al. (2006). For each realization, we also take a ran-
domly orientated external shear to add to the generalized isothermal
ellipsoid.

3.2 CDM subhaloes from the Aquarius and Phoenix
simulations

To populate smooth lens potentials with CDM substructures, we
take two sets of high-resolution cosmological N-body simulations:
the Aquarius (Springel et al. 2008) and Phoenix (Gao et al. 2012)
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simulation suites. The former is composed of six Milky Way-sized
haloes (M200 ∼ 1012 h−1 M�) and the latter consists of nine galaxy
cluster-sized haloes (M200 ∼ 1015 h−1 M�; M200 here is referred to
as the virial mass, defined as the mass within R200, the radius within
which the mean mass density of the halo is 200 times the critical
density of the Universe).

Observed lenses typically have an inner velocity dispersion of
200–300 km s−1 (e.g. Koopmans & Treu 2002; van de Ven, van
Dokkum & Franx 2003), and some of them are also shown to live
in the group environment (e.g. Momcheva et al. 2006; Wong et al.
2011). In comparison, the Aquarius haloes have an equivalent inner
velocity dispersion (estimated by 1/

√
2 of the peak velocity) of

∼150 km s−1, and ∼900 km s−1 for the Phoenix haloes. We rescale
all 15 haloes from both simulation suites to host haloes of masses
fixed at M200 = 1012 h−1 M�, 1013 h−1 M�, and5 × 1013 h−1 M�.
By doing so, we can study the lensing effects from subhalo popu-
lations hosted by haloes on different mass scales and their depen-
dences on host halo properties.

To be precise, we take both simulations at their second resolution
levels, at which the minimum resolved subhaloes have masses about
seven orders of magnitude below the virial masses of their hosts. We
define a rescaling factor R, which is the ratio between M200 of the
arbitrary halo and that of a simulated halo. We rescale the masses
of subhaloes accordingly by a factor of R, and their velocities,
sizes and halocentric distances by a factor of R1/3, so that the
characteristic densities remain the same. It is noteworthy to mention
that we only use M200 of individual haloes to work out their rescaling
factor. It is the subhaloes (not the main haloes) that we rescale
and add to the constructed host lens potentials (as described in
Section 3.1).

In the following, we present the rescaled subhalo properties,
including mass function, characteristic velocities, sizes and spatial
distributions.

3.2.1 Subhalo mass function

From Section 4.1 and fig. 1 3 of Gao et al. (2012), no significant
difference is seen between the shapes of subhalo mass functions
of cluster-sized Phoenix haloes and of Milky Way-sized Aquarius
haloes. The number of Phoenix subhaloes is higher by 35 per cent
than the number of Aquarius subhaloes at any fixed subhalo-to-
halo mass ratio msub/M200. This is because clusters are dynamically
younger than galaxies, therefore there are more subhaloes surviving
the tidal destruction.

3.2.2 Spatial distributions and projection effects

From Section 4.2 and fig. 1 5 of Gao et al. (2012), the spatial
distribution of the Phoenix subhaloes is slightly more concentrated
(more abundant near the centre) than that of the Aquarius subhaloes
due to the assembly bias effect, as the Phoenix simulations start
from high-density regions.

For this work, the projected spatial distribution of subhaloes,
especially in terms of the radial distribution of their surface number
density, is of particular interest, as it directly influences the total
lensing cross-section from subhaloes. In this subsection, we show
the mean projected spatial distributions obtained from averaging
over hundreds of projections per host halo from both simulation
suites.

Fig. 2 shows the projected subhalo number densities as a func-
tion of (projected) halocentric distance up to 0.2R200. An important

Figure 2. The radial distributions of projected subhalo number densi-
ties, averaged over six Aquarius haloes (solid lines) and nine Phoenix
haloes (dashed lines) at redshift z = 0.6; 500 random projections are used
per halo. All subhalo populations are rescaled to 1012 h−1 M�. Five dif-
ferent subhalo-mass ranges have been inspected: 106–7 h−1 M� (cyan),
107–8 h−1 M� (red), 108–9 h−1 M� (green), 109–10 h−1 M� (blue) and
>1010 h−1 M� (pink). The axis at the top gives the projected radius in
arcsec; the one at the bottom gives the projected radius normalized to R200.
The axis on the left gives number per arcsec2; the one on the right gives
number per ( h−1 kpc)2 (in physical scale).

feature of the distribution is that it varies little with the projected
halocentric distances. Note that this is true (only) at smaller radii
from the host centre and is also a result of the projection effect.
More massive subhaloes, e.g. msub � 109 h−1 M�, can only survive
in the outer region of their host halo because of tidal destruction;
their presence within the projected central ∼0.1R200 is purely due
to chance alignment. We refer the reader to Springel et al. (2008,
fig. 1 1 and discussion therein) for the 3D spatial distribution of the
subhalo population.

Also can be seen from Fig. 2 is that as the subhalo mass de-
creases by one decade, there is an increase by roughly a fac-
tor of 10 in the number density of (projected) subhaloes, i.e.
dN/d ln msub ∝ m−1

sub. This is in fact expected from the subhalo
mass function (dN/dmsub ∝ m−1.9, Springel et al. 2008), where the
logarithmic slope is close to −2.0. In Fig. 2, the Aquarius and
Phoenix subhaloes are rescaled to a host mass of 1012 h−1 M�; but
the same features are also seen when they are rescaled to a host
mass of �1013 h−1 M�.

As the projected subhalo number densities remain constant in
the inner part of a host halo, we take the mean values averaged
within the central R ≤ 5 arcsec region and studied their dependences
on host halo mass and redshifts. Fig. 3 shows such mean number
densities as a function of subhalo mass, plotted for host haloes at
three different M200 and three different redshifts. It can be seen
that rescaling to more massive host haloes will result in a higher
number density of projected subhaloes; the number per arcsec2 also
increases significantly with redshift.

Note that in Fig. 3, the lowest mass bins below 107 h−1 M�
are only complete for host haloes of M200 = 1012 h−1 M�.
Due to the simulation resolution limit, a level-two halo rescaled
to M200 = 1012 h−1 M�, 1013 h−1 M� and 5 × 1013 h−1 M�
would only host a complete subhalo sample down to a mass
of ∼2 × 105 h−1 M�, ∼2 × 106 h−1 M� and ∼107 h−1 M�,
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Can CDM substructures explain flux anomalies 3195

Figure 3. Projected subhalo number densities averaged within the central R ≤ 5 arcsec region, as a function of subhalo masses. The panel on the left shows
the host mass dependence: subhaloes taken at z = 0.6, their hosts rescaled to M200 = 1012 h−1 M� (blue), 1013 h−1 M� (green) and 5 × 1013 h−1 M� (red).
The right-hand side panel shows the redshift dependence: host haloes are rescaled to M200 = 1013 h−1 M�, taken at z = 0.2 (blue), z = 0.6 (green) and z = 1.0
(red). For both panels, 500 random projections are used per halo. The axis on the left-hand side of each panel gives number per arcsec2. The axis on the
right-hand side of the left-hand panel also gives number per ( h−1 kpc)2 (in physical scale corresponding to a redshift at z = 0.6). Solid lines show the number
densities of the Aquarius subhaloes; dashed lines are for the Phoenix subhaloes.

respectively. Above these ‘completeness’ mass scales, one can eas-
ily read off the projected number densities ηsub for group-sized host
haloes (M200 � 1013 h−1 M�), which satisfy

dηsub

d ln msub
≈ 0.01

(
msub

3 × 108 h−1 M�

)−1

(h−1 kpc)−2. (3)

The surface mass density in each mass decade is then estimated to
be ≈3 × 106 h−1 M�(h−1 kpc)−2. Consider a typical lens system
with lens and source redshifts zl = 0.6 and zs = 2.0, the critical
surface mass density is �cr ≈ 3 × 109 h−1 M�(h−1 kpc)−2; then the
surface mass fraction in substructures over five mass decades above
106 h−1 M� amounts to � 1 per cent around the critical curve,
where the local convergence is κcr ≡ �/�cr ≈ 0.5. We mention
in passing that the different subhalo mass fraction between here and
0.3 per cent as in Xu et al. (2009) is attributed to a richer subhalo
populations of group-sized haloes considered here. These fractions
are also consistent with Vegetti et al. (2014), who searched for im-
prints of substructures in arc images of 11 gravitational lens systems
from the Sloan Lens ACS Survey.

