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ABSTRACT

The Gaussianization transform has been proposed as a method to remove the issues of scale-
dependent galaxy bias and non-linearity from galaxy clustering statistics, but these benefits
have yet to be thoroughly tested for realistic galaxy samples. In this paper, we test the
effectiveness of the Gaussianization transform for different galaxy types by applying it to
realistic simulated blue and red galaxy samples. We show that in real space, the shapes of the
Gaussianized power spectra of both red and blue galaxies agree with that of the underlying
dark matter, with the initial power spectrum, and with each other to smaller scales than do
the statistics of the usual (untransformed) density field. However, we find that the agreement
in the Gaussianized statistics breaks down in redshift space. We attribute this to the fact that
red and blue galaxies exhibit very different fingers of god in redshift space. After applying a
finger-of-god compression, the agreement on small scales between the Gaussianized power
spectra is restored. We also compare the Gaussianization transform to the clipped galaxy
density field and find that while both methods are effective in real space, they have more
complicated behaviour in redshift space. Overall, we find that Gaussianization can be useful
in recovering the shape of the underlying dark-matter power spectrum to k ~ 0.5 h Mpc~' and

of the initial power spectrum to £ ~ 0.4 h Mpc

~! in certain cases at z = 0.

Key words: cosmology: theory —large-scale structure of Universe.

1 INTRODUCTION

Local density transforms, such as the log and Gaussianization trans-
form (Neyrinck, Szapudi & Szalay 2009; Neyrinck 2011; Neyrinck,
Szapudi & Szalay 2011), the log transform modified for a Poisson-
sampled field, known as the A*-transform (Carron & Szapudi 2014;
Wolk, Carron & Szapudi 2015a; Wolk et al. 2015b), clipping (Simp-
son et al. 2011, 2016), and the copula transformation (Scherrer
et al. 2010) have been proposed recently as methods to efficiently
extract cosmological information from galaxy clustering data. The
Gaussianization transform has been shown to restore small-scale
information in the two-point statistics of the matter density field by
reducing the covariance on small scales and providing better fidelity
to the linear-theory shape, and thus tightening constraints on cos-
mological parameters (Neyrinck et al. 2009; Neyrinck 2011). It has
also been suggested that Gaussianization may have the ability to
separate galaxy bias from underlying clustering statistics (Neyrinck
et al. 2014; Neyrinck 2014). Under the assumption that the bias of
different fields (red and blue galaxies, dark matter) is encoded in
the different one-point probability density functions (PDFs) of the
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fields, and the underlying clustering of the fields is the same, the
Gaussianized fields of the biased tracers and the dark matter will
have the same two-point statistics.

While both the A*-transform and clipping have been applied to
real galaxy data (Wolk et al. 2015a; Simpson et al. 2016), previous
work on the Gaussianization transform for the power spectrum has
focused largely on theoretical motivation and idealized cases such as
the dark-matter distribution in N-body simulations. It is not known to
what extent the benefits of the transform can be achieved in realistic
galaxy samples. The effects of number density, shot noise, clustering
properties, redshift-space distortions, and size of the density grid
on the effectiveness of the Gaussianization transform have not been
thoroughly explored in the context of two-point statistics, though
they have been studied more systematically in the related context
of the topology of large-scale structure (Melott, Weinberg & Gott
1988; Park, Kim & Gott 2005; Kim et al. 2014). Gaussianization
has also been applied to power spectrum recovery from the Lyman
o forest, though in this case the natural ‘clipping’ that arises from
saturation of absorption in high-density regions causes the non-
linear flux power spectrum to track the linear matter power spectrum
down to relatively small scales, even without Gaussianization (Croft
et al. 1998, 1999).

In this paper, we apply the Gaussianization transform to realistic
galaxy samples, produced from the semi-analytic galaxy formation
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code GaLForM (Cole et al. 2000; Baugh et al. 2005; Bower et al.
2006; Gonzalez-Perez et al. 2014; Lacey et al. 2015), with the
aim of testing the ability of the transform to remove the effect of
non-linear (scale-dependent) galaxy bias to recover the small-scale
shape of the matter power spectrum. We apply the transform to blue
and red galaxies from GaLrForM (Gonzalez-Perez et al. 2014) and
compare the shape of the power spectra of the transformed fields
to each other as well as to those of the underlying dark matter and
initial density fields. We study how the transform performs in real
and redshift space, and explore the effects of varying the sample
selection and the size of the density grid.

In Section 2 we describe the simulations and galaxy samples used
in this work. In Section 3 we discuss the Gaussianization transform
in detail and present the methods used to estimate the Gaussianized
power spectrum, including a prescription for shot noise correction.
In Section 4 we present our results comparing the Gaussianized
and usual density statistics of galaxies and discuss the effects of
sample selection and varying cell size. In Section 5, we compare
the Gaussianization transform to clipping of the galaxy density
field as a method for removing non-linearity and non-linear bias.
We conclude in Section 6.

2 SIMULATION AND GALAXY SAMPLES

We use simulated galaxy samples from the GALFORM semi-analytic
galaxy formation model (Gonzalez-Perez et al. 2014), which
was run on the Millennium dark-matter-only N-body simulation
(Springel et al. 2005; Guo et al. 2013)." Semi-analytic galaxy for-
mation models such as caLForM model the formation and evolution
of galaxies using simple, physically motivated equations to predict
baryonic physics within dark-matter halo merger trees (Cole et al.
2000; Baugh et al. 2005; Bower et al. 2006; Lacey et al. 2015). The
output is a galaxy catalogue with realistic clustering. Such a cata-
logue is sufficient for our purposes because it allows us to apply the
Gaussianization transform to realistic galaxy samples with differ-
ent clustering properties, and to test its effectiveness in recovering
the known shape of the underlying dark-matter and linear power
spectra.

The dark-matter only 7-year Wilkinson Microwave Anisotropy
Probe (WMAPT) Millennium simulation (MR7) uses a periodic box
with Lyox = 500 Mpc £~ ! on aside, with 2160? dark-matter particles,
and WMAP7 cosmological parameters: 2, = 0.272, , = 0.0455,
Qpr = 0.728, h = 0.704, ny = 0.967, and o3 = 0.810 (Komatsu
et al. 2011; Guo et al. 2013). We use the galaxy and dark-matter
distributions at z = 0.

Fig. 1 shows the total stellar-mass function of the GALFOrRM galax-
ies (black solid line), as well as that of the red and blue galaxies
separately. We create four samples using stellar-mass cuts of 1087,
1089, 10%% and 10'*! 1~ M. The number densities, fraction of red
galaxies, and other properties of the four samples are summarized
in Table 1. We use the colour-magnitude cut shown in Fig. 2 (solid
black line) to split the galaxies into red and blue. The equation of
the colour cut is: (g —r)y = a(MﬁJ‘0 + 20) 4+ b, with a = —0.047
and b = 0.55. The colour-magnitude distributions of each sample
are shown in different shades of red and blue.

