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Abstract

We introduce and discuss two inter-related mechanisms operative in the electroweak sector of the Stan-
dard Model at high energies. Higgsplosion, the first mechanism, occurs at some critical energy in the 25 to 
103 TeV range, and leads to an exponentially growing decay rate of highly energetic particles into multi-
ple Higgs bosons. We argue that this is a well-controlled non-perturbative phenomenon in the Higgs-sector 
which involves the final state Higgs multiplicities n in the regime nλ � 1 where λ is the Higgs self-coupling. 
If this mechanism is realised in nature, the cross-sections for producing ultra-high multiplicities of Higgs 
bosons are likely to become observable and even dominant in this energy range. At the same time, how-
ever, the apparent exponential growth of these cross-sections at even higher energies will be tamed and 
automatically cut-off by a related Higgspersion mechanism. As a result, and in contrast to previous studies, 
multi-Higgs production does not violate perturbative unitarity. Building on this approach, we then argue 
that the effects of Higgsplosion alter quantum corrections from very heavy states to the Higgs boson mass. 
Above a certain energy, which is much smaller than their masses, these states would rapidly decay into mul-
tiple Higgs bosons. The heavy states become unrealised as they decay much faster than they are formed. 
The loop integrals contributing to the Higgs mass will be cut off not by the masses of the heavy states, but 
by the characteristic loop momenta where their decay widths become comparable to their masses. Hence, 
the cut-off scale would be many orders of magnitude lower than the heavy mass scales themselves, thus 
suppressing their quantum corrections to the Higgs boson mass.
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1. Introduction

The recent discovery of a light Higgs boson at the Large Hadron Collider (LHC) [1,2] consti-
tutes an outstanding success of the Standard Model (SM) of particle physics. Before its discovery, 
the presence of a light scalar boson with a mass within the reach of the LHC was predicted, to 
ensure unitarity in scattering processes between longitudinal gauge bosons. While the SM is 
certainly an incomplete theory of nature, it fails to explain the observed matter-antimatter asym-
metry and it does not provide a cold dark matter candidate, it is widely believed that the Higgs 
boson interactions with all other SM particles renders it a self-consistent theory, up to very high 
energy scales. As such it is currently arguably impossible to point to a specific energy scale at 
which the SM has to be augmented by new physics to explain fundamental questions in nature.

Yet, the Higgs boson, as a light elementary scalar particle, suffers from the so-called fine-
tuning problem. Quantum corrections are involuntarily dragging the Higgs boson mass to the 
new physics mass scale mnew, such that m2

h � m2
0 + δm2

new. In order to obtain the observed phys-
ical mass of mh � 125 GeV the bare parameter of the theory m0 has to be increasingly precisely 
tuned, depending on how widely the electroweak scale is separated from the new physics scale. 
The guiding principle that parameters of our quantum field theory should not have to be unnatu-
rally precisely tuned is currently our strongest argument for the existence of a new physics scale, 
not too far away from the electroweak scale. Popular ways to avoid the Hierarchy problem al-
together are supersymmetric and composite Higgs models, which each however have their own 
so-called little Hierarchy problems.

Looking beyond 2 → 2 scattering processes, which are unitarised due to tree-level cancella-
tion effects between gauge and Higgs boson interactions, the SM might still run into problems 
at energy scales as low as O(100) TeV, as perturbative unitarity might be violated in 2 → nh

multi-Higgs boson production processes. At sufficiently high energies it becomes kinematically 
possible to produce high multiplicity final states with n ≫ 1 particles in a weakly interacting 
theory. It was pointed out already more than a quarter of a century ago in Refs. [3,4] that the 
factorial growth in n can arise from the large numbers of Feynman diagrams contributing to 
the scattering amplitude Mn at large n. This reasoning works in any quantum field theory where 
there is no destructive interference between Feynman diagrams in computations of on-shell quan-
tities. This is indeed the case in a scalar field theory with λφ4-type interactions [5–7], where tree 
graphs all have the same sign, and the leading-order high-multiplicity amplitudes acquire the 
factorial behaviour, Mn ∼ λn/2 n!. This observation, assuming that the amplitudes do not de-
cay rapidly in moving off the multi-particle thresholds, leads to the factorial growth of the decay 
rates, �n ∼ λn n! ×fn(E), of highly energetic states and signals that perturbation theory becomes 
effectively strongly coupled for n > 1/λ [8–12] and can result in sharply growing with energy 
high-multiplicity observables. For example, it was shown recently in Refs. [13,14] that such high 
multiplicity production processes may be within reach of a future hadron collider at 100 TeV. 
Already at 50 TeV the perturbative cross-sections for 140 Higgs bosons are at picobarn level.