3.2.3 Subhalo density profiles

The peak circular velocity Vmax and the radius rmax, at which Vmax is
reached, are two important shape parameters for a subhalo’s density
profile. As can be seen from fig. 1 4 of Gao et al. (2012), the relation
between Vmax and rmax is the same for the Aquarius and the Phoenix
subhaloes.

Springel et al. (2008) studied the density profile of subhaloes and
found them to be well fitted by Einasto profiles (Einasto 1965) with
slope parameter α = 0.18,

ρ(r) = ρ−2 exp

(
− 2

α

[(
r

r−2

)α

− 1

])
, (4)

where ρ−2 and r−2 are the density and radius at which the local
slope is −2. For α = 0.18, ρ−2 and r−2 are related to Vmax and
rmax by rmax = 2.189r−2 and V 2

max = 11.19 Gr2
−2ρ−2, where G is the

gravitational constant (see e.g. Springel et al. 2008 for more details
about fitting Einasto profiles).

From both simulation sets, instead of taking particle distributions
of subhaloes for ray tracing, we take the measured Vmax and rmax

for each subhalo and assume an Einasto profile with α = 0.18. We
truncate the profile at a truncation radius rtrnc, which is set to be two
times the half-mass radius rhalf of the subhalo (rtrnc = 2rhalf); the mass
enclosed within such a truncation radius differs from the quoted
subhalo mass msub by less than 10 per cent. For subhaloes below the
resolution limit, we present the detailed method of deriving their
profile parameters in Section 4.

We note that the Einasto parameter α could vary for different
subhaloes (Vera-Ciro et al. 2013), and that rmax cannot be measured
as accurately as Vmax, especially for lower-mass subhaloes. To see
any potential change in the final result due to inaccurate measure-
ments of subhalo profiles, we simply set rmax of each subhalo to be
0.5, 1 and 2 times its current value and carry out the same lensing
calculations.

Here, we verify that there is no significant quantitative difference
in the final flux-ratio probability distributions resulting from dif-
ferent adoptions of rmax. But we caution that when fundamentally
different density profiles (in an extreme case a point mass) are cho-
sen, the violation probabilities strongly depend on subhalo mass
concentration (e.g. Rozo et al. 2006; Chen et al. 2011; Xu et al.
2012), which is not further discussed in this paper.

3.3 Generating a statistical sample of quadruply-lensed
quasars

In this section, we predict the statistical distribution of the flux ratios
(Rcusp and Rfold) of the quadruple images of background quasars.
To this end, we mock a large sample of quadruply-lensed quasars
assuming that they are point sources, which induce more violations
to the cusp and fold relations than finite-sized sources.

For all the calculations presented in this section, we only take the
(rescaled) Aquarius and Phoenix subhaloes above 107 h−1 M�. For
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each subhalo that has a mass m78
sub ∈ [107 h−1 M�, 108 h−1 M�]

and is projected in the central strong lensing region, we artificially
generate another 10 subhaloes each with a mass of 0.1 × m78

sub, pro-
jected at the same halocentric distance but with a random azimuthal
angle. By doing so, we include a complete sample of subhaloes at
the 106 h−1 M� scale.

There are two reasons for this choice of the lower mass limit.
First, based on some simple finite source-size argument (e.g. Xu
et al. 2012) such a mass scale was commonly used as subhalo
lower mass limit in previous studies; the same adoption here will
allow us to directly compare our results to those studies. Secondly,
due to the nature of the subhalo mass function, the calculation
done for low-mass subhaloes will be significantly more expensive
than that of their higher mass counterparts. Therefore, we neglect
the contribution from subhaloes below 106 h−1 M� for the general
statistical calculations here, but in Section 4, we carry out case
studies using specific lens models to investigate the lensing effects
from subhaloes at several mass decades below 106 h−1 M�.

To eliminate biases due to halo-to-halo variations, we take a total
of 3600 different projections of the simulated and rescaled subhalo
distributions (over all redshifts) and add them to the generalized
host lens potentials. To be precise, 300 projections were used for
each of the six Aquarius haloes and 200 projections for each of the
nine Phoenix haloes at different redshifts.

We assume the quasar redshift to be zs = 2.0 and take simulated
subhalo populations at five different lens redshifts: zl = [0.2, 0.4,
0.6, 0.8, 1.0], which follows the lens redshift span of the Cosmic
Lens All-Sky Survey (CLASS) survey. We test two different redshift
distributions: (1) a flat redshift distribution for the simulated sub-
halo populations, i.e. 60/40 projections per Aquarius/Phoenix halo
at each of the five redshifts; and (2) a lensing cross-section weighted
redshift distribution assuming the main lens to be a singular isother-
mal sphere (SIS) with velocity dispersion σ SIS = 300 km s−1 (and
zs = 2.0), which results in [26, 63, 79, 74, 58] projections per Aquar-
ius halo and [17, 42, 53, 50, 38] projections per Phoenix haloes at
the five fixed redshifts, respectively. In terms of the final flux-ratio
distributions, there is no significant difference between these two
lens redshift distributions. In the subsections below, we therefore
present results obtained using the redshift distribution weighted by
lensing cross-sections.

For each constructed lens potential, we carry out standard lensing
calculations, similar to those used in our previous studies: a grid
with resolution of 0.005 arcsec pixel−1 covers the lens plane, where
deflection angles and second-order derivatives of the lens potentials
from the host lens and from subhaloes are calculated and tabulated
on to the mesh. The adopted lens-plane resolution guarantees that
the surface density distribution of the least massive subhaloes at
msub ∼ 106 h−1 M� are resolved by a few to 10 pixels at radii
where their half-masses and peak deflection angles are reached (see
Fig. 6 in Section 4).

Source positions are uniformly distributed inside the tangential
caustic (of each constructed lens) with a number density of 20 000
per arcsec2, which naturally ensure that each realization is weighted
by its four-image cross-section in the source plane. The lensed
images for any point source are found by solving the lens equation
with a Newton–Raphson iteration method, setting the convergence
error on image positions to be 0.0001 arcsec. We do not consider
magnification bias in our statistical analysis; possible consequences
are discussed in a later section. In total, we generate ∼5 × 106

four-image lens systems for final inspection of the cusp and fold
violations.

3.4 Overall flux-ratio probability distributions

We calculate the flux-ratio probability distributions with a total of
5 × 106 realizations of generalized smooth lens potentials plus
(rescaled) subhalo populations from the Aquarius and the Phoenix
simulation suites.