In general, red galaxies are much more strongly clustered than
blue galaxies (e.g. Norberg et al. 2002; Zehavi et al. 2002,2011), and

! Data from the Millennium simulation are available on a relational data base
accessible from http://galaxy-catalogue.dur.ac.uk:8080/Millennium (Lem-
son & the Virgo Consortium, 2006).
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Figure 1. Cumulative stellar-mass function of the GaLForm galaxies. The
red and blue lines refer to the stellar-mass functions of the red and blue
galaxies, and the black solid line is the total. We make cuts in stellar mass
to form four different samples, which are shown by the grey solid, dashed,
dot—dashed, and dotted vertical lines.

this can also be seen in the GALFOrRM galaxies (Campbell et al. 2015;
Farrow et al. 2015). The left panel of Fig. 3 shows the positions of
galaxies in a slice of the simulation box in real space. In redshift
space, where the positions of the galaxies are distorted along the line
of sight by their peculiar velocities, the small-scale behaviour of the
two fields is very different. Red galaxies have much stronger fingers
of god (FoG) because they live in much more massive clusters than
blue galaxies. This is shown in the middle panel of Fig. 3. As we will
discuss in Section 4, we find it useful to also consider galaxy fields
where the FoG have been collapsed. This is possible to do in real
galaxy data with high enough number density and a reliable group
catalogue (Tegmark et al. 2004; Berlind et al. 2006). We perform an
idealized version of such a procedure here by assigning each galaxy
the central subhalo velocity as opposed to its own peculiar velocity.
This leads to the field in the right panel of Fig. 3, which includes
the large-scale distortion effect, but the FoG are collapsed. We refer
to this as ‘collapsed FoG space’ throughout the paper.

3 GAUSSIANIZATION TRANSFORM
AND POWER SPECTRUM ESTIMATION

3.1 Gaussianization transform

It has long been known that cosmological density fields are
roughly lognormal (Coles & Jones 1991). The statistics of the log-
transformed density field have been shown to have lower covari-
ance on small scales and better fidelity to the linear-theory shape
(Neyrinck et al. 2009). In principle, using the statistics of the log-
density as opposed to the usual density variable can give much
tighter constraints on cosmological parameters (Neyrinck 2011;
Neyrinck et al. 2011). In the case of a perfectly lognormal field,
analysis of the log-density correlation function accesses all of the
Fisher information, whereas using arbitrarily high-point density
correlation functions can give only a small fraction of that total in-
formation on small scales (Carron 2011; Carron & Neyrinck 2012).

Previous studies of the log transform have focused on the dark-
matter density field from N-body simulations. The dark-matter
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Table 1. Summary of galaxy samples used. The columns give the minimum stellar mass, total number density, fraction of red galaxies
(fr). fraction of empty cells in a (real space) 128> CIC grid for red and blue galaxy samples, and the average number of galaxies of a

given type per halo with a galaxy of that type.

128

M':li" n fR Jempty <Ngal>
Mg 1] [(Mpc h=1)™] Red Blue Red Blue All
Sample 1 1083 0.061 0.51 0.24 0.05 3.89 1.08 1.74
Sample 2 1089 0.039 0.55 0.27 0.10 3.07 1.04 1.69
Sample 3 10%6 0.017 0.69 0.33 0.30 2.07 1.02 1.61
Sample 4 10101 0.007 0.83 0.44 0.66 1.69 1.01 1.52
1.0 u w \ for a Poisson-lognormal field (Carron & Szapudi 2014). Another is
Sample 1| Gaussianization, which is agnostic regarding an assumed underly-
' gzzz:z ; B ing continuous field and how it is point-sampled. Gaussianization
0.8 Sample 4 maps the one-point PDF of the density field on to an exactly Gaus-
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Figure 2. Colour—magnitude diagram for our four samples. The solid line
shows the colour cut used to separate red (above the line) and blue (below
the line) galaxies.

density (p) is interpolated to a grid using either a nearest-grid-
point (NGP) or a cloud-in-cell (CIC) interpolation scheme (Hock-
ney & Eastwood 1981), and the statistics of A = In (1 4 §) (where
8 = p/p — 1 is the overdensity) are analysed as opposed to those
of § itself. In reality, we cannot observe the full dark-matter dis-
tribution, and instead we infer it through the presence of galaxies,
which act as biased tracers of the dark-matter distribution. Depend-
ing on the number density and grid size, the log transform of the
galaxy density field may not be well defined, as there may be many
grid cells with zero density. For these cases, one option is the A*-
transform, providing an optimal local estimate of the log-density

Real space

Redshift space

sian PDF with a specified variance by rank-ordering the density cells
and transforming them using the inverse error function (Neyrinck
2011; Neyrinck et al. 2011):

Gauss(8) = V20 erf™! (2f<a -1+ %) , (D

where f_; is the fraction of cells below §, o is the standard deviation
of the Gaussian, and N is the total number of cells. The 1/N term
in equation (1) ensures that the argument in the inverse error func-
tion is between —1 and 1, and thus returns a finite value for all §.
For an exactly lognormal distribution, Gaussianization is equivalent
to a log transform. In the case of poor sampling, where there are
empty cells, all zero cells are mapped to a single value, which is set
by requiring the Gaussian to have mean zero and variance o2, The
transform thus can increase the effect of shot noise by accentuating
the difference between cells with zero and non-zero density. The
large number of cells with zero density is inconvenient from the
point of view of Gaussianization. One way to avoid this problem
would be to use a non-compact smoothing kernel extending over
multiple cells, such as a Gaussian. However, this necessarily intro-
duces an additional (smoothing) scale beyond the grid scale. Also,
we found that Gaussianized power spectra respond in a complicated
way to the additional smoothing scale of the Gaussian window on
top of a (smaller-scale) CIC grid. Thus we choose to study the
transform in the context of a CIC grid. As we will test and confirm
in Section 4, for a CIC grid, choosing a grid size corresponding to
an average of about 1 particle per cell ensures that the contribu-
tion from shot noise is manageable and the transform delivers the
greatest benefits.

Collapsed FoG

z [Mpc/h]

Figure 3. Spatial distribution of red and blue galaxies (with corresponding colour dots) in a 7 Mpc 4~ ! slice from Sample 2 in real space (left), redshift
space (centre), and with collapsed FoG (right). The z-axis is the line-of-sight direction and we use the distant observer approximation for the redshift-space

distribution.
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Figure 4. Distribution of red (left panels) and blue (right panels) galaxy densities versus dark-matter density on a 128> grid for Sample 2 in real space. Side
panels show the one-point PDFs of the dark matter (top) and galaxies (right) and the centre panels show the two-dimensional distribution in each case. Colours

in centre panels show number of cells using a logarithmic colour mapping.

We explore the Gaussianization transform first through studying
the relationship between the usual and transformed galaxy and dark-
matter density fields. We use the galaxies from Sample 2 in real
space to illustrate these relationships. Fig. 4 shows two-dimensional
histograms of the red (a) and blue (b) galaxy densities from Sample 2
versus the dark-matter density on 128° CIC grids, as well as the
one-point PDFs of each field. From these figures it is clear that red
galaxies are highly biased with respect to the dark matter, whereas
blue galaxies have bias less than 1. The relationship between red
galaxy density and dark-matter density is also quite tight compared
to the blue galaxies over this range of densities.

