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We present the first cosmological measurement derived from a galaxy density field subject to a
“clipping” transformation. By enforcing an upper bound on the galaxy number density field in the galaxy
and mass assembly survey (GAMA), contributions from the nonlinear processes of virialization and galaxy
bias are greatly reduced. This leads to a galaxy power spectrum which is easier to model, without
calibration from numerical simulations. We develop a theoretical model for the power spectrum of a clipped
field in redshift space, which is exact for the case of anisotropic Gaussian fields. Clipping is found to extend
the applicability of the conventional Kaiser prescription by more than a factor of 3 in wave numbers,
or a factor of 30 in terms of the number of Fourier modes. By modeling the galaxy power spectrum on
scales k < 0.3 hMpc−1 and density fluctuations δg < 4 we measure the normalized growth rate
fσ8ðz ¼ 0.18Þ ¼ 0.29� 0.10.
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I. INTRODUCTION

The spatial distribution of galaxies encodes a wealth of
information relating to the composition and evolution of the
Universe. The apparent positions of galaxies in redshift
space offers a glimpse into both the density and velocity
perturbations associated with dark matter. These in turn are
influenced by a number of phenomena in fundamental
physics, such as the mass of the neutrino and the nature
of gravity. However two key factors have thus far restricted
our view: (a) the advanced stages of gravitational collapse
are highly unpredictable and (b) the uncertainty associated
with galaxy bias, defined as the manner in which the galaxy
distribution reflects the dark matter distribution. In Fourier
space, conventional analyses impose a maximum wave
number beyondwhich the data are considered unpredictable
and are simply discarded. For example, despite utilizing
numerical simulations to calibrate the nonlinear power
spectrum, recent studies of redshift space distortions typi-
cally truncate the power spectrum at k < 0.2 hMpc−1 [1] or
exclude galaxy pairs closer than 25 h−1Mpc [2].Whilemost

of the nonlinear behavior is successfully disposed of, so too
is much of the cosmological information.
A number of different methods have been proposed to

allow smaller clustering scales to be exploited. A phenom-
enological model has been developed by Kwan et al. [3],
and expanded by Linder and Samsing [4], to model the
power spectrum based on fits to numerical simulations.
Reid et al. [5] extracted information from small-scale
clustering in Baryon Oscillation Spectroscopic Survey
(BOSS) using a model for the halo occupation distribution.
While achieving a significant increase in precision, this
technique also relies heavily upon calibration from numeri-
cal simulations. Alternatively, various local transformations
have been explored as a means of reducing the influence of
nonlinearities, such as Gaussianization [6,7] and the
logarithmic transformation [8]. In [9] it was shown that
simply enforcing a maximum density could greatly
increase the number of Fourier modes that could be
modeled with the standard set of theoretical tools.
Recently it has also been found to enhance the observa-
tional signature in models of modified gravity which
invoke a screening mechanism [10]. This clipping tech-
nique serves as the focus of the present work.*fergus2@icc.ub.edu
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Our inability to model the small scale power spectrum is
not the only source of information loss. More fundamentally,
the onset of nonlinear gravitational collapse degrades the
amount of information held by the power spectrum [11]; this
loss occurs for any non-Gaussian field. To extract some of
this missing information, we can either perform additional
measurements, such as higher-order statistics, or manipulate
the field prior to evaluating the power spectrum. Previous
attempts to extract cosmological information from the spatial
distribution of galaxies beyond the conventional two point
statistics include measuring three-point statistics [12–14],
Minkowksi functionals [15], and the shapes of voids [16].
Local transformations also appear promising in restoring this
information to the power spectrum (see for example [8,17–
19]). Carron and Szapudi [19] present a transformation that
is optimized for extracting information from the power
spectrum of a Poisson-sampled field. Our approach differs
slightly: instead of optimizing the extraction of all informa-
tion from the observable galaxy density field ρg, we seek to
selectively extract only the predictable information from the
field. At the highest values of ρg both the nonlinear structure
of the dark matter and the environmental impacts on galaxy
formation present formidable obstacles in interpreting its
value. Conversely, regions closer to the mean density are
expected to behave in a more predictable and robust manner.
The action of clipping preserves the location of galaxy
clusters as useful information while discarding information
relating to the precise value of their density contrast.
Clipping is already known to be a highly effective

technique for improving the theoretical modeling of the
galaxy bispectrum [20] and power spectrum [9], when
applied to fields in real space. Before we can apply this
technique to data from real surveys, it must first be verified
in redshift space. It would also be desirable to develop a
deeper understanding of why it has been successful. These
are two of the goals of this paper. The third is to apply
clipping to the GAMA survey in order to obtain a low-
redshift measurement of the normalized growth rate fσ8.
In Sec. II we review the theoretical background asso-

ciated with the two point statistics of clipped fields and
consider its extension to anisotropic fields. This theoretical
framework is placed into a cosmological context in Sec. III,
where we develop a model for the form of the clipped
galaxy power spectrum. In Sec. IV we apply clipping to
simulated dark matter and galaxy fields in redshift space,
with the results illustrated in Sec. V. The GAMA data set is
introduced in Sec. VI, while the main results of this work
are presented in Sec. VII before our concluding remarks in
Sec. VIII.

II. STATISTICAL PROPERTIES OF
CLIPPED FIELDS

Clipping is a local transformation characterized by the
application of a saturation value δ0 to a scalar field δðxÞ
such that

δcðxÞ ¼ δ0 ðδðxÞ > δ0Þ
δcðxÞ ¼ δðxÞ ðδðxÞ ≤ δ0Þ; ð1Þ

yielding the clipped field δcðxÞ. In this section we explore
the statistical properties of δcðxÞ, with particular attention
paid to its autocorrelation

ξcðrÞ≡ h½δcðxÞ − δ̄c�½δcðxþ rÞ − δ̄c�i; ð2Þ

and corresponding power spectrum Pcð~kÞ. We note that the
clipping transformation induces a nonzero mean in δcðxÞ,
which is why must be careful to specify the more general
form of the autocorrelation function, as defined by (2). In
the analysis of cosmological fields the subtraction of the
mean is conventionally omitted from this definition, since
the mean is usually zero by construction.
We begin by reviewing the special case where δðxÞ is an

isotropic Gaussian field before generalizing to anisotropic
and higher-order fields.