Using the Higgsplosion mechanism, we will simultaneously address both short-comings 
of the SM stated above: the Hierarchy problem, and the possibility of a breakdown of perturba-
tive unitarity in high multiplicity processes. We will show that the sharply growing cross-sections 
actually prevent the violation of perturbative unitarity in multi-Higgs processes and further natu-
rally tame the effect of quantum corrections to the Higgs boson mass. The key point here is that 
the decay width is the imaginary part of the 2-point correlator, with the LSZ-amputated external 
lines. In a physical process, for example when the highly virtual Higgs boson is produced as an 
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intermediate state in the gluon fusion process before decaying into a high-multiplicity final state, 
the amplitude is of the form,

Mgg→h∗ × i

p2 − M2
h + i Mh �(p2)

× Mh∗→n×h , (1.1)

where Mh is the Higgs mass and �(s) is the energy-dependent total width of the Higgs at the 
scale s. It is of course the same rate as the result of computing the phase-space integral in the 
cross-section,∫

d�n|Mh∗→n×h|2 = 2Mh × �n(s) , � =
∑
n

�n . (1.2)

Hence the cross-section of the single-Higgs-exchange process (1.1) at high energies is schemat-
ically of the form

σn ∼
√

s �n(s)

s2 + M2
h �2(s)

, (1.3)

and at asymptotic energies, where �n → ∞, is in fact consistent with unitarity.
The occurrence of sharply growing decay rates of highly energetic (or super-massive) initial 

states into high-multiplicity states of relatively soft Higgs bosons (and in all likelihood other 
massive vector bosons) will be called the Higgsplosion effect. As it effectively amounts to an 
exploding multi-particle decay width �n(s) of super-massive heavy states X, Higgsplosion must 
affect their propagators,

�X(p) = i

p2 − M2
X − i Im	X(p2)

= i

p2 − M2
X + i MX�X(p2)

, (1.4)

appearing in the loops contributing to the quantum corrections to the Higgs mass. If, due to 
the Higgsplosion mechanism, the decay width �X of the heavy particle into n Higgs bosons 
exceeds the heavy mass MX at the scale 

√
s
, which is much smaller than MX , then it will be the 

scale 
√

s
 rather than MX , which will provide the cut-off of the loop integrals in the self-energy 
contributions to the Higgs mass. Our central point is that purely on dimensional grounds, the 
Hierarchy problem for the Higgs mass is reduced by a positive power of the factor of s


M2
X

	 1.

This article is organised as follows: In Sec. 2 we review briefly how off-shell momenta enter 
the propagator and decay width of a scalar particle. We derive the scaling behaviour for the di-
mensionless quantity R due to Higgsplosion in Sec. 3. In Sec. 4 we introduce the Higgspersion 
mechanism, showing that perturbative unitarity is not violated in multi-Higgs production pro-
cesses in the Standard Model. The connection between Higgsplosion and the dynamical taming 
of the Hierarchy problem we discuss in Sec. 5. In Sec. 6 we offer our conclusions.

2. Propagators and partial decay widths of massive fields

We are interested in investigating quantum effects caused by steeply growing multi-particle 
decay rates of a highly virtual (or highly energetic) degree of freedom in the initial state above 
a certain critical energy. The decay widths enter the propagators of the relevant states, thus we 
start in this section with a brief review of the full propagator for a massive scalar. In subsequent 
sections this will be used in our discussion of two cases: the Higgs propagators appearing as 
intermediate states in high-energy cross-sections, and the ultra-heavy states contributing to the 
Higgs mass through loop effects.
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Consider a simple quantum field theory of a single real scalar field φ described by the La-
grangian

L = 1

2
∂μφ ∂μφ − 1

2
m2

0 φ2 −Lint(φ) , (2.1)

where m0 denotes the bare mass parameter and the interaction term Lint(φ) includes the usual 
renormalisable self-interactions of φ, for example Lint = λ

4! φ
4 or Lint = λ

4 (φ2 − v2)2. The Feyn-
man propagator of φ is the Fourier transformation of the 2-point Green function, and reads

�φ(p) =
∫

d4x eip·x〈0|T (φ(x)φ(0)) |0〉 = i

p2 − m2
0 − 	(p2) + iε

, (2.2)

where 	(p2) is the self-energy of φ, i.e. −i	(p2) is the sum of all one-particle-irreducible (1PI) 
diagrams contributing to the two-point function. It is related to the amplitude for a 1 → 1 particle 
scattering, M(p → p) via the LSZ reduction formalism, so that

M(p → p) = −Zφ 	(p2) , (2.3)

and Zφ is the wave-function renormalisation constant. What we have on the right hand side of 
Eq. (2.2) is the resummed or dressed propagator since it can be Taylor expanded in terms of the 
bare propagators and the self-energy insertions,

i

p2 − m2
0 − 	(p2)

= i

p2 − m2
0

+ i

p2 − m2
0

∞∑
n=1

(
−i	(p2)

i

p2 − m2
0

)n

. (2.4)

For simplicity, from now on, we are dropping the iε factor in the propagators.
The physical (or pole mass) mass m is then defined as the location of the pole in the full 

propagator of Eq. (2.2). It is the solution of the equation,1

m2 − m2
0 − 	(m2) = 0 , or m2 = m2

0 + Re	(m2) . (2.5)

The meaning of the self-energy at the fixed scale p2 = m2 is that it provides the shift to the 
bare mass, Re	(m2) = δm2, in order to obtain the observable and finite physical mass m2 =
m2

0 + δm2.
Using the equation (2.5) for the physical mass we can represent the dressed propagator 

Eq. (2.2) in the form,

�φ(p) = i

p2 − m2 − [	(p2) − 	(m2)] = i

p2 − m2

⎛
⎝ 1

1 − d	
dp2 |p2=m2 +O(p2 − m2)

⎞
⎠ ,

which in the limit p2 → m2 results in the well-known pole form of the propagator,

�φ(p)
∣∣
p2→m2 � iZφ

p2 − m2 , where Zφ =
(

1 − d	

dp2

∣∣∣∣
p2=m2

)−1

. (2.6)

Zφ is the field renormalisation constant which has already appeared in Eq. (2.3).