Next, we consider the relationship between the Gaussianized
galaxy fields and the Gaussianized dark-matter field. Fig. 5 shows
the two-dimensional histograms of the Gaussianized red (a) and
blue (b) fields versus the Gaussianized dark-matter field from Sam-
ple 2. Note that we only show the non-zero density cells in these
figures. For the Gaussianization transform, we have used equa-
tion (1) with o = 1.0 in all cases. The value of o used is arbitrary,
and only affects the amplitude of the Gaussianized field, and thus
affects the amplitude of the Gaussianized statistics but not the scale-
dependence. All the zero-density cells in the galaxy fields map to
a single value in the Gaussianized field. The relationship between
the Gaussianized red galaxy field and dark matter is remarkably
tight, especially in high-density regions. The Gaussianized fields
of blue galaxies and dark matter are clearly correlated, but with
more scatter in high-density regions than in the case of the red
galaxies. For example, if we consider cells in both the red and blue
galaxy fields that have Gaussianized density values close to 3.0
(£0.05), the standard deviation of the corresponding Gaussianized
dark-matter density cells is much smaller for the red (0.08) than the
blue (0.41).

Fig. 6 shows the Gaussianized dark-matter PDF, which is by
definition a Gaussian with mean zero and ¢ = 1.0. The red and
blue PDFs show the distributions of dark-matter cells that have zero
density (§ = —1) in the red and blue galaxy fields, respectively.
For the CIC density, zero-density cells correspond to cells with no
particles and whose neighbouring cells also have no particles. Note

10%

Gauss(dg)

Gauss(dg)

10°

-2 L !

Gauss(dpy)

Figure 5. Distribution of Gaussianized density of red (a) and blue (b)
galaxies versus Gaussianized dark-matter density on a 1283 CIC grid for
Sample 2. In both panels, we show only cells where the galaxy density is
non-zero and there are more empty cells for the red galaxy sample. Colour
bar gives the number of cells with a logarithmic colour mapping.

that although the galaxy fields have similar number densities in
this sample (g = 0.021 and iz = 0.018 (Mpc h~')~?), there are
more empty cells in the red galaxy field because it is more highly
clustered than the blue.

MNRAS 457, 3652-3665 (2016)
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Figure 6. Distribution of Gaussianized dark-matter density cells. In black,
all cells; in red (blue), cells that are empty in the red (blue) galaxy density
field for Sample 2.

3.2 Gaussianized statistics

Next, we discuss methods used to estimate the power spectra of
the Gaussianized fields, normalize the large-scale amplitude of the
power spectra, and correct for shot noise.

Raw power spectra are computed through an FFT of the field
under consideration (the § field or the transformed field). We square
the Fourier amplitudes to obtain the three-dimensional power spec-
trum of the field, and then average over shells in |k| to find P(k). In
redshift space, this computes the angular-average or monopole of
the full two-dimensional redshift-space power spectrum.

The large-scale amplitude of a Gaussianized power spectrum de-
pends on various quantities, including the intrinsic amplitude of
fluctuations, the large-scale bias, the variance of the Gaussian, and
the grid size used. While this amplitude does contain information,
in this work we focus only on the shape of the power spectrum, and
thus we choose to normalize all galaxy power spectra to the large-
scale amplitude of the real-space dark-matter power spectrum at
z = 0. We define the large-scale amplitude of a given power spec-
trum as:

3 PN,
B Zi Ni '

where N; is the number of modes in bin i, and the sum is taken
for k < 0.07 h Mpc~', to include only linear modes. For example,
to normalize a Gaussianized power spectrum Pg,yss to the dark-
matter power spectrum Ppy;, we compute B for each and multiply
the Gaussianized power spectrum by Bpy/BGauss-

We must also correct for the effects of shot noise in our power
spectra. For the usual § power spectrum, we correct for Poisson shot
noise by subtracting 1/7, where 7 is the tracer number density. For
the power spectra of the Gaussianized fields, we apply a shot-noise
correction procedure, detailed below.

In general, the contribution of shot noise in the Gaussianized
power spectrum is more complicated than in the usual density power
spectrum, and may depend on scale, number density, grid size, and
intrinsic clustering properties of the sample. However, Neyrinck
(2011) found that the contribution from shot noise in the Gaussian-
ized power spectrum does not diverge greatly from a constant form

B @
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on quasi-linear scales. Therefore, we make the ansatz that on these
scales, the shot noise will contribute in a scale-independent way:

. A
Px:’was(k) = Puuc(k) + E, 3)

where A is an unknown amplitude that we must fit for in a given
galaxy sample. In general, A may depend on the clustering of the
given sample, so its value will be different for red and blue galaxies,
and will depend on the sample definition.

We test this ansatz by randomly down-sampling a given galaxy
sample to several different values of 7 and computing the resulting
Gaussianized power spectra. We look at the differences between
these power spectra, which arise from the difference in shot noise
and so should depend only on the difference between the reciprocals
of the number densities, if our ansatz is valid:

n iy 1 1
me]:as(k) - Pméas(k) =A (;l - ;2) . C))

We estimate A for each pair of 71}, 71, using the above expression
and weight by the number of modes in each k-bin, N;:

A hy = <ﬁ2_ i ) S (Patu(k) = Pz (k) N
iy SN

where the sum is over bins 0.1 <k <03 h Mpcfl, as we expect

our ansatz to apply over this range of scales. We use four different

sample sizes for each sample, giving six combinations of pairs of

(11, 7,), and we weight all pairs equally to find the best-fitting value

of A to correct for the shot noise in equation (3).

Fig. 7 shows the Gaussianized power spectra of the red and blue
galaxies from Sample 1, down-sampled to different values of 7.
The red lines show the Gaussianized power spectra of red galaxies
at different number densities, and the blue lines show the power
spectra of blue galaxies at the same number densities. The left
panels show the power spectra before shot noise correction, and the

; )

10°

10° b

P(k) [(Mpc/h)® ]

10 |

=
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o
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Figure 7. Gaussianized power spectra with fixed large-scale amplitudes,
before (left) and after (right) shot-noise correction. The lower panels show
the ratios of the down-sampled power spectra to that of the largest sample
(7 = 0.030). The deviation from unity in the lower-left panel is the shot-
noise term. The ratios in the lower right panel agree much better with each
other, which indicates that our model for shot noise is reasonable on these
scales.
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right panels show the shot-noise-corrected power spectra. In these
plots, the large-scale amplitudes of each have been normalized to
that of the usual density power spectra of the galaxies of each colour
using equation (2). In the left panel the effect of shot noise can be
seen in the high-k tail of the power spectra as the sample becomes
smaller. The lower left panel shows the ratio of the power spectra
of the sampled galaxy population to that of the densest sample
[ = 0.030 Mpc h~")3]. The deviation grows with decreasing 7.
The differences between these power spectra are used to fit for
the value of A as in equation (5). The upper right panel shows the
power spectra after the shot noise correction has been applied, and
the lower right panel shows the corresponding ratios. Note that the
range of k that this shot noise correction works well on depends on
the number density 7.

