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Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles
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We present a ternary free-energy lattice Boltzmann model. The distinguishing feature of our model is that
we are able to analytically derive and independently vary all fluid-fluid surface tensions and the solid surface
contact angles. We carry out a number of benchmark tests: (i) double emulsions and liquid lenses to validate the
surface tensions, (ii) ternary fluids in contact with a square well to compare the contact angles against analytical
predictions, and (iii) ternary phase separation to verify that the multicomponent fluid dynamics is accurately
captured. Additionally we also describe how the model presented here can be extended to include an arbitrary
number of fluid components.
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I. INTRODUCTION

Recently, systems involving three or more fluid phases have
attracted considerable interest. The advent of microfluidics
allows us to control emulsions containing mixtures of several
immiscible liquids [1–6]. Emulsions in return are ubiquitously
exploited in the food, pharmaceutical, and personal care
industries. The area of enhanced oil recovery also regularly
deals with three or more fluid components (i.e., water, oil, and
one or more gaseous phases) [7]. More recently, there has been
growing interest in the so-called liquid infused surfaces [8–11]
that share many advantageous properties of superhydrophobic
surfaces with the additional benefit of increasing stability for
the suspended state.

The variety of computational approaches developed to solve
complex multiphase problems can generally be divided into
two groups, depending on the width of the fluid-fluid interface:
(i) sharp and (ii) diffuse interface models. Our focus in this
paper is on the lattice Boltzmann (LB) method [12–15] which
belongs to the latter. Here, the interface spreads over several
lattice spacings, and its evolution results from the Navier-
Stokes and advection-diffusion equations. A key advantage of
the diffuse interface models is that the motion of the interface
does not need to be tracked explicitly. All fluid nodes can be
treated on an equal footing whether they are in the bulk of the
fluid or at the interface. As such, diffuse interface models
are very convenient for studying problems with complex
surface geometries, including both chemical and topographical
heterogeneities [16–21]. The LB algorithm is also highly
suitable for parallel [22] and GPU [23] computing, allowing
it to be employed in the investigation of flow problems with
demanding time and length scales.

While a wide range of LB models have been developed for
the binary case [24–35], systems with three or more fluid com-
ponents in comparison have received much less attention in the
LB community. Several ternary models have been proposed to
study water-oil-amphiphile mixtures [36–39], with two bulk
phases, and an amphiphile phase that prefers to locate at the
oil-water interface. There have also been efforts to generalize
multicomponent LB models to account for an arbitrary
number of fluid components [40–43]. These works, however,
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focus solely on bulk behavior, away from solid surfaces. As
discussed above, for flow problems in enhanced oil recovery,
liquid infused surfaces, and many others, there is a need for a
model which allows a thorough control not only of the fluid-
fluid surface tensions, but also of the fluid-solid interactions.

The key contribution of this paper is to provide a description
for a multicomponent free-energy LB model where it is
possible to analytically derive and independently control the
fluid-fluid surface tensions and the contact angles that they
form with a solid surface. We will focus our discussions on
the ternary system, but the model can be readily generalized
to more fluid components.

The free-energy formalism followed in this work is a
top-down approach, where we start by writing the free energy
of the fluids [24–28]. The form of the free-energy functional
should capture the intended features of the thermodynamics of
the system, e.g., the miscibility of the components and surface
tension between different fluids. The corresponding chemical
potential, pressure tensor, and LB equation can then be sub-
sequently derived from the free-energy functional. This is in
contrast to the pseudopotential [29–31] and the color [32–34]
models that follow a bottom-up approach. In a bottom-up
model, the starting point is often kinetic theory, and some
form of interactions are postulated between the fluids at the
level of the Boltzmann equation. Reminiscent to many other
lattice- and particle-based simulation techniques, separation
between different fluid phases and components can be induced
by tuning the interaction potentials.

The paper is organized as follows. In Sec. II, we describe
the Landau free-energy functionals that capture the bulk and
surface thermodynamics of the ternary fluids. We explicitly
derive the predicted values of the surface tensions and the
contact angles given a small set of input parameters. We
also discuss how the model can be extended to account for
an arbitrary number of fluid components. The continuum
equations of motion of the fluids are given in Sec. III. Then, in
Sec. IV, we show an LB implementation that captures both the
thermodynamics and hydrodynamics of the fluids. We provide
three sets of benchmark simulations in Sec. V to validate
various aspects of our model, including (i) double emulsions
and liquid lenses, (ii) ternary fluids in contact with a square
well, and (iii) ternary phase separation. Finally, we summarize
the key results of our paper and provide an outlook on future
work in Sec. VI.
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II. THERMODYNAMICS

We start with a description of the bulk thermodynam-
ics (Sec. II A), followed by the surface thermodynamics
(Sec. II B). We then introduce auxiliary variables in Sec. II C,
which allow the model to be implemented easily within the
standard LB algorithm. In Sec. II D, we show how the desired
contact angles can be translated to the parameters in our model.
We discuss the extension to systems with more than three fluid
components in Sec. II E.

A. Bulk thermodynamics

One suitable way to define a free-energy functional that
models three fluid components is given by [44]

F =
∫

�

[
κ1

2
C2

1 (1−C1)2 + κ2

2
C2

2 (1−C2)2 + κ3

2
C2

3 (1−C3)2

+ κ ′
1

2
(∇C1)2 + κ ′

2

2
(∇C2)2 + κ ′

3

2
(∇C3)2

]
dV, (1)

where C1, C2, and C3 correspond to the concentration fractions
of fluids 1, 2, and 3. � is the system volume, and the remaining
parameters will be discussed below. By construction, each
variable Cm (m = 1,2,3) has two bulk minima given by
Cm = 0 and 1. Equation (1) thus, in principle, has 23 = 8 bulk
minimizers. For a ternary fluid system, we are not interested
in all eight minima, but instead only in the following three:

C1 = 1, C2 = 0, C3 = 0;

C1 = 0, C2 = 1, C3 = 0; (2)

C1 = 0, C2 = 0, C3 = 1.