A. Isotropic Gaussian fields

For the case of Gaussian fields we may invoke Price’s
theorem [21,22] to evaluate the two-point statistics asso-
ciated with the clipped field δcðxÞ in terms of the original
correlation function ξðrÞ:

∂ξcðrÞ
∂ξðrÞ ¼

ZZ ∂g½δ1�
∂δ1

∂g½δ2�
∂δ2 pðδ1; δ2; rÞdδ1dδ2; ð3Þ

where g½δ� is the local transformation defined by (1), ξcðrÞ
is the correlation function of the transformed field, and
pðδ1; δ2; rÞ is the joint probability distribution for a
Gaussian process

pðδ1; δ2; rÞ ¼
1

2πσ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρðrÞ2

p exp

�
2ρðrÞδ1δ2 − δ21 − δ22

2σ2½1 − ρðrÞ2�
�
:

ð4Þ

The functional derivative of the clipping transformation
is unity below the threshold and zero above the threshold.
This simple behavior permits an analytic solution of the
clipped correlation function ξcðrÞ, which is given by [9]

ξcðrÞ ¼ f2cξðrÞ þ σ2
X∞
n¼1

�
ξðrÞ
σ2

�
nþ1

Cnðu0Þ; ð5Þ

where σ2 is the variance of the field prior to clipping, u0 is
the normalized threshold value u0 ≡ δ0=

ffiffiffi
2

p
σ, fc is the

fraction of the field which lies below the threshold

fc ¼
1

2
½1þ erfðu0Þ�; ð6Þ
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and CnðxÞ is the distortion coefficient

CnðxÞ ¼
H2

n−1ðxÞ
π2nðnþ 1Þ! e

−2x2 ; ð7Þ

where HnðxÞ is the Hermite polynomial of order n. Beyond
a scale-independent reduction in amplitude, clipping indu-
ces a distortion in the shape of the correlation function.
However provided the slope of the spectral power is not too
steep (jnj≲ 3), and the clipping remains weak (u0 ≳ 1), the
leading order correction makes only a small contribution to
the resultant power. Furthermore, terms at higher values of
n decay rapidly.

B. Anisotropic Gaussian fields

For the more general case of anisotropic Gaussian fields
we may express the two-point correlation function ξðr; ~θÞ
in terms of both the pair separation r and the orientation

vector ~θ. In deriving the expression given by (5) we made
use of the joint probability distribution for a Gaussian
process as given by (4), which is not directly applicable to
anisotropic fields. However we can proceed by applying
this single-parameter transformation separately at each

fixed value of ~θ, which in itself constitutes a single-
parameter Gaussian process. Since the variance of each

subspace is the same, σ2 ¼ ξðr ¼ 0; ~θÞ for all orientations,
the transformation maintains the same functional form for

all values of ~θ. Therefore the expression (5) can be
generalized to anisotropic fields.
Transforming to Fourier space leaves us with the

expression for the clipped power spectrum

Pcð~kÞ ¼ f2cPð~kÞ þ σ2
X∞
n¼1

Cnðu0Þ
�
Pð~kÞ
σ2

��ðnþ1Þ
; ð8Þ

where the notation �n represents a self-convolution of order
n. In practice it is computationally more straightforward to
evaluate the higher order terms using powers of the
correlation function, rather than performing multiple con-
volutions of the power spectrum. Further details of this
calculation, as applied to mock cosmological density fields,
can be found in Appendix B.
In line with the definition of the correlation function (2),

our definition of the power spectrum in (8) is specified in
terms of the mean subtracted field. For a clipped Gaussian
field the mean is given by

δ̄c ¼ δ0ð1 − fcÞ −
σffiffiffiffiffiffi
2π

p expð−δ20=2σ2Þ: ð9Þ

In practice, it is not critical to account for this constant
offset since it only contributes to the power spectrum
at k ¼ 0.

C. Second order anisotropic fields

In order to gain insight into how higher order terms
respond to clipping, we repeat the procedure above using
the square of a Gaussian random field, eðxÞ≡ δ2ðxÞ − σ2.
The correlation function of this second order field, clipped
at e ¼ δ0, is well approximated by [9]

ξcðr; eÞ ¼ a2ξðr; eÞ þO
�
ξ2ðr; eÞ

σ2

�
; ð10Þ

a2 ¼
1

π
½ ffiffiffi

π
p

erfðu00Þ − 2u00e
−u0 02 �2; ð11Þ

u00 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ0 þ σ2

p
ffiffiffi
2

p
σ

; ð12Þ

where σ refers to the standard deviation associated with the
original Gaussian field, and a2 quantifies the amplitude of
the power spectrum relative to the original field. Following
the same line of reasoning given in the previous subsection,
we can generalize this result to the anisotropic case:

Pcð~k; eÞ≃ a2Pð~k; eÞ: ð13Þ

As before, the clipped two-point statistics of a second order
field maintain the same shape as the unclipped case, at least
for weak transformations. Note that when clipping at
equivalent thresholds, u0 ¼ u00, the higher order field is
subject to a significantly stronger suppression of its two
point statistics than for the Gaussian case, and this trend
strengthens with yet higher order fields.

D. Hybrid fields

Practical applications of clipping will inevitably involve
the superposition of a Gaussian field with other compo-
nents that contaminate the desired signal, particularly
where the amplitude of the field is large. In this scenario,
clipping can assist in extracting the power spectrum
associated with the original Gaussian field.
Consider a hybrid field hðxÞ that is a linear combination

of a Gaussian field δðxÞ, a higher order field δ2ðxÞ, and a
nuisance field δX, which characterises some unknown
departure from the model:

hðxÞ ¼ α1δðxÞ þ α2ðδ2ðxÞ − σ2Þ þ δXðxÞ: ð14Þ

Upon clipping at a given threshold δ0, and provided the
nuisance field is constant where hðxÞ < δ0, we can subtract
the mean to remove any residual contribution from δX

hcðxÞ ¼ α1δc þ α2ðδ2c − σ2Þ; ð15Þ

where the component fields δc and δ2c are now also clipped
fields. This result is important as it shows that we can
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cleanly remove any trace of our nuisance field δX. In most
practical applications the recovery will be imperfect, as the
nuisance field is likely to vary outside of the clipped region.
However this is a much better state of affairs than the
conventional approach—be it perturbation theory or a
model of galaxy bias—where we assume that the extra
terms missing from our model (as specified by δX) vanish
everywhere. With clipping, we can now make the much
more reasonable approximation that δX only vanishes
where hðxÞ is small.
The two component fields δc and δ2c each experience

their own distinct thresholds, which may be found by
solving (15) with the condition hcðxÞ ¼ δ0. The power
spectrum of hcðxÞ is given by