From this figure, we see that after shot-noise correction, the power
spectra converge as 71 increases. We conclude that for 7 > 0.010
(Mpc h~1)73, the procedure results in the correct power spectrum
[recovers ‘Py,.(k)’ to within 10 per cent] on scales larger than the
Nyquist frequency k < 0.8 h Mpc~'. Forii = 0.003 (Mpc 4~')~3 the
correction is accurate up to k ~ 0.6 1 Mpc~!. For the lowest number
density shown here, i = 0.001 (Mpc ~~')~3, the shot noise correc-
tion is especially poor even on relatively large scales. In general,
we find that the accuracy of the shot noise procedure depends on
several variables, including number density and fraction of empty
cells. For the 128° grid size, we limit our analysis to samples with
number densities 77 > 0.001 (Mpc h~1)73. This excludes the blue
galaxy sample from Sample 4 from our analysis, as it has a number
density of 7 = 0.001 (Mpc h~")~3. For each sample and cell size,
we test the shot noise correction procedure to determine on what
scales it can be trusted.

4 RESULTS

We first present the measured statistics from a single sample (Sam-
ple 2 in Table 1) on a 1283 CIC grid. We choose this grid size
because it corresponds to roughly one particle per cell for this sam-
ple. In Section 4.1, we show the comparison between the galaxy
and dark-matter statistics for both the usual and transformed galaxy
density fields. In Section 4.2, we compare the usual and transformed
statistics to that of the linear power spectrum, and in Section 4.3 we
compare the statistics of the red galaxy field to those of the blue.
In Section 4.4, we discuss the effects of varying both the sample
selection and the grid size on the results.

4.1 Galaxy versus dark-matter statistics

Fig. 8 shows the normalized, shot-noise corrected power spectra in
real space (top), redshift space (middle), and with collapsed FoG
(bottom). In redshift space and with collapsed FoG, we measure
the angular-averaged (monopole) power spectrum. The solid black,
red, and blue lines show the Gaussianized dark matter, red galaxy,
and blue galaxy power spectra, respectively. The dashed lines show
the corresponding power spectra of the usual density fields, and the
green line shows the linear (input) power spectrum computed using
camB (Lewis, Challinor & Lasenby 2000). In real space, the usual
density power spectra (dashed lines) of the red and blue galaxies
deviate significantly from the dark-matter power spectrum for k =
0.15 h Mpc~'. This is due to non-linear galaxy bias. The Gaus-
sianized power spectra (solid lines) lie more or less on top of one
another to the smallest scales shown here (to the Nyquist frequency
of the 128% grid, kny = 0.8 h Mpc™"), which supports the hypoth-
esis that the transform removes non-linear bias. The Gaussianized

Dark-matter clustering with Gaussianization — 3657
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Figure 8. Power spectra of dark matter (black lines), red galaxies (red
lines), and blue galaxies (blue lines) in real space (top panel), redshift space
(middle panel), and collapsed FoG space (bottom panel). Solid lines show
Gaussianized density power spectra and the dashed lines show the usual
density power spectra. The green line (identical in all panels) shows the
linear (input) power spectrum at z = (. Large-scale amplitudes of all P(k)
are normalized to the real-space dark-matter power spectrum, as described
in Section 3.2.

power spectra are also much closer to the linear power spectrum on
small scales in real space.

The agreement with dark matter can be seen more clearly in
Fig. 9, which shows the ratio of the galaxy power spectra with
the corresponding dark-matter power spectrum. The dashed lines
show the ratio of the usual density power spectra of the galaxy
fields to that of the dark-matter field. The solid lines show the ratio
of the Gaussianized power spectra of galaxies to the Gaussianized
dark-matter power spectrum. The shaded regions show 10 per cent
deviation from the dark-matter spectra. In the top and bottom panels,
we compare galaxy statistics to real-space dark-matter statistics. In
the middle panel, we compare redshift-space galaxy statistics to
redshift-space dark-matter statistics.

In real space, the Gaussianized galaxy statistics have the same
shape as that of the dark matter to much smaller scales (k ~ 0.4
h Mpc~! at 10 per cent level) than the usual density statistics (k ~
0.15 h Mpc~! at 10 per cent level). However, the situation is more
complicated in redshift space, where the Gaussianized red galaxy
power spectrum agrees with the underlying dark-matter statistics
to even smaller scales than in real space (k ~ 0.6 h Mpc~!) but
the Gaussianized blue power spectrum deviates at larger scales
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Figure 9. Ratio of red and blue galaxy power spectra with dark-matter
power spectra in real space (top panel), redshift space (middle panel), and
collapsed FoG space (bottom panel). For real space and collapsed FoG space,
we compare to the real-space dark-matter statistics. For redshift space, we
compare to the redshift-space dark-matter statistics. As in Fig. 8, solid lines
show Gaussianized power spectra and dashed lines show the usual density
power spectra. Red and blue lines corresponding to red and blue galaxy
statistics. The shaded regions show 10 per cent deviation from the dark-
matter spectra.

(k ~ 0.2 h Mpc™). Collapsing the FoG brings the agreement back
to similar levels as in real space.

This comparison suggests that the hypothesis that Gaussianiza-
tion removes non-linear galaxy bias holds only in real space on
quasi-linear scales (k < 0.4 h Mpc™'), and that it breaks down in
redshift space for the blue galaxies. With traditional density statis-
tics, the agreement with the underlying dark matter is reversed be-
tween red and blue, with blue galaxies likely to be better described
in redshift space by dark matter.

4.2 Galaxy versus initial statistics

One of the original proposed goals of the log transform and Gaus-
sianization was to reconstruct the initial power spectrum from the
final density field (Weinberg 1992; Neyrinck et al. 2009). We test
this by comparing the usual and transformed density statistics to
the initial power spectrum. We can see already in Fig. § that the
real-space shapes of the Gaussianized spectra are much closer to
the linear power spectrum than the usual density statistics. Fig. 10
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Figure 10. Ratio of red and blue galaxy power spectra with the initial
(linear) power spectrum in real space, redshift space, and collapsed FoG
space. The denominator in all three panels is the same. Line colours and
styles are the same as in Fig. 8. Power spectrum of the Gaussianized galaxy
density field recovers well the initial power spectrum in real and collapsed
FoG space.

shows the ratio of the galaxy and dark-matter power spectra with the
dark-matter power spectrum measured from an early snapshot of the
Millennium simulation in real space. We use the measured initial
power spectrum because it has the same shape as the linear (input)
power spectrum on small scales, but includes the random modes
from the simulation on large scales. The line styles and colours are
the same as in Fig. 8.

