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ABSTRACT
The predicted abundance and properties of the low-mass substructures embedded inside larger
dark matter haloes differ sharply among alternative dark matter models. Too small to host
galaxies themselves, these subhaloes may still be detected via gravitational lensing or via
perturbations of the Milky Way’s globular cluster streams and its stellar disc. Here, we use
the APOSTLE cosmological simulations to predict the abundance and the spatial and velocity
distributions of subhaloes in the range 106.5–108.5 M� inside haloes of mass ∼1012 M� in �

cold dark matter. Although these subhaloes are themselves devoid of baryons, we find that
baryonic effects are important. Compared to corresponding dark matter only simulations, the
loss of baryons from subhaloes and stronger tidal disruption due to the presence of baryons
near the centre of the main halo reduce the number of subhaloes by ∼1/4 to 1/2, independently
of subhalo mass, but increasingly towards the host halo centre. We also find that subhaloes
have non-Maxwellian orbital velocity distributions, with centrally rising velocity anisotropy
and positive velocity bias that reduces the number of low-velocity subhaloes, particularly
near the halo centre. We parametrize the predicted population of subhaloes in terms of mass,
galactocentric distance and velocities. We discuss implications of our results for the prospects
of detecting dark matter substructures and for possible inferences about the nature of dark
matter.
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1 IN T RO D U C T I O N

The � cold dark matter (hereafter �CDM) model explains many
large-scale observations, from the anisotropy of the microwave
background radiation (e.g. Wright et al. 1992) to the distribution of
galaxies in the cosmic web (Davis et al. 1985), but inferences about
the particle nature of dark matter or its possible (self)-interactions re-
quire observations on far smaller scales. Warm dark matter (WDM)
particles, such as sterile neutrinos with masses of a few keV, have
free-streaming scales of less than 100 kpc, and differ from CDM
in terms of the halo mass functions at mass scales on the order of
109 M� and below (e.g. Avila-Reese et al. 2001; Bose et al. 2016),
while weak self-interactions would produce shallow cores of the
order of several kpc in the centre of dark matter haloes (e.g. Spergel
& Steinhardt 2000). In principle, there is no shortage of observa-
tions that probe these small scales. They include the structures seen
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in the Lyman α forest (e.g. Croft et al. 2002; Viel et al. 2013),
the abundance of dwarf galaxies in deep H I surveys (Tikhonov &
Klypin 2009; Papastergis et al. 2011) and the abundance (e.g. Klypin
et al. 1999; Boylan-Kolchin, Bullock & Kaplinghat 2011; Lovell
et al. 2012; Kennedy et al. 2014) as well as internal kinematics that
probe the density profiles (e.g. Walker & Peñarrubia 2011; Strigari,
Frenk & White 2014) of Local Group dwarf galaxies.

While these studies have progressively narrowed the parameter
space of viable dark matter candidates, inferences about the non-
baryonic nature of dark matter from observations of the Universe’s
baryonic components are inherently limited by uncertainties in our
understanding of complex astrophysical processes, such as radiative
hydrodynamics, gas cooling, star formation, metal-enrichment, stel-
lar winds, supernova and AGN feedback and cosmic reionization.
For simple number counts, the effects of baryons in suppressing the
formation of dwarf galaxies in CDM can be degenerate with the
effects of WDM (e.g. Sawala et al. 2013). As of 2016, a plethora of
studies have also offered baryonic solutions to the various problems
for �CDM that had previously been identified in dark matter only
(hereafter DMO) simulations (e.g. Okamoto, Gao & Theuns 2008;
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Governato et al. 2010; Zolotov et al. 2012; Brooks et al. 2013;
Arraki et al. 2014; Chan et al. 2015; Sawala et al. 2015; Dutton
et al. 2016).

In addition, in the �CDM cosmological model, the majority of
low-mass substructures that would most easily discriminate be-
tween different dark matter models are predicted to be completely
dark (Bullock, Kravtsov & Weinberg 2000; Benson et al. 2002;
Okamoto et al. 2008; Ocvirk et al. 2016; Sawala et al. 2016a), and
hence unobservable through starlight. Fortunately, alternative meth-
ods exist that can reveal small structures and substructures purely
through their gravitational effect and detect even pure dark matter
haloes, thereby potentially breaking the degeneracy with baryonic
physics.

(i) Gravitational lensing directly probes the projected mass dis-
tribution in and around galaxies and can reveal their luminous and
non-luminous components. Weak gravitational lensing has con-
firmed the existence of massive dark haloes surrounding galax-
ies down to the Milky Way scales, or masses of ∼1012 M� (e.g.
Mandelbaum et al. 2006). While these provide strong evidence
for the existence of non-baryonic dark matter, they cannot dis-
tinguish between different currently viable models of cold, warm
or self-interacting dark matter that deviate on mass scales below
∼109 M�. However, much lower masses, down to ∼106 M�, may
be probed through strong gravitational lensing, either via flux-ratio
anomalies (e.g. Mao & Schneider 1998; Xu et al. 2009, 2015),
or detectable perturbations of observed Einstein rings by substruc-
tures in the lens itself or along the line of sight (Mao & Schnei-
der 1998; Metcalf & Madau 2001; Dalal & Kochanek 2002; Vegetti
et al. 2012, 2014). On these scales, different dark matter models may
be clearly distinguished, provided that the expected abundances and
distributions of substructures for different models can be reliably
predicted.

(ii) Gaps in stellar streams originating from the tidal disruption
of either globular clusters or dwarf galaxies can also provide ev-
idence for substructures. In particular, globular cluster streams in
the Milky Way, such as Palomar-5 (hereafter Pal-5, discovered by
Odenkirchen et al. 2001) and GD-1 (discovered by Grillmair &
Dionatos 2006), can be stretched out over many kpc along their or-
bit while conserving their phase-space volume. Compared to dwarf
galaxies, globular clusters have much lower internal velocity disper-
sions resulting in much narrower streams, making them very sensi-
tive tracers of both Galactic potential and perturbations by low-mass
substructures (e.g. Ibata et al. 2002; Carlberg & Grillmair 2013).
Based on the VIA LACTEA II DMO simulations, Yoon, Johnston &
Hogg (2011) have calculated the interaction frequency of the Pal-
5 stream with dark substructures during its assumed lifetime of
550 Myr; they predicted ∼20 direct encounters with subhaloes of
106–107 M� and ∼5 with subhaloes above 107 M�. Erkal & Be-
lokurov (2015a,b) have computed the properties of predicted gaps
in streams such as Pal-5 and GD-1 in �CDM. They show that the
improved photometry, greater depth and more precise radial veloc-
ity and proper motion measurements of upcoming surveys such as
Gaia (Perryman et al. 2001; Gilmore et al. 2012), DES (The Dark
Energy Survey Collaboration 2005) and LSST (LSST Science Col-
laboration et al. 2009) should allow a characterization of perturbers
in terms of mass, concentration, impact time and 3D velocity, for
subhaloes above 107 M�, albeit with an irreducible degeneracy be-
tween mass and velocity. Recently, Bovy, Erkal & Sanders (2017)
have used the density data of Pal-5 to infer the number of subhaloes
in the mass range M = 106.5–109 M� inside the central 20 kpc of the
Milky Way to be 10+11

−6 . However, they also noted the uncertainty

due to unaccounted baryonic effects and required assumptions in
the subhalo velocity distribution.

(iii) The cold thin stellar disc of the Milky Way is another sensi-
tive probe of the interactions with orbiting low-mass substructures.
Satellite substructures passing through the Milky Way disc are ex-
pected to cause small but detectable changes in both radial and
vertical velocity distribution of stars in the disc, resulting in a thick-
ening of the thin disc (e.g. Toth & Ostriker 1992; Quinn, Hernquist
& Fullagar 1993; Navarro & White 1994; Walker, Mihos & Hern-
quist 1996; Sellwood, Nelson & Tremaine 1998; Benson et al. 2004;
Kazantzidis et al. 2008). The thinness and long-term stability of the
Milky Way stellar disc could thus potentially put strong limits on
the number of allowed massive dark substructures in the vicinity of
the disc, and recent work by Feldmann & Spolyar (2015) suggests
that the expected increase in the vertical velocity dispersion of disc
stars due to the impact of dark substructures should be detectable
with Gaia. However, it has been pointed out that internal processes
such as turbulence and gravitational instabilities (e.g. Bournaud,
Elmegreen & Martig 2009) and secular evolution (e.g. Schönrich
& Binney 2009) can also lead to a thickening of the disc, while the
vertical heating and thickening of the disc by dark substructures
are severely reduced in simulations that include dissipational gas
physics. The inclusion of gas reduces disc heating mainly through
two mechanisms: the absorption of kinetic impact energy by the gas
and/or the formation of a new thin stellar disc that can recontract
heated stars towards the disc plane (e.g. Hopkins et al. 2009; Stewart
et al. 2009; Moster et al. 2010).