To strictly ensure we only obtain these minima, one can impose
a hard constraint C1 + C2 + C3 = 1 or introduce an energy
penalty term proportional to (1 − C1 − C2 − C3)2. Here, as we
shall see in Sec. II C, we use a set of variable transformations
where the (normalized) mass density is defined as ρ = C1 +
C2 + C3 and initialized to ρ = 1 (in simulation units). Since
our LB algorithm is only weakly compressible (see, e.g., [45]),
the density ρ does not deviate far from C1 + C2 + C3 = 1, and
the additional constraint is not necessary.

The gradient terms in Eq. (1) account for the energy
penalty for having interfaces. We will now derive how the
parameters κ and κ ′ are related to the interfacial widths and
the surface tensions between the three fluids. Without any
loss of generality, let us focus on the interface between bulk
phases m and n (m,n = 1,2,3 and m �= n). We can set the third
fluid concentration fraction to zero everywhere, and exploit the
relation Cn + Cm = 1 to rewrite Eq. (1) into

F =
∫

�

[
κm

2
C2

m(1 − Cm)2 + κn

2
C2

n(1 − Cn)2

+ κ ′
m

2
(∇Cm)2 + κ ′

n

2
(∇Cn)2

]
dV

=
∫

�

[
κm + κn

2
C2

m(1 − Cm)2 + κ ′
m + κ ′

n

2
(∇Cm)2

]
dV.

(3)

We notice that the simplified free energy in Eq. (3) has the
same structure as for the binary fluid problem [15,25]. As such,
we can proceed in the same way. We can define the chemical
potential for component m as

μm = δF

δCm

= (κm + κn)

(
2C3

m − 3C2
m + Cm − κ ′

m + κ ′
n

κm + κn

∇2Cm

)
. (4)

At thermodynamic equilibrium we have μm = 0. Assuming
the interface is located at x = 0, the interfacial profile along
the x axis for the concentration of component m is

Cm = 1 + tanh x
2α

2
(5)

where the parameter α = √
(κ ′

m + κ ′
n)/(κm + κn) is propor-

tional to the interface width. It is easy to verify that Cm → 1
for x → ∞, and Cm → 0 for x → −∞. To obtain the surface
tension γmn, we substitute the concentration profile in Eq. (5)
into Eq. (3) and compute the excess free energy per unit area:

γmn =
∫ +∞

−∞

[
κm + κn

2
C2

m(1 − Cm)2 + κ ′
m + κ ′

n

2
(∇Cm)2

]
dx

=
√

(κ ′
m + κ ′

n)(κm + κn)

6
. (6)

The parameters κ and κ ′ can be arbitrarily tuned to achieve
the desired surface tensions (e.g., to reproduce experimental
parameters). However, there are two constraints: κm > 0 and
κ ′

m + κ ′
n > 0. The former is needed to ensure that we have

two coexisting minima at Cm = 0 and Cm = 1 for every
concentration fraction. The latter is required to have positive
surface tensions. This constraint can be relaxed if negative
surface tensions are indeed a desired feature in the simulations.

For most applications, it is convenient to reduce the number
of free parameters in the {κ,κ ′} space since the extra degrees
of freedom are not always required. For the rest of the paper,
we will set κ ′ = α2κ for all components. This simplification
ensures that the interface width is the same for all three fluid-
fluid interfaces and can be tuned by varying the value of α. In
this case, the formula for the surface tension becomes

γmn = α

6
(κm + κn). (7)

It is worth noting that in this model, if κl , κm, κn > 0 and
l �= m �= n �= l, the following relation is always true: γlm +
γmn > γln.

B. Surface thermodynamics

The different affinities of fluids to the solid surface are
usually quantified by the material property named contact
angle. If the subscripts m,n denote the bulk fluid phases and s

is the solid surface, then the contact angle with respect to the
fluid phase m is given by [46]

cos θmn = γsn − γsm

γmn

. (8)

Here γsm, γsn, and γmn are, respectively, the surface tensions
between the solid and fluid phase m, the solid and fluid phase
n, and the two fluid phases.
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We will now show how the wetting boundary conditions
are implemented in our model and how the contact angles can
be tuned simultaneously by introducing a small number of
parameters. We will once again follow a thermodynamic route
and describe the surface free-energy contributions by∫

∂�

[
1|s + 
2|s + 
3|s] dS. (9)

Following Cahn [47], the surface free-energy density for each
component can be expressed as


m|s = −hmCm|s , (10)

where Cm|s is the value of the order parameter Cm at the
solid boundary, and the parameter hm still has to be specified.
Employing standard tools of calculus of variation, functional
minimization for the component m at the solid boundary leads
to the condition

α2κm∇⊥Cm|s = d
m

dCm

∣∣∣∣
s

= −hm. (11)

Here ∇⊥ defines the perpendicular derivative of the concen-
tration with respect to the solid surface. We can also take
advantage of Noether’s theorem to show that

κm

2
C2

m(1 − Cm)2 − α2 κm

2
(∇Cm)2 = const = 0. (12)

By evaluating the expression on the left-hand side far from
the interface, we can conclude that the constant value on the
right-hand side is zero.

Let us now compute the surface tension between the solid
surface and the fluid component m, γsm. It is worth noting
here that the contributions to this surface tension come not
only from the majority phase m, but also from the other two
minority phases, l,n �= m. Furthermore, in addition to the term
in Eq. (9), we also have to account for the variation of the
concentration fractions from their bulk values in Eq. (1) to
properly account for the fluid-solid surface tensions.

We will first focus on the contribution Im to the surface
tension γsm from the majority phase m. If x = 0 is the location
of the fluid-solid interface and x > 0 is the fluid region, this is
given by

Im = −hmCm|s +
∫ ∞

0

κm

2

[
C2

m(1 − Cm)2 + α2

(
dCm

dx

)2]
dx

= −hmCm|s +
∫ ∞

0
α2κm

(
dCm

dx

)2

dx. (13)

The integral accounts for the contribution in the transition
region where Cm varies between the values at the boundary
and in the bulk. We have also employed Noether’s theorem to
simplify the integral term.