1 In our toy-model the particles are absolutely stable near their mass-shell. The model contains only self-interactions 
of the field φ and the decays become kinematically allowed only at energies above the multi-particle mass-thresholds, 
i.e. p2 > (2m)2. Hence the self-energy 	 at p2 = m2 contains no imaginary part as it is below the multi-particle mass-
thresholds. Hence 	(p2 = m2) = Re	(p2 = m2) and the pole in (2.5) is on the real axis.
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In this paper we will be mostly interested in the kinematic regime(s) far away, i.e. far above 
or far below, from the single-particle mass shell region p2 � m2 of the propagator in Eq. (2.6). 
In the case of the light stable field φ we are considering at present, the regime of interest is 
such that multi-particle decays with ultra-high multiplicities n � 1/λ � 1 can contribute to 
the propagator, and hence p2 � (nm)2 � m2. In this case the propagator is described by the full 
expression of Eq. (2.2), and the self-energy contains a non-vanishing imaginary part. Specifically 
we will concentrate on the scenarios where multi-particle decays of a virtual φ into n-particle 
states, with ultra-high multiplicities n lead to decay widths which grow sharply with energy 
E = √

s above some critical value Ecrit. If this scenario is realised in nature, one can enter the 
energy regime where Im	(s) � m2. This is the regime of interest we will concentrate on in this 
work.

In the single-field toy model of Eq. (2.1) we are discussing at present, the particles described 
by the field φ are well-defined asymptotic states of mass m and they are absolutely stable not too 
far above their single-particle mass threshold, m2 ≤ p2 < (2m)2. Indeed, we have assumed that 
φ interacts only with itself, and there are no interactions with lighter states in the Lagrangian. 
This results in multi-particle thresholds at p2 ≥ (nm)2 for n = 2, 3, . . . corresponding to φ →
n × φ decays at energies s ≥ (nm)2 for n ≥ 2. Thus, at around the single-particle mass-shell the 
decay width is zero, the propagator is real-valued and contains only the pole term – as indicated 
by Eq. (2.6). However, at higher energy scales, the multi-particle mass thresholds are reached 
resulting in the appearance of the imaginary part of 	(p2) in the full propagator on the right 
hand side of Eq. (2.2). For the full propagator we have

�φ(p) = i

p2 − m2 − Re[	(p2) − 	(m2)] − iIm	(p2)

= iZφ

p2 − m2 − iZφ Im	(p2)
+ . . . (2.7)

In deriving this expression we Taylor-expanded the quantity

Re[	(p2) − 	(m2)] = Re
d	

dp2

∣∣∣∣
m2

(p2 − m2) +O((p2 − m2)2) , (2.8)

and used the definition of the wave-function renormalisation constant (2.6). The dots on the right 
hand side of Eq. (2.7) denote the contributions of higher order terms in the Taylor expansion of 
Re	(p2) which will aways assume to be subleading to the effects we want to study here and that 
they can be treated as higher-order corrections in perturbation theory.

We will thus use the following expression for the scalar field propagator

�φ(p) � iZφ

p2 − m2 − iZφ Im	(p2)
= iZφ

p2 − m2 + i m�(p2)
, (2.9)

where we traded the imaginary part of the self-energy for the energy-dependent decay width 
�(p2), cf. Eq. (2.3),

−Zφ Im	(p2) = ImM(p → p) = m�(p2) , (2.10)

with the decay width being determined by the partial widths of n-particle decays at energies 
s ≥ (nm)2,

�(s) =
∞∑

�n(s) , �n(s) = 1

2m

∫
d�n|M(1 → n)|2 . (2.11)
n=2
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M is the amplitude for the 1∗ → n process and the integral is over the n-particle Lorentz-
invariant phase space.

In summary, for the UV-renormalised propagator �R(p) = Z−1
φ , we will use the following 

expression in terms of the pole mass m2, the renormalised self-energy 	R(p2) = Zφ 	(p2), or 
the physical width �(p2), and the renormalised coupling constant(s),

�R(p) = i

p2 − m2 − i Im	R(p2)
= i

p2 − m2 + i m�(p2)
. (2.12)

All quantities in the expression above are UV-finite. The framework of using the propagator for 
the Higgs boson with the energy-dependent width as the correct description, applicable for all 
kinematic regions is widely used in the literature, see e.g. Refs. [15,16], and is consistent with 
our treatment.2 In the following section we will concentrate on the decay width �(s).