While the above phenomena have a gravitational origin, they still
fall short of providing a complete census of dark matter substruc-
tures. Instead, inferences about dark matter models based on the
number of detected perturbations must be made statistically and, in
each case, require an accurate prediction of the abundance, proper-
ties and distribution of dark matter substructures inside the central
∼10–20 kpc of galaxy or group-sized dark matter haloes.

Previous work has relied on very high-resolution DMO simu-
lations such as VIA LACTEA II (Diemand, Kuhlen & Madau 2007)
and AQUARIUS (Springel et al. 2008). These have shown that tidal
stripping reduces the mass fraction of dark matter contained in
self-bound substructures towards the halo centre (e.g. Springel
et al. 2008). It has also been argued that the presence of a stellar
disc and adiabatic contraction of the halo can lead to enhanced tidal
disruption of substructures. Based on DMO simulations with an
additional massive disc-like potential, D’Onghia et al. (2010) quan-
tified the disruption of substructures through tidal stripping due to
the smooth halo, tidal stirring near pericentre and ‘disc shocking’
by the passage of a substructure through the dense stellar disc. For
their parameters, this led to a depletion of substructures by up to
a factor of 3 for a subhaloes of mass 107 M�. Similarly, Yurin &
Springel (2015) imposed a less massive disc inside a DMO simula-
tion, and found a reduction in subhalo abundance by a factor of 2 in
the centre, while Zhu et al. (2016) attributed some of the depletion
of both dark and luminous subhaloes to similar effects.

In addition to the enhanced tidal disruption, the loss of baryons re-
duces the masses and abundances of low-mass subhaloes relative to
DMO simulations (Libeskind et al. 2010; Romano-Dı́az et al. 2010;
Geen, Slyz & Devriendt 2013; Sawala et al. 2013, 2015; Schaller
et al. 2015a). These earlier works have largely focused on the haloes
of star-forming dwarf galaxies and include the effects of baryons
inside them. Here, we focus on even lower mass subhaloes, and
use high-resolution simulations that capture the full baryonic ef-
fects to explore the extent to which baryonic physics can change the

MNRAS 467, 4383–4400 (2017)



The Milky Way’s dark substructures 4385

abundance of even completely dark substructures deeply inside the
Milky Way (MW) halo, and discuss possible implications for the
detection of substructures through lensing, stream gaps and disc
heating.

This paper is organized as follows. In Section 2, we briefly de-
scribe the simulations used in this work, the selection of haloes
and substructures and the reconstruction of orbits. In Section 3,
we discuss how baryons affect the abundance and distribution of
substructures inside dark matter haloes, as a function of satellite
mass, galactocentric radius and time. In Section 4, we examine the
subhalo energy, angular momenta, orbital velocity profiles and or-
bital anisotropy, and, in Section 5 we describe the non-Maxwellian
subhalo velocity distributions. We discuss the implications of our
results for different observables in Section 6, and conclude with a
summary in Section 7. Additional details about the orbital interpo-
lation and a comparison of the measured velocity distributions to
standard Maxwellian fits are given in the appendix.

2 M E T H O D S

We test the impact of baryons on substructures in Milky Way sized
�CDM haloes by comparing cosmological simulations of Local
Group analogues with and without baryons but otherwise identical
initial conditions. In this section, we describe our simulations (Sec-
tion 2.1), the identification of substructures (Section 2.2) and the
reconstruction of their orbits (Section 2.3).

2.1 The APOSTLE simulations

Our results are based on A Project Of Simulating The Local Environ-
ment (APOSTLE; Sawala et al. 2016b), a suite of cosmological hydro-
dynamic zoom-in simulations of Local Group regions using the code
developed for the Evolution and Assembly of GaLaxies and their
Environments (EAGLE; Crain et al. 2015; Schaye et al. 2015) project.
The simulations are performed in a WMAP-7 cosmology (Ko-
matsu 2011), with density parameters at z = 0 for matter, baryons
and dark energy of �M = 0.272, �b = 0.0455 and �λ = 0.728, re-
spectively, a Hubble parameter of H0 = 70.4 km s−1 Mpc−1, a power
spectrum of (linear) amplitude on the scale of 8 h−1Mpc of σ 8 = 0.81
and a power-law spectral index ns = 0.967. Regions were selected
from a 1003 Mpc3 simulation (identified as DOVE in Jenkins 2013)
to resemble the observed dynamical constraints in terms of distance
and relative velocity between the MW and M31, and the isolation
of the Local Group (Fattahi et al. 2016). Zoom initial conditions
were constructed using the second-order Lagrangian perturbation
theory (Jenkins 2010), at three different resolution levels, with gas
(dark matter) particle masses of ∼1.0(5.0) × 104 M� (labelled
L1), ∼1.2(5.9) × 105 M� (labelled L2) and ∼1.5(7.5) × 106 M�
(labelled L3), respectively. The gravitational softening lengths are
initially fixed in comoving coordinates, and limited in physical
coordinates to 134 pc, 307 pc and 711 pc. Except to check for con-
vergence in Fig. 2, we only use the L1 simulations in this work.
Each volume has also been resimulated as a DMO simulation, with
identical initial conditions, and dark matter particle masses larger
by a factor of (�b + �DM)/�DM.

The EAGLE code is based on P-GADGET-3, an improved version of
the publicly available GADGET-2 code (Springel 2005). Gravitational
accelerations are computed using the Tree-PM scheme of P-GADGET-
3, while hydrodynamic forces are computed with the smoothed
particle hydrodynamics (SPH) scheme ANARCHY described in Dalla-
Vecchia et al. (in preparation) and Schaller et al. (2015b), which uses
the pressure-entropy formalism introduced by Hopkins (2013). The

EAGLE subgrid physics model has been calibrated to reproduce the
z = 0.1 stellar mass function and galaxy sizes in the stellar mass
range 108–1011 M� in a cosmological volume of 1003 Mpc3. It in-
cludes radiative metallicity-dependent cooling following Wiersma,
Schaye & Smith (2009a), star formation with a pressure-dependent
efficiency and a metallicity-dependent density threshold (Schaye
& Dalla Vecchia 2008), stellar evolution and stellar mass-loss and
thermal feedback that captures the collective effects of stellar winds,
radiation pressure and supernova explosions, using the stochastic,
thermal prescription of Dalla Vecchia & Schaye (2012). Reion-
ization of hydrogen is assumed to be instantaneous at z = 11.5,
while He II reionization follows a Gaussian centred at z = 3.5
with σ (z) = 0.5 to reproduce the observed thermal history (Schaye
et al. 2000; Wiersma et al. 2009b). The EAGLE model also includes
black hole growth fuelled by gas accretion and mergers and feed-
back from active galactic nuclei (AGN; Booth & Schaye 2009;
Johansson, Naab & Burkert 2009; Rosas-Guevara et al. 2015). In
this work, we use the ‘reference’ choice of subgrid parameters
(Crain et al. 2015) at all resolutions. Further details of the EAGLE

and APOSTLE simulations and comparison of results to observations
can be found in the references above.

2.2 Halo and subhalo selection

Structures (haloes) are identified using a Friends-of-Friends algo-
rithm (Davis et al. 1985), and substructures (subhaloes) are iden-
tified using the SUBFIND algorithm (Springel et al. 2001, with the
extension of Dolag et al. 2009) for 18 snapshots up to a lookback
time of 5 Gyr (z ∼ 0.5). We identify haloes and subhaloes at each
snapshot, and find their progenitors at earlier times using a subhalo
merger tree (as described in the appendix of Jiang et al. 2014).

We denote the radius inside which the mean density is 200 times
the critical density as r200, and the enclosed mass is M200. For
substructures, we quote the total mass bound to a subhalo: in the
hydrodynamic simulation, this includes dark matter, stellar and gas
particles, although in the mass range 106.5–108.5 M� we study here;
subhaloes are almost entirely devoid of baryons, as reionization has
prevented the vast majority from forming stars, and ram pressure
stripping has removed any residual gas (Sawala et al. 2016a).

The number of identified subhaloes and the assigned masses
depend on the substructure identification algorithm (see Onions
et al. 2012 for a comparison). For subhaloes of 104 particles,
Springel et al. (2008) find that the mass assigned by the SUBFIND

algorithm closely follows the mass enclosed within the tidal ra-
dius, while Onions et al. (2012) find that substructures can be reli-
ably identified with at least 20 particles and their basic properties
can be recovered with at least 100 particles. While the internal
structure of subhaloes with so few particles may be affected by
numerical effects, their orbits are determined by the structure of
the main halo, which is resolved with many more particles. As
discussed in Section 3.1, we find that the subhalo mass function
converges with resolution in both hydrodynamic and DMO sim-
ulations. It should be noted that even if the subhalo mass func-
tion is numerically converged, by construction, the SUBFIND mass
depends on the local overdensity. Part of the central decline in
subhalo number density within a given mass interval is therefore
attributable not directly to stripping, but to the increasing back-
ground density. However, to first order, as long as the background
densities are similar, this should not affect the relative difference
in subhalo number density between the DMO and hydrodynamic
simulations.
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Figure 1. Projected dark matter density at z = 0 in the MW-mass halo AP-1-1 at resolution L1, in matched DMO (left) and hydrodynamic (right) simulations
inside r200. Red circles indicate the positions of subhaloes with masses above 106.5 M� inside the respective regions, with an area proportional to subhalo
mass. The hydrodynamic simulation contains fewer subhaloes, and the dark matter in the central region is visibly rounder.