The resulting flux-ratio probability distributions are presented in
Fig. 4, where probability contours of P( > |Rcusp|) for given �φ,
P( > |Rcusp|) for given θ/θEin and P( > |Rfold|) for given θ1/θEin are
plotted. A small (large) probability P means that it is less (more)
likely for a flux ratio, either |Rcusp| or |Rfold|, to be larger than
a given value, at a given image configuration, described by �φ,
θ/θEin or θ1/θEin. The top panels show the result from adopting
smooth models; the middle panels show results from using the
smooth models plus a subhalo population hosted by a Milky Way-
sized halo of M200 = 1012 h−1 M�; the bottom panels present results
from taking a subhalo population hosted by a group-sized halo of
5 × 1013 h−1 M�. Note that these distributions do not vary with
the way that data are binned when using a reasonable range of bin
sizes.

To indicate the range of the observed flux ratios, on top of the
probability contours in the top panel of Fig. 4, measured |Rcusp| and
|Rfold| of the eight lenses in our sample are plotted as blue squares,
together with measurement errors. Flux ratios that are predicted by
the lens model that best fits the image astrometry are also given,
plotted as cyan diamonds in the top panel.

It is important to realize that the forecasts shown in Fig. 4 do not
take into account the magnification bias.1 Therefore, the predictions
cannot be directly compared to the measurements made for specific
individual lenses; the calculations here are only aiming at finding
an allowed range and distribution of Rcusp and Rfold.

The inclusion of substructures significantly broadens the flux-
ratio distributions and increases the probabilities at larger values
(for close image configurations). As can be seen from the middle
and bottom panels of Fig. 4, the values of Rcusp and Rfold measured
for the observed lenses could indeed be reproduced by adding CDM
substructures to the generalized host lens potential. The more mas-
sive the host haloes are, the higher the probabilities for having large
|Rcusp| and |Rfold|. This is expected, as the number of subhaloes
increases with host halo mass (see Section 3.2).

Adding substructures significantly changes the flux-ratio proba-
bility distributions for the image triplets/pairs that have small sep-
arations, but does not strongly affect the distributions on larger
scales. Such a variation behaviour confirms what one would expect
from local density perturbations: the image magnification and local
convergence satisfy μ ≈ (1 − 2κ)−1 and thus δμ/μ ∝ μδκ in the
case of perturbation. A close image configuration means that the
image pairs must be located close to the critical curves, where μ

→ ∞. Therefore, a tiny density fluctuation δκ around the image
positions can cause a huge magnification fluctuation δμ.

When a perturber is located near an image that is further away
from the critical curves (i.e. in the case of larger pair separations),
it is less efficient in altering the image magnification via a density
fluctuation. However, it could, if massive enough, shift the image
to a new position, where the magnification is different. In this case,
standard lens models (neglecting relatively massive perturbers if

1 Without correction for magnification bias, highly magnified systems can-
not be fairly sampled. Indeed, these events only occupy a small fraction of
the central caustic region in the source plane and thus would have lower
weight in the statistical sample. However, due to the huge magnification
effect they would be among the brightest detections in the Universe.
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Can CDM substructures explain flux anomalies 3197

Figure 4. Probability contour maps of conditional probabilities P( > |Rcusp|) for given �φ (left-hand column), P( > |Rcusp|) for given θ/θEin (middle column)
and P( > |Rfold|) for given θ1/θEin (right-hand column). The meanings for �φ, θ/θEin and θ1/θEin can be seen in Fig. 1. Contour levels of 1, 2, 5, 10, 20
and 50 per cent (from light to dark) are plotted. Top: singular isothermal ellipsoidal potentials with axis ratio q and higher order perturbation amplitudes am

drawn from 847 observed galaxies (Hao et al. 2006), plus randomly oriented external shear. Middle: smooth potentials (as above) plus perturbations from a
simulated subhalo population hosted by a Milky Way-sized halo of M200 = 1012 h−1 M�. Bottom: smooth potentials (as for the top panel) plus perturbations
from a simulated subhalo population hosted by a group-sized halo of M200 = 5 × 1013 h−1 M�. More than 5 × 106 realizations have been calculated for each
case. For indication, measured and model predicted flux ratios (|Rcusp| and |Rfold|) of eight observed lenses are plotted as blue squares and cyan diamonds,
respectively; measurement errors are also given.

they are not luminous enough to be seen) would have difficulties in
fitting the image positions. This is also referred to as ‘astrometric
anomaly’ (e.g. Chen et al. 2007).

Due to the nature of the subhalo mass function, magnification
variations due to image position shifting (caused by relatively mas-
sive subhaloes) are expected to be less frequent than magnification
perturbation resulting from local density fluctuations (of lower-mass
subhaloes), which will mainly occur for image pairs with small sep-
arations around the critical curves. This is consistent with the fact
that only a small fraction of flux anomaly systems are also reported
to have astrometric anomalies (Biggs et al. 2004; McKean et al.
2007; Sluse et al. 2012).

4 FL U X - R AT I O PRO BA B I L I T I E S O F
OBSERV ED QUADRUPLE SYSTEMS

In Section 3, we demonstrated that the values of Rcusp and Rfold mea-
sured at radio wavelengths for the quadruply-lensed systems could
be reproduced by adding CDM substructures to generalized lensing
galaxy potential/mass distribution. Unfortunately, this approach has
its limitations in at least the following three aspects.

(1) Many lensing galaxies lie in rich environments (Momcheva
et al. 2006; Wong et al. 2011). It is in general necessary to account
for the nearest lensing galaxy or group explicitly in the model to
reproduce the observed astrometry of those systems. Accounting
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Table 2. Best SIE+γ (Nlens = 1) and SIE+SIS+γ (Nlens = 2) models for our sample.

Lens zl zs Nlens θEin(arcsec) e, θe(deg) γ, θγ (deg) �G(arcsec) χ2 (d.o.f.) χ2
ima, χ

2
lens

B0128+4371 0.6 3.12 1 0.235 0.46, −27.72 0.213,41.17 0.006 0.4 (1) 0.0, 0.4
MG0414+05341 0.96 2.64 2 1.100, 0.181 0.22, 82.65 0.099, −55.03 0.000 0.0 (0) 0.0, 0.0
B0712+472†2 0.41 1.34 1 0.699 0.36, −61.8 0.076, −13.35 0.028 2.0 (1) 1.95, 0.06
B1422+231♣ 0.34 3.62 2 0.785, 4.450 0.21, −57.62 0.091, 77.47 0.000 0.0 (1) 0.0, 0.0
B1555+375♠3, 4 0.6 1.59 1 0.238 0.32, 81.26 0.143, −81.97 0.012 0.16 (1) 0, 0.16
B2045+2651 0.87 1.28 2 1.101, 0.032 0.11, 29.09 0.203, −67.07 0.000 0.0 (0) 0.0, 0.0

Notes: Col. 4 gives the total number of lenses included for modelling; Col. 6 provides the best-fitting amplitude and orientation of the
ellipticity; Col. 7 gives the external shear amplitude and the position angle of the shear mass; Col. 8 provides the observed lensing
galaxy position with respect to the best-fitting lens position; Col. 9 gives the total χ2 of the best-fitting lens model; Col. 10 provides the
independent contribution from the image and lens astrometry to the total χ2. Note that flux ratios are not used to constrain the models. (†)
Unrealistic lens models are obtained when the nearby group positions of Fassnacht & Lubin (2002) or Fassnacht et al. (2008) are used;
therefore the group is not included in our lens modelling. (♣) This model uses the X-ray centroid of the group by Grant et al. (2004). (♠)
We assume (zl, zs) = (0.6, 1.59) and use the galaxy position from CASTLES, (�galRA, �galDEC) = (−0.185, −0.150) ± 0.03 arcsec
with respect to image A. References: (1) Sluse et al. (2012); (2) Jackson et al. (2000); (3) Marlow et al. (1999); (4) CfA-Arizona Space
Telescope Lens Survey (CASTLES, see www.harvard.edu/castles).

for these companions can modify the flux ratios at the 30 per cent
level in some observed systems, but this can only be addressed on
a case-by-case basis.