The value of Cm|s can be determined as follows. From the
invariant condition in Eq. (12), we can write(

dCm

dx

)2

= 1

α2
C2

m(1 − Cm)2. (14)

Substituting Eq. (14) into Eq. (11), we further obtain

α2κ2
m(Cm|s)2(1 − Cm|s)2 = h2

m. (15)

In general, Eq. (15) has four solutions:

Cm|s(κm,hm) = 1

2

(
1 ±

√
1 ± 4hm

ακm

)
. (16)

However, only two of them are physical. To elucidate this
statement, let us assume hm > 0. As such, the fluid m has
an attractive interaction with the surface. We expect the
concentration of fluid m to be larger near the surface compared
to its bulk value. The appropriate solutions are therefore

Cmax
m |s(κm,hm) = 1

2

(
1 +

√
1 + 4hm

ακm

)
, (17)

Cmin
m |s(κm,hm) = 1

2

(
1 −

√
1 − 4hm

ακm

)
. (18)

The former is the suitable solution when Cm is the majority
phase (i.e., Cm = 1 in the bulk), the latter when Cm is a
minority phase (i.e., Cn = 0 in the bulk).

Given Cm|s , the integral in Eq. (13) can be computed as∫ ∞

0
α2κm

(
dCm

dx

)2

dx =
∫ 1

Cmax
m |s

ακmCm(1 − Cm) dCm

= α

12

[
κm +

√
1 + 4hm

ακm

(
2hm

α
− κm

)]
. (19)

Adopting the same analysis leading to Eq. (13), the
contributions Jn to γsm from the minority phases n �= m can
be readily derived:

Jn = −hnCn|s +
∫ ∞

0
κnα

2

(
dCn

dx

)2

dx

= −hnCn|s −
∫ 0

Cmin
m |s

ακnCn(1 − Cn) dCn

= −hnCn|s + α

12

[
κn −

√
1 − 4hn

ακn

(
2hn

α
+ κn

)]
. (20)

Thus, summing the contributions from the majority and
minority phases, the interfacial tension γsm is given by

γsm = Im +
∑
n�=m

Jn. (21)

This relation is valid for an arbitrary number of phases.
Most importantly, the results from this subsection show that:
(i) the parameters {h1,h2,h3} enter the simulations through
the Neumann boundary condition in Eq. (11); and (ii) given
the parameters {h1,h2,h3}, the solid-fluid surface tensions
{γs1,γs2,γs3} and subsequently the contact angles {θ12,θ23,θ31}
can be computed analytically. The latter follow from Young’s
equation, Eq. (8).

C. Auxiliary variables

So far, the description of the thermodynamics of the ternary
fluid is carried out in terms of the concentration fractions.
As discussed above, to ensure the condition C1 + C2 +
C3 = 1, one can introduce an additional term proportional
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CIRO SEMPREBON, TIMM KRÜGER, AND HALIM KUSUMAATMAJA PHYSICAL REVIEW E 93, 033305 (2016)

to (1 − C1 − C2 − C3)2 in the free-energy functional. This
additional term, however, would complicate the derivations
of the thermodynamic quantities. A more elegant solution
involves a variable transformation, defining three auxiliary
fields ρ, φ, and ψ :

ρ = C1 + C2 + C3, φ = C1 − C2, ψ = C3. (22)

Additionally we ensure that the (dimensionless) mass density
is initialized to ρ = 1. Here we have assumed that all fluid
components have the same density. Another key advantage of
the variable transformation is that the continuity and Navier-
Stokes equations are generally written in terms of ρ rather than
C1, C2, and C3. The original fields can be expressed in terms of
the new fields as C1 = (ρ + φ − ψ)/2, C2 = (ρ − φ − ψ)/2,
and C3 = ψ .

Substituting the new variables, the free-energy functional
assumes the form

F =
∫

�

[
κ1

32
(ρ + φ − ψ)2(2 + ψ − ρ − φ)2

+ α2κ1

8
(∇ρ + ∇φ − ∇ψ)2

+ κ2

32
(ρ − φ − ψ)2(2 + ψ − ρ + φ)2

+ α2κ2

8
(∇ρ − ∇φ − ∇ψ)2

+ κ3

2
ψ2(1 − ψ)2 + α2κ3

2
(∇ψ)2

]
dV. (23)

The results we have derived in the previous sections require
little to no changes upon these variable transformations. The
fluid-fluid surface tension is still given by Eq. (7). The wetting
boundary conditions now need to be implemented on the
variables {ρ,φ,ψ} rather than {C1,C2,C3} such that

∇⊥ρ|s = − h1

α2κ1
− h2

α2κ2
− h3

α2κ3
, (24)

∇⊥φ|s = − h1

α2κ1
+ h2

α2κ2
, (25)

∇⊥ψ |s = − h3

α2κ3
. (26)

D. Inverting the contact angle relations

In Sec. II B, given the parameters h1, h2, and h3, we
discussed how the contact angles of the fluids can be derived.
Here we will describe how to invert this relation.

First, we note that in the presence of a homogeneous
substrate not all three contact angles are actually independent.
The contact angles in terms of the surface tensions are

γ12 cos θ12 = γ2s − γ1s , (27)

γ23 cos θ23 = γ3s − γ2s , (28)

γ31 cos θ31 = γ1s − γ3s . (29)

Summing these three equations, we obtain what is often called
the Girifalco-Good relation [48]:

γ12 cos θ12 + γ23 cos θ23 + γ31 cos θ31 = 0. (30)

To invert the contact angle relations, we can derive how the
contact angle θmn depends on hm and hn, as well as on κm

and κn:

cos θmn = (ακn + 4hn)3/2 − (ακn − 4hn)3/2

2(κm + κn)(ακn)1/2

− (ακm + 4hm)3/2 − (ακm − 4hm)3/2

2(κm + κn)(ακm)1/2
. (31)

In practice, κm and κn are determined by our choice of the fluid-
fluid surface tensions. Due to the aforementioned Girifalco-
Good relation, only two out of the three contact angles are
independent; yet we have introduced three parameters h1, h2,
and h3. This implies that there is an infinite set of h parameters
able to reproduce a given combination of contact angles
(θ12, θ23, and θ31).

There are several options to remove the redundancy in the h

parameters. In our simulations, we usually require the gradient
of the density to be zero at the surface, ∇⊥ρ|s = 0, such that

h1

κ1
+ h2

κ2
+ h3

κ3
= 0. (32)

Combining Eqs. (31) and (32), we can uniquely determine h1,
h2, and h3 given a prescribed set of contact angles.