In this work, we limit our analysis to subhaloes with mass above
106.5 M�, corresponding to at least 50 particles in the L1 DMO
simulation. While the potential inside the subhaloes is poorly sam-
pled, their orbits inside the main halo should not be affected. With a
gravitational softening length limited to <134 pc at resolution L1,
the main haloes are unaffected by softening in the regions of inter-
est here. The dark matter mass profiles of the main haloes and their
relation to the disc are discussed further in Schaller et al. (2016).

2.3 Orbits

All three observational probes introduced in Section 1 are sensi-
tive to substructures within the central ∼10–20 kpc, equivalent to
∼0.05–0.1 × r200 of the host halo at z = 0. Throughout this work,
we use the minimum of the host halo potential to define the origin of
our reference frame, and the minimum of each satellite’s potential
to define its position.

Our simulation snapshots are spaced equally in log(a), with a
maximum time interval of 33 Myr. Because most subhaloes found
near the halo centre at any time have orbits with large apocentres
and cross the central regions at a high speed (see Section 4.2), any
single snapshot only captures a small fraction of all the subhaloes
that come near the halo centre. To obtain a complete measurement
of the expected subhalo distribution, we therefore interpolate all
orbits using cubic splines, and integrate all quantities over time
to determine their expected probability density. Except in Figs 1
and 2, which show results based only on the single snapshot at z = 0,
throughout the remainder of this paper, we state an expectation value
for the number of subhaloes of a certain mass, and its distribution in
either real or velocity space. In this way, we can accurately compute
the expected subhalo distribution despite the finite time resolution
of our simulation snapshots.

Subhalo velocities are commonly measured using a mass-
weighted average of the particle velocities, and thus defined rel-
ative to the centre-of-mass (CM) frame. However, because the host
halo potential can be offset from the CM by ∼10 kpc, subhalo

velocities measured in this way cannot be used directly for our
purpose. Instead, we establish velocities consistent with our centre-
of-potential reference frame from the interpolated positions. Details
are described in Appendix A.

Where we average our results over the haloes listed in Table 1, we
first compute the properties of subhaloes relative to the individual
host halo’s properties such as r200, potential, where appropriate, and
then combine the results of all orbits from all haloes to compute the
arithmetic mean.

3 SU B H A L O A BU N DA N C E

Fig. 1 illustrates the spatial distribution and the effect of baryons on
the number of substructures by comparing the present-day projected
mass distribution and the location of substructures with masses
above 106.5 M� in one of our Milky Way mass haloes in DMO and
hydrodynamic simulations (identified as halo AP-1-1 in Table 1).
In the DMO simulation, shown on left, the halo has a total mass
of M200 = 1.65 × 1012 M� and a corresponding r200 = 236 kpc,
reducing slightly to M200 = 1.57 × 1012 M� and r200 = 232 kpc in
the hydrodynamic simulation shown on the right. For this particular
halo, and at this particular snapshot, a reduction in substructures is
barely noticeable by eye, and robust quantitative statements require
a more detailed analysis.

3.1 Total subhalo abundance

Fig. 2 shows the cumulative abundance of substructures as a func-
tion of subhalo mass, averaging over four MW mass haloes in both
DMO and hydrodynamic simulations, at our three resolution lev-
els from L3 (lowest), through L2 (intermediate) to L1 (highest).
In the left-hand panel, all subhaloes, both inside and outside r200,
are included out to a distance of 300 kpc. As noted in previous
works (e.g. Geen et al. 2013; Sawala et al. 2013), for subhaloes of
mass <109.5 M�, there is a near-constant decrease in abundance by
∼1/3 in the hydrodynamic relative to the DMO simulation. In the
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Figure 2. Cumulative abundance of substructures in the Milky Way mass haloes at the present time. Each panel presents results averaged over the four haloes
listed in Table 1 simulated as DMO (black lines) or hydrodynamically (red lines), at three different resolutions, from L3 (dotted, lowest), through L2 (dashed,
intermediate) to L1 (solid, highest). The left-hand panel shows subhaloes within 300 kpc of each host, while the right-hand panel includes subhaloes within
r200, with the mass expressed relative to the hosts’ M200. Convergence of the DMO and hydrodynamic simulations is similar, and the relative difference between
the hydrodynamic and DMO simulations is similar at different resolution levels.

Table 1. Haloes used in this study.

DMO Hydrodynamic
M200 Ns M200 M∗ Ns

[1012 M�] [1012 M�] [1010 M�]

AP-1-1 1.65 3720 1.57 2.75 2905
AP-1-2 1.10 3491 1.01 1.20 2648
AP-4-1 1.34 4640 1.16 1.23 3564
AP-4-2 1.39 3270 1.13 1.88 2785

Notes. Structural parameters of the four APOSTLE haloes used in this study
at z = 0 and resolution L1, in the DMO and hydrodynamic simulations. All
values are in physical units. M200 is computed for the total halo, including
subhaloes, while stellar masses are those of the central galaxy excluding
satellites. Ns denotes the number of subhaloes in the mass range 106.5–
108.5 M� inside r200.

right-hand panel, subhalo masses are expressed relative to the M200

of the host, and subhaloes are selected inside the hosts’ r200. Al-
though the decrease in abundance in the hydrodynamic simulation
is slightly enhanced by the reduction of r200, the principal differ-
ence in abundance between the DMO and hydrodynamic simula-
tion persists. Clearly, baryons affect the masses of subhaloes below
109.5 M� more than those of their 1012 M� hosts, destroying the
scale-free nature of pure dark matter simulations. On the other hand,
below ∼109.5 M�, the offset in the abundance is nearly constant, as
the baryon loss of subhaloes in this mass range is nearly constant.

3.2 Baryon effects on subhalo abundance

In Fig. 3, we show the cumulative mass functions of substructures
in four spherical shells, increasing in radius, from 0–10 to 10–20,
20–50 and 50–200 kpc. The results are averaged over all four haloes

at resolution L1, and time-averaged in lookback time over either five
intervals of 1 Gyr each, or over a 5 Gyr period.

Comparing the results from the hydrodynamic and DMO simula-
tions, it can be seen that, in all shells, the abundance of substructures
is reduced in the hydrodynamic simulation. The difference increases
with decreasing radius, indicating stronger tidal stripping near the
centre in the hydrodynamic simulation.

We fit the subhalo mass functions in all four shells by power laws,
dn/dm ∝ mn, and overplot the fits as dark grey lines in the large
panels of Fig. 3. In both DMO and hydrodynamic simulations, the
results are similar to those reported in the AQUARIUS simulations by
Springel et al. (2008), who found values between −1.93 and −1.87
for the slope, with the steepest values found for the lowest mass
range. We find slightly shallower profiles in the innermost bins,
but no significant differences in slope between DMO and hydrody-
namic simulations. In the mass range 106.5–108.5 M�, the depletion
of substructures due to the presence of baryonic effects, namely
the removal of the gas by reionization and ram-pressure stripping
prior to infall and subsequently the enhanced tidal stripping in
the steeper potential of the host halo, does not depend on subhalo
mass.

In the bottom panels of Fig. 3, we show the ratios between the
subhalo abundances in the hydrodynamic and DMO simulations
in the different radial shells. We overplot, in dark grey, the ratio
between the two respective power-law fits and, in light grey, a fit to
a constant value over the entire mass range shown. We find that, in
the subhalo mass range 106.5–108.5 M�, a factor constant in mass
that varies only with radius gives an almost equally good fit to the
suppression of substructures: by 23 per cent for r = 50–200 kpc,
40 per cent for r = 20–50 kpc, 45 per cent for r = 10–20 kpc, and
48 per cent for r < 10 kpc. We list the best-fitting power-law slopes,
and the constant reduction factors in Table 2.
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Figure 3. Large panels: cumulative substructure mass functions in spherical shells, in the DMO and hydrodynamic simulations. Blue and red solid lines
indicate results from the DMO and hydrodynamic simulations over successive 1 Gyr time intervals, respectively, while dotted and dashed lines show the results
averaged over the entire 5 Gyr period. Dark grey lines are power-law fits to the mass functions over the mass interval shown. Small panels: ratio between the
cumulative substructure mass functions in the DMO and hydrodynamic simulations. Solid dark grey lines show the ratios between the power-law fits to the
DMO and hydrodynamic mass functions, solid light grey lines are constant values. Differences between the hydrodynamic and DMO simulation are present at
all radii, but increase towards the centre. For substructures in the range 106.5–108.5 M�, there is little evidence of a mass or time dependence.