(2) A quantitative comparison between the forecast of Fig. 4
and the observational data requires a proper understanding of the
selection effects of the sample, which should also be applied to the
mocked data from simulations. Unfortunately, this is not the case
here.

(3) In any survey, the magnification bias plays an important role
in the selection of lens candidates, which enhances the probability to
observe highly magnified systems. Quantifying this bias is however
not an easy task. In addition, the flux ratios of those highly magnified
systems are more susceptible to the vast amount of very low mass
subhaloes, which were not included in the statistical calculations
presented in Section 3.

For all these reasons, we use in this section an alternative method-
ology. We study the effects of CDM substructures in each in-
dividual lens in our sample (instead of a generic population of
lenses) by adding substructures to a macro lens model that repro-
duces the observed astrometry, and investigating the resulting flux-
ratio distributions of images that closely resemble the observed
configurations.

We describe in Section 4.1 how we model the observed lenses, in
Section 4.2 how we add (to the macroscopic lens models) the sub-
halo populations from the Aquarius and Phoenix simulation suites,
and in Section 4.3 how we model the subhaloes that have masses
up to three orders of magnitude below the simulation resolution
limit. The ray-tracing method is described in detail in Section 4.4.
In Section 4.5, we carry out a case study using B2045+265 to in-
vestigate the observational signatures of very low mass subhaloes
and their dependence on source sizes. Finally, the flux-ratio prob-
ability distribution for each of the observed systems are given in
Section 4.6.

4.1 Macro models of the observed lenses

For the observed systems, we adopt a singular isothermal ellipsoid
plus a constant external shear γ ext to fit only astrometric measure-
ments, i.e. positions of lensing galaxies, and (VLBI/VLA) positions
of lensed images. We do not use image flux ratios to constrain the
best lens models. A second lens, being either a satellite galaxy or
a galaxy group, is also included in the model if its optical/X-ray

counterpart is seen in the same field (the induced shear then may
not be treated as constant). This second lens is treated as an SIS.

Table 2 lists parameters of our standard lens models
(SIE+γ+SIS) for systems in our sample. The predicted Rcusp and
Rfold of the close triple images (consistent with those from the liter-
ature) are given in the parentheses in Col. 5 and Col. 7 of Table 1.

We note that two systems, i.e. B1608+656 and B1933+503, have
been excluded from such lens modelling and the discussions below,
due to the following reasons.

(1) Both lenses are spiral/discy galaxies (Fassnacht et al. 1996;
Sykes et al. 1998). This component has however little effect on the
image positions and is mostly constrained by the flux ratios (Maller
et al. 2000; Möller, Hewett & Blain 2003). We therefore do not
expect that the simplified models adopted here are appropriate for
these two lenses.

(2) The images in the close triplets (in both lenses) are located far
away from the critical curve (|μ| < 5). As explained in Section 3,
local density perturbations are not expected to cause significant
magnification variation. Therefore CDM substructures are unlikely
to be responsible for the flux anomalies in these two cases.

4.2 Adding Aquarius and Phoenix subhaloes to the
macroscopic lens models

In order to maintain the macroscopic critical curve, we renormalize
the macroscopic convergence κmac by a factor of (1-κ sub), where κ sub

is the convergence from the total amount of subhaloes (including
the very low mass ones) projected in the central region. We then
add to the best-fitting macroscopic lens potentials the simulated
subhalo populations at above 107 h−1 M� taken from the snapshots
with redshifts closest to the observed lens redshifts.

In this section, for each of the observed lenses, we rescale the
simulated subhalo populations to match a host halo, whose inner
velocity dispersion (estimated by 1/

√
2 of the peak velocity as

first-order approximation) is equal to the one constrained by the
best-fitting SIE model. The masses of the rescaled host haloes that
are supposed to host the observed lenses range from 1012 h−1 M�
(for B0128+437 and B1555+375) to 2.5 × 1013 h−1 M� (for
B2045+265).

For each lens, we draw ∼250 projections from each of the
simulated host haloes, i.e. ∼3800 projections in total from all
15 haloes in the two simulation suites. For each realization
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(including adding very low mass subhaloes in Section 4.3), multi-
ple candidate source positions within a radius of 0.01 arcsec around
the model-constrained source position (with respect to the caustic)
were searched for close triple images. Here, we further adopt a se-
lection criteria so that only systems that best resemble the observed
image geometry would be chosen. The criteria are applied to the
configuration parameters �φ, θ/θEin and θ1/θ of the close triplets
in each simulated system. We require the relative differences be-
tween the simulated and the observed quantities to be no larger than
10 per cent:∣∣∣∣ (�φ)sim

(�φ)obs
− 1

∣∣∣∣ � 0.1,

∣∣∣∣ (θ/θEin)sim

(θ/θEin)obs
− 1

∣∣∣∣ � 0.1,

∣∣∣∣ (θ1/θ )sim

(θ1/θ )obs
− 1

∣∣∣∣ � 0.1. (5)

4.3 Model subhaloes beyond the CDM simulation resolution
limit

As an important complement to current studies, we investi-
gate the lensing effects from subhaloes with masses between
104 h−1 M� and 107 h−1 M�. For simplicity and clarity, three spe-
cific masses fixed at msub = 3 × 104 h−1 M�, 3 × 105 h−1 M� and
3 × 106 h−1 M� are used for the three different mass decades in
question. Assuming that the subhalo mass function and their profile
parameters follow power-law functions of mass, we extrapolate the
spatial distribution η(R) and density profiles ρ(r) of subhaloes from
the Aquarius and the Phoenix simulations to these very low mass
scales considered here. Three different source radii rs of 1, 3 and
5pc, reflecting the different sizes of the emission regions of lensed
quasars, are also applied to investigate the source size dependence.

4.3.1 Projected number density distribution

The halocentric distribution of the projected number densities ηm(R)
of the low-mass subhaloes, where m = 4, 5, 6 for the three different
mass bins studied here, are extrapolated from that of their higher
mass counterparts – the resolved subhaloes from the rescaled Aquar-
ius and Phoenix simulations. From Fig. 2, it can be seen that the
subhalo number density η(R) at a given mass decade almost remains
constant in the inner region of their host. This density increases by a
factor of 10 each time when subhalo masses decrease by one decade.
We therefore model the projected number densities ηm of low-mass
subhaloes by: ηm = η78 × 10(7 − m), where at η78 is the projected
number density of subhaloes of 107–8 h−1 M�. The projected po-
sitions of the low-mass subhaloes are then randomly distributed in
the lens plane, according to their projected number densities ηm.