Let us now comment on the physical meaning of this
redundancy in the h parameters. Our thermodynamic model
allows a one-to-one mapping between h1, h2, and h3 and
the fluid-solid surface tensions γ1s , γ2s , and γ3s . However,
for the computation of the contact angles, only differences
in the fluid-solid surface tensions are important. Setting the
condition in Eq. (32) is equivalent to adding or removing
a given constant to all the fluid-solid surface tensions. The
advantage of imposing Eq. (32) is that the mass density is
not affected by surface forces and remains close to ρ = 1
throughout the simulation domain.

E. Extension to more than three fluid components

The model proposed here can be generalized to include an
arbitrary number of fluid components. For N > 3 bulk fluids,
a suitable Landau free-energy functional is

F =
N∑

m=1

∫
�

[
κm

2
C2

m(1 − Cm)2 + α2κm

2
(∇Cm)2

]
dV

+
N∑

m=1

∫
∂�

−hmCm dS. (33)

The derivations of the fluid-fluid and fluid-solid surface
tensions follow exactly the same routes as those leading to
Eqs. (7) and (21). We may also introduce a similar form of
variable transformations where ρ = ∑N

m=1 Cm, φ = C1 − C2,
and ψl = Cl with l > 2. In this case, the wetting boundary
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conditions are given by

∇⊥ρ|s =
N∑

m=1

− hm

α2κm

,

∇⊥φ|s = − h1

α2κ1
+ h2

α2κ2
,

∇⊥ψl|s = − hl

α2κl

.

(34)

Following the arguments in Sec. II D, we emphasize again that
not all contact angles are independent. For N fluids, there are
only (N (N − 1)/2 − 1) independent contact angles. In this
case, the generalized Girifalco-Good relation reads∑

m,n�=m

γmn cos θmn = 0. (35)

III. EQUATIONS OF MOTION

Before we write down the LB equations for a ternary fluid
system, let us review the corresponding continuum equations
of motion. The fluid motion is described by the continuity and
Navier-Stokes equations:

∂tρ + ∂γ

(
ρvγ

) = 0, (36)

∂t (ρvα) + ∂β(ρvαvβ) = −∂αp + ∂βη(∂βvα + ∂αvβ)

− ρ∂αμρ − φ∂αμφ − ψ∂αμψ. (37)

Here, v is the fluid velocity, p is the isotropic pressure
(usually taken to be the ideal gas pressure in the LB method,
p = ρc2

s [49]), and η is the dynamic viscosity of the fluid that
may depend on the order parameters.

The key additional physics due to the thermodynamics
of the ternary fluid is contained in the last three terms
of Eq. (37), corresponding to the three auxiliary fields we
have introduced in our model. In mechanical equilibrium,
the chemical potential has to be the same everywhere. Any
inhomogeneity leads to a body force proportional to the
gradient of the chemical potential. The chemical potentials
corresponding to the distributions of ρ, φ, and ψ are

μρ = δF

δρ

= κ1

8
(ρ + φ − ψ)(ρ + φ − ψ − 2)(ρ + φ − ψ − 1)

− κ2

8
(ρ − φ − ψ)(ρ − φ − ψ − 2)(ρ − φ − ψ − 1)

+ α2

4
[(κ1 + κ2)(∇2ψ − ∇2φ) + (κ2 − κ1)∇2ρ], (38)

μφ = δF

δφ

= κ1

8
(ρ + φ − ψ)(ρ + φ − ψ − 2)(ρ + φ − ψ − 1)

− κ2

8
(ρ − φ − ψ)(ρ − φ − ψ − 2)(ρ − φ − ψ − 1)

+ α2

4

[
(κ2 − κ1)(∇2ρ − ∇2ψ) − (κ1 + κ2)∇2φ

]
, (39)

μψ = δF

δψ

= −κ1

8
(ρ + φ − ψ)(ρ + φ − ψ − 2)(ρ + φ − ψ − 1)

− κ2

8
(ρ − φ − ψ)(ρ − φ − ψ − 2)(ρ − φ − ψ − 1)

+ κ3ψ(ψ − 1)(2ψ − 1) + α2

4
[(κ1 + κ2)∇2ρ

− (κ2 − κ1)∇2φ − (κ2 + κ1 + 4κ3)∇2ψ]. (40)

These thermodynamic terms can be implemented in two
different approaches in the LB algorithm. First, we can
apply a body force by employing standard forcing methods
(e.g., Guo [50] or Shan-Chen [29] forcing). Second, the
thermodynamic terms can be taken into account within the
definition of the generalized pressure tensor. This second
approach is the one utilized in the present work. In this case,
the pressure tensor satisfies the condition

∂βPαβ = ∂αp + ρ∂αμρ + φ∂αμφ + ψ∂αμψ (41)

and reads

Pαβ = pbδαβ

+α2κρρ[(∂αρ)(∂βρ) − (1/2)(∂γ ρ)2δαβ − ρ(∂γγ ρ)δαβ ]

+α2κφφ[(∂αφ)(∂βφ) − (1/2)(∂γ φ)2δαβ − φ(∂γγ φ)δαβ]

+α2κψψ [(∂αψ)(∂βψ) − (1/2)(∂γ ψ)2δαβ

−ψ(∂γγ ψ)δαβ] + α2κρφ[(∂αρ)(∂βφ) + (∂αφ)(∂βρ)

− (∂γ ρ)(∂γ φ)δαβ − ρ(∂γγ φ)δαβ − φ(∂γγ ρ)δαβ]

+α2κρψ [(∂αρ)(∂βψ) + (∂αψ)(∂βρ)

− (∂γ ρ)(∂γ ψ)δαβ − ρ(∂γγ ψ)δαβ − ψ(∂γγ ρ)δαβ]

+α2κφψ [(∂αφ)(∂βψ) + (∂αψ)(∂βφ)

− (∂γ φ)(∂γ ψ)δαβ − φ(∂γγ ψ)δαβ − ψ(∂γγ φ)δαβ], (42)

where the mixing coefficients can be derived by collecting the
appropriate gradient terms:

κρρ = κφφ = κ1 + κ2

4
, κψψ = κ1 + κ2 + 4κ3

4
,

κρφ = −κφψ = κ1 − κ2

4
, κρψ = −κ1 + κ2

4
.