As discussed in Sawala et al. (2013) and Schaller et al.
(2015a), the mass-loss of isolated subhaloes due to the com-
plete loss of baryons relative to a DMO simulation is nearly
constant below ∼109 M�, and the reduction in abundance by
∼23 per cent in the outermost shell is consistent with the re-

sults expected for isolated subhaloes. Note that this does not
mean that these subhaloes do not experience tidal stripping,
but merely that, at these large radii, there is little differ-
ence in tidal stripping between the DMO and hydrodynamic
simulations.
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Table 2. Subhalo abundance parameters.

0–10 kpc 10–20 kpc 20–50 kpc 50–200 kpc

Power-law slope na

DMO −1.86 −1.88 −1.88 −1.90
Hydro −1.88 −1.91 −1.94 −1.93

NHydr(r)/NDMO(r)b

0.52 0.55 0.60 0.77

Notes. aPower-law slopes for the subhalo mass functions in the DMO and
hydrodynamic simulation in the mass range 106.5–108.5 M�.
bSuppression of the number of substructures in the hydrodynamic relative
to the DMO simulation, assuming a constant factor, independent of mass.

Figure 4. Top: number density profiles of substructures in the mass range
106.5–108.5 M� (dashed lines, left axis) and dark matter mass density pro-
files (solid lines, right axis). Black and grey lines show results of the DMO
and hydrodynamic simulations, respectively, blue and red lines show fits
to the two sets of simulation data; dashed for (α, β, γ ) fits to the subhalo
number densities, solid for NFW fits for the DM mass densities, at z = 0.
Bottom: expected radial velocity dispersion of subhaloes relative to velocity
dispersion of DM particles at z = 0 from equation (4) given the above radial
density profiles, normalized to the respective values at 300 kpc. Dotted and
dashed lines indicate the scale radii of the NFW fit to the particle densities,
and of the (α, β, γ ) profiles for the subhalo number densities, respectively.

3.3 Substructure and mass profiles

In the top panel of Fig. 4, we compare the mass density profiles of
dark matter at z = 0 to the number density profiles of subhaloes
in the mass range 106.5–108.5 M� in our DMO and hydrodynamic
simulations, each averaged over four haloes.

We find that the averaged mass density profiles, represented by
solid lines, are well described by NFW-profiles (Navarro, Eke &
Frenk 1996) of the form

ρ(r) = ρs

(
r

rs

)−1 (
1 + r

rs

)−2

, (1)

with values for the scale radii, rs, of 29 kpc and 22 kpc, and
densities at the scale radii, ρs, of 3.08 × 106 M� kpc−3 and
4.58 × 6 M� kpc−3 for the DMO and hydrodynamic simulations,
respectively. As expected, since the total dark matter mass is lower
in the hydrodynamic simulations, the average DM density in the
haloes is below that of the DMO counterparts. However, due to
adiabatic contraction, the DM distribution is more concentrated in
the hydrodynamic simulations, and the DM density slightly exceeds
that of the DMO simulations near the centre. With the addition of
baryons, the total mass density in the hydrodynamic simulations
exceeds that of the DMO simulations.

Compared to the DM mass density profiles, the subhalo number
density profiles, represented by dashed lines in Fig. 4, are much
shallower towards the centre. We fit these by more general, dou-
ble power-law models (sometimes called α, β, γ - models, e.g.
Zhao 1996) of the form

ρ(r) = ρs

(
r

rs

)−γ (
1 +

(
r

rs

)α)(γ−β)/α

. (2)

Here, α determines the transition between an inner power law with
asymptotic slope −γ and an outer power law with asymptotic slope
−β, centred on the scale radius rs, where the density is ρs. The
two-parameter NFW model (equation 1) is a special case of this
five-parameter model for (α, β, γ ) = (1, 3, 1).

For the substructure number density profile in the mass range
106.5–108.5 M�, averaged over four haloes in each simulation, we
obtain best fits of

(rs, ρs, α, β, γ ) = (79.5 kpc, 1.06 × 10−3 kpc−3, 3.06, 0.99, 0.56)

and

(rs, ρs, α, β, γ ) = (80.7 kpc, 2.02 × 10−3 kpc−3, 4.82, 0.71, 0.44)

for the DMO and hydrodynamic simulations, respectively. Note that
because the subhalo mass function does not significantly change
with radius, the subhalo number density and subhalo mass density
have the same radial dependence.

The most important differences between the subhalo number den-
sity profiles and the mass density profiles are the inner slopes, −γ ,
and the associated scale radii, rs. In both DMO and hydrodynamic
simulations, the substructure number density profiles transition to
much shallower profiles at much greater scale radii than the DM
mass density profiles. The difference in inner slope and scale radius
between the DMO and hydrodynamic simulations is less signifi-
cant than recently reported by Zhu et al. (2016). However, these
authors also found a mass dependence, and overall, large scatter in
the inner log slopes, possibly attributable to the small sample size
and required extrapolation. Reflecting the results of Section 3.2,
the subhalo number density at a given radius is lower in the hydro-
dynamic simulations. Consequently, we find that the ‘substructure
bias’ – the relative underdensity of subhaloes compared to DM par-
ticles towards the centre, already identified by Ghigna et al. (2000)
based on DMO simulations – is even stronger in the hydrodynamic
simulations, where the central DM density is higher and the central
subhalo density is lower, compared to the DMO counterparts. The
outer slope, β, is quite poorly constrained, and the differences are
not significant for the central subhalo deficit.

4 SU B H A L O V E L O C I T I E S

The disruption of substructures, and the impact of baryons are also
reflected in the subhalo velocities. In Section 4.1, we compute the
expected velocity bias of subhaloes relative to DM particles. In
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Section 4.2, we discuss the distributions of energies and angular
momenta, and in Section 4.3, we present the subhalo anisotropy
profiles.

4.1 Subhalo velocity bias

For a spherical halo of size R containing populations of particles
in equilibrium, assuming isotropy, the radial velocity dispersion,
σ r(r), of each population is related to its density, ρ(r), (e.g. Binney
& Tremaine 2008), via

ρ(r)σ 2
r (r) − ρ(R)σ 2

r (R) =
∫ R

r

ρ(r)
GM(r)

r2
dr, (3)

where M(r) is the enclosed mass. For r � R, ρ(R) � ρ(r) and the
second term on the LHS can be ignored. Using the results for the
substructure density profiles for both DM particles and subhaloes
in Section 3.3, as suggested by Diemand, Moore & Stadel (2004),
we can thus calculate the expected velocity bias of the subhaloes
relative to the DM particles.

σr,sub(r)

σr,DM(r)
=

(
ρDM(r)

ρsub(r)

∫ R

r
ρsub(r) M(r)

r2 dr∫ R

r
ρDM(r) M(r)

r2 dr

)1/2

. (4)

With the parametrization for ρDM(r) and ρsub(r) given by equations
(1 and 2), respectively, and assuming that the velocity bias vanishes
beyond =300 kpc, where the subhalo number density and DM
mass density are small and the majority of subhaloes have not been
affected by stripping, we can compute the expected velocity bias of
subhaloes relative to DM particles.

The expected velocity biases for the DMO and hydrodynamic
simulations are shown in the bottom panel of Fig. 4. It can be seen
that for both simulations, the velocity bias rises towards the centre,
most steeply between the (larger) scale radius of the (α, β, γ )
subhaloes number density profiles and the (smaller) scale radius of
the (NFW) DM density profiles, where the difference between the
two slopes is maximal. Because of the stronger substructure bias,
the expected velocity bias is likewise stronger in the hydrodynamic
simulation.

4.2 Orbital energy and angular momentum

Assuming spherical symmetry about the centre of potential and
truncation at r200, we compute the halo potential �(r) from the
density ρ(r) of all particles at each snapshot:

�(r) = −4πG

(
1

r

∫ r

0
ρ(r ′)r ′2dr ′ +

∫ r200

r

ρ(r ′)r ′dr ′
)

In Fig. 5, we show the three 2D density distributions1 of spe-
cific orbital energies, specific orbital angular momenta and radii, of
subhaloes in the mass range 106.5–108.5 M� inside r200 from orbits
interpolated over 5 Gyr in lookback time. We normalize the ener-
gies, E, by the total energy of a circular orbit at r200, Ecirc, 200, the
angular momenta, L, by the angular momentum of a circular orbit of
the same energy, Lcirc(E), and the radius r by the virial radius, r200.