4.3.2 Density profiles

As in Section 3, we assume subhaloes to be modelled by Einasto
profiles (Einasto 1965) with slope parameter α = 0.18. The other
two parameters that are required to fix the profile are Vmax and
rmax, both of which are measured for the resolved subhaloes in the
Aquarius and Phoenix simulations (see Section 3.2.3). The sets of
parameters Vmax and rmax for the low-mass subhaloes studied here
are obtained by extrapolating the Vmax–msub and rmax–Vmax relations
that exist, albeit not tight, for their higher mass counterparts. Fig. 5

Figure 5. The extrapolation of the Vmax–msub and rmax–Vmax relations
using subhaloes (black dots) from one of the level-two Aquarius haloes.
The red lines are given by equation (6). The blue symbols represent the
adopted values according to the relation for subhaloes at 3 × 105 h−1 M�
and 3 × 106 h−1 M�.

shows an example of the extrapolation using subhaloes from one of
the level-two Aquarius haloes. As the fitting formula for the Vmax–
msub and rmax–Vmax relations change little at redshift z < 1, we take
the following uniform fitting expressions:

vmax = 3.6 km s−1

(
msub

106 h−1 M�

)0.32

rmax = 0.55 kpc h−1
( vmax

10 km s−1

)1.34
.

(6)

Each subhalo will be truncated at a radius rt, within which
the enclosed mass is equal to the given subhalo mass, i.e.
m( ≤ rt) = msub. At an assumed lens redshift zl = 0.6, subhaloes
of msub = 3 × 104 h−1 M�, 3 × 105 h−1 M� and 3 × 106 h−1 M�
are truncated at rt = 0.03, 0.06 and 0.12 arcsec, respectively. Fig. 6
shows the enclosed mass profile, convergence profile and the distri-
bution of deflection angle as a function of projected radius.

With the Einasto-profile parameters fixed, lensing properties can
be calculated at any given position in the lens plane. Once again we
vary rmax by a factor of 0.71 and 0.58 from the default value (so that
the overdensity δ ≡ (vmax/rmax)2 varies by a factor of 2 and 3) and
repeated the same calculation. We verify that such variations do not
bring marked difference in the flux-ratio distributions.
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3200 D. Xu et al.

Figure 6. The enclosed mass (left), convergence (middle) and deflection angle (right) distributions as a function of radius for Einasto-profiled subhaloes at
3 × 104 h−1 M� (green), 3 × 105 h−1 M� (blue) and 3 × 106 h−1 M� (red). The dashed red (blue) vertical line indicates the lens-plane mesh resolution
used in the calculations presented in Section 3 (Section 4), which ensures that the least massive subhaloes in question can be resolved by a few to 10 pixels at
radii where their half-masses and peak deflection angles are reached.

4.4 Ray-tracing for the magnification calculation

The lensing effect of the low-mass subhaloes strongly depends on
the size of the emission region of the source, i.e. the smaller the
latter is, the stronger the former would be. Our numerical approach
needs to reproduce image magnifications for various source sizes.

To ensure that the regions of interests will be sampled with
enough resolution, we use a finer lens-plane mesh with a resolu-
tion of 0.0002 arcsec pixel−1 that covers the observed image triplets
to calculate the lensing properties (i.e. the first- and second-order
derivatives of the lens potentials) of the main lens and of the sub-
haloes. Again image positions and magnifications of a point source
are found through a Newton–Raphson iteration method. To find the
image magnifications of a finite-sized source at �β� with radius rs,
we start casting rays from the grid points �θ of the regular lens-plane
mesh to the source plane according to the lens equation, all the
resulting source positions �β that satisfy |�β − �β�| � rs are picked
out. Their lens-plane counterparts map out three groups that cor-
respond to the triple images of the given finite-sized source. The
image magnification μ� of each image is then given by

μ� = �iδθ
2

�iδβ
2
i

= �iδθ
2

πr2
s

, (7)

where δθ2 is the uniformly sampled finite area element in the image
plane, and δβ2 = δθ2/μi is the corresponding area element in the
source plane. The summation �i is over all the test positions �θi that
are mapped to the source plane where |�βi − �β�| � rs.

4.5 Impact of very low mass subhaloes and the finite source
effect

In this subsection, we investigate whether subhaloes below the
resolution limit, i.e. ∼107 h−1 M�, can still produce significant
flux-ratio anomalies. For this purpose, we perform the case study
of B2045+265: we take the macroscopic lens model and image
geometry and calculate the perturbation effects from inclusion
of subhaloes of msub = 3 × 104 h−1 M�, 3 × 105 h−1 M� and
3 × 106 h−1 M�. In particular, we study several cases with differ-
ent combinations of subhalo properties and source sizes. In each
case, we repeat the magnification calculation 2000 times to obtain
different realizations of subhalo spatial distributions. The statistical

Figure 7. Tangential critical curve of B2045+265, small-scale wiggles
and isolated local critical curves are induced by subhaloes of 105–6 h−1 M�
(orange). Red, green and blue regions are the close triplets of the theoretical
source with a finite radius of 5pc.

distributions of image magnification ratios are case dependent, and
thus unveil how the perturbation effects from the very low mass
subhaloes depend on their masses and source sizes.

As δμ/μ ∝ μδκ , at around the main critical curve, even a small
mass fluctuation δκ (from subhaloes) could modify the shape of
the critical curve. This is demonstrated in Fig. 7, where an example
using B2045+265 is given. In the case of very low mass subhaloes,
localized critical lines could form around these perturbers on mil-
liarcsecond (mas) to sub-mas scales. When an image that is located
near the main critical curve happens to cover these localized critical
lines, the brightness of the image can be significantly enhanced if
the image size is on similar scales (� 0.001 arcsec).

Fig. 8 shows the differential and cumulative probability distri-
butions of Rcusp and Rfold, calculated under different scenarios. The
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Figure 8. The differential and cumulative probability distributions of Rcusp

(left) and Rfold (right), calculated under different scenarios. The top panel
presents results for a finite-sized source of 1pc in radius, the included sub-
halo masses are at 3 × 104 h−1 M� (green), 3 × 105 h−1 M� (blue) and
3 × 106 h−1 M� (red) as well as in the absence of substructures (pink). The
bottom panel shows results for subhaloes at 3 × 106 h−1 M� but assuming
a point source (red), a finite-sized source of 1pc (blue), 3pc (green) and 5pc
(pink) in radii. Orange vertical lines indicate the measured flux ratios (and
the uncertainties) for B2045+265.

top panel presents results for a finite-sized source of a fixed radius
but using three different subhalo masses. The bottom panel shows
results for subhaloes at a fixed subhalo mass but assuming a point
source and a finite-sized source of different radii.

It is clearly seen that the perturbation effects on the flux ratios be-
come significant with increasing subhalo masses msub, even though
the number densities ηsub decrease. Convergence tests with different
lens-plane resolution at 0.0001, 0.0002 and 0.0005 arcsec per pixel
confirmed that such numerical results are genuine and not due to
insufficient resolution. This is expected, as explained in Xu et al.
(2009), because for simulated subhaloes or point masses, the lens-
ing cross-section σ of a subhalo can be approximated by σ ∝ mα

sub,
where α is a positive index, thus rendering the total lensing cross-
section dominated by massive subhaloes. For this reason, when
calculating the flux-ratio probability distributions for each of the

observed lenses, we safely neglect subhaloes below 105 h−1 M� so
that the computational expense stays low.

On the other hand, when the subhalo mass is fixed, we see that
the smaller the source size is, the more extended the distribution
tail becomes; point sources yield the most significant extension at
large flux ratios. In the next subsection, we therefore only present
results for each observed system under the point source assumption
to achieve an upper bound of possible substructure perturbation.