In real space, the Gaussianized statistics retain the shape of the
initial power spectrum better than the usual density power spectrum.
The shape of the Gaussianized dark-matter power spectrum agrees
with the initial power spectrum to k ~ 0.7 h Mpc~!, as compared
to k ~ 0.13 A Mpc~! for the usual density power spectrum. The
shape of the Gaussianized galaxy power spectra agrees with the
initial power spectrum to about k ~ 0.4 h Mpc ™', whereas the usual
density power spectra agree to k ~ 0.1 4 Mpc™! (red) and k ~ 0.3
h Mpc~! (blue).

However, the agreement again breaks down in redshift space.
Interestingly, the usual density power spectrum of dark-matter and
blue galaxies agree with the initial power spectrum to smaller scales
(k ~ 0.5 h Mpc™") than they do in real space. The Gaussianized
power spectra only agree with the initial power spectrum to k ~
0.15 h Mpc~! (dark matter and red galaxies) and k ~ 0.3 & Mpc™!
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(blue galaxies). In this case, the Gaussianization transform seems
not to be beneficial in recovering the small-scale shape of the initial
power spectrum. However, collapsing the FoG restores the real-
space agreement to a large extent.

Note that on large scales (k < 0.1 h Mpc™'), the Gaussianized
power spectra seem to deviate more from the initial power spec-
trum than the usual density power spectra. Gaussianization gener-
ally does not preserve fluctuations (arising from cosmic variance)
in mode amplitudes away from an ensemble-mean power spec-
trum. For linear-scale modes of the matter field, the validity of
linear theory assures that the pattern of fluctuations away from
an ensemble-mean (e.g. from camB) is exactly preserved from the
initial conditions. A transform applied to the matter field will gen-
erally change this pattern. Already, a galaxy biasing function will
change the fluctuation pattern, but an additional Gaussianization
step is likely to change it more, since it amplifies discrete-sampling
changes to the field. Another effect that could cause changes in the
pattern of large-scale fluctuations is the migration of power from
small to large scales (Neyrinck & Yang 2013), in addition to the
migration from large to small scales that is present in the usual
power spectrum. However, we find that the deviation introduced
by Gaussianization on large scales is below the level of cosmic
variance.

This comparison is a test of how well the transform removes the
effects of both non-linear bias and non-linear gravitational evolution
from the power spectra of galaxies. Fig. 10 shows that the transform
is effective in achieving both goals to k ~ 0.4 h Mpc~! in real space
but not in redshift space. We attribute this to the FoG, which alter
the small-scale behaviour of the galaxy and dark-matter fields in
different ways. Gaussianization is almost as effective at removing
non-linear bias and non-linearity after FoG have been collapsed as
it is in real space.

4.3 Red versus blue statistics

Because we want to test the ability of the Gaussianization transform
to remove non-linear bias, we also consider the ratio between the
red and blue galaxy power spectra of both the usual and transformed
fields. Fig. 11 shows this ratio in real (top), redshift (middle), and
collapsed FoG (bottom) space. The dashed lines show the ratio for
the usual density power spectra and the solid lines show the ratio
for the Gaussianized density power spectra.

In real space, the transformed galaxy density statistics agree with
each other to k ~ 0.5 h Mpc~!, whereas the usual density power
spectra deviate around k ~ 0.1 4 Mpc~'. This further supports what
we observed in Fig. 9, that the statistics of Gaussianized fields
of differently biased tracers agree to smaller scales than those of
the usual density fields. Interestingly, it appears that the agreement
between the shapes of the Gaussianized red and blue power spectra
extends to smaller scales than the agreement between the galaxies
and the Gaussianized dark matter (Fig. 9, top panel).

However, the agreement is lost in redshift space, presumably due
to the FoG. In this case, the agreement of the Gaussianized statis-
tics is only marginally better than the usual density statistics. By
collapsing the FoG, we again see the agreement in the transformed
galaxy spectra, to similar scales as in real space.

4.4 Dependence on sample selection and cell size

So far, we have only presented results from a single sample (Sample
2) using a cell size of 4 Mpc h~!, which corresponds to an average
of roughly one particle per cell in both the red and blue samples.
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Figure 11. Ratio of red to blue galaxy power spectra in real space, redshift
space, and collapsed FoG space. Solid lines show the ratio of Gaussianized
statistics of red and blue galaxies, and dashed lines show the ratio of the
usual density statistics. The agreement between Gaussianized power spectra
for the two galaxy types, once FoG are accounted for, demonstrates the
potential power of Gaussianization.

However, it is important to quantify the effects of varying sample
selection and cell size on the results quoted above. First, we study
the effect of varying the grid size in Sample 2 on the ratios consid-
ered in the previous section. Next, we look at these ratios for the
four different samples, which have different clustering due to the
stellar-mass cuts, as well as different number densities. Finally, we
comment on how to choose the optimal grid size for a given sample.
In this section, we only show power spectrum ratios in real space,
but the variations with grid size and sample are similar in redshift
space and with collapsed FoG.

The left panels of Fig. 12 show real-space ratios of the galaxy
power spectra of the usual density and transformed density fields to
the underlying dark matter (top), initial power spectrum (middle),
and the ratio between red and blue power spectra (bottom). Gaus-
sianized power spectra for red and blue galaxies are shown with the
red and blue lines, and the usual density power spectra are shown
with magenta and cyan lines, respectively. The different line styles
in each colour show three different cell sizes used in the CIC density
assignment. The solid line shows a cell size of 2 Mpc A~!, which
corresponds to a 256% CIC grid in our simulation box. The dashed
line is the 4 Mpc A" grid size that was used in the previous section,
corresponding to a 1283 grid. The largest cell size shown here is
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Figure 12. Variation of results with respect to grid size (left panels) and sample definitions (right panels). Ratios of the galaxy power spectra of the usual
density and transformed density fields to the underlying dark matter (top), linear power spectrum (middle), and the ratio between red and blue power spectra
(bottom). In both panels: red and magenta lines show the Gaussianized and usual density power spectra of red galaxies. Blue and cyan lines show those of
blue galaxies. Left panels: the different line styles show different grid sizes. Right panels: the different line styles show the different samples, summarized in
Table 1. The transformed density power spectrum for the blue galaxies is not shown for Sample 4 (see text).

8 Mpc A1, shown in the dot-dashed lines, which corresponds to a
643 grid.

In the usual density power spectra (magenta and cyan lines in
Fig. 12), the cell size has almost no effect on these ratios, except
near the Nyquist frequency of each grid, as expected. The shape
of the Gaussianized power spectra, on the other hand, is in general
dependent on the grid size chosen. For example, with very large
cells, there are few empty cells, and the cells in the Gaussianized
field populate the full Gaussian PDF. However, with very small
cells, there are many empty cells, and after the transformation,
the non-zero cells only populate a small fraction of the Gaussian
PDF. Therefore, there is a tradeoff between the reducing number
of empty cells, which make the PDF of the Gaussianized field
somewhat non-Gaussian, and reaching smaller scales with smaller
cells.

For the ratio with dark matter (Fig. 12, top left panel), the grid
size does affect the small-scale shape of the ratio between the Gaus-
sianized spectra, but does not significantly change the scale to which
there is agreement between the Gaussianized galaxy power spectra
and the underlying dark-matter spectrum. In all cases, the Gaussian-
ized power spectra deviate from the dark-matter power spectrum
around k ~ 0.3-0.4 h Mpc~'.