PcðkÞ ¼ α21PcLðkÞ þ 2α1α2Pc12ðkÞ þ α22Pc22ðkÞ; ð16Þ

where PcLðkÞ and Pc22ðkÞ denote the power spectra
associated with the clipped δðxÞ and δ2ðxÞ fields respec-
tively. The cross spectrum Pc12ðkÞ vanishes in the limit of a
high threshold, but becomes increasingly prominent as the
threshold is lowered. In order to estimate Pc12ðkÞ, we may
decompose it as

hδð1Þc δð2Þc i ¼ hr1r2i − hr2δð1Þi − hr1δð2Þi; ð17Þ

where the residual fields are defined as ri ≡ δðiÞ − δðiÞc .
Provided the clipping is weak, δ0 > σ, the residual fields
are closely related r2 ≃ 2t0

α2
α1
r1, where t0 is the threshold

experienced by the Gaussian field. This may be reexpressed
in the form

Pc12ðkÞ≃ −
�
2t0ðf−1c − 1ÞPLðkÞ þ

α1 − α2
2t0α2

P22ðkÞ
�
:

ð18Þ
Since Pc12ðkÞ may be expressed as a linear combination of
the first and second order power spectra, we can now
rewrite (16) in the form

PcðkÞ≃ aLPLðkÞ þ a2P22ðkÞ; ð19Þ
where aL and a2 are the apparent amplitudes of the original
linear and second order spectra. This result helps explain
why the simple model used in Simpson et al. [9] was
particularly successful at reproducing the clipped dark
matter power spectrum, without explicitly accounting for
the cross-spectrum Pc12ðkÞ.
Adopting this higher order model, rather than relying on

the linear solution from Sec. II B, holds two advantages.
First of all weaker clipping thresholds can be used,
allowing the power spectrum to maintain a high amplitude.
In addition, the inclusion of a higher order term potentially
allows the degeneracy between linear bias and σ8 to be
lifted. The disadvantage of this approach is the difficulty in

estimating a2, which could either be calibrated from
simulations, or simply treated as an additional free
parameter.

III. GALAXY DENSITY FIELDS

Galaxy redshift surveys continue to develop an intricate
mosaic of the low redshift Universe. By convolving the
pointlike positions of galaxies with a suitable kernel, a
continuous density field can be generated. These galaxy
fields are heavily influenced by both nonlinear structure
and galaxy bias, which have proved highly challenging to
model. In each case, it is the highest density regions which
are particularly troublesome, and this motivates the appli-
cation of clipping. The three dimensional nature of the data
ensures that clipping can be applied very efficiently.
Selecting a threshold that affects only ∼1% of the field’s
volume typically leads to a reduction in large scale power
by a factor of 2. Maps which are two-dimensional projec-
tions, such as those derived from a photometric survey,
could also be subject to clipping but a greater proportion of
the area would need to be clipped in order to achieve the
same degree of suppression.
In this section we explore the consequences of clipping a

galaxy density field in redshift space. We shall work in the
distant-observer approximation such that all line-of-sight
displacements may be considered parallel.

A. Galaxy bias

If we model the fractional overdensity of galaxies δg ≡
ρg=ρ̄g − 1 as an arbitrary function of the local dark matter
density [23],

δg ¼
X∞
k¼0

bk
δkm
k!

; ð20Þ

then applying the clipping transformation suppresses
higher order bk terms in the same way that higher order
terms in perturbation theory are suppressed. The simplest
extension to the linear bias model would be the introduction
of b2, which for the case of Gaussian dark matter fluctua-
tions leaves us with a hybrid field as defined in (14). With a
sufficiently low clipping threshold, the linear bias param-
eter b1 dominates such that the clipped galaxy power
spectrum is highly insensitive to the initial value of b2. This
linearization process was demonstrated explicitly in Fig. 4
of [9]. Even in the context of more complex models of
galaxy bias, such as those induced by tidal fields [24], we
expect a similar behavior. Nonlinear contributions to the
galaxy bias still predominantly arise in regions where δ is
large, and these are the regions suppressed by the clipping
transformation.
There is however a fundamental limit on how much we

can shield ourselves from the influence of the highest
density regions, and this stems from the estimation of the
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mean number density. In defining the fractional overden-
sity, δg ≡ ρg=ρ̄g − 1, the quantity ρ̄g necessarily incorpo-
rates the abundance of galaxies across the whole volume,
prior to clipping. Unlike dark matter perturbations where
the total particle number is conserved, no such restriction
applies to galaxy bias. For example if baryonic effects
reduce the abundance of galaxies in clusters such that the
total galaxy count across the survey volume is lowered by a
small fraction y, then the inferred amplitude of fluctuations
across the rest of the volume are overestimated by

δ̂g ≃ δtgð1þ yÞ þ y; ð21Þ

where δtg is the true fractional perturbation.

B. Redshift space distortions: Linear model

Whilst the true spatial distribution of galaxies is
expected to be statistically isotropic, their redshift-inferred
distances receive an additional displacement due to their
peculiar velocities, generating a statistically anisotropic
configuration. This permits a measurement of fσ8, where
the logarithmic linear growth rate is given by f≡
d ln δ=d ln a, and σ8 defines the amplitude of linear
perturbations.
An additional source of anisotropic clustering arises

from inaccuracies in the assumed geometry of the Universe,
which is required when converting the observed values of
angles and redshifts into a Euclidean framework. This can
potentially generate false measurements of the growth rate
[25]. In this work we shall consider the background
expansion to be fixed to a flat ΛCDM model with Ωm ¼
0.27 unless specified otherwise.
Clipping in redshift space carries additional complica-

tions. The small scale velocity dispersion associated with
the “fingers of God” effect will tend to move galaxies out of
the high density peaks and potentially into a surrounding
region that lies below the clipping threshold. We should
therefore expect the removal of nonlinear effects to be less
efficient in redshift space. The velocity dispersion also
causes the power spectrum to steepen at larger wave
numbers along the line of sight. This strong spectral slope
enhances the relative amplitude of the higher order terms in
(8), so these should not be neglected.
On all but the largest scales, the real space cosmological

density field at low redshifts is not well described by a
Gaussian field. It may instead be considered as a super-
position of a Gaussian component δrð1Þ and an extra field δX
representing the conglomeration of all nonlinear correc-
tions.