The bulk pressure term pb is given by

pb = ρc2
s + (κ1 + κ2)

[
3

32ρ4 + 3
32φ4 + 9

16ρ2φ2 + 9
16ρ2ψ2

+ 9
16φ2ψ2 − 3

8ρ3ψ − 3
8ρψ3 + 3

4ρ2ψ − 3
4ρφ2

− 3
4ρψ2 + 3

4φ2ψ − 1
4ρ3 + 1

8ρ2 + 1
8φ2 − 1

4ρψ

− 9
8ρφ2ψ

] + (κ1 − κ2)
[

3
8ρ3φ + 3

8ρφ3 − 3
8φ3ψ

− 3
8φψ3 − 1

4φ3 − 3
4ρ2φ − 3

4φψ2 + 1
4ρφ − 1

4φψ

+ 9
8ρφψ2 − 9

8ρ2φψ + 3
2ρφψ

] + 1
4 (κ1 + κ2 − 8κ3)ψ3

+ (κ1 + κ2 + 16κ3)
[

3
32ψ4 + 1

8ψ2
]
. (43)
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The order parameters φ and ψ themselves evolve through
advection-diffusion (Cahn-Hilliard) equations:

∂tφ + ∂α(φvα) = Mφ∇2μφ, (44)

∂tψ + ∂α(ψvα) = Mψ∇2μψ. (45)

The second term on the left-hand side is the advection term.
The diffusive term on the right-hand side accounts for motion
of the order parameter due to inhomogeneities in the chemical
potential. In principle the mobility parameters Mφ and Mψ

can be inhomogeneous and varied independently. However,
of particular use is the special case where the original fields
C1, C2, and C3 have identical mobility parameters. In our
current notation, this is achieved by setting Mφ = 3Mψ (see
the derivation in the Appendix).

IV. LATTICE BOLTZMANN EQUATION

We now describe an LB algorithm that solves
Eqs. (36), (37), (44), and (45). For a ternary fluid system,
we need to define three distribution functions, fi(r,t), gi(r,t),
and ki(r,t), corresponding to the density of the fluid ρ and the
two order parameters φ and ψ . The physical variables are then
related to the distribution functions by [13]

ρ(r,t) = ∑
i fi(r,t), ρ(r,t)vα(r,t) =

∑
i

fi(r,t)eiα,

φ(r,t) = ∑
i gi(r,t), ψ(r,t) =

∑
i

ki(r,t). (46)

The quantities eiα correspond to the standard lattice velocities
in the LB method. �x and �t are the lattice spacing and
time step respectively. Here we implement the D3Q19 model
with 19 velocities in three dimensions for which we have ei =
�x/�t {(0,0,0), (±1,0,0), (0,±1,0), (0,0,±1), (±1,±1,0),
(±1,0,±1), (0,±1,±1)}.

For the sake of clarity, we describe the LB implementation
using a standard BGK single-relaxation-time approach. The
extension to multiple relaxation times is straightforward,
similar to that described by Pooley et al. [51] for the binary

free-energy model. The collision step is given by

f �
i (r,t) = fi(r,t) − �t

τ

[
fi(r,t) − f

eq
i (r,t)

]
,

g�
i (r,t) = gi(r,t) − �t

τφ

[
gi(r,t) − g

eq
i (r,t)

]
, (47)

k�
i (r,t) = ki(r,t) − �t

τψ

[
ki(r,t) − k

eq
i (r,t)

]
.

The propagation step reads

fi(r + ei�t,t + �t) = f �
i (r,t),

gi(r + ei�t,t + �t) = g�
i (r,t), (48)

ki(r + ei�t,t + �t) = k�
i (r,t).

Here, f
eq
i , g

eq
i , and k

eq
i are the local equilibrium distribution

functions. The relaxation parameters τ , τφ , and τψ are related
to the transport coefficients in the hydrodynamic equations, η,
Mφ , and Mψ , through [15,25]

η = ρc2
s

(
τ − �t

2

)
, (49)

Mφ = �φ

(
τφ − �t

2

)
, (50)

Mψ = �ψ

(
τψ − �t

2

)
, (51)

where �φ and �ψ are tunable parameters that appear in the
equilibrium distribution (see below). Since η, Mφ , and Mψ are
positive quantities, the values of the relaxation times τ , τφ , and
τψ have to be larger than �t/2. To enforce no slip boundary
conditions, we have also implemented standard bounce back
boundary conditions [52] for the populations of the nodes in
contact with the solid boundaries.

Performing a Chapman-Enskog analysis [53], it is possible
to show that the LB equations recover the continuity, Navier-
Stokes, and the Cahn-Hilliard equations in the continuum limit
if the correct thermodynamic and hydrodynamic information
is introduced in the simulation by a suitable choice of the
local equilibrium functions. The forms of f

eq
i , g

eq
i , and k

eq
i

that satisfy these requirements for i > 0 are [15,54]

f
eq
i = wi

(
pb

c2
s

+ eiαρvα

c2
s

+ ρvαvβ

(
eiαeiβ − c2

s δαβ

)
2c4

s

)
− wi

c2
s

(
κρρρ∇2ρ + κφφφ∇2φ + κψψψ∇2ψ

)
+ κρρ

c2
s

(
wxx

i ∂xρ∂xρ + w
yy

i ∂yρ∂yρ + wzz
i ∂zρ∂zρ + w

xy

i ∂xρ∂yρ + w
yz

i ∂yρ∂zρ + wzx
i ∂zρ∂xρ

)
+ κφφ

c2
s

(
wxx

i ∂xφ∂xφ + w
yy

i ∂yφ∂yφ + wzz
i ∂zφ∂zφ + w

xy

i ∂xφ∂yφ + w
yz

i ∂yφ∂zφ + wzx
i ∂zφ∂xφ

)
+ κψψ

c2
s

(
wxx

i ∂xψ∂xψ + w
yy

i ∂yψ∂yψ + wzz
i ∂zψ∂zψ + w

xy

i ∂xψ∂yψ + w
yz

i ∂yψ∂zψ + wzx
i ∂zψ∂xψ

)