1 In Figs 5 and 7 we use the interpolated orbits of all subhaloes in the
mass range 106.5–108.5 and within the specified radii and time intervals to
construct time-averaged 2D histograms. The histograms are normalized by
the maximum occupation value for each pair of otherwise identical DMO
and hydrodynamic panels, and coloured using the linear colour scales, where
0 is an occupation of 0, and 1 is the maximum occupation, as indicated by
the colour bars to the right of both figures.

Note that since our potential definition has the zero-point at infinity
(neglecting all mass beyond r200), the total energy of a circular orbit
at r200 is negative. As a result, subhalo orbits that are more bound,
corresponding to more negative total energies, have higher values
of E/Ecirc, 200.

The left column of Fig. 5 shows the E–L probability density.
Because the energy of a circular orbit increases monotonically with
radius, subhaloes close to L/Lcirc(E) = 1 are ordered by radius:
those located at r200 are located at (L/Lcirc(E), E/Ecirc, 200) = (1, 1).
Circular orbits with smaller radii have more negative energies, and
line up above this point.

In the middle and right columns of Fig. 5, we show the distribu-
tions of L/Lcirc(E) and E/Ecirc, 200, respectively, both versus r/r200.
In the L–R plane, we see that the average circularity increases
slightly from r200 to ∼0.2r200 (corresponding to ∼50 kpc), as de-
caying orbits become more circular. By contrast, it declines sharply
for smaller radii, indicating a transition towards almost purely ra-
dial orbits close to the centre. In the E–R plane, we see that the
average specific orbital energy becomes more negative towards the
centre, but peaks at ∼0.1r200 (corresponding to ∼25 kpc), where
the increase in the average kinetic energy of subhaloes compensates
for the continuously more negative potential energy. Because the
average circularity also declines towards the centre, the increase in
kinetic energy indicates an increase in radial velocities of subhaloes
at small radii. This effect is slightly stronger in the hydrodynamic
simulations.

Since the minimum total energy of a subhalo is given by the
potential energy at its radius, the value of E/Ecirc, 200 is lim-
ited from above, explaining the ‘forbidden’ region for high val-
ues of E/Ecirc, 200 in the E–R plane, seen in the right column of
Fig. 5.

For guidance, on the E–L and E–R planes in Fig. 5, the dashed and
dotted lines indicate values of E/Ecirc, 200 = 1 and E/Ecirc, 200 = 2,
respectively. For orbital energies less negative than Ecirc, 200, the
radius of a circular orbit lies outside r200. For each value of
0 < E/Ecirc, 200 < 1, there is a maximum circularity for orbits with
pericentres inside r200. This explains the ‘forbidden’ region for high
circularities at E/Ecirc, 200 < 1 on the E–L plane. Likewise, a value
of E/Ecirc, 200 = 2 is equal to the potential energy at r200 and hence
the maximum orbital energy for a subhalo on a radial orbit with
an apocentre inside r200. Subhaloes on radial orbits with higher en-
ergies (values of E/Ecirc, 200 < 2) spend a fraction of their orbital
period outside r200, raising the average circularity measured inside
r200.

By contrast, the nearly empty region at high values of E/Ecirc, 200

and low values of L/Lcirc(E) in the E–L plane is not a forbidden
region. Instead, it reflects the fact that subhaloes with low orbital
energies and correspondingly short orbital periods are more easily
disrupted on radial orbits. As can be seen by the solid black line on
this panel, the median circularity increases for more closely bound
subhaloes above E/Ecirc, 200 = 2.

While the subhaloes with the most negative energies thus typi-
cally have high circularities and exist only near the halo centre, it
does not follow that subhaloes near the centre have high circulari-
ties: instead, as can be seen on the L–R plane in the middle column
of Fig. 5, the average circularity for subhaloes is lowest near the
halo centre. Among the subhaloes on orbits with highly negative
energies and short orbital periods, subhaloes on more radial orbits
get most easily disrupted. However, all subhaloes with short orbital
periods are prone to tidal disruption, so the central region of the
halo is predominantly populated by high-velocity subhaloes with
long orbital periods on highly radial orbits.
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Figure 5. Left: subhalo orbital angular momentum, normalized by the angular momentum of a circular orbit of the same energy, versus subhalo energy,
normalized by the energy of a circular orbit at r200. Middle: subhalo distance from the centre normalized by r200, versus normalized angular momentum. Right:
normalized subhalo distance versus normalized energy. Note that because the total energy of a circular orbit at r200 is negative, bound haloes appear with
positive normalized energies. The top row shows results for the DMO simulations, the bottom row shows results for the hydrodynamic simulations. On the
left-hand and right-hand panels, the dashed and dotted lines at E/Ecirc, 200 = 1 and 2 indicate the energy for a halo on a circular orbit at r200, and the potential
energy for a halo at r200, respectively. Overplotted on to the left-hand panel is the median of L/Lcirc(E) as a function of E/Ecirc, 200, overplotted on the middle
and right-hand panels are the median of L/Lcirc, 200 and E/Ecirc, 200, both as a function of r/r200. As explained in Section 4.2, E/Ecirc, 200 < 2 excludes sections
of more radial orbits, while E/Ecirc, 200 < 1 excludes a fraction of more circular orbits. We indicate this by the thinner line segment on the left-hand panels.
See footnote on page 19 for details of the 2D histograms.

4.3 Velocity anisotropy profiles

The velocity anisotropy, β(r), quantifies the measured ratio between
the kinetic energy due to motions in the radial direction, vr, and in

the tangential direction, vt =
√

v2
θ + v2

φ :

β(r) = 1 − v2
t (r)

2 v2
r (r)

. (5)

Because vr, vθ and vφ are three orthogonal velocity components,
the velocity anisotropy is zero for equal velocity dispersion in each
dimension, positive for more radial orbits and negative for more
circular ones.

In the top panel of Fig. 6, we show the velocity anisotropy pa-
rameter of subhaloes as a function of radius in our simulations. We
find that the velocity anisotropy for subhaloes in the mass range
106.5–108.5 M� is close to zero at r > 50 kpc in both DMO and
hydrodynamic simulations. At smaller radii, the anisotropy rises
to ∼0.5 near the halo centre. In the bottom panel of Fig. 6, we
show the mean of the square of the tangential velocity components,
v2

t , (dotted lines), and twice the mean of the squares of the radial
velocity components, 2v2

r , (dashed lines), as a function of radius.
Both sets of lines rise towards the centre, and are nearly equal
at r > 50 kpc, corresponding to near-zero velocity anisotropy. At

smaller radii, the average radial velocities rise much more steeply,
reflecting the prediction of a centrally rising velocity bias described
in Section 4.1. However, the increase in subhalo radial velocities is
less than predicted by the spherical equilibrium model, partly due to
the fact that subhalo disruption and infall are continuous processes,
and the instantaneous velocities of the existing subhaloes are not
fully reflective of the difference in the instantaneous substructure
bias.

Interestingly, the centrally rising velocity anisotropy for sub-
haloes is the opposite of that seen for spherical systems composed
of indissoluble bodies, such as stars in globular clusters, where
orbits become more isotropic near the centre (Osipkov 1979; Mer-
ritt 1985). This is easily understood: while interactions isotropize
the orbits near the centres of star clusters (e.g. Baumgardt, Hut &
Heggie 2002), tidal processes experienced by subhaloes near the
centre of a DM halo also lead to their disruption over time. Hence,
close to the halo centre, the subhalo population is dominated by
subhaloes with small pericentres but much larger apocentres, which
limits the work done by tidal forces. As most circular orbits with
small pericentres are destroyed, and circular orbits with large peri-
centres never enter the halo centre, the innermost region contains
predominantly subhaloes on highly eccentric orbits, resulting in the
increased central velocity anisotropy.
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Figure 6. Top: velocity anisotropy parameter, β(r), profiles for subhaloes
of mass 106.5–108.5 M� in the DMO (blue) and hydrodynamic (red) simu-

lations. Bottom: profiles of 2v2
r (dashed) and v2

t (dotted) in the same simu-
lations. At large radii, the velocity dispersion in each dimension is similar,
and the velocity anisotropy is close to zero. At small radii, there are fewer
subhaloes with small radial velocities, and the velocity anisotropy increases.

5 SU B H A L O V E L O C I T Y D I S T R I BU T I O N S

Due to the mass–velocity degeneracy inherent in gravitational inter-
actions of substructures with streams mentioned in the Introduction,
the velocity probability density function (VPDF) of substructures is
an important prediction of any cosmological model. In this section,
we revisit the common assumption of locally Maxwellian velocity
distributions, and show that it is increasingly violated towards the
halo centre. We propose instead to parametrize the radial velocity,
vr, by a bimodal Gaussian, and composites such as the tangential
velocity, vt, and the total velocity norm, |v|, by Rician distribu-
tions. We emphasize that such simple, analytical parametrizations
are necessarily simplistic descriptions of the data, and should not
be expected to precisely capture the full VPDF in the presence of
complex physical phenomena.