δrm ¼ δrð1Þm þ δXm: ð22Þ

The δX field is largest where the linear approximation is
most strongly violated—both from the truncation of higher
order terms in perturbation theory and more fundamentally

from the assumption of a single-valued and curl-free
velocity field. The matter density field is traced by the
galaxy number density field, which again may be decom-
posed into a Gaussian component, with a linear bias factor
b, and a residual term such that

δrg ¼ bδrð1Þm þ δXg : ð23Þ

Now moving to redshift space, the Gaussian component
is described by the Kaiser model [26], which relates the real
space linear density perturbations with those in redshift
space, which we couple with a Lorentzian model of the
velocity dispersion:

δsð1Þg ðk; μÞ ¼ bþ fμ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2σ2vμ2=2

p δrð1Þm ðkÞ; ð24Þ

where μ≡ k∥=k is defined as the relative fraction of
the wave vector that extends along the line of sight. The
pairwise velocity dispersion σv effectively smooths the
field along the line of sight. Theoretically this quantity is
given by

σ2v ¼
f2H2

0

3H2ðzÞπ2
Z

PθθðkÞdk; ð25Þ

where PθθðkÞ is the velocity power spectrum [27]. In
practice we shall treat σv as a free parameter, due to the
uncertain behavior of nonlinear motions.
The clipped galaxy field δscg can be represented as the

sum of a clipped Gaussian field and a residual term δx.
Therefore the resulting power spectrum may be expressed
as the sum of three terms, the two autocorrelations and the
cross-spectrum

Ps
cðkÞ ¼ Ps

cLðkÞ þ 2Ps
c1xðkÞ þ Ps

xxðkÞ: ð26Þ

Given that the nonlinear terms encapsulated by δX domi-
nate the clustering statistics at larger values of δ, it
experiences a much greater loss of power than the linear
component. Therefore we should expect that after clipping
the first term remains the dominant contribution to the total
power over a broader range of scales. Our simplest model
for the clipped galaxy power spectrum is therefore encap-
sulated by

Ps
cðk; μÞ≃ Ps

cLðkÞ;
¼ CfPs

gðk; μÞ; u0g; ð27Þ

where C denotes the transformation defined by (8), u0 is the
normalized clipping threshold experienced by the Gaussian
field as given by (6), and
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Ps
gðk; μÞ ¼

b2ð1þ βμ2Þ2
1þ ðkσvμÞ2=2

PLðkÞ; ð28Þ

where Ps
gðk; μÞ is the Gaussian contribution to the galaxy

power spectrum in redshift space, PLðkÞ is the linear matter
power spectrum in real space, and the anisotropy parameter
β≡ f=b quantifies the level of anisotropy in the galaxy
power spectrum induced by linear velocity perturbations.
For the case of a hybrid field such as the one defined in

(14), then as clipping is applied, and nonlinear contami-
nations are suppressed relative to the linear contributions,
we should expect the recovered value of β to be closer to
the theoretical value for a given kmax; alternatively, we
should be able to achieve the same level of systematic error
in β at a higher kmax. The actual level of error and/or
smallest scale to probe must be determined empirically
using simulations, as described in the following section.

C. Redshift space distortions: Nonlinear model

Our base model is defined by the set of four parameters
fβ; bσ8; σv; aLg, and relies upon the recovery of the linear
matter power spectrum. However the linear power spectrum
decays rapidly towards higher wave numbers, and by k ∼
0.5 hMpc−1 is typically an order of magnitude lower than
the contribution from the one-loop correction to the power
spectrum. Therefore despite the suppression of higher order
terms, the inclusion of a suppressed one-loop term sub-
stantially improves the model for the real space power
spectra of matter and galaxies [9]. Further motivated by the
results of Sec. II D, we introduce an extended model with
the additional parameter ϵ, which accounts for a higher
order contribution to the power spectrum

Ps
cðk; μÞ ¼ aL

b2ð1þ βμ2Þ2
1þ ðkσvμÞ2=2

½PLðkÞ þ ϵP1loopðkÞ�: ð29Þ

The parameter aL is the coefficient of the linear power
which contributes to the clipped power spectrum, as
defined in the model of (19). In general the value of aL
cannot be determined a priori. It may be evaluated
empirically by considering the fractional change in ampli-
tude of the large scale clustering of the field,

aL ¼ lim
r→∞

ξcðrÞ
ξðrÞ : ð30Þ

IV. SIMULATIONS

In order to test our theoretical models, we construct
mock density fields for both dark matter and galaxies.
These are derived from numerical simulations, and trans-
formed into redshift space using the distant observer
approximation. In this section we summarize our methods
for generating and modeling the power spectra associated

with clipped cosmological fields, and for the estimation of
their covariance matrices.