3. Multi-particle decay width of the Higgs boson

We now consider the ultra-high multiplicity Higgsplosions of highly energetic virtual particles 
in the Standard Model. Specifically, we will describe the main features of the mechanism using 
a simplified model for the Standard Model Higgs boson in terms of a QFT of a single real scalar 
field h(x) with non-vanishing vacuum expectation value (VEV) 〈h〉 = v,

L = 1

2
∂μh∂μh − λ

4

(
h2 − v2

)2
. (3.1)

This theory is a reduction of the SM Higgs sector in the unitary gauge to a single scalar degree of 
freedom, h(x) which for our purposes we take to be stable, so there are no decays into fermions, 
and we have also decoupled all vector bosons etc. The physical VEV-less scalar ϕ(x) = h(x) −v, 
describes the Higgs boson of mass Mh = √

2λv and satisfies the classical equation arising from 
Eq. (3.1),

−(∂μ∂μ + M2
h)ϕ = 3λv ϕ2 + λϕ3. (3.2)

The first step in our programme is to determine the multi-particle amplitudes describing the 
1∗ → n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the leading 
order (i.e. tree-level) in perturbation theory. We take the bosons in the final state to be non-
relativistic because we are interested in keeping the number of particles n in the final state as large 
as possible, that is, near the maximum number allowed by the phase space, n � nmax = E/Mh. 
Such n-point amplitudes were studied in detail in scalar QFT in [6,9] and were derived for the 
theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [12],

A1∗→n(p1 . . . pn) = n! (2v)1−n exp

[
−7

6
nε

]
, n → ∞ , ε → 0 , nε = fixed . (3.3)

Note that the expression above is for the 1∗ → n current, and the conventionally-normalised 
amplitude A1∗→n is obtained from it by the LSZ amputation of the single off-shell incoming 
line,

M1→n := (s − M2
h) · A1∗→n(p1 . . . pn) . (3.4)

2 In this paper we focus exclusively on multi-Higgs decays and are not concerned with the decays of the Higgs into 
lighter SM particles below its mass threshold. These can be readily incorporated.
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As indicated, these tree-level amplitudes are computed in the double-scaling limit with large 
multiplicities n � 1 and small non-relativistic energies of each individual particle, ε 	 1, where

ε =
√

s − nMh

nMh

= 1

nMh

E kin
n � 1

n

1

2M2
h

n∑
i=1

�p 2
i , (3.5)

so that the total kinetic energy per particle mass nε in the final state is fixed. The first factor 
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a 
current with one incoming off-shell leg) computed on the n-particle threshold,

Athr.
1→n = n! (2v)1−n = n!

(
λ

M2
h

) n−1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

Mthr.
1→n = n! (n2 − 1)

λ
n−1

2

Mn−3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [6]. The kinematic 
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor 
which has an analytic dependence on the kinetic energy of the final state nε. But, importantly, 
the factorial growth ∼ λn/2 n! characteristic to the multi-particle amplitude on mass threshold 
remains. Its occurrence can be traced back to the factorially growing number of Feynman dia-
grams at large n [17–19] and the lack of destructive interference between the diagrams in the 
scalar theory. We refer the reader to Refs. [6,9,12] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at 
large n (in the approximation where the outgoing particles are non-relativistic). The relevant 
dimensionless quantity describing the multi-particle processes is

Rn(s) := 1

2M2
h

∫
d�n|M(1 → n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections σn(s) are obtained from Rn(s) after an appro-
priate overall rescaling with Mh and s. Following in the steps of Refs. [10,12], we obtain the 
characteristic exponential expression for the 1 → n particles rate R in the high-energy, high-
multiplicity limit:

R(λ;n, ε) = exp

[
n

(
log

λn

4
− 1

)
+ 3n

2

(
log

ε

3π
+ 1

)
− 25

12
nε

]
, (3.9)

�n(s) ∝R(λ;n, ε) , and σn(s) ∝R(λ;n, ε) .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into 
the 1

n! |Mn|2 ∼ n!λn ∼ en log(λn) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale 

the centre-of-mass energy 
√

s = E linearly with n, E ∝ n, keeping the coupling constant small 
at the same time, λ 	 1. It was pointed out first in Refs. [9,10], and then argued for extensively 
in the literature, that in this limit the multi-particle rates have a characteristic exponential form,

R = e nF(λn, ε) , for n → ∞ , λ → 0 , ε = fixed , (3.10)
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where it is assumed that the high-multiplicity, weak-coupling limit above, the factor λn is held 
fixed, while the fixed value can be small or large (with the former case allowing for a perturbative 
treatment, while the latter one requiring a large λn resummation of perturbation theory, somewhat 
reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The quantity ε is the 
average kinetic energy per particle per mass in the final state of Eq. (3.5), and F(λn, ε) is a 
certain a priori unknown function of two arguments. At tree-level, the dependence on λn and ε, 
factorises into individual functions of each argument,

F tree(λn, ε) = f0(λn) + f (ε) , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of 
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(λn) = log

(
λn

4

)
− 1 , (3.12)

f (ε)|ε→0 → f (ε)asympt = 3

2

(
log

( ε

3π

)
+ 1

)
− 25

12
ε . (3.13)

One can further come up with various improvements in the understanding and control of the 
exponential behaviour of the multi-particle rate. In particular, at tree-level the function f0(λn)

is fully determined, but the second function, f (ε), characterising the energy-dependence of the 
final state, is determined by Eq. (3.13) only at small ε, i.e. near the multi-particle threshold. This 
point was addressed recently in Ref. [13] where the function f (ε) was computed numerically in 
the entire range 0 ≤ ε < ∞.