+ 2κρφ

c2
s

(
wxx

i ∂xρ∂xφ + w
yy

i ∂yρ∂yφ + wzz
i ∂zρ∂zφ

) − wi

c2
s

(
κρφρ∇2φ + κρφφ∇2ρ

)
+ κρφ

c2
s

(
w

xy

i ∂xρ∂yφ + w
xy

i ∂yρ∂xφ + w
yz

i ∂yρ∂zφ + w
yz

i ∂yρ∂zφ + wzx
i ∂zρ∂xφ + wzx

i ∂zρ∂xφ
)

+ 2κρψ

c2
s

(
wxx

i ∂xρ∂xψ + w
yy

i ∂yρ∂yψ + wzz
i ∂zρ∂zψ

) − wi

c2
s

(
κρψρ∇2ψ + κρψψ∇2ρ

)

033305-6



TERNARY FREE-ENERGY LATTICE BOLTZMANN MODEL . . . PHYSICAL REVIEW E 93, 033305 (2016)

+ κρψ

c2
s

(
w

xy

i ∂xρ∂yψ + w
xy

i ∂yρ∂xψ + w
yz

i ∂yρ∂zψ + w
yz

i ∂yρ∂zψ + wzx
i ∂zρ∂xψ + wzx

i ∂zρ∂xψ
)

+ 2κφψ

c2
s

(
wxx

i ∂xφ∂xψ + w
yy

i ∂yφ∂yψ + wzz
i ∂zφ∂zψ

) − wi

c2
s

(
κφψφ∇2ψ + κφψψ∇2φ

)
+ κφψ

c2
s

(
w

xy

i ∂xφ∂yψ + w
xy

i ∂yφ∂xψ + w
yz

i ∂yφ∂zψ + w
yz

i ∂yφ∂zψ + wzx
i ∂zφ∂xψ + wzx

i ∂zφ∂xψ
)
, (52)

g
eq
i = wi

(
�φμφ

c2
s

+ φeiαvα

c2
s

+ φvαvβ

(
eiαeiβ − c2

s δαβ

)
2c4

s

)
, (53)

k
eq
i = wi

(
�ψμψ

c2
s

+ ψeiαvα

c2
s

+ ψvαvβ

(
eiαeiβ − c2

s δαβ

)
2c4

s

)
. (54)

For the D3Q19 model, the weights are w1–6 =
1/18, w7–18 = 1/36, wxx

1,2 = w
yy

3,4 = wzz
5,6 = 5/36, wxx

3–6 =
w

yy

1,2,5,6 = wzz
1–4 = −1/9, wxx

7–10 = wxx
15–18 = w

yy

7–14 = wzz
11–18 =

−1/72, wxx
11–14 = w

yy

15–18 = wzz
7–10 = 1/36, w

xy

1–6 = w
yz

1–6 =
wzx

1–6 = 0, w
xy

7,10 = w
yz

11,14 = wzx
15,18 = 1/12, w

xy

8,9 = w
yz

12,13 =
wzx

16,17 = −1/12, w
xy

11–18 = w
yz

7–10 = w
yz

15–18 = wzx
7–14 = 0. Fur-

thermore, the speed of sound is cs = (1/
√

3)�x/�t . The
equilibrium distribution functions for i = 0 can be computed
by ensuring the following relations are satisfied:

ρ(r,t) = ∑
i f

eq
i (r,t) = ∑

i fi(r,t),

φ(r,t) = ∑
i g

eq
i (r,t) = ∑

i gi(r,t), (55)

ψ(r,t) = ∑
i k

eq
i (r,t) = ∑

i ki(r,t).

V. BENCHMARK RESULTS

We now present a series of systematic benchmarks to show
that our model captures the correct equilibrium and dynamic
behaviors of the ternary fluids. Although our code is capable of
handling full three-dimensional (3D) geometries, a 2D setup is
sufficient for the scope of these tests. In Sec. V A we start with
the liquid lens and double emulsion to test the surface tensions.
We investigate the accuracy of the solid wetting properties in
Sec. V B. Finally, in Sec. V C, we examine different scenarios
for ternary phase separation.

A. Liquid lens and double emulsion

The first set of simulations are designed to verify the
fluid-fluid surface tensions against the analytical predictions
in Eq. (7). To do this, we have simulated liquid lenses
[Figs. 1(b)–1(d)] and double emulsions [Figs. 1(e)–1(g)], as
shown in Fig. 1. In both cases, the force balance between all
three surface tensions must be satisfied at the contact line,
which we can succinctly write in vector notation:

γ 12 + γ 23 + γ 31 = 0. (56)

Due to this force balance, the three angles θ1, θ2, and θ3 in
Fig. 1 satisfy the Neumann triangle relation

γ12

sin θ3
= γ23

sin θ1
= γ31

sin θ2
. (57)

In Fig. 1(a), we systematically compare the angles θ1, θ2,
and θ3 obtained from the simulations and analytical predictions

for the liquid lens geometry. The simulation box has a height of
120 l.u. (lattice units) and a width ranging from 120 to 260 l.u.
in order to accommodate the lens geometry. To ensure the
systems have reached mechanical equilibrium, we typically
run the simulations until the maximum fluid velocity in the
whole simulation domain is less than a given threshold value.
Here, we have used 10−5�x/�t , which corresponds to the
maximum spurious velocity in our simulation, close to the
fluid-fluid interface. This is consistent with results in LB
literature.

As a representative example, we choose κ2/κ1 = 2, and
incrementally vary κ3 over a large range of parameters.
The detailed choice of simulation parameters is reported
in the caption of Fig. 1. Note that the surface tension is
γmn = α(κm + κn)/6 in our model. As shown in the figure,
our simulations accurately reproduce the predicted angles. We
only observe significant variations between the measured and
analytical values (>3◦) when one of the Neumann angles is
less than 10◦ (θ3 in the case shown in Fig. 1). This is caused
by the diffuse nature of the fluid-fluid interfaces. We obtain
the same level of accuracy when the test is carried out for the
double emulsions [Figs. 1(e)–1(g)].