5.1 Non-Maxwellian distributions

The velocity distribution of particles in haloes is commonly char-
acterized by a (locally) Maxwellian VPDF. A Maxwellian VPDF
arises under the assumption that particle velocities are isotropic,
such that all three velocity components are independent random
variables whose probability density functions (PDFs) are each given
by normal distributions,

P (vi) = 1

σ
√

2π
e

− v2
i

2σ2 , (6)

where σ is the velocity dispersion in one dimension, and isotropy
implies a mean velocity of zero. If the three components are in-

dependent and have identical distributions, integration over one or
two variables yields the 2D or 3D Maxwellian velocity PDFs,

P (|v2D|) = v

σ 2
e−v2/(2σ 2), (7)

also called the Rayleigh distribution, and

P (|v3D|) =
√

2

π

v2

σ 3
e−v2/(2σ 2), (8)

which is known as the Maxwell–Boltzmann distribution.
If vr, vθ and vφ are independent degrees of freedom with

equal Gaussian distribution functions, the tangential velocity, vt,
should follow equation (7), and the norm of the total velocity,
|v| = √

v2
r + v2

t , should follow equation (8).
While a local Maxwellian is a simple way to parametrize the total

velocity distribution, Kazantzidis, Magorrian & Moore (2004) have
shown that it is in fact not a steady-state solution to the velocity
distribution inside NFW haloes, as it leads to a quick dissolution of
the cusp. It has also been noted that a Maxwellian distribution is not
a good fit to the particle velocities measured in a high-resolution
numerical simulations, and Vogelsberger et al. (2009) have shown
that DM particles have prominent and long-lived, non-Gaussian
velocity substructures that are relics of the assembly history of
the halo. Vergados, Hansen & Host (2008) argued that the particle
velocity distribution in an NFW-like halo should follow a Tsallis
shape, based on generalized Gaussian distributions that give better
fits to the high-velocity tails observed in the central regions of
numerical simulations.

Other attempts include truncating the Maxwellian at the escape
velocity (see e.g. Fairbairn & Schwetz 2009), while Kuhlen et al.
(2010) opted empirically to fit more general distribution functions
of the form:

f (vr ) = 1

Nr

e−(v2
r /2σ 2

r )αr

, f (vt ) = vt

Nt

e−(v2
t /2σ 2

t )αt

, (9)

where Nt and Nr are normalization constants, and αr and αt general-
ize the 1D and 2D Maxwellian distributions by including additional
free parameters.

Independent of the velocity distributions for particles, it is worth
noting that the velocity profile of substructures may be substan-
tially different (see Section 4.1). As we discuss below, we also
find the Maxwellian velocity distribution to be merely a limiting
case, only approximately true at large radii and low velocities. It is
strongly violated near the centre, where the velocity anisotropy and
the preferential disruption of low-velocity subhaloes leads to highly
non-Gaussian and non-Maxwellian VPDFs.

5.2 Total velocities

The specific kinetic energy of a subhalo equals 1
2 |v|2 = 1

2 (v2
t + v2

r ),
where vr and vt are the radial and tangential velocities. However,
while there is considerable scatter in the specific kinetic energies of
different subhaloes at each radius, vr and vt of a subhalo are clearly
not independent.

Instead, near the halo centre, the radial and tangential velocities
of subhaloes have a bivariate velocity distribution, whose maximum
occurs at some distance μ > 0 from the origin, with very few low-
velocity subhaloes. Instead of a Maxwellian, the PDF for |v| =√

v2
t + v2

r may be described by a Rician (Rice 1945):

P (|v|) = |v|
σ 2

e
−(|v|2+μ2)

2σ2 I0

( |v|μ
σ 2

)
, (10)
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Figure 7. Subhalo velocity distributions in the vr − vt plane, in different radial shells, and for the DMO and hydrodynamic simulations, using all four haloes

over 5 Gyr lookback time. At small radii, vr and vt are highly correlated, such that the mean velocity, |v| =
√

v2
r + v2

t is approximately constant. At large
radii, the mean velocity |v| is smaller, so vt and vr are more independent, approximating a 2D Maxwell distribution. It can also be seen that, at all radii, the
velocity distribution is slightly more concentrated in the hydrodynamic simulations, which is also evident from the projected velocity distributions shown in
Fig. 8. See footnote on page 19 for details of the 2D histograms.

where I0 is the zeroth-order modified Bessel function of the first
kind.

The discrepancy from a Maxwellian (equation 8) is maximal at
small radii, where the mean specific kinetic energy is maximal,
and decreases as the mean specific kinetic energy decreases at large
radii. In the limit of μ = 0, vt and vr become independent, I0(0) = 1,
and the velocity distribution approaches a 2D-Maxwellian.

Fig. 7 demonstrates this behaviour in our simulations. It shows
the 2D velocity distribution function in the (vr, vt)-plane measured
over 5 Gyr in four radial bins, increasing in radius from top left to
bottom right. At r < 10 kpc, μ exceeds the scatter, σ , reflecting
the near-absence of slow-moving subhaloes with low values of both
vr and vt. At larger radii, the average kinetic energy decreases and
becomes comparable to the scatter. Here, the velocity components vr

and vt become more independent, except for extreme values, where

the orbital speed is limited by the escape speed, ∼350–400 kms−1

at 50 kpc.
In the left column of Fig. 8, we show the PDFs of |v| in the DMO

and hydrodynamic simulations in the same four radial bins shown
in Fig. 7, together with fits to the Rician PDFs (equation 10). We list
the values of μ and σ in Table 3. As expected, we find μ to increase
towards the centre, from 165 and 162 kms−1 at 50 − 200 kpc, to
284 and 290 kms−1 at <10 kpc, for the DMO and hydrodynamic
simulations, respectively. The scatter σ is less dependent on radius,
but it is ∼10–20 per cent lower in the hydrodynamic simulations
compared to the DMO simulations.

For comparison, in Appendix B, we contrast Rician and
Maxwellian fits to the data shown in Fig. 8. We find that the latter
fits are very poor near the halo centre, but that the distributions
become more similar at the largest radii, as expected.
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Figure 8. PDFs of subhalo velocities and velocity components in four radial shells for the same haloes and subhaloes shown in Fig. 3. On all panels, thin
lines show the results during different lookback time intervals; dotted and dashed black lines show the time-averaged results in the DMO and hydrodynamic
simulations. Thick coloured lines show analytical fits, as described below. Left column: total velocity, |v|, with Rician fits (equation 10, solid lines). Middle
column: radial velocity, vr, with fits to a general double-Gaussian with five free parameters (equation 11, solid lines) and to a symmetric double-Gaussian
with two free parameters (equation 12, dotted lines). Right column: tangential velocity, vt, with Rician fits (equation 10, solid lines). Note that the difference
between individual time intervals is typically less than the scatter. A clear comparison between the time-averaged values and the fits is also shown in Fig. B1.
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Table 3. Subhalo velocity PDF parameters.

0–10 kpc 10–20 kpc 20–50 kpc 50–200 kpc

vr PDF parameters μ, σ [kms−1]a

DMO 173.3, 125.4 149.1, 131.0 91.3, 141.1 75.6, 88.7
Hydro 188.0, 120.7 151.6, 128.7 89.1, 134.2 71.7, 85.1

vt PDF parameters μ, σ [kms−1]b

DMO 159.3, 119.2 165.3, 109.2 163.1, 95.1 104.6, 86.2
Hydro 161.6, 118.4 181.4, 101.0 180.2, 82.4 110.3, 77.3

|v| PDF parameters μ, σ [kms−1]b

DMO 283.5, 78.0 266.6, 80.4 238.4, 85.4 165.0, 77.2
Hydro 290.3, 59.7 274.5, 67.9 244.1, 72.6 162.5, 70.8

Notes. aFor a symmetric double-Gaussian VPDF, as in equation (12).
bFor a Rician VPDF, as in equation (10).