A. Number density fields in redshift space

For our mock dark matter field we utilize the z ¼ 0
snapshot from the Horizon Run 2 simulation [28], which
consists of 60003 particles within a periodic box of size
7200 h−1Mpc. The amplitude of linear perturbations is
σ8 ¼ 1=1.26, with a matter density Ωm ¼ 0.26. The red-
shift-space density field is defined by considering a 19203

grid using a nearest grid point (NGP) scheme, where the
particles are displaced along one axis in accordance with
their peculiar velocity. This leaves us with a grid size of
3.75 h−1Mpc corresponding to a Nyquist frequency
of kN ¼ 0.84 hMpc−1.
The mock galaxy catalogues are taken from [29], which

applies a semianalytic model to the halo merger trees of the
Millennium-I simulation [30]. Following [20] we use the two
snapshots at z ¼ 0 and z ¼ 0.687 in order to explore
different amplitudes of matter perturbations and growth
rates. With σ8 ¼ 0.9, the z ¼ 0 snapshot possesses a slightly
higher amplitude of fluctuations than the Horizon simula-
tion. Applying a stellar mass cut of log10ðM�=M⊙hÞ ≥ 9
leaves us with a distribution resembling that found in our
GAMA sample [31]. Number density fields are formed on
both 1283 and 2563 grids across the 500 h−1Mpc box, with
Nyquist frequencies of kN ¼ 0.8 hMpc−1 and 1.6 hMpc−1

respectively. The standard deviations are 3.1 for the coarse
grid and 6.0 for the high resolution field.
In order to evaluate the true value of β we need the linear

bias parameter. The ratio of the real space galaxy power
spectrum with that of the Millennium simulation’s dark
matter field gives b ¼ 1.125� 0.01 at z ¼ 0, on the largest
available scales. At z ¼ 0.687 this increases to
b ¼ 1.29� 0.02, while the growth rate is well approxi-
mated by fðzÞ≃ Ω0.55

m ðzÞ.

B. Threshold selection

After constructing each number density field, we
apply the clipping transformation defined by (1). In order
to select a suitable threshold value δ0 we require an
appropriate metric for defining the strength of clipping.
For the case of a Gaussian field, the normalized threshold
u0 ≡ δ0=

ffiffiffi
2

p
σ provides a natural measure for this in relation

to the standard deviation of the field. However when
working with fields that are highly non-Gaussian, we do
not know a priori what impact a given threshold will have.
Some degree of iteration is therefore required in order to
reach the desired reduction in power, characterized by aL.
When working with the simulations, rather than quoting

absolute values of the threshold δ0, we choose to work in
terms of the fraction of mass (or galaxies) removed. This
way fields with larger fluctuations naturally adopt higher
thresholds δ0.
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The disadvantage of a stronger (lower) threshold is a
larger drop in the amplitude of the power spectrum, which
in turn reduces the maximumwave number available before
the shot noise contributions dominate. Very strong thresh-
olds also induce a large contribution from the cross-power
P12ðkÞ, as given by (18), further reducing the power. The
optimal choice of threshold is therefore one that adequately
suppresses contributions to the power from nonlinear
structure and nonlinear bias, while maintaining a relatively
high amplitude of the linear power spectrum. As shown in
Figs. 6, 7, and 8 of [20], the decay of the higher order term
rapidly outpaces the contribution from the linear power
spectrum, such that a factor of 2 reduction in linear power is
sufficient to eliminate approximately 80% of the non-
linear power.
For each field we explore a range of threshold values,

since it is important to verify that different thresholds
generate consistent parameter constraints. Performing a
likelihood analysis that combines the power spectra derived
from different thresholds may further improve parameter
constraints. However an estimation of the covariance
between the different spectra is beyond the scope of this
work, here we shall only consider the analysis of each
threshold separately.

C. Methods

The theoretical model for the clipped power spectrum is
evaluated with the following procedure

(i) Apply the redshift space model defined in (28) to
determine P̂sðk; μÞ from the linear power spectrum
evaluated by camb [32] combined with the chosen
parameter values of b, f, and σv.

(ii) Interpolate the power spectrum onto a 3D grid
matching the specifications of the NGP lattice
generated from the simulations.

(iii) Transform to the 3D correlation function ξðσ; πÞ.
(iv) Evaluate the clipped 3D correlation function ξcðσ; πÞ

using (5). We find it sufficient to truncate the series
expansion at nmax ¼ 4 in order to establish sub-
percent accuracy. This step is discussed further in
Appendix A.

(v) Apply the inverse Fourier transform to determine
the expected 3D power spectrum as a function of
wave number magnitude k and orientation μ,
Ps
cðk; μÞ. The power spectrum is assigned to

linearly spaced bins, with widths of Δk ¼ 0.025,
Δμ ¼ 0.2. We maintain the same binning scheme
throughout this work. Note that the mean wave
number contributing to the bin is in general at
higher values of k than the bin centre, due to the
abundance of modes within a spherical shell dk
scaling as k2.

A four-dimensional likelihood grid is constructed,
LðPcðk; μÞjaL; σv; β; bσ8Þ, where the parameter set relates
to the model given by (27) and (28).

With the clipped power spectrum alone as the only
source of information, we would have little knowledge of
how strong the applied clipping has been, and therefore aL
is poorly constrained. However the drop in power relative
to the original (unclipped) power spectrum provides us with
some extra information that can assist in constraining the
range of aL values. We therefore make use of the fractional
loss of power experienced at k < 0.1 hMpc−1 and μ < 0.6,
to provide some external information for the value of aL. At
higher values of k and μ the larger contributions from
nonlinear structure mean that they experience a greater drop
in power.
We assign flat priors of 0 < aL < 1, 0 < β < 2,

0 < bσ8 < 2, and for the velocity dispersion we use a
broad Gaussian prior σv=

ffiffiffi
2

p ¼ 300� 300 km s−1, as
defined in (28). Our results are largely insensitive to the
particular choice of priors.

D. Covariance estimation

The large volume of the dark matter field in the Horizon
Run 2 simulation, ð7200 h−1MpcÞ3, permits a direct
estimation of the 70 × 70 covariance matrix associated
with the Pðk; μÞ bins by considering the covariance of
power spectra evaluated from 350 subvolumes, each of size
ð960 h−1MpcÞ3. To evaluate the covariance matrix we
employ the Ledoit-Wolf shrinkage estimator [33], follow-
ing the prescription

Σ ¼ δ⋆Fþ ð1 − δ⋆ÞS; ð31Þ
where Σ is our estimated covariance matrix, and δ⋆ is the
shrinkage constant. S is the sample covariance matrix,
defined as the ensemble average over N ¼ 350 subvolumes

Sij ¼ hΔPiΔPji; ð32Þ

where ΔPi represents the deviation in power in the ith
Pðk; μÞ bin from the sample mean. The shrinkage target F is
defined in terms of the sample covariance