Additionally, we have carried out the Laplace pressure test
for a droplet of component m surrounded by fluid n (data not
shown). We performed all possible pairwise permutations to
ensure that our model is still symmetric after the introduction
of the auxiliary variables. In such a case, the simulation
basically reduces to a binary fluid system, and indeed the
results are identical to those from a binary free-energy model,
as expected.

B. Contact angles

The next set of verifications concerns the contact angles
of the fluids at a solid surface. We have introduced the
geometry shown in Fig. 2(a) where the ternary fluid is
confined to a square well. Such a setup demonstrates that
we can simultaneously control all three contact angles given
the parameters h1, h2, and h3, including the Girifalco-Good
relation in Eq. (30). Additionally, we can also recover the
Neumann triangle at the point where the three fluid-fluid
interfaces meet, as discussed in Sec. V A.

Figure 2(b) shows the measured contact angles in our
simulations compared to the analytical predictions; see Eqs. (7)
and (21). The simulation parameters are reported in the figure
caption. The contact angle is given by Young’s formula in
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FIG. 1. (a) Comparison between analytical predictions for the Neumann angles θ1, θ2, and θ3 and the simulation results for a liquid lens
[panels (b)–(d)] and a double emulsion [panels (e)–(g)] at equilibrium. In the simulation, α = 1, κ1 = 0.01, and κ2 = 0.02 are fixed, while
κ3 is varied. Specifically, κ3 = 0.05 in panels (b) and (e), κ3 = 0.15 in panels (c) and (f), and κ3 = 0.001 in panels (d) and (g). We have also
used τφ = 1.0, τψ = 2/3, and �φ = �ψ = 1.0. Panels (c) and (f) show the isosurfaces C = 0.5 for three-dimensional simulation results. All
remaining panels are for two-dimensional systems.

Eq. (8). Similar to the Neumann angles, the simulation results
for the contact angles are accurate with deviations of up to 4◦ at
contact angles 14◦ and 166◦. This discrepancy is again due to
the finite width of the interface. For very small or large contact
angles, the diffuse fluid-fluid and fluid-solid interface profiles
interfere with one another and affect the contact angle results.
The same issue is observed for the binary fluid model [51].

C. Ternary phase separation

So far we have verified the equilibrium thermodynamics
of our ternary fluid model. Here we will shift our attention to
the dynamic behavior of the fluids, by studying the phase
separation of ternary fluids and how this depends on the
composition of the fluids, (C1,C2,C3). We use the following
three compositions: (i) (0.15,0.15,0.7), (ii) (1/3,1/3,1/3),
and (iii) (0.4,0.4,0.2) to allow comparisons with previously

(a) (b)

FIG. 2. Validation of the wetting boundary conditions at solid
walls: simulations in both panels are carried out with α = 1, τρ = 1.0,
τφ = 1.0, τψ = 2/3, and �φ = �ψ = 1.0. (a) Three fluid phases at
equilibrium confined to a square well, showing simultaneously the
three Neumann angles and the three different pairs of contact angles.
Here κ1 = 0.01, κ2 = 0.02, κ3 = 0.03, h1 = −0.002, h2 = 0.002,
and h3 = 0.0. (b) Comparison between the predicted and simulated
contact angles as the parameters h1, h2, and h3 are varied. Here
κ1 = κ2 = κ3 = 0.01, The agreement departs for very small and
very large angles. The minimum and maximum values shown are
θ = 14◦ and θ = 166◦, respectively. Outside this range, the deviation
in contact angle is >4◦ between prediction and measurement.

published results on this topic [55]. It is worth noting that
the results in [55,56] are obtained by solving the Cahn-
Hilliard equations with zero fluid velocity. Here we simulate
the fully coupled thermodynamic-hydrodynamic system. The
simulation parameters are reported in the caption of Fig. 3.

In all cases we initialize the simulations by introducing
random concentration fluctuations with amplitude δ = 0.01 to
an otherwise homogeneously mixed fluid. Since the system is
unstable with respect to concentration fluctuations, spinodal
decomposition then takes place; the system separates into
spatial regions rich in one phase and poor in the other phases.
Such a process reduces the overall free energy of the system.

The dynamics of the spinodal decomposition depends
strongly on the composition. In case (i), where C3 is dominant
and C1 and C2 are minorities, the system initially separates
into domains of C3 and a mixture between C1 and C2 [see
Fig. 3(a)]. It is only at later times that C1 and C2 themselves
phase separate [panels (b) and (c)]. Interestingly, we observe a
“wormlike” structure where domains of C1 and C2 form layers
and together they are encapsulated by C3. Further coarsening
occurs due to rearrangements and subsequent coalescence of
neighboring C1 and C2 domains.

Let us now consider the symmetric case where all three
fluids are equally represented, case (ii). Here, as expected,
the coarsening dynamics is equivalent for all three fluids. The
fluids initially form small droplets [Fig. 3(e)] that then grow
due to a combination of diffusion and coalescence. In panels
(f) and (g), we report the ternary network of domains, whose
typical size coarsens at the same speed.

The situation is very different when two fluid components
are dominant and the third fluid is a minority, case (iii). As
shown in Fig. 3(i), the system initially behaves akin to a binary
system. C1 and C2 phase separate, with the fluid component
C3 trapped at the interfaces between C1 and C2. Only when
the majority fluid phases have coarsened considerably, the
minority fluid starts to show a bulging effect where droplets
of C3 form at the interfaces between C1 and C2; see panels (j)
and (k).