What about the inclusion of loop corrections to the tree-level multi-particle rates above? This 
has been achieved at the leading order in λn in Ref. [9] by resumming the one-loop correction 
to the amplitude on the multi-particle mass threshold computed in Refs. [20,21]. The result is 
that the 1-loop correction in the Higgs theory under consideration does not affect the factorial 
growth, but provides an exponential enhancement to the rate (though strictly speaking it is valid 
only at small values of λn) and results in the modified expression for f0,

f0(λn)1−loop = log

(
λn

4

)
− 1 + √

3
λn

4π
. (3.14)

Of phenomenological interest is whether the multi-particle rates can become observable at 
certain energy scales and, at even higher energies, exponentially large – in the limit of near max-
imal kinematically allowed multiplicities. To answer this, it is required to resum the perturbation 
theory and address the large λn limit. Very recently, we have computed the exponential rate in 
the λn � 1 limit using the Landau WKB-based formalism, following the approach of Ref. [10]. 
These results will be reported in a forthcoming publication [22]. The correction to the tree-level 

rate in the non-relativistic regime is found to be of the form ≈ +3.02 n 
√

λn
4π

.
As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [22]

R= exp

[
λn

λ

(
log

λn

4
+ 3.02

√
λn

4π
− 1 + 3

2

(
log

ε

3π
+ 1

)
− 25

12
ε

)]
. (3.15)

This expression is derived at small ε and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy. 

In order to be able to probe sufficiently high multiplicities, they have to be kinematically al-
lowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n, as 
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Fig. 1. Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state into n Higgs bosons h
plotted as function of n. The four lines correspond to the energies of the initial state equal 190Mh , 195Mh , 200Mh and 
205Mh , as indicated. There is a sharp exponential dependence of the peak rate on the energy varying from R � 10−6

at E = 190Mh (red line) to R � 107 at E = 205Mh (black line). The peak multiplicities n
 ∼ 150 in these examples 
are not far from the maximally allowed values at the edge of the phase space nmax ∼ E/Mh. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

exp[n logλn], reaching their maximal values in the soft limit where n is maximal, but this ef-
fect is counter-acted by the diminishing phase-space volume near the edge of the kinematically 
accessible region. The competition between the two effects is clearly seen in the expressions for 
R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory expression 
in Eq. (3.15). The growth of the exponent in R with increasing λn is counteracted at the edge 
of the phase-space by the logε factor where ε = (E − Mhn)/(Mhn) → 0 when n → nmax. As a 
result we expect that the rate will peak at a non-perturbatively large value of n � 1/λ but before 
the edge of the phase-space at ε = 0 is reached.

The relevant parameters are the energy 
√

s = E in the units of the elementary scalar mass, 
in our case Mh, and the number of particles in the final state n rescaled by the (small) coupling 
constant, λn. In the regime of relatively low-energies, E/Mh � 102, the multi-particle rates and 
cross-sections are exponentially small (essentially zero). But above the critical energy Ecrit in 
the region of � 200 Mh, using the plots in Fig. 1 as a guide, and for large values of n towards 
the edge of the allowed phase-space, the exponential growth in the rates starts competing with 
the exponential suppression, the rates become of the order 1 and then blow up exponentially. In 
Fig. 1 we sketch the behaviour of the rate R in Eq. (3.15) at fixed energies E = 190Mh, 195Mh, 
200Mh and 205Mh as the function of the number of particles in the final state. For concreteness 
we have set λ = 1/8. The values of E are chosen to illustrate the sharp rise in the rate from the 
exponentially suppressed to the exponentially enhanced level – the transition which occurs very 
sharply with energy as it changes by just a few percent.

The structure of the peak in n is easy to understand. Starting at nmax at the right of the plot, 
we are at the end of the phase-space and the rate is zero. Then by decreasing the values of n to 
the left of nmax, the phase-space volume starts to grow and so does the rate R. On the other hand, 
in the opposite limit, at low values of n, the rate is exponentially small again. Hence there must 
exist a local maximum, which clearly prefers as large as possible values of n but before the edge 
of the phase-space is reached.
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In summary, we conclude that at sufficiently high energies E > Ecrit ∼ 2 ×102Mh (the precise 
value would depend on the robustness of the model used3) the multi-particle decay rates of an 
initial state into Higgs bosons develop a non-perturbative peak centred at n = n
 � 1/λ which 
tends to be near the edge of the kinematically accessible multi-particle phase-space, n
 = nmax −
�n = E/Mh −�n. The peak occurs in a non-perturbative regime, n � 1/λ, and the width of the 
peak 2�n is roughly of the order 1/λ. Most of the energy available in the initial state is used to 
maximise the multiplicity n
 of the final state bosons produced near the edge of the phase space, 
as such they correspond to relatively soft modes.