MNRAS 457, 3652-3665 (2016)

For the ratio with the initial power spectrum (middle left panel),
there is slightly more variation with cell size, with the 8 Mpc /™!
and 4 Mpc h~! grids showing the best agreement with the initial
power spectrum. For smaller cells, the Gaussianized power spectra
begin to deviate at larger scales. This indicates that a larger grid size
(more particles per cell) is preferable for this ratio.

For the ratio between the red and blue power spectra (bottom left
panel), the cell size does not have a very large effect on the scale to
which the power spectra agree. For the larger cells, the agreement
extends to k ~ 0.4-0.5 h Mpc™!, and for the larger cells it extends
to the Nyquist frequency of the grid, k = 0.4 h Mpc™'.

The right panels of Fig. 12 show how these ratios vary with
sample selection. The right panels correspond to the same ratios as
the left, with the same colour scheme, but the line styles now show
the four samples given in Table 1. We use a 4 Mpc A~! cell size
for all power spectra in this figure. Note we have not included a
measurement for the blue galaxies from Sample 4. As mentioned
in Section 3.2, the shot noise correction scheme works well for a
range of number densities and grid sizes. For Sample 4, the number
density of the blue galaxies is [7i = 0.001 (Mpc ~~')~3] and with
a 1283 grid, the shot noise correction procedure is not accurate on
the scales of interest.
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For the usual density statistics in the right-hand panels of Fig. 12
(cyan and magenta lines), the sample selection has an effect on the
ratios shown. This is because the different stellar-mass cuts give
samples with different clustering properties, including non-linear
bias.

For the Gaussianized statistics, the sample selection has remark-
ably little effect on these ratios. The red galaxies in Sample 4 (red
dotted line) show a deviation at larger scales than the other samples.
We attribute this to the shot noise correction procedure, which is
only accurate on scales below k ~ 0.5 h Mpc~! for the number
density of this sample [7 = 0.006 (Mpc h~")73]. Therefore, we do
not expect agreement on scales smaller than k ~ 0.5 h Mpc~! for
this sample.

To quantify the agreement between the galaxy power spectra and
the underlying dark matter (or initial) power spectrum, we use a
reduced x? to test the goodness-of-fit of the dark-matter spectrum
to that of the galaxies as a function of k-bin:

Ly (In Patk) —In Poui(k)’ ©

2_ 2 _
Xn = X" (k) = P =
where v is the number of degrees of freedom, and o is the variance
of In (Pg(k;)). For bin # in the reduced x2, the number of degrees
of freedom is n + 1. For simplicity, we assume that the underlying
density field is Gaussian, implying that the variance in bin i is 2/N;,
where N; is the number of modes in the bin. While this assumption
is certainly not true on small scales, we use this quantity only to
estimate the scale of deviation of the power spectra, so it does not
need to be extremely accurate.

With these assumptions, we arrive at the following expression for
the reduced x2:

2 _ 1 . ( Pgal(ki) )2 .
%= a1 2\ oy ) @

i=0

We define the quantity k., to be the highest k where the reduced
x> < 1. This corresponds to the scale at which the galaxy power
spectrum Py, (k) no longer provides a statistically adequate descrip-
tion of the underlying Ppy(k).

In order to test whether there is an optimal cell size for a given
sample, we compute the k., values for the ratios of the usual and
transformed power spectra with the underlying dark-matter power
spectrum in all four samples over a range of cell sizes. We check
that k.« is never larger than the shot noise correction scale for a
given grid size and sample. Fig. 13 shows ky,y for the usual density
(dashed lines) and Gaussianized density (solid lines) cases, as a
function of the average number of particles per cell for red galaxies
(left panels) and blue galaxies (right panels). The different colours
of solid and dashed lines represent different cell sizes used for
each of the four samples given in Table 1. The horizontal dotted
lines mark the Nyquist frequencies of the corresponding grids. The
three vertical panels in Fig. 13 show k., values in real space (top),
redshift space (middle), and collapsed FoG space (bottom).

These figures show that in the ratio of Gaussianized galaxy spec-
tra to the Gaussianized dark-matter spectrum (solid lines), there is
not a strong dependence on number of particles per cell in most
cases, but that a higher number of particles per cell is preferred in
some cases. Apart from red galaxies in redshift space, there is no
need to use cells smaller than 8 Mpc A~!, as kya, never exceeds the
Nyquist frequency of that grid. In the case of the red galaxies in
redshift space, knax can be as high as 0.6 Mpc*1 if a smaller grid
size is used, corresponding to an average of one particle per cell.

Dark-matter clustering with Gaussianization — 3661

We also computed the k.« values for the ratio with the initial
power spectrum and for the ratio of red to blue power spectra in all
cases. We found that for the ratio with the initial power spectrum,
larger cells are optimal for both red and blue galaxies. In both
cases, the agreement in real space extends to k ~ 0.4 h Mpc~' for
the 64° grid. For the ratio between red and blue power spectra, the
agreement can be extended to k ~ 0.6 4 Mpc™! using a grid size
corresponding to ~1 particle per cell in both real space and with
collapsed FoG.

Overall, we find that for Gaussianized galaxy power spectra, a
minimum cell size of about 4 Mpc h~! is sufficient, as the agreement
in shape between the galaxy spectra and dark matter never exceeds
k ~ 0.6 h Mpc~!. Using smaller cells tends to make the agreement
worse. While the optimal cell size has a complicated dependence on
number density and clustering, and may also depend on which ratio
one is interested in, we find that a cell size that roughly corresponds
to an average of one or more particles per cell is a good rule of
thumb.

5 COMPARISON TO CLIPPING

In this section we compare the Gaussianization transform to the
clipping transform (Simpson et al. 2011), which has also been shown
to reduce the effect of both non-linearity and non-linear bias in the
galaxy power spectrum (Simpson et al. 2016). First, we describe the
clipping procedure in general and how we apply it to the red and blue
galaxy samples in Sample 1 in both real and redshift space. We then
discuss how the method and results compare to Gaussianization.
The basic idea of the clipping transform is to impose an upper
limit on the density in the field under consideration. For a given
density threshold, §, all cells with §; > §, are set to the threshold
value, §y. Formally, the clipped density field (5.(x)) is related to the
usual density field (6(x)) through the following transformation:

] do, 8(x) > &
8e(x) = {a(x), 8(x) < 8.

This suppresses the high-density peaks which contribute most to
the non-linear behaviour of the density field. As shown in Simpson
et al. (2011, 2016), the statistics of the clipped density field can
be modelled accurately to higher wavenumbers (k ~ 0.5 h Mpc™")
than those of the usual density field.

Simpson et al. (2016) applied clipping to the full galaxy sample
from the GAMA survey to constrain fog. The various threshold
values used were chosen such that the large-scale amplitude of the
galaxy power spectrum was reduced by 30 per cent to 60 per cent,
corresponding to removal of roughly 10 per cent to 20 per cent of
the objects in the field. This balances between reducing the effects
of non-linearity and maintaining the signal-to-noise ratio.