Another very interesting feature seen from Fig. 8 is that the dis-
tribution is skewed towards larger Rcusp (and Rfold). Such an asym-
metric distribution is rooted in the tendency that saddle (minimal)
images become fainter (brighter), where clumpy substructures are
present near the image positions. Such a behaviour from low-mass
subhaloes is similar to that shown in the bottom panel of fig. 3 in
Schechter & Wambsganss (2002).

4.6 Results for individual lenses

Below we present the flux-ratio probability distributions for each of
the observed lens systems, calculated using their observed specific
image configurations and their own lens models, plus CDM sub-
structures above 105 h−1 M�. Fig. 9 shows the probabilities to have
Rcusp and Rfold larger than the observed values in each systems.

As can be seen, such probabilities are about 5–20 per cent
(taking into account the large measurement uncertainties) for
MG0414+0534. For the rest of the lenses in our sample, the prob-
abilities are only 1–4 per cent. In principle, the close image ge-
ometries of these systems should make their flux ratios more sus-
ceptible to density perturbations (e.g. from CDM substructures).
However, such per cent-level probabilities indicate that there must
be other sources for the mismatch between the measured and model
predictions. For example, VLBI observations already showed ev-
idence of scatter broadening in B0128+437 (Biggs et al. 2004).
For B0712+472, a galaxy group has been identified on its line of
sight (Fassnacht & Lubin 2002; Fassnacht et al. 2008). We were
unsuccessful in accounting for this group in the smooth lens model
(Table 2) due to its uncertain X-ray centroid. The lens model for
B1555+375 might also not be optimal, as the position angles of
the ellipticity and of the external shear are nearly orthogonal; the
HST images also suggest a flattened morphology. All these strongly
indicate a possibly missing ingredient in the lens model. In the
next section, we discuss other possible reasons to account for the
discrepancy.

5 D I S C U S S I O N A N D C O N C L U S I O N S

5.1 The contribution from CDM substructures

In Section 3, we see (from the bottom panel of Fig. 4) that the
inclusion of CDM substructures reproduces those large values of
Rcusp and Rfold seen in observations. Indeed, among the observed
lenses in our sample, McKean et al. (2007) found that a lens model
that incorporates an observed dwarf satellite (the luminous counter-
part of a dark matter subhalo) could reproduces all image positions
as well as the flux ratios for B2045+265. MacLeod et al. (2013)
also showed that the observed flux ratios in MG0414+0534 can be
reproduced by adding a substructure of ∼107M� close to image
A2. Again with detailed lens modelling, Nierenberg et al. (2014)
found a better fit to the image astrometry as well as the flux ra-
tios when adopting a lens model that includes a perturbing mass of
107–8M� around image A. Other works, e.g. Bradač et al. (2002),
Dobler & Keeton (2006) and Fadely & Keeton (2012), also found
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Figure 9. Flux-ratio probability distributions (same as Fig. 8) for selected realizations that most resemble each observed system. Red solid lines represent
results from including CDM substructures above 105 h−1 M�. Measured and predicted flux ratios are indicated by the blue and black vertical lines, respectively.
Dashed lines indicate errors on the measurements.

that the inclusion of a local perturbation with mass of 105–8M�
can always help to explain the image flux ratios measured at longer
wavelengths.

On the one hand, the flux ratios can always be ‘fixed’ by adding
local density perturbations to the smooth lens potential that re-
produce the observed macroscopic image positions. However, it is
interesting that coincidentally the required masses of the added per-
turbers happen to be within a range that is predicted for abundant
low-mass CDM subhaloes that survive the tidal destruction during
galaxy formation.

But on the other hand, when deploying a theoretical population
of the CDM subhaloes from cosmological simulations, we find
that even for systems (like B1555+375 and B2045+265) that are
more susceptible to local density perturbations, the probabilities to
reproduce values of Rcusp and Rfold larger than the measured values
are only at per cent level. This strongly indicates that there are other
culprits for the radio flux-ratio anomalies. In the next subsection,
we present these other possibilities.

We mention in passing that CDM substructures could not only af-
fect the radio flux ratios of a multiply-imaged quasar, but also leave
imprints on the surface brightness distribution of a lensed galaxy.
Through the detection and modelling of these image distortions,
one can also constrain the level of density perturbations in a mass
range of 106–9 h−1 M� in a lensing galaxy (Vegetti & Koopmans
2009). This has already been put into good practice by e.g. Vegetti
et al. (2012, 2014) on the Sloan Lens ACS Survey (SLACS) lenses
using high-resolution HST and Keck adaptive optics imaging. The

resulting CDM substructure fraction is in consistent with the ones
derived from N-body simulations (see Section 3.2.2). More high-
resolution images of lensed dusty star-forming galaxies will also
soon be available from the Atacama Large Millimeter/submillimeter
Array (ALMA), which can also be used to constrain CDM
substructures via the induced image distortion (Hezaveh et al.
2013).

5.2 Other culprits for radio flux-ratio anomalies

Xu et al. (2012) investigated the effects from CDM haloes along the
line of sight to a lensed quasar. Comparing fig. 9 therein with Fig. 4
here, it can be seen that the contribution of these interlopers can
be as important as that of the intrinsic CDM substructures within
the lensing galaxy (also, e.g. Metcalf 2005a,b; Miranda & Macciò
2007). However, even factoring in the effects from line-of-sight
perturbers, the gap between the observed flux ratios and model
predictions still remains.

In Xu et al. (2010), three types of substructures other than bound
CDM subhaloes were investigated, i.e. satellite galaxies, globular
clusters (GC) and satellite streams, which were found to contribute
little to solving the radio flux-ratio anomaly problem. However, the
adoption of an empirical Milky Way GC population has a caveat.
As also pointed out in their discussion, massive elliptical galaxies
are known to host more GCs than their spiral counterparts (Forte,
Martinez & Muzzio 1982; Harris 1991, 1993; West 1993). GCs
are typically of mass 105–6 M� and have the most compact density
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profiles among all known types of galactic substructures. We would
hence like to point out the possibility of massive elliptical GC
populations to be an extra source of relevant perturbations for our
problem.

Apart from GCs, baryonic substructures may also exist at above
the 106 M� level. When a small halo merges with a bigger halo, and
later on becomes a subhalo, sinking towards the inner region of the
host, its dark matter component could be significantly stripped due
to tidal destruction, leaving behind a baryon-dominated overdensity.
This is because the latter is much more concentrated than the former
and thus less prone to tidal stripping. Such baryonic substructures
(107–9 M�) may follow a similar or an even more concentrated
spatial distribution compared to their CDM subhalo counterparts;
their density profiles (being more compact) differ completely from
the latter due to the different nature of baryons and dark matter.
These surviving baryonic substructures of a similar mass range as
their CDM counterparts may also induce significant density pertur-
bations and thus cause radio flux anomalies. Interestingly, Shin &
Evans (2008) investigated the possibility of using the Milky Way
satellite galaxy population to explain the observed flux anomaly
frequencies. They found that the results strongly depend on the
applied density profiles (of the baryonic substructures); a central
density enhancement relative to the Milky Way satellite population
of a factor of 10–100 is needed in order to explain observations.

Other possible sources of radio flux anomalies also include
oversimplified/improper lens modelling and radio propagation ef-
fects, for which there is already evidence in a few systems (e.g.
B0128+437, B0712+472, B1555+375), and might have affected
the model-predicted flux ratios therein.