Fij ¼
� Sij; ði ¼ jÞ
r̄

ffiffiffiffiffiffiffiffiffiffiffi
SiiSjj

p
; ði ≠ jÞ ð33Þ

r̄ ¼ 2

ðN − 1ÞN
XN−1

i¼1

XN
j¼iþ1

Sijffiffiffiffiffiffiffiffiffiffiffi
SiiSjj

p ; ð34Þ

where N ¼ 350. The shrinkage constant δ⋆ is estimated
using publicly available code [34]. We emphasize that this
approach yields a considerably improved estimate of the
covariance matrix than simply using the sample covariance
S alone.
For the galaxy sample associated with the Millennium

simulation, the volume is considerably smaller and there-
fore a direct estimate of the covariance matrix would be
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prohibitively noisy. Instead we only estimate the diagonal
terms of the covariance matrix, again using the variance of
subvolumes. The estimation of off diagonal terms is
determined by using the dark matter covariance as a
template, such that

Cij ¼ corrði; jÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
; ð35Þ

where corrði; jÞ is the correlation matrix from the dark
matter power spectrum.

E. Shot noise estimation

For the conventional unclipped power spectrum, the
discrete nature of sources leads to an additional contribu-
tion of power, which if we assume to be Poissonian in
nature is given by Ps ¼ n̄−1. As clipping smooths the field
above the threshold value, the shot noise contribution is
reduced. Approximating the noise field as Gaussian allows
us to utilize (6) to estimate Ps ≃ f2Vn̄

−1, where fV is the
fraction of the volume of the field lying below the clipping
threshold. In this work the typical volume fraction is of the
order ∼1%, and therefore the correction to the shot noise is
negligible.
The power spectra of clipped fields are highly robust to

changes in the number density of sampled points [9]. The
only noticeable consequence appears to be that fields with
higher shot noise possess noisier power spectra and can
therefore not utilize as wide a range of wave numbers.

V. RESULTS FROM SIMULATIONS

First we present the power spectra from the dark matter
and galaxy fields, at different clipping thresholds, before
reviewing the results of the likelihood analysis.

A. Clipped power spectra

The panels in the left-hand column of Fig. 1 compare the
dark matter power spectrum from the Horizon Run 2
simulation with the linear theory prediction in each of five
angular bins. Within each panel the uppermost set of points
represent the power from the original unclipped field, while
the central set is generated after applying a logarithmic
transformation lnð1þ δÞ. The lowest set of point corre-
sponds to a field subject to a clipping transformations, (1),
with a threshold value δ0 chosen such that 20% of the mass
is removed. Each dashed line corresponds to the model
based on the linear power spectrum given by (28) where the
amplitude is rescaled to fit the transformed spectra. The
form of the real space linear power spectrum and the
anisotropy parameter β are assigned values according to the
simulation parameters. The value of β≡ f=b is derived
using the linear growth rate f ≃ Ω0.55

m and the linear bias
b ¼ 1 since we are working directly with the dark matter.
No error bars are displayed in these panels because the
statistical error is considerably smaller than the marker size.

The bins in k and μ were chosen to match the power spectra
derived from the GAMA survey.
For such an evolved field the linear theory prescription

given by (28) typically holds only on very large scales.
Even at k ∼ 0.1 hMpc−1 the model overestimates the power
in the highest μ bin by almost 10%, consistent with the
findings of Jennings et al. [35]. However once either
transformation is applied, the linear formalism of (28)
provides a significantly improved description. Agreement
with the clipped spectrum is better than 5%within the range
ðk < 0.5 hMpc−1; μ < 0.8Þ. This improvement in the mod-
eling occurs due to the strong suppression of higher order
terms in perturbation theory [9]. The leading cause of
tension with the model appears to be within the highest μ
bin, which is perhaps unsurprising since these modes
receive contributions from very small physical scales,
due to the velocity dispersion of galaxies. The central
set of points illustrate the response of the power spectrum to
another local transformation, the logarithm of the number
density, lnð1þ δÞ. [8] demonstrated that this can help
linearize the power spectrum of the real space dark matter
field. We find that considerable linearization also occurs
when applying the log transform to the dark matter field in
redshift space. The shape of the linear theory power
spectrum defined by (28) is recovered to better than
10% for k < 0.4 hMpc−1.
The central column of Fig. 1 is in the same format as the

left column, but illustrates the galaxy power spectrum from
the Millennium simulation at z ¼ 0 before and after
applying transformations to the number density field. As
before, the uppermost set of points in each panel represent
the original unclipped field. The lowest set of points are
generated by clipping 20% of the galaxies, which brings the
data closer to the shape of the linear model (28), as given by
the dashed line. To obtain the value of β for the model
requires a combination of the linear bias, which is estimated
from the amplitudes of the largest Fourier modes in the
simulation to be b ¼ 1.125, and the growth rate
fðz ¼ 0Þ ¼ 0.47. As quantified in Sec. IVA, the true value
of the linear bias is only an estimate; however, it remains a
subdominant source of uncertainty. The error bars in the
central and right hand columns are significantly larger than
those in the left-hand column, reflecting the considerably
smaller box of the Millennium-I simulation (500 Mpc/h)
compared to that of the Horizon Run (7200 Mpc/h).
Deviations between the clipped spectrum and the

linear model remain lower than 10% for all data at
k < 0.3 hMpc−1. Unlike the case of dark matter, it is the
lowest μ bin that causes the greatest tension with the model.
This may be due to the local motions of galaxies causing
them to be displaced from their high density regions, which
would make the clipping process less efficient, leaving
behind a considerable proportion of the nonlinear contri-
butions to the power spectrum. The middle set of points in
Fig. 1 correspond to the logarithmic transformation, but
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FIG. 1. The redshift space power spectra Pðk; μÞ from the simulations described in Sec. IV, divided into five angular bins. The
three columns are dark matter from the Horizon simulation (left); galaxies at z ¼ 0 from the Millennium simulation (middle); and
galaxies at z ¼ 0.687 from the Millennium simulation (right). Within each panel the original power spectrum is shown as black set
of data while the red and blue sets correspond to the power spectra generated after the number density field has been subject to
logarithmic and clipping transformations respectively. The clipping threshold is chosen such that it lies below 20% of the mass. The
dashed lines represent the linear model specified by (28). For the case of the transformed spectra, the amplitude of the model is
rescaled to fit the data.
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now only a modest degree of linearization is observed. This
reduced effectiveness can be attributed to the sampling
noise from the galaxy fields with n̄ ¼ 0.01 Mpc−3. Due to
this sensitivity to the level of shot noise, we shall focus on
the clipping transform for the remainder of this work,
which by contrast is largely insensitive to shot noise.
The right-hand column of Fig. 1 explores the power