Here, we are interested in testing clipping on galaxy fields sepa-
rated by colour. As the red and blue galaxy fields we are considering
have very different large-scale linear biases (bpye = 0.80 and beq
= 1.55 in Sample 1, as computed with equation 2), it is unclear
what the optimal clipping threshold is, and whether it should be the
same for both galaxy fields. Thus, we test a number of different
threshold values in the two fields. See Table 2 for details of the
various thresholds used for Sample 1.

In order to model the resulting clipped galaxy power spectrum,
we follow equations (27)—(29) in Simpson et al. (2016), which
relate the clipped galaxy power spectrum to the clipped dark-matter
power spectrum. Here, instead of using an analytic prediction for the
non-linear dark-matter power spectrum in real or redshift space, we
use the known underlying dark-matter field from the simulation. To
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Figure 13. Maximum wavenumber, kmax, for which the galaxy power spectrum Pg, (k) provides a statistically adequate description of the underlying Ppm(k),
as qualified by equation (7). Left (right) panel shows knax as a function of the average number of particles per cell for red (blue) galaxies and top to bottom
shows real space, redshift space, and collapsed FoG space, respectively. Dashed lines show kpyax for the usual density power spectrum and solid lines show
kmax for the Gaussianized power spectrum. Nyquist frequencies for the largest three cell sizes are indicated as horizontal dotted lines.

Table 2. Summary of different clipping thresholds used for Sample 1 in real space. The first two columns give the large-scale amplitude of the clipped power
spectra relative to the unclipped dark-matter power spectrum and unclipped blue power spectrum, respectively [see equation (2) for definition of the large-scale
amplitude]. The middle four columns give the real-space density thresholds (and corresponding percentage of objects removed within parentheses) for the red
galaxy field, the dark-matter field scaled by the bias of the red galaxies, the blue galaxy field, and the dark-matter field scaled by the bias of the blue galaxies.

The final column gives notes about the chosen thresholds.

Belip/Bom  Belip/Bblue sped (breas®™)o spmue (bpued®)y Notes
1.0 1.56 9.8 54 - - Red galaxies clipped to match the large-scale
(17.8 per cent)  (19.6 per cent) amplitude of DM power spectrum
0.51 0.8 3.95 2.05 3.85 10.5 Red and blue galaxies clipped so large-scale
(319 percent) (35.8 percent) (3.1 percent) (2.2 percent) amplitudes are 80 per cent of unclipped blue power spectrum
0.26 0.4 1.7 0.7 1.32 1.6 Red and blue galaxies clipped so large-scale

(44.8 per cent) (51.1 percent) (15.8 per cent)

(10.7 per cent) amplitudes are 40 per cent of unclipped blue power spectrum

model the power spectrum of a galaxy field clipped to a given large-
scale amplitude, we scale the dark-matter field by the measured
linear bias of the galaxy field and apply clipping at a level that
results in a clipped biased dark-matter power spectrum with the
same large-scale amplitude as the clipped galaxy power spectrum.
In other words, our model for the clipped galaxy power spectrum is:

Cl[Pgal(k)] = Cl[bgal PDM(k)]a (8)

MNRAS 457, 3652-3665 (2016)

where the strength of the clipping operation, represented by CI[---],
is defined by the reduction in large-scale amplitude of the resulting
clipped power spectrum. In general, the density thresholds used
(and percentage of mass removed) for the galaxy and linearly
biased dark-matter fields may be different for each galaxy sample
to achieve the same large-scale amplitude (see Table 2). Note that
the change is not necessarily huge in terms of mass fractions: a few
per cent, at most.
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Figure 14. The effect of clipping on red and blue galaxy power spectra in
real space. Line styles indicate clipping level (see key), and top and bottom
panels show red and blue galaxies, respectively. Black lines in both panels
show power spectra of dark matter, linearly biased by the appropriate bgay,
and clipped to the same large-scale amplitude as the corresponding galaxy
power spectrum. Stronger clipping results in agreement on smaller scales
between galaxy and dark-matter power spectra.

We estimate the clipped power spectrum as described in
Section 3.2 using an FFT of a 128% CIC grid, after subtracting
the mean of the clipped overdensity field to ensure that (6.) = 0. As
described in Simpson et al. (2016), the shot noise contribution to
the clipped power spectrum can be modelled for clipped Gaussian
fields as P >~ f‘ﬁ /i, where fy is the fraction of the volume of the
field lying below the clipping threshold. For the thresholds used
here, fy is higher than about 85 per cent in all cases.

Fig. 14 shows the clipped and unclipped power spectra in real
space. The top panel shows the unclipped (solid) and clipped
(dashed, dot—dashed, and dotted) red galaxy power spectra (red
lines) and corresponding clipped linearly biased dark-matter power
spectra (black lines). The bottom panel shows the same for the blue
galaxies. By construction, the large-scale amplitudes of the clipped
galaxy and clipped (biased) dark-matter power spectra are the same.
Itis clear from this figure that clipping reduces the small-scale power
of both the galaxy and dark-matter power spectra, bringing them
closer to each other on small scales, as expected.

This can be seen more clearly in Fig. 15, which shows the ratios of
the galaxy and dark-matter power spectra in the top panels, and the
ratios of the galaxy and initial power spectra in the bottom panels.
The left panels of Fig. 15 show these ratios in real space and the right
panels show the ratios in redshift space (monopole). Red and blue
lines correspond to red and blue galaxy samples in all panels, and the
various clipping thresholds are shown in different line styles. From
this figure, we see that increasing the clipping strength improves the
agreement between the clipped galaxy fields and both the (clipped
biased) non-linear dark-matter power spectrum and the linear power
spectrum. However, even at the strongest clipping level in the red
galaxies, which removes nearly 45 per cent of the galaxies, the
agreement with both the dark-matter and linear power spectra only
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extends to k ~ 0.2 A Mpc~'. The agreement is better in the case
of blue galaxies at this clipping level, extending to k ~ 0.3-0.4
hMpc'.

Note that when we repeat the clipping procedure in redshift space,
we find our clipping thresholds relative to the redshift-space large-
scale amplitudes. This means that for a given field, the density
threshold used in real and redshift space may be different to achieve
the same relative amplitude reduction. For example, to clip the red
field to the dark-matter large-scale amplitude, we use a density
threshold of §5*¢ = 9.8 in real space, and a threshold of 55 = 6.4
in redshift space. As the right panels of Fig. 15 show, increasing the
clipping strength improves the agreement on small scales between
the galaxy power spectra and (clipped) dark matter, although the
strongest clipping strength (dotted lines) does not seem to improve
the agreement for blue galaxies. In the ratio with the initial power
spectrum, the strongest clipping threshold overly suppresses both
galaxy power spectra on small scales relative to the initial power
spectrum.