5.3 Summary

Discrepancies between the observed and model-predicted flux ra-
tios that assume a smooth lens are seen in a number of radio lenses.
The most favoured interpretation of these anomalies is that CDM
substructures perturb the lens potentials and alter image magnifica-
tions (and thus flux ratios). In this work, we particularly study the
cusp and fold relations in quadruple lenses to see how the flux ratios
Rcusp and Rfold would be affected by CDM substructures.

In the first part of this paper, we assume that general smooth
lens potentials can be modelled as isothermal ellipsoids with a wide
range of axis ratios, higher order multipole perturbations and ran-
domly oriented external shear (Section 3.1). We then take two sets
of state-of-the-art high-resolution CDM cosmological simulations:
the Aquarius suite of galactic haloes and the Phoenix suite of cluster
haloes, whose subhalo populations were rescaled to those expected
in group-sized haloes (Section 3.2). By ray-tracing through the com-
bined (and perturbed) lens potentials, we produce a large sample
of quadruply-imaged quasars lensed by massive elliptical galaxies,
and predict their flux-ratio probability distributions.

We find that host mass rescaling indeed makes a difference in the
final Rcusp and Rfold probability distributions (see Fig. 4). The pro-
jected radial distribution of the surface number density of subhaloes,
as well as their dependence on host halo masses and redshifts, are
given in Figs 2 and 3. The subhalo mass fraction at around one
Einstein radius increases by a factor of 3 from Milky Way-sized
host haloes to group-sized host haloes (Section 3.2.2). As a result,
using subhalo populations in group-sized haloes markedly increases
the flux anomaly frequencies compared to using those from Milky
Way-sized haloes (Section 3.4). The forecasts as shown in Fig. 4
also clearly confirm that systems which are more likely to show
signatures of CDM substructures through the induced anomalous

flux ratios are those with small image opening angle and/or image
separation, or in other words, highly magnified systems.

In the second part of this paper, we present results of case stud-
ies for observed lens systems, all of which have radio measure-
ments for both cusp and fold relations. In these calculations, we
take the best-fitting macroscopic lens models (Section 4.1), pop-
ulating the rescaled Aquarius and Phoenix subhalo populations
above 107 h−1 M� (due to resolution limit, see Section 4.2), and
subhaloes with masses three orders of magnitudes lower (Section
4.3). Through numerical experiments, we confirm that perturba-
tion effects increase with increasing subhalo mass (assuming point
sources); but decrease with increasing size of a finite source (Fig. 8).
We then study the probability distributions of Rcusp and Rfold for
mock samples that closely resemble the specific image geometries
in the observed systems, predicting how likely it is to reproduce
the measurements for each system in presence of CDM subhaloes
(Section 4.6).

Focusing on those systems with closely located image
triplets/pairs, as can be seen from Fig. 9, we find that to have
Rcusp and Rfold larger than the observed values the probabilities
are only 1–4 per cent for most systems. Only for MG0414+114,
a probability of 5–20 per cent is obtained. We conclude that CDM
substructures may not be the entire reason for the radio flux anomaly
problem; other sources, e.g. propagation effects and/or inadequate
lens modelling, could also be at work. Apart from those, baryonic
(sub)structures with masses ranging from 106 M� to 109 M� that
survive the tidal destruction during galaxy merger and accretion
could also be important sources of density fluctuation and thus
(radio) flux-ratio anomalies.

Comparisons between the results from two different methodolo-
gies performed in this paper as well as in existing literature on
flux-ratio anomalies (see Section 1) suggest that a proper study of
flux-ratio anomalies needs a well-controlled sample of lenses. Alter-
natively, investigations based on individual systems may critically
depend on the choice of the reference macroscopic model to which
substructures are added. More specifically, the nearby lens envi-
ronment can modify Rcusp (and Rfold) at a level of tenths of per cent;
variation in ellipticity and deviations from perfect ellipses in the lens
mass distribution (parametrized with multipole terms) can also lead
to significant changes of the flux ratios. Therefore, apart from lo-
cal density perturbations, simplified lens modelling which does not
take into account the ingredients above can also lead to a spurious
mismatch between the observed and the predicted flux ratios.

To make further progress on this problem, on the one hand more
detailed observations, e.g. higher resolution and deeper image and
spectroscopic data of the quadruple systems are needed to allow
better characterization and quantification of macro lens models;
on the other hand, high-resolution hydrodynamic simulations that
follow the evolution of baryons as well as the interplay between
baryons and dark matter are necessary to assist in identifying all
true culprits for the radio flux-ratio anomalies.
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Miranda M., Macciò A. V., 2007, MNRAS, 382, 1225
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A P P E N D I X A : SU M M A RY O F T H E B E S T FL U X
R AT I O S F O R T H E S A M P L E O F L E N S E D
SYSTEMS

We provide in Table A1 the best available flux-ratio measurements
for the sample of lenses studied in the main text. When flux ratios
vary with spatial resolution due to resolved structures in images,
we provide measurements obtained at different spatial resolution.
When available, we also report flux ratios averaged over several
epochs or corrected for time delays between images. In Table A1,
VLBA and VLBI images have typical beam sizes of 2 mas2 while
VLA and MERLIN frames have typical beam sizes of 50 mas2.

APPENDI X B: G ENERALI SED I SOTHERMAL
L E N S W I T H M U LT I P O L E P E RT U R BAT I O N
A N D E X T E R NA L SH E A R

Consider a lens potential composed of a singular isothermal ellip-
soidal, mth-mode multipole perturbation and external shear

ψ(θ, φ) = ψSIE(θ, φ) + ψm(θ, φ) + ψext(θ, φ), (B1)

Table A1. Observed lenses with measurements of Rcusp and Rfold for the close triple images.

ID Observation F1 F2 F3 Rcusp Rfold Images References

B0128† VLA 5 GHz 41 epochs 0.584 ± 0.029 1.0 ± 0.0 0.506 ± 0.032 −0.043 ± 0.020 0.263 ± 0.014 B*-A-D* 1
VLBA 5 GHz 2.8 ± 0.28 10.6 ± 1.06 4.8 ± 0.48 −0.165 ± 0.055 0.582 ± 0.034 – 2
Merlin 5 GHz 9.5 ± 1 18.9 ± 1 9.2 ± 1 −0.005 ± 0.046 0.331 ± 0.033 – 3

MG0414 VLBI 8.5 GHz core 115.6 ± 11.56 97 ± 9.7 34 ± 3.4 0.213 ± 0.049 0.087 ± 0.065 A1-A2*-B 4
VLA 15 GHz 4 epochs 157.0 ± 5.5 138.75 ± 5 138.75 ± 2.25 0.361 ± 0.012 0.062 ± 0.024 – 5

MIR 1.0 ± 0.0 0.9 ± 0.04 0.36 ± 0.02 0.204 ± 0.016 0.053 ± 0.020 – 6
B0712 VLA 5 GHz 41 epoch 1.0 ± 0.0 0.843 ± 0.061 0.418 ± 0.037 0.254 ± 0.024 0.085 ± 0.030 A-B*-C 1

VLBA 5 GHz 10.7 ± 0.15 8.8 ± 0.15 3.6 ± 0.15 0.238 ± 0.009 0.097 ± 0.010 – 7
B1422 VLA 5 GHz 41 epochs 1.0 ± 0.0 1.062 ± 0.009 0.551 ± 0.007 0.187 ± 0.004 −0.030 ± 0.004 A-B*-C 1