5.3 Radial velocities

As noted in Section 4.2, the subhalo population near the centre is
dominated by subhaloes on radial orbits with long orbital periods.
Consequently, for small radii, the radial velocity distribution of
subhaloes is described by a double-peaked Gaussian of the general
form:

P (vr ) = a

σ1

√
2π

e
− (vr −μ1)2

2σ2
1 + 1 − a

σ2

√
2π

e
− (vr −μ2)2

2σ2
2 (11)

where the five free parameters μ1, μ2, σ 1, σ 2 and a represent the
mean and standard deviations of the first and second Gaussian com-
ponents, as well as the relative contribution of the two components.
A double Gaussian models the subhalo population at each radius as
a sum of an ‘incoming’ and an ‘outgoing’ population. In the full,
five-parameter fit, we typically find a small negative mean radial
velocity, indicating either more incoming than outgoing satellites
as a result of recent infall and disruption, or satellites losing orbital
energy as a result of dynamical friction. However, if orbital energy
is exactly conserved, equation (11) can be simplified to a symmetric
double-Gaussian, where we set σ = σ 1 = σ 2, μ = μ1 = −μ2 and
a = (1 − a) = 1/2:

P (vr ) = 1

2σ
√

2π
e

− (vr −μ)2

2σ2 + 1

2σ
√

2π
e

− (vr +μ)2

2σ2 (12)

The middle column of Fig. 8 shows fits to our simulation data
using both equations (11 and 12), and we list the best-fitting val-
ues for μ and σ for both DMO and hydrodynamic simulations in
Table 3. It can be seen that, at large radii, σ > μ, resembling a
(broadened) peak centred at vr = 0, approaching a single Gaussian
in the limit μ = 0. At smaller radii, μ increases and the radial ve-
locity distribution becomes increasingly broad and, for r < 20 kpc,
clearly bimodal. Appendix B compares the bimodal fit to one with
a single Gaussian and shows the convergence at large radii.

5.4 Tangential velocities

In principle, there are two orthogonal velocity components, vθ and
vφ , required in addition to the radial velocity, vr, to fully describe
the velocity of a subhalo. Defining the tangential velocity, vt =√

v2
θ + v2

φ , if its two components are independent Gaussian random

variables with zero mean, the PDF for vt may be expected to be
a 2D-Maxwellian (equation 7). At large radii, where the orbital
anisotropy is close to zero, we find a relatively good agreement,
except for an overprediction at the high-velocity tail, corresponding
to subhaloes above the escape velocity. However, as the anisotropy

increases towards the centre, the 2D-Maxwellian shape overpredicts
the skewness of the measured vt distribution. As shown in the right
column of Fig. 8, we find that the tangential velocities in each radial
bin are quite well fit by Rician distributions (equation 10). In the two
innermost shells, there is however a small excess of low-tangential
velocities compared to the analytic fits. Appendix B compares the
Rician fits to those of a 2D-Maxwellian, which severely overpredict
either the high- or low-velocity tails of the distributions at small
radii.

6 IM P L I C AT I O N S FO R S U B S T RU C T U R E
D E T E C T I O N

6.1 Substructure detection via lensing

The detection of substructure around individual galaxies by strong
gravitational lensing depends not only on the mass of the sub-
structure, but in addition on its projected distance from the Einstein
radius. Recently dark substructures have been detected around mas-
sive elliptical galaxies that are typically embedded in dark matter
haloes, with total masses of M ∼ 1013 M� and typical Einstein radii
of rE ∼ 10 kpc (e.g. Vegetti et al. 2012; Nierenberg et al. 2014;
Hezaveh et al. 2016). These lensing haloes are an order of magni-
tude more massive than the Milky Way like host haloes we have
studied in this paper.

The substructure abundance clearly depends on the host halo
mass and concentration. However, we believe that, when scaled by
r/r200, the baryonic effects that suppress substructures found in the
APOSTLE simulations are likely to be a reasonable approximation
to the effects in host haloes of slightly larger mass, which are ex-
pected to have slightly lower halo concentrations and stellar mass
fractions (e.g. Moster et al. 2010; Dutton & Treu 2014). While it
has been suggested that baryons may significantly affect the sub-
halo lensing signal (e.g. Macciò et al. 2006), our results indicate
that baryonic effects should not be a major obstacle for detecting
�CDM substructures through lensing, or for ruling out �CDM in
case of a significant shortfall of detections relative to DMO pre-
dictions, at least in haloes with similar central stellar densities and
similar amounts of adiabatic contraction.

6.2 Substructure detection via stream gaps

In order to detect dark matter substructures through the perturba-
tions they induce on globular cluster streams, both mass function
and the velocity distribution of substructures are important, as the
interaction strength is proportional to the mass, and inversely pro-
portional to the relative velocity.

The Milky Way’s two most prominent globular cluster streams are
Pal-5 and GD-1, both discovered in the SDSS. Pal-5 (Odenkirchen
et al. 2001) extends over more than 20◦, with apogalactic and peri-
galactic distances of 18.67 kpc and 7.97 kpc (Küpper et al. 2015),
while GD-1 (Grillmair & Dionatos 2006) extends over 63◦, with
apogalactic and perigalactic distances of 28.75 ± 2 kpc and
14.43 ± 0.5 kpc (Willett et al. 2009). For the observable parts
of the Pal-5 stream, Küpper et al. (2015) estimate an age of 3.4+0.5

−0.3

Gyr, while Carlberg & Grillmair (2013) estimate a dynamical age
of 2.3–4.6 Gyr for GD-1.

We expect the abundance of substructures inside the orbit of Pal-5
and GD-1 to be reduced by ∼45–50 per cent relative to that inferred
from DMO simulations due to baryonic effects, with a slightly larger
reduction for Pal-5, due to its smaller mean galactocentric distance.
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Compared to earlier work, we find two additional effects that
should be taken into account in future work. Erkal & Belokurov
(2015b) assume a prior for the substructure mass that is uniform in
log(M), or a mass function with a slope of −1, we find steeper power
laws, with slopes between −1.86 and −1.91 in both the DMO and
hydrodynamic simulations.

More importantly, it has so far been assumed that the velocity
PDF of substructures is Maxwellian, with a mean velocity equal to
vcirc/

√
3 = 97 kms−1 in the case of Erkal & Belokurov (2015b).

However, as discussed in Section 5.2, we find that this is a poor fit
to the subhalo velocities near the centre, where subhaloes are biased
towards much higher velocities, and where the Rician PDF contains
far fewer low-velocity subhaloes than a Maxwellian distribution
fit to the same data. Comparing the Maxwellian and Rician fits to
the total velocity within 10 kpc, shown in Appendix B, we find
that the Maxwellians vastly overpredict the number of subhaloes
with low velocities, even considering that our Maxwellian fits have
mean velocities that are nearly twice as high as those assumed
previously. Given that low-velocity perturbers cause larger gaps
and are easier to detect, using accurate velocity priors is important
for the characterization of perturbers, and any inferences derived
from it. An additional effect, particularly relevant for Pal-5, is the
potential confusion of perturbations by substructures with those
induced by giant molecular clouds. These are, of course, relatively
slow moving, and Amorisco et al. (2016) point out that they induce
perturbations similar to those caused by dark matter subhaloes.

6.3 Substructure detection via disc heating

Similar to the perturbation of streams, perturbations of the Galactic
disc component by substructures are not only sensitive to the sub-
structure mass, but also to their impact velocity. Impacts of dark
substructures will heat the disc increasing the vertical velocity dis-
persion, with the most pronounced effects typically seen in the outer
parts of the disc where the lower surface density results in a corre-
spondingly lower restoring force (e.g. Binney & Tremaine 2008).
Based on our analysis we find a reduction in the abundance of sub-
structures within 10 kpc of the halo centre by up to a factor of 2
in hydrodynamic simulations compared to DMO simulations. As
for stream gaps, the velocity of perturbers determines their inter-
action strength, and near the centre, we find a much lower number
of low-velocity substructures compared to the commonly assumed
Maxwellian velocity distribution function.

However, as a caveat it should be noted that the disc may not
be such a clean tracer of dark substructures. While Feldmann &
Spolyar (2015) estimate perturbations on the order of 1–2 kms−1

from a 109 M� substructure at 400 kms−1, other massive perturbers
such as globular clusters (estimated to contribute 5.5 kms−1 to the
velocity dispersion, Vande Putte, Cropper & Ferreras 2009), or
molecular clouds (e.g. Lacey 1984; Hänninen & Flynn 2002) also
result in disc heating.

In addition internal mechanisms such as the growth of a central
bar component and spiral features in the Galactic disc will also heat
the disc (e.g. Sellwood 2014; Grand et al. 2016). Finally, if the disc
itself is a major cause for the depletion of substructures in the in-
ner halo (D’Onghia et al. 2010) the substructures that interact with
the disc are likely to be a biased subset of the entire substructure
population. On the one hand, they are likely to be the most strongly
stripped after they have interacted with the disc. On the other hand,
if we measure the depletion of substructures after one or more pas-
sages, we may overestimate the depletion factor of the substructures
at the time they interact with the disc.

7 SU M M A RY

We have studied how baryonic effects can change the abundance
of substructures in the mass range M = 106.5–108.5 M� inside the
Milky Way mass haloes of M200 ∼ 1012 M� over a lookback time of
up to 5 Gyr. We find that the abundance of subhaloes, independent
of subhalo mass, is reduced in hydrodynamic simulations of the
same host halo compared to their DMO counterpart. The depletion
increases towards the halo centre: at r > 50 kpc, the number of
subhaloes in the hydrodynamic simulations is above 3/4 of that in
the DMO counterparts, dropping to ∼1/2 at r < 10 kpc. While
baryonic effects of this magnitude clearly need to be taken into
account for accurate predictions, they do not impede the detection
of dark substructures through stream gaps, disc heating or lensing.