From this analysis we can make several general comparisons with
the Gaussianization transform, in both the applicability and effec-
tiveness at removing non-linearity and bias from the galaxy power
spectra. There is a degree of ambiguity when applying clipping to
galaxy fields that is not present in Gaussianization. For example, it
is not clear what the optimal clipping threshold is for a given field,
whether that threshold depends on the clustering of the field, and
whether it is the same in real and redshift space. It is also not obvious
whether the red and blue galaxy fields, clipped to a given large-scale
amplitude, should agree with each other on small scales, whereas
an explicit goal of the Gaussianization transform is to separate bias
from intrinsic clustering resulting in fields with the same statistics.
However, the shot noise contribution is much better behaved in the
case of clipping, where it can even be reduced compared with the
usual density field. With Gaussianization, the shot noise contribu-
tion is increased in a complicated way that depends on grid size and
number density.

Overall, it is clear that there are subtleties and complications
in both methods that must be well understood in order to achieve
any benefits from their application. Both transforms appear to work
reasonably well at removing non-linearity and galaxy bias in real
space. Clipping is more well behaved than Gaussianization in red-
shift space, provided the clipping strength is moderate.

6 CONCLUSION

The Gaussianization transform has previously been shown to be a
promising method for restoring information to the two-point statis-
tics of the matter density field on quasi-linear scales. This is due
to two effects: reduced covariance on small scales and the shape
of the small-scale power spectrum. In this paper, we have studied
the effectiveness of the transform to remove non-linear galaxy bias
and thus restore the small-scale shape of the underlying dark-matter
power spectrum when applied to differently biased galaxy samples
from the semi-analytic model GALFORM.

Overall, our results raise a few key points. The approximation
that Gaussianization removes bias, which would imply that the
Gaussianized statistics of differently biased fields agree, seems to
hold in real space on quasi-linear scales (k ~ 0.4-0.6 & Mpc™').
Gaussianization in real space also recovers the shape of the linear
power spectrum on these scales (k ~ 0.4 h Mpc™).

Thus, the transform would seem to be an effective method for re-
moving non-linear bias and non-linear gravitational evolution from
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Figure 15. Ratios between unclipped (solid) and clipped (dashed, dot-dashed, and dotted) galaxy power spectra and corresponding linearly biased dark-matter
power spectra (top) or initial power spectrum (bottom). Left panels show the ratios in real space and right panels show ratios in redshift space. Shaded grey
regions show the 10 per cent range around 1. See equation (8) and text for discussion of the clipping procedure and modelling. Stronger clipping reduces the
effects of both non-linearity and non-linear galaxy bias. In redshift space the effect of clipping is more complicated than in real space.

the two-point statistics of galaxies, and could simplify the mod-
elling of modes up to k ~ 0.4 h Mpc~!, likely improving constraints
on cosmological parameters.

However, the galaxy-bias benefits observed in real space unfor-
tunately do not extend to redshift space, for the most part. The
Gaussianized statistics do not offer an improvement over the usual
density statistics in estimating the linear-theory power spectrum
in redshift space. While the shape of the Gaussianized blue galaxy
power spectrum does not match that of the underlying dark matter in
redshift space, we find that the shape of the Gaussianized red galaxy
power spectrum in redshift space agrees very well (k ~ 0.6 A Mpc™")
with that of the underlying dark matter. This suggests that Gaus-
sianization of highly clustered galaxy samples, such as Luminous
Red Galaxies (LRGs), may prove to be a useful method for recover-
ing the non-linear dark-matter density field on quasi-linear scales.
Further work is needed to understand why the Gaussianized statis-
tics agree so well in this case. Another necessity is to investigate
Gaussianization’s effect on redshift-space clustering as a function
of angle. It may be that Gaussianization is particularly adept at re-
moving galaxy bias at angles where FoG do not dominate the signal,
e.g. away from the line of sight.

We attribute the change in shape between the redshift-space Gaus-
sianized matter and galaxy power spectra to the different behaviour
of the galaxy samples on small scales. We test this by considering
the redshift-space distribution with collapsed FoG. We find that in
this case, the agreement is largely restored between the Gaussian-
ized galaxy statistics and both Gaussianized dark-matter and initial
statistics. This provides a possible avenue for recovering the small-
scale shape of the underlying dark-matter and initial power spectra
using Gaussianization.

We analyse the effect of sample selection and cell size on our re-
sults, and find that the agreement between the Gaussianized galaxy
power spectra and underlying dark-matter (and initial) power spec-
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tra in general depends on cell size and number density, as well as
other factors, in a complicated way. However, in all cases using a
cell size that corresponds to 1 or more galaxies per cell on average
gives the best results and ensures that the shot noise is manageable.

We also compare the Gaussianization transform to the clipping
transform, which has been shown to reduce the effects of non-
linearity and scale-dependent galaxy bias. We find that while clip-
ping reduces the issue of shot noise and is less sensitive to reso-
lution, there is ambiguity in the optimal clipping thresholds to use
for each field. It is not clear how the optimal clipping threshold
depends on the clustering of the field, and whether this threshold
should be the same in real space and redshift space. In general, we
favour Gaussianization as a method of overcoming galaxy bias for
conceptual reasons: in the limit of no discreteness, and a mono-
tonic biasing function, Gaussianization entirely eliminates galaxy
bias. However, we have found that Gaussianization behaves subtly
in the presence of discreteness, and with some stochasticity in the
matter-to-galaxy-density biasing function. In practice, it seems that
both clipping and Gaussianization can be effective at removing non-
linearity and non-linear bias, at least in real space, if the subtleties
of each procedure are carefully understood.

When applied appropriately, and if FoG compression is available,
the Gaussianization transform may be able to provide better fidelity
to the dark-matter and initial density power spectra, allowing for
more modes to be included in analysis. Here we found that the
agreement between the Gaussianized galaxy spectra and dark matter
can extend to k ~ 0.4-0.5 h Mpc~!, and similar agreement can be
achieved between the Gaussianized galaxy spectra and the linear
power spectrum at z = 0. We expect the agreement to extend to
even smaller scales for z > 0, where non-linearities are smaller.

Further benefits are likely to be seen in the reduced covariance,
which we have not studied here. Neyrinck et al. (2011) used galaxy
samples somewhat different from those used here, particularly not
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separated by colour, from the Millennium simulation to show that
Gaussianization generally greatly reduces error bars in galaxy power
spectra on small scales. The smaller error bars it provides can lead to
smaller errors on any cosmological or galaxy-formation parameter
to which galaxy power spectra may be sensitive, such as the power-
spectrum tilt and neutrino masses.

In this work we have limited our analysis to relatively high num-
ber densities [7 > 0.001 (Mpc h~")73] due to the limitations of our
shot noise correction procedure. To use Gaussianization as a tool for
recovering dark-matter clustering to higher wave numbers in future
galaxy surveys such as DESI and Euclid, which may have lower
number densities, a more sophisticated correction procedure will
be necessary. Going forward, the full power and applicability of the
Gaussianization transform must be tested via a suite of simulations
with realistic galaxies, enabling us to quantify how well Gaussian-
ization improves constraints on parameters due to the combination
of the removal of non-local bias and the reduced covariance.
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