We can quantitatively trace the different onsets of phase
separation by plotting the average quantity χm = 〈C2

m(1 −
Cm)2〉6L/α as a function of time. χm = 0 when fluid m

takes either Cm = 0 or 1, and χm > 0 otherwise. As shown
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FIG. 3. Ternary phase separation for three different sets of fluid compositions: (i) C1 = C2 = 1/4 and C3 = 1/2 [panels (a)–(d)], (ii)
C1 = C2 = C3 = 1/3 [panels (e)–(h)], and (iii) C1 = C2 = 2/5 and C3 = 1/5 [panels (i)–(l)]. Here we use κ1 = κ2 = κ3 = 0.01, τρ = 1.0,
τφ = 1.0, τψ = 2/3, �φ = �ψ = 1.0 and the fluid compositions are initialized with random perturbations of amplitude δ = 0.01. Panels (d),
(h), and (l) show the time evolution of the quantity χm = 〈C2

m(1 − Cm)2〉6L/α, where L = 200�x is the size of the square domain in lattice
units and m = (1,2,3). The rapid decay of χm indicates the segregation of the phase Cm. Once the phase is well separated, its value represents
the total length of the boundary between Cm and the other two phases. The black circles and vertical dashed lines indicate the time of snapshots
reproduced in the upper panels.

in Figs. 3(d), 3(h), and 3(l), the rapid decay of χm marks the
onset of phase separation of fluid component m. Furthermore,
after the system has phase separated, χm provides an estimate
for the total length of the boundary of the component m. In
case (i), we see that χ3 decays first, followed by χ1 and χ2.
The opposite is observed for case (iii), while in case (ii), all
three quantities decay at the same time.

We note that the sequence of morphologies reported here as
the fluids undergo phase separation and how they depend on the
fluid concentrations are qualitatively consistent with the results
in [55,56]. Quantitative comparisons, however, are not feasible

because these works do not account for hydrodynamics and
they have not reported detailed time sequence data.

To test the dynamic behavior of the system we compare the
evolution of the typical domain size, estimated by L = A/χ ,
where A is the area of the periodic domain (see Fig. 4). We
simulate both binary and ternary mixtures with symmetric
concentration of phases. For the diffusive regime, obtained by
removing the advection term in the Cahn-Hilliard equation,
we recover the theoretical scaling of L ∼ t1/3. For the inertial
regime the theoretical scaling L ∼ t2/3 is observed only at
the onset of phase separation. While in the binary case the
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FIG. 4. Scaling of the typical domain size L = A/χ , during phase
separation in two dimensions. (a) Diffuse regime. (b) Inertial regime.
The area of the domain size is 400 × 400 lattice spacings. Ternary
and binary mixtures are introduced by setting C1 = C2 = C3 = 1/3
and C1 = C2 = 1/2 respectively. The parameters τρ = 1.0, τφ = 1.0,
τψ = 2/3, �φ = �ψ = 1.0 are the same in all cases. To achieve the
diffusive regime we remove the advection term in the Cahn-Hilliard
equation. For the diffuse regime we set κ1 = κ2 = κ3 = 0.01, while
for the inertial regime we set κ1 = κ2 = κ3 = 0.04. Each curve is
shifted by its time constant t0 obtained from a fitting routine.

coarsening stops due to finite size effects, in the ternary case
the coarsening is inhibited at an earlier stage by the formation
of a foamlike network as depicted in Fig. 3(g). After this
structure has formed, the only mechanism leading to further
coarsening is related to Ostwald ripening, characterized by
slow diffusion followed by sporadic coalescence events that
change the network topology. We argue that the situation would
be different in three dimensions, as at least one additional phase
is required to establish a stable packing. We plan to report in
detail the phenomenon of the ternary phase separation in a
forthcoming publication.

VI. CONCLUSIONS

We have presented a ternary free-energy lattice Boltzmann
(LB) model. In Sec. II we analytically derived the values of
the fluid-fluid surface tensions, the fluid-solid surface tensions,
and the contact angles, given the simulation parameters κm

and hm (m = 1,2,3). The three κ parameters can be varied
independently, thus allowing us to arbitrarily tune the three
fluid-fluid surface tensions. Due to the Girifalco-Good relation,
only two out of the three solid surface contact angles are
actually independent. Here, we not only show how the contact
angles can be computed given the hm, but we also describe the
procedure to invert the contact angle relations. Our free-energy
formulation also allows additional fluid components to be
added easily if required by an application.

The free-energy LB model is a top-down approach. Given
the free-energy functional, we can subsequently derive the
chemical potentials, pressure tensor, and wetting boundary
conditions (Sec. III) that need to be introduced in the LB
algorithm (Sec. IV). We have also shown in Sec. V that our
model and algorithm are able to capture the correct equilibrium
and dynamic behavior of the ternary fluids. In particular, we
considered three benchmark tests: (i) double emulsion and

liquid lens, (ii) ternary fluids in contact with a square well, and
(iii) ternary phase separation.

Though it is beyond the scope of this paper, we note that
there is a wide range of applications that our model can
simulate. For example, we can study the dynamics of ternary
emulsions [1–4] and compound droplets [5,6]. The ternary
phase separation, as shown in Sec. V, is also an extremely
rich phenomenon that is worth being studied in more detail.
Furthermore, topographical and/or chemical heterogeneities
can be accounted for easily in LB simulations. This is impor-
tant, e.g., for simulations of liquid infused surfaces [8–11]
that involve a ternary fluid system (water, oil, and air) in
conjunction with rough surfaces.

Finally, we note that in the current model all the fluid
densities are equal and set to ρ = 1. This is a reasonable
approximation for when all three fluids have similar densities,
or when the Reynolds number in the problem of interest is
small. To tackle phenomena where inertial terms are relevant,
another important area of future work is to generalize our
model to allow different densities. In the context of the ternary
free-energy lattice Boltzmann model introduced here, this
corresponds to devising a free-energy functional with minima
located at different values of ρ, not just φ and ψ .
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APPENDIX: MOBILITY PARAMETERS

Here we will derive the limiting case where all fluid phases
have symmetric mobility parameters, M1 = M2 = M3 = M ,
and show that this corresponds to Mφ = 3Mψ in our model. We
start from the Cahn-Hilliard equation for each fluid component
m, given by

∂tCm + ∂α(Cmvα) = Mm∇2μm. (A1)

The key point to realize is that the three fluid components are
not independent since they are related by the constraint C1 +
C2 + C3 = 1. In Eq. (A1), this can be handled by introducing
a Lagrange multiplier β such that [57]

μm = ∂F

∂Cm

+ β, μ1 + μ2 + μ3 = 0. (A2)

Substituting these relations into Eq. (A1) and comparing the
results with Eqs. (44) and (45), it can be shown that we
have M = Mφ/2 and M = 3Mψ/2 for the limiting case of
symmetric mobility parameters. Correspondingly, we thus
have Mφ = 3Mψ .
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