Purely in terms of substructure abundance, D’Onghia et al. (2010)
found a stronger reduction, with the subhalo number reduced to 1/3
relative to the original DMO simulation at 107 M� by the effects
of the stellar disc alone. This is due in part to the much higher
disc mass (10 per cent of M96, or ∼14 per cent of M200) that they
assumed. They also reported a significant subhalo mass dependence,
with 1/2 of subhaloes remaining at 109 M�, while we find a nearly
constant factor. One possible explanation for this may be numerical
resolution: while we limit our study to subhaloes with more than 50
particles, the lower resolution in D’Onghia et al. (2010) means that
107 M� subhaloes only contain ∼20 particles.

The central galaxies in our four simulations have stellar masses in
the range (1.2–2.8) × 1010 M�, somewhat below the range of ∼5 ±
1 × 1010 M� commonly assumed for the Milky Way (e.g. Flynn
et al. 2006; Bovy & Rix 2013). For a greater stellar mass, we would
expect some of the baryonic effects to increase, although we note
that the decline in subhalo abundance relative to DMO simulations is
due not only to the presence of the stellar component, but also to the
contraction of the halo itself, as well as to the almost complete loss
of baryons from low-mass haloes by reionization and ram-pressure
stripping.

Although our results appear to be numerically converged, it is im-
portant to note that, independent of resolution, the identity and the
properties of subhaloes are a matter of definition, and this work is
no exception. The reduced substructure fraction in the halo centre is
attributable in parts to the increasing background density. However,
our principal results, the subhalo velocity distribution and the rela-
tive differences between the DMO and hydrodynamic simulations,
should not be affected.

The processes that lead to a relative underdensity of subhaloes
near the centre also give rise to a positive velocity bias and rising
anisotropy of subhalo orbits, two effects we find enhanced in the hy-
drodynamic simulation. Furthermore, we find that the velocity dis-
tribution of substructures near the halo centre cannot be assumed to
be Maxwellian. The preferential disruption of strongly bound sub-
haloes leads to velocity distributions with far fewer low-velocity
subhaloes than commonly assumed, and while the few surviving
low-velocity subhaloes near the halo centre have more circular or-
bits, the overall subhalo population near the centre is dominated by
high-velocity subhaloes on highly radial orbits. This impacts both
total number and strength of detectable substructure interactions.
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Walker M. G., Peñarrubia J., 2011, ApJ, 742, 20
Walker I. R., Mihos J. C., Hernquist L., 1996, ApJ, 460, 121
Wiersma R. P. C., Schaye J., Smith B. D., 2009a, MNRAS, 393, 99
Wiersma R. P. C., Schaye J., Theuns T., Dalla Vecchia C., Tornatore L.,

2009b, MNRAS, 399, 574
Willett B. A., Newberg H. J., Zhang H., Yanny B., Beers T. C., 2009, ApJ,

697, 207
Wright E. L. et al., 1992, ApJ, 396, L13
Xu D. D. et al., 2009, MNRAS, 398, 1235
Xu D., Sluse D., Gao L., Wang J., Frenk C., Mao S., Schneider P., Springel

V., 2015, MNRAS, 447, 3189
Yoon J. H., Johnston K. V., Hogg D. W., 2011, ApJ, 731, 58
Yurin D., Springel V., 2015, MNRAS, 452, 2367
Zhao H., 1996, MNRAS, 278, 488
Zhu Q., Marinacci F., Maji M., Li Y., Springel V., Hernquist L., 2016,

MNRAS, 458, 1559
Zolotov A. et al., 2012, ApJ, 761, 71

A P P E N D I X A : H A L O R E F E R E N C E F R A M E
A N D O R B I TA L IN T E R P O L AT I O N

A1 Host halo reference frame

Satellite subhaloes are typically tidally truncated at small radii, but
the fact that their host haloes are extended structures complicates
the choice of a reference frame. Because the centre of mass (CM) of
a halo depends on material in the loosely bound outskirts, far away
from the pericentres of satellites orbits, a more physical and more
common definition of the host halo’s position is the minimum of
its gravitational potential, or more specifically, the position of the
particle with the lowest potential energy, which we denote as CP.

Figure A1. Evolution of the centre of potential (CP, circles) and centre of
mass (CM, squares) of one of the host haloes, as a function of lookback time.
For illustration, a linear least-squared fit to the centre of potential has been
subtracted. The red and blue lines show a linear and a cubic fit to the CP
at the times indicated by filled circles, the open symbols show intermediate
times not used in the fit. The cubic spline accurately predicts the CP at the
intermediate points to less than 1 kpc, while the distance between the CP
and the CM can exceed 10 kpc.

Considering that the CM and centre of potential of a halo can
differ by ∼10 kpc, for subhaloes that come much closer to the
centre, the combination of CP positions and CM velocities is un-
suitable, and can result in significant errors in the estimated orbital
parameters. For this reason, in this work, we use the positions and
velocities for both main halo and subhaloes relative to those of the
CP (xCP , ẋCP ) where the time derivative ẋCP is obtained through
higher order interpolation.

In Fig. A1, we show the evolution of the CP and CM of one
of the host haloes during a time interval of ∼2 Gyr, with symbols
indicating the values at individual snapshots, and lines showing
the intermediate values obtained via interpolation. For illustration
purposes, a linear least-squared fit to the CP has been subtracted
from the reference frame. Red and blue lines show linear and cubic
spline interpolations to those CP coordinates that are represented
by filled circles. Open circles denote intermediate CP coordinates
used only for validation of the interpolation. Using only half of the
snapshots and cubic splines, the difference between the true and
interpolated values of CP is under 1 kpc. As noted above, Fig. A1
also shows that the separation between the CM and CP can be
∼10 kpc, making the CM frame a poor choice for the motion of
satellites in the inner tens of kpc of a halo.

A2 Orbit interpolations

In Fig. A2, we illustrate the importance of accurate orbital interpo-
lation for measuring the orbital evolution, and hence the abundance
and velocities of subhaloes near the halo centre. In the top panel, we
show the positions of a subhalo near pericentre, relative to the host
halo CP at five snapshots. Connecting lines show reconstructions of
the orbit using linear (assuming constant velocity), and cubic (as-
suming acceleration that changes at most linearly) interpolations.

The bottom panel of Fig. A2 shows the distance of the satel-
lite to centre as a function of time, resulting from the different
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Figure A2. Top: circles denote positions at five snapshots of a subhalo near
pericentre relative to the host halo CP marked by the star symbol. Positions
in between snapshots are interpolated using linear (red) and third-order
(blue) splines. Bottom: distance of the satellite to the host as a function of
time, assuming no interpolation (black), or using the above interpolations
with corresponding colours. Accurate estimates of the orbit near pericentre
requires higher order interpolation; not interpolating overestimates the true
pericentre distance, while linear interpolation underestimates it.

interpolation schemes, and also assuming no interpolation. With-
out interpolation, the measured pericentre distance is only an upper
bound to the true value, so the abundance of subhaloes near the cen-
tre is almost always systematically underestimated. Using linear
interpolation, the pericentre of a parabolic orbit is underestimated,
unless the time intervals are so long that the entire pericentre pas-
sage is missed (consider, in the top panel of Fig. A2, a straight line
between the first and final data points). As a result, with sufficiently
small but finite timesteps, linear interpolation systematically under-
estimates the distance, and hence overestimates the abundance of
substructures near the centre. Naturally, we have assumed that the
reference frame, i.e. the host CP itself, is known accurately at all
times; otherwise additional errors arise.

A P P E N D I X B : C O M PA R I S O N TO
M A X W E L L I A N A N D G AU S S I A N V E L O C I T Y
DI STRI BU TI ONS

In Fig. B1, we repeat the time-averaged probability density func-
tions for the subhalo velocities, as shown in Fig. 8, and com-
pare the fits used in this work to Gaussian and Maxwellian fits.
It can be seen that, at large radii, the Rician and double-Gaussian
distributions approach the Gaussian and Maxwellian approxima-
tions, but at small radii, the latter completely fail to reproduce the
data.
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Figure B1. PDFs for |v| (left column), vr (middle column) and vt (right column), as shown in Fig. 8, averaged over 5 Gyr in lookback time. Black dotted
and dashed lines show our simulation results in the DMO and hydrodynamic simulations, respectively. Dark blue and dark red solid lines show the fits
to double-Gaussian or Rician distribution functions to the DMO and hydrodynamic data, respectively, as described in Section 5. Lighter, dashed coloured
lines show the corresponding fits to 3D-Maxwellians (for |v|, left column), a single Gaussian with free parameters μ and σ (for vr, middle column) and to
2D-Maxwellians (for vt, right column).
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