VLBA 8.4 GHz 152 ± 2 164 ± 2 81 ± 1 0.174 ± 0.006 −0.038 ± 0.009 – 8
B1555 VLA 5 GHz 41 epochs 1.0 ± 0.0 0.62 ± 0.059 0.507 ± 0.073 0.417 ± 0.026 0.235 ± 0.028 A-B*-C 1
B1608†† VLA 8.5 GHz 2.045 ± 0.01 1.037 ± 0.01 1.0 ± 0.001 0.492 ± 0.002 0.327 ± 0.003 A-C*-B 9
B1933† VLBA 5 GHz 4.7 ± 0.4 19.4 ± 0.4 5.4 ± 0.4 0.315 ± 0.016 0.610 ± 0.009 3*-4-6* 10

VLA 15 GHz 2.5 ± 0.4 15.5 ± 0.4 3.2 ± 0.4 0.462 ± 0.018 0.722 ± 0.009 – 10
B2045 VLA 5 GHz 41 epochs 1.0 ± 0.0 0.578 ± 0.059 0.739 ± 0.073 0.501 ± 0.020 0.267 ± 0.027 A-B*-C 1

VLBA 5 GHz 1.0 ± 0.01 0.61 ± 0.01 0.93 ± 0.01 0.520 ± 0.003 0.242 ± 0.007 – 11

Notes: the fluxes and errors (in Col. 3, 4 and 5) are directly taken from the literature in their original units. When flux errors are not available, we take 10 per cent
of the measured fluxes as their uncertainties. Image names (in Col. 8) associated with * indicate the images with negative parities. (†) Flux ratios are likely
affected by systematic errors due to scattering. (††) Quoted fluxes are after correction for the time delays. References (1) Koopmans et al. (2003); (2) Biggs
et al. (2004) (Table 3); (3) Phillips et al. (2000); (4) Ros et al. (2000); (5) Lawrence et al. (1995); (6) Minezaki et al. (2009); (7) Jackson et al. (2000); (8)
Patnaik et al. (1999); (9) Fassnacht et al. (1999); (10) Sykes et al. (1998); (11) McKean et al. (2007).
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where θ and φ are the image position �θ=(θ x, θ y) in polar coordinate:

θ =
√

θ2
x + θ2

y and φ = tan −1(θ y/θ x); ψSIE, ψm and ψext are lens

potentials of an singular isothermal ellipsoidal, mth-mode multi-
pole perturbation and external shear, respectively. In our numerical
approach for lensing calculations, we tabulate to a Cartesian mesh
(θ x, θ y) in the image plane values of the reduced deflection angle
and second-order derivatives of the lens potential.

For a generalized isothermal lens (plus perturbations), the lens
potential ψ and convergence κ follow the pair of equations below
(Keeton et al. 2003, appendix B2):

ψ(θ, φ) = θF (φ) = θ

[
FSIE(φ) +

∑
m=3,4

Fm(φ)

]
,

κ(θ, φ) = R(φ)(2θ )−1 =
[
RSIE(φ) +

∑
m=3,4

δRm(φ)

]
(2θ )−1. (B2)

From the Poisson equation ∇2ψ = 2κ , F(φ) and R(φ) are related
by R(φ) = F(φ) + F′ ′(φ). FSIE(φ) and RSIE(φ) are shape functions
of a singular isothermal ellipsoidal lens, while Fm(φ) and δRm(φ)
describe the higher order multipole perturbations. For the generic
lens model used in this work, only m = 3 and 4 are considered.

B1 Singular isothermal ellipsoid

Specifically, if the isothermal ellipsoid’s major and minor axes co-
incide with the Cartesian axes, then the shape functions are given
by (Kassiola & Kovner 1993; Kormann, Schneider & Bartelmann
1994; Keeton & Kochanek 1998):

RSIE(φ) = θEin√
1 − ε cos 2φ

,

FSIE(φ) = θEin√
2ε

[
cos φ tan−1

( √
2ε cos φ√

1 − ε cos 2φ

)

+ sin φ tan h−1

( √
2ε sin φ√

1 − ε cos 2φ

) ]
. (B3)

where θEin is the Einstein radius of the singular isothermal ellipsoid,
ε = (1 − q2)/(1 + q2) and q ∈ (0, 1] is the axis ratio of the ellipsoid.
It can be shown that RSIE(φ) is the equation in polar coordinates of
the ellipse at the critical curve, where κSIE = 1

2 . RSIE(φ) corresponds
to the ellipse’s equation in Cartesian coordinates:

θ2
x

a2
+ θ2

y

b2
= 1, where a = θEin√

1 − ε
, b = aq = θEin√

1 + ε
. (B4)

As convergence κSIE(θ, φ) = RSIE(φ)
2θ

, the iso-κSIE contours follow
the ellipse RSIE(φ) and are scaled by θ−1.

B2 Higher order multipole perturbations

Now consider adding a higher order multipole perturbation δRm(φ)
to the iso-κ ellipse RSIE(φ), where δRm(φ) is defined as (see Keeton
et al. 2003, appendix B2)

δRm(φ) = am cos(m(φ − φm)), (B5)

where am (>0) and φm are the amplitude and ‘orientation’ of the
mth-order perturbation to the perfect ellipse RSIE(φ).

In the particular case of the 4th-mode perturbation, an ellip-
tical galaxy would be more discy if φ4 = 0, and more boxy if
φ4 = π/4 (which is the same as in the conventional definition that
δR4(φ) = a4cos (4φ), where a4 > 0 corresponds to a discy galaxy
and a4 < 0 corresponds to a boxy galaxy).

From equation (B2) it can be seen that, as the convergence is
κ(θ, φ) = (RSIE(φ) + ∑

m

δRm(φ))(2θ )−1, now the new iso-κ con-

tours follow the perturbed ellipse (RSIE(φ) + ∑
m

δRm(φ)) (at κ = 1
2 )

and are scaled by θ−1.
The corresponding shape function Fm(φ) is given by (see Keeton

et al. 2003)

Fm(φ) = 1

1 − m2
am cos(m(φ − φm)). (B6)

The physical quantity of δRm in equation (B5) is the same as in
Hao et al. (2006), where the expression is given by

δRm(φ) = αm cos(mφ) + βm sin(mφ). (B7)

In their work, αm/a and βm/a (where a is the semimajor
axis length of the perfect ellipse) for m = 3, 4, and ellip-
ticity e( ≡ 1 − q) of the elliptical isophotes were measured
within the Petrosian half-light radii. We use these values in
our main lens modelling. Note that equation (B7) can also be
re-written as δRm(φ) = √

α2
m + β2

m cos(m(φ − φm)), where φm =
1
m

tan−1(βm/αm) ∈ 1
m

[0, 2π). Comparing with equation (B5), it can
be seen that

am =
√

α2
m + β2

m ≡
√

(αm/a)2 + (βm/a)2 × aSIE,

φm = 1

m
tan−1(βm/αm), (B8)

where am is re-normalized at κ = 1
2 ; aSIE = θEin√

1−ε
as given in equa-

tion (B4).

B3 Constant external shear

The lens potential ψext(θ , φ) caused by a constant external shear is
given by

ψext(θ, φ) = −γext

2
θ2 cos(2(φ − φext)), (B9)

where γ ext( > 0) is the shear amplitude and φext ∈ [0, π ) is the
position angle of the shear mass, measured counterclockwise from
the semimajor axis of the isothermal ellipsoid. External shear will
not contribute to external convergence, i.e. κext = 0. In this work,
we assume random external shear orientation in each simulated lens
system.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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