It is tempting to interpret this peak as a creation of a semi-classical object – a classicalon – 
which then decays into soft modes with ultra-high multiplicities. There are apparent parallels 
with the classicalisation phenomenon [23–25] in which the theory prevents itself from probing 
shorter and shorter distances at very high energies by redistributing the energy of the initial state 
into many weakly interacting soft quanta.

4. Higgspersion, cross-sections and perturbative unitarity

The scattering cross-sections for producing multiple Higgs bosons in the high-multiplicity 
limit n � 100 at collider energies in the regime of 100 TeV were addressed and computed re-
cently in Refs. [13,14] (with certain simplifying assumptions). These calculations consider the 
gluon fusion process where intermediate highly energetic Higgs bosons are produced before sub-
sequently branching into high-multiplicity multi-Higgs final states. The results of Ref. [14] are 
based on the computation of the leading polygons – the triangles, boxes, pentagons and hexagons 
– to the gluon fusion production processes, further combined with the subsequent branchings to 
reach high final state multiplicities. This can be represented as

Mgg→n×h =
∑

polygons

Mpolygons
gg→k×h∗

∑
n1+...+nk=n

k∏
i=1

Ah∗
i →ni×h , (4.1)

where the final partonic amplitude Mgg→k×h is convoluted with the gluon PDFs to obtain the 
collider cross-section. The factors of Ah∗

i →ni×h, after being squared and integrated over the 
multi-particle phase-space, result in a factor of Rn(s) appearing in the cross-section. It was 
found that the characteristic energy and multiplicity scales where these cross-sections become 
observable are within the 50 and 100 TeV regime with of order of 130 Higgses, or more, in the 
final state. We refer the reader to Fig. 2 (taken from Ref. [14], and to the above reference for 
more details).

Fig. 2 indicates that at collider energies below approximately 50 TeV, the processes are com-
pletely unobservable. However at higher energies, from 50 to a 100 TeV, the cross-sections reach 
a picobarn level and become observable for 130 to 150 Higgs bosons produced. This is the 
regime where a dramatic change away from the usual weakly-coupled perturbative description 
of the electro-weak physics takes place. We note that the multiplicity range where the slope of the 
cross-section in Fig. 2 changes so that the cross-section starts to increase with the multiplicity, 

3 It is important to note that the overall structure of the peaks observed in Fig. 1 does not depend critically on the 
detailed form of the expression in (3.15). All that is required is that the factorial growth of the tree-level amplitudes – 
manifested as the n logλn term in the exponent of (3.15) – is not erased by the higher-order quantum corrections. The 
main points of the Higgsplosion and Higgspersion mechanisms discussed in this paper can be understood by simply 
assuming the scaling behaviour of the type sketched in Fig. 1.
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Fig. 2. Cross-sections for multi-Higgs production at proton colliders including the PDFs for different energies of the 
proton-proton collisions plotted as the function of the Higgs multiplicity. Only the contributions from the boxes are 
included. The Figure is taken from [14].

corresponds to the left-hand-side of the peaks in R shown in Fig. 1. The plot range in Fig. 2 is 
cut-off before the cross-sections for 35, 50 and 100 TeV reach their local maxima.

4.1. Unitarity

We will now argue that as soon as the cross-sections have reached the observable level, any 
subsequent increase in the available energy will not result in the unbounded growth of the rates. 
Instead, the cross-sections will actually decrease, and there will be no violation of perturbative 
unitarity. For concreteness, consider the simplest process with a single intermediate off-shell 
Higgs propagator.4 The amplitude for this process reads (cf. Eq. (4.1)):

Mgg→h∗ × i

p2 − M2
h + i Mh �(p2)

× Mh∗→n×h , (4.2)

where �(s) is the energy-dependent total width of the Higgs at the scale s, and it will lead to 
the Higgspersion of the total cross-section at asymptotically high energies. In other words, the 
off-shell current Ah∗→n×h in Eq. (4.1) includes the full dressed propagator times the amplitude 
Mh∗→n×h.

In the limit s � M2
h, m2

t , the corresponding parton-level cross-section becomes,

σ�
gg→n×h ∼ y2

t m2
t log4

(
mt√

s

)
× 1

s2 + M4
hR2

× Rn , (4.3)

and asymptotes to 1/R in the limit R → ∞. The inclusion of the decay width is of course only 
relevant when �(s) becomes comparable to s/Mh. This conclusion is general and applies to 
higher-order polygons with more than one internal Higgs propagator.

In summary the multi-particle high-energy cross-section has the behaviour of the type,

4 This corresponds to the contribution of triangle diagrams to the gluon fusion production. The processes from all 
higher-order polygons, with more than one intermediate Higgs propagator can be dealt with in a similar fashion.
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σgg→n×h ∼
{
R : for R� 1

1/R → 0 : for R � 1 at s → ∞ .
(4.4)

The first line in the equation above is the result of Higgsplosion and the second line is the conse-
quence of the Higgspersion mechanism.