spectra for a different sample of galaxies at a different
redshift, z ¼ 0.687. Here both the linear bias b ¼ 1.29 and
growth rate fðz ¼ 0.687Þ ¼ 0.77 have changed from those
of the central column, yet the outcome is similar, in that the
application of clipping significantly improves the perfor-
mance of the Kaiser model defined in (28). As with the low
redshift galaxy sample, the departure from linearity is less
than 10% for k < 0.3 hMpc−1.
Figure 2 displays three subsections of the 70 × 70

correlation matrix (14 bins in k, 5 bins in μ) associated
with the unclipped dark matter field. The coupling of
modes becomes particularly apparent towards higher wave
numbers, k > 0.25 hMpc−1. It is interesting to note that
these off diagonal terms fall by approximately 20%–30%
after clipping has been applied. This decorrelation of
neighboring bins was previously observed in the real space
power spectrum [9].
The shrinkage constant also reduces considerably after

the application of clipping. From the unclipped field we
find a shrinkage constant of δ⋆ ¼ 0.25. Thresholds selected
to remove 5% and 10% of the dark matter yields shrinkage
constants of 0.18 and 0.14 respectively, reflecting the
increasingly Gaussian nature of these fields.
In Fig. 3 we explore the efficacy of fitting the power

spectra of clipped fields with the nonlinear model, specified
by (29), which is based on the model of the real space
power spectrum presented in [9]. The simulations in
question are the same as those used in Fig. 1. The data

used to fit the model parameters are k < 0.4 hMpc−1 and
μ < 0.8. The upper set of data corresponds to the original
field, with the dashed line now making use of the one-loop
power spectrum. The middle and lower sets of data relate
to clipping 10% and 20% of the mass respectively. Now
that an extra contribution from the one-loop power spec-
trum is included, the data in the lower μ bins are much
better accounted for, compared with the linear model in
Fig. 1. However the highest μ bin appears significantly
underestimated.
We conducted further investigations by evaluating the

power spectra of dark matter haloes in the Millennium
simulation, before and after clipping, at the same two
snapshots as the aforementioned galaxy catalogues. A very
similar trend is found, whereby the clipped spectra are
readily described by the model for k < 0.4 hMpc−1. Since
these power spectra appear very similar to those displayed
in Fig. 3, they are not shown here.

B. Growth of structure

First we attempt to recover the correct cosmological
parameters from the clipped power spectra, using only the
linear model given by (28):

Ps
cðk; μÞ ¼ C

�
b2ð1þ βμ2Þ2
1þ ðkσvμÞ2=2

PLðkÞ;u0
�
: ð36Þ

Our basic set of parameters is fβ; bσ8; σv; aLg. The
normalized growth rate fσ8 may be derived from these
via the following relation:

fσ8 ¼ βbσ8: ð37Þ
Figure 4 shows the constraints on fσ8 when applying the
linear model to the three different fields from the
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FIG. 2. Three subsections of the 70 parameter correlation matrix from the power spectrum Pðk; μÞ of the unclipped dark matter field in
the Horizon simulation. The left-hand panel corresponds to the lowest bin in wave vector orientation, 0 < μ < 0.2, while the center
panels relates to the highest bin, 0.8 < μ < 1. Each section consists of ten bins in wave number k. The right-hand panel is subsection of
the correlation matrix associated with the cross-correlation between those two μ bins. The growing off diagonal correlations towards
smaller scales, particularly apparent in the lowest μ bin, is an indicator of the nonlinear structure that generates mode coupling. The
correlation matrix was estimated by following the prescription described in Sec. IV D.
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simulations, as a function of the maximum wave number
kmax. In each case the true value of fσ8 is illustrated by a
horizontal dashed line. The points have small horizontal
offsets for clarity and appear in order of increasing clipping
strength. The squares, triangles and inverted triangles
correspond to clipping thresholds below 5%, 10% and

15% of the field respectively. The shaded regions represent
their 68% confidence limits. For reference, the maximum
likelihood points from the original unclipped field are
shown as black circles.
Results from the dark matter field are shown in the left-

hand panel. Removing only 5% of the mass is found to be

FIG. 3. A similar format to Fig. 1, except here the dashed lines represent the best-fit nonlinear model, as given by (29). The central and
lower sets of data points correspond to different clipping thresholds, removing 10% and 20% of the mass respectively.
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sufficient to correct for much of the nonlinear behavior on
scales k≲ 0.3 hMpc−1. Similar behavior is seen in the
central panel of Fig. 4, which uses the z ¼ 0 galaxy sample,
with a true value of σ8 ¼ 0.9. In the right-hand panel we
find that the galaxy sample at z ¼ 0.687 also significantly
improves the recovery of the underlying cosmology when
using the linear model on scales k≲ 0.3 hMpc−1. The
shaded regions are significantly broader in the central and
right-hand panels, reflecting the considerably smaller box
of the Millennium-I simulation (500 h−1Mpc) compared to
that of the Horizon Run (7200 h−1Mpc).
In the context of the more general model (29), which

invokes additional contribution controlled by the ϵ param-
eter, we know that for very weak clipping ϵ will be positive
and when the clipping is very strong ϵ becomes negative as
the contributions from cross spectra such as P12ðkÞ
dominate. Therefore there is inevitably a threshold at which

ϵ vanishes and the linear model offers a good fit to the data.
This is represented by the inverted triangles in Fig. 4.