4.2. A comment on the Källén–Lehmann formula

It can also be helpful to address potential unitarity violations in the theory [26,27] using the 
Källén–Lehmann representation of the propagator for a scalar field φ,

�φ(p) =
∞∫

0

ds

2π

i

p2 − m2 ρ(s) , (4.5)

where ρ(s) is the spectral density function, see e.g. [28],

ρ(s) =
∑
n

2π δ

(√
s −

n∑
i=1

pi

)
|〈0|φ(0)|n〉|2

= 2π Zφ δ(s − m2
φ) +

∑
n≥2

∫
d�n|A(1∗ → n)|2(s)

= 2π Zφ δ(s − m2
φ) + 1

(s − m2)2

∑
n≥2

∫
d�n|M(1 → n)|2(s) , (4.6)

and in the last line we have pulled out the external line propagators to represent the expression 
in terms of the conventionally normalised scattering amplitudes M(1 → n). With this we find,

�φ(p) = i Zφ

p2 − m2 + i
∑
n≥2

∞∫
(nm)2

ds

2π

1

p2 − s

∫
d�n|M(1 → n)|2(s)

(s − m2)2 . (4.7)

For |p2| < 4m2 the second term on the right hand side gives a non-singular contribution to the 
propagator and the residue of the propagator pole is entirely determined by the first term. The 
probability rates for 1 → n processes thus appear in Eq. (4.7) as the additive order corrections to 
the propagator, and, importantly, they are integrated over s. Thus it appears from this formula that 
if the multi-particle decay rates �s are exponentially divergent at large s � scrit, upon integration 
over s, these corrections will blow up even at low values of p2, i.e. |p2| < 4m2 	 √

scrit. Thus, 
it is tempting to say that to guarantee unitarity, the higher order terms in n on the right hand side 
of Eq. (4.7) should not be too large [26].

This conclusion, however, depends on the validity of the above expression in (4.7). Let us 
examine it and start by re-writing the term on the right hand side in terms of the imaginary part 
of the self-energy (cf. (2.10)–(2.11)),

−Zφ Im	(p2) = 1

2

∫
d�n|M(1 → n)|2 , (4.8)

so that,
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(−i)�φ(p) = Zφ

p2 − m2 +
∑
n≥2

∞∫
(nm)2

ds

2π

1

s − p2

2Zφ Im	(s)

(s − m2)2 . (4.9)

Note that the imaginary part of the self-energy is proportional to the discontinuity of the self-
energy on the cut along the real axis of the complex variable s,

disc	(s)|s≥(nm)2) = 	(s + iε) − 	(s − iε) = 2i Im	(s) , (4.10)

hence the second term in (4.9) is,

1

2πi

∑
n≥2

∞∫
(nm)2

ds
1

s − p2

Zφ disc	(s)

(s − m2)2 .

By adding to it an integral over the circular contour at |s| → ∞ with the counter-clockwise 
orientation, we have,

1

2πi

∑
n≥2

∞∫
(nm)2

ds
1

s − p2

Zφ disc	(s)

(s − m2)2 + 1

2πi

∮
|s|→∞

ds
1

s − p2

Zφ 	(s)

(s − m2)2 (4.11)

= 1

2πi

∮
s=p2

ds
1

s − p2

Zφ 	(s)

(s − m2)2 = Zφ 	(p2)

(p2 − m2)2 ,

where on the last line we have used Cauchy’s theorem. Hence, we conclude that if the contour in-
tegral at |s| → ∞ is negligible and can be added (that is if the integrand goes to zero at infinite s), 
the Källén–Lehmann formula for the renormalised propagator takes a familiar form:

�φ(p) = i

p2 − m2 + i

p2 − m2 (−i 	R(p2))
i

p2 − m2 , (4.12)

which is essentially a single perturbation in terms of the self-energy.
This derivation, however, breaks down completely when the Im	(s) explodes rather than 

falls off at s → ∞, which is precisely the case of interest for our consideration. In this case the 
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We 
thus conclude that the formal justification of the perturbative Källén–Lehmann representation for 
the propagator in (4.7) or equivalently (4.9) is meaningful only for a sufficiently well-behaved 
imaginary part of the self-energy expression at large s. In the scenario which is of main interest 
to us in this work, the decay rates (or equivalently, the imaginary part of 	) happen to grow rather 
than vanish at infinity. In this case one cannot use the dispersion relation to restore the real part 
from the imaginary part of the self-energy by closing up the contour, and the Källén–Lehmann 
representation in the form (4.7), (4.9) simply becomes invalid. Hence the growing multi-particle 
decay rates do not necessarily imply the breakdown of unitarity of the theory. In the previous 
sub-section we have already argued that the relevant physical cross-sections in this case do not 
blow up and hence do not destroy unitarity either.

5. Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard 
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs 
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boson mass parameter. This obviously requires that X and the Higgs boson h can interact with 
each other and we further assume that X is not absolutely stable. This picture is captured by a 
simple Lagrangian,

LX = 1

2
∂μX ∂μX − 1

2
M2

X X2 − λP

4
X2h2 − μXh2 . (5.1)

The Higgs-portal interactions λP X2h2 ensure that X-loops contribute to the Higgs boson mass 
while the interaction μXh2 lifts the X → −X parity symmetry and ensures that X can decay 
into multiple Higgs bosons X → hh.

Calculating the contribution to the Higgs boson mass from the scalar X, we find

�M2
h ∼ λP

∫
d4p

16π4

1

M2
X − p2 + i Im	X(p2)

= λP

∫
d4p

16π4

(
M2

X − p2

(M2
X − p2)2 + (Im	X(p2))2

− i Im	X(p2)

(M2
X − p2)2 + (Im	X(p2))2

)
.

Now, due to the Higgsplosion effect the multi-particle contributions to the width of X explode 
at the values of the loop momenta p2 = s
, where 

√
s
 � O(25) TeV according to Fig. 1. This 

is much below the masses of the hierarchically heavy states which we can assume to be at the 
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width 
Im	X(s) ∝ Rn(s) with the energy, it provides a sharp UV cut-off in the integral over the loop 
momenta at p2 = s
. Hence the integral in the expression above amounts to

�M2
h ∝ λP

s


M2
X

s
 . (5.2)

This is suppressed by the factor of 
(√

s

MX

)4 �
(

25 TeV
MX

)4
relative to the normal expectations 

without the Higgsplosion-driven disintegration of the heavy particles.

For �(s
) � MX at s
 	 M2
X =⇒ �M2

h ∝ λP

s


M2
X

s
 	 λP M2
X . (5.3)

The reasoning above equally applies to any heavy modes, as far as they can decay and have 
a non-vanishing interaction with the Higgs boson. These modes could be the heavy 1012 GeV
sterile neutrinos which are important for the standard thermal Leptogenesis [29–31], a heavy 
inflaton [32,33], GUT-scale particles [34,35], flavons [36,37], or the heavy degrees of freedom 
that would appear at the fa � 1011 GeV scale relevant for the axion [38–41].

At one-loop level, one can always estimate the contributions to the Higgs mass from the heavy 
states of any spin with generic interactions with the Higgs boson using the Coleman–Weinberg 
effective potential,

M2
h = ∂2Veff

∂h2 , (5.4)

where

Veff = 1
2

√
s
∫
d4p STr log

(
p2 + MX(h)2

)
. (5.5)
64π
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STr = Tr(−1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to 
the heavy field mass in the h(x) background. The main point, as above, is that the integral over 
the loop momenta is cut-off at the relatively low scale 

√
s
 where the Higgsplosion of the heavy 

states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the ex-

istence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the 
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem 
provides its own solution.

6. Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the 
greatest successes of the SM. While its interactions with all other particles ensures the restora-
tion of perturbative unitarity in 2 → 2 scattering processes, it was long argued that the presence 
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production pro-
cesses already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar 
particle, suffers from the well-known Hierarchy problem. We have reexamined and connected 
both issues, thereby providing a simultaneous solution to both questions: We introduced the 
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or 
highly energetic particles is a physical effect, but that this effect leads to Higgspersion, i.e. it re-
stores perturbative unitarity in multi-Higgs boson production processes. While the cross section 
of multi-Higgs production processes can still reach observable levels, its exponential growth is 
avoided and the SM retains self-consistency to highest energies. Quantum corrections of heavy 
particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the heavy par-
ticle’s width increases rapidly beyond a certain energy threshold, these contributions are tamed 
and the Hierarchy problem can be avoided.

Our discussion of the Higgsplosion mechanism in Sec. 3 was based on a simplified model of 
the Higgs sector in terms of a purely scalar field theory, Eq. (3.1), with a non-vanishing VEV. 
In a more complete theory, e.g. the Standard Model, the effects of the interactions of the Higgs 
doublet with the SU(2) × U(1) vector bosons as well as with the Standard Model fermions 
should be included. We have not attempted to account for these effects in the present study. 
We expect that these effects are important; for example it is known that the inclusion of the 
longitudinal vector bosons into the final state lead to additional factorially growing contributions 
at tree level [11,12]. A more detailed understanding of the effects of Higgs interactions with 
vectors and fermions, especially including the loop corrections is currently lacking and clearly 
deserves a separate investigation. Our aim here was to motivate the Higgsplosion phenomenon 
and its applications in the context of a simple Higgs-like scalar model.

In summary, the existence of a microscopic light Higgs boson introduces arguably two fun-
damental issues into the Standard Model: one is the fine-tunning of the Higgs boson mass, and 
the other is an apparent breakdown of perturbativity for high-multiplicity processes. However, 
we find that self-interactions of the Higgs boson provide the mechanisms to heal the Standard 
Model and retain self-consistency of the theory. In case these mechanisms are realised in na-
ture, it would be interesting to study their implications on explanations of fundamental questions 
in nature, e.g. the nature of dark matter or the underlying mechanism of the matter-antimatter 
asymmetry. One way of probing the Higgsplosion picture experimentally could be to look for 
observable multi-Higgs and/or multi-vector-boson processes at a future high-energy hadron col-
lider.
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