C. Nonlinear model

We repeat our analysis using the extended model defined
by (29), which introduces an extra parameter ϵ to control
the amplitude of the clipped one-loop power spectrum,
which is otherwise fully specified in terms of the linear
power spectrum. Figure 5 shows the constraints derived on
fσ8 from the three simulated fields clipped with the same
thresholds as Fig. 4. The extra freedom in the real space
matter power spectrum leads to significantly improved
measurements at weaker clipping thresholds. In the case of
dark matter we find that the maximum likelihood is within
10% of the true value for each kmax ≤ 0.4 hMpc−1 and for
each threshold. Similarly in the galaxy field both clipping
thresholds return more consistent constraints, and with only

FIG. 4. Marginalized constraints on the normalized growth rate fσ8 from the simulations, when using only the linear power spectrum
(27) to model the data. The three shaded regions arise from the power spectra after clipping 5% (squares), 10% (triangles), and 15%
(inverted triangles) of the mass from each field. The horizontal dashed lines indicates the true values of fσ8 within each snapshot.

FIG. 5. The same format as Fig. 4 except we now fit the data using the nonlinear model defined by (29), with a uniform prior
−1 < ϵ < 1.
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a modest loss of precision compared to the simpler linear
model. However we find that the extreme values of μ are
responsible for the bulk of the tension between the model
and the data. It may be the case that more complex models
such as those outlined by Taruya et al. [36] may provide a
better description of the anisotropies in the clipped power
spectrum. An exploration of these models in the context of
clipped fields is beyond the scope of this work. Restricting
ourselves to 0.2 < μ < 0.8 improves agreement between
the model and data to better than 2% across all wave
numbers k < 0.5 hMpc−1. This is reflected in Fig. 6 where
the tendency to overpredict fσ8 at the highest values of kmax
is resolved.

VI. DATA

The galaxy redshift surveys that have the greatest
potential to benefit from clipping are those with a high
number density of galaxies. A densely sampled field
ensures that shot noise is low out to high wave numbers,
even after the drop in the amplitude of the power spectrum
due to clipping. The GAMA survey provides an excellent
basis for the first application of clipping to a real galaxy
field. In this section we present details of the survey, and
how the power spectra were generated.

A. The GAMA survey

The galaxy and mass assembly (GAMA) project [37–40]
is a multiwavelength photometric and spectroscopic survey.
The redshift survey, which has been carried out with the
Anglo-Australian telescope (AAT), has provided a dense,
highly complete sampling of large-scale structure up to
redshift z ∼ 0.5. The primary target selection is r < 19.8
(where r is an extinction-corrected SloanDigital SkySurvey
(SDSS) Petrosian magnitude), using TILINGCATV41.
Following [41], we analyzed a highly complete sub-

sample of the survey data set known as the GAMA II

equatorial fields. This subsample covers three 12 × 5 deg
regions centered at 09h, 12h and 14h30m, which we refer to
as G09, G12 and G15, respectively. Galaxy redshifts were
obtained from the AAT spectra using a fully automatic
cross-correlation code that can robustly measure absorption
and emission line redshifts [42]. We restricted the redshift
catalogue to galaxies with “good” redshifts (NQ ≥ 3). In
order to obtain high-resolution measurements of the density
field we restricted our analysis to the redshift range
0.002 ≤ z ≤ 0.25, where the galaxy number density
exceeds 10−2 h3Mpc−3. In the (G09, G12, G15) regions
we utilized (32076, 37382, 36538) galaxies in our analysis.
The comoving volume of each region is approximately
6.4 × 106ðh−1MpcÞ3 [41].
The survey selection function at each point, used in the

calculation of the galaxy overdensity, was determined by
combining the angular completeness map of the survey
(which has a mean value of 97% across the three regions)
with an empirical fit to the galaxy redshift distribution,
performed after stacking together the data in the three
regions to reduce fluctuations due to cosmic variance. Full
details of the method are described in Sec. 3.2 of [41].

B. Estimating the clipped power spectrum

The clipped power spectra for each GAMA region were
determined for a given overdensity threshold δclip as
follows:
(1) The galaxy distribution was binned on a common

3D grid to the selection function, with a resolution of
2 h−1Mpc. We denote the gridded distributions from
the data and random samples as Dð~xÞ and Rð~xÞ,
respectively. The random catalogues are sampled
from the selection function constructed for the
GAMA survey data, which combines the angular
completeness in each survey region with an empiri-
cal smooth redshift distribution fit to a combination
of the three regions.

FIG. 6. The same format as Fig. 5 except here we only make use of intermediate wave vector angles (0.2 < μ < 0.8).
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(2) The distributions were smoothed using a Gaussian
kernelGð~xÞ ¼ e−ð~x:~xÞ=2λ2 . We take λ ¼ 2h−1 Mpc for
our analysis. We denote the smoothed fields by
smðDÞ and smðRÞ.

(3) The overdensity field for each region was estimated
as δð~xÞ ¼ smðDÞ=smðRÞ − 1, where the normaliza-
tion of R was fixed such that hδi ¼ 0.

(4) The mean overdensity of each region in the redshift
range z < 0.25, relative to the average of all three
regions, was estimated using the measured number
of galaxies as δreg ¼ ð−0.0922; 0.0580; 0.0341Þ for
(G09, G12, G15). The effective clipping threshold
applied to the locally defined fluctuations within
each region was then adjusted to δclip;eff to accom-
modate these mean density fluctuations, where
1þ δclip;eff ¼ ð1þ δclipÞ=ð1þ δregÞ.

(5) For any grid cell with δ > δclip;eff , the unsmoothed
gridded data value was lowered to D ¼
Rð1þ δclip;effÞ.

(6) The power spectrum of the clipped gridded data field
D was measured using fast fourier transform (FFT)
techniques following Sec. 3.3 of [41]. The optimal-
weighting estimation scheme of Feldman, et al.
(1994) was applied, assuming a characteristic power
spectrum amplitude PðkÞ ¼ 5000 h−3Mpc3. We
binned the power spectrum by k and μ, where μ

is the cosine of the angle of the wave vector ~k with
respect to the line-of-sight, using bin widths Δk ¼
0.05 hMpc−1 and Δμ ¼ 0.2. The integral constraint
correction to the power spectrum was included in the
estimation process (using the Fourier transform of
the window function).

(7) The amplitude of the measured power spectra was
corrected for the misestimate of the mean density of
the region, through multiplication by a factor
ð1þ δregÞ2.

(8) The convolution matrix, which is used to project a
model power spectrum Pðk; μÞ to form a comparison
with the data given the survey window function, was
determined using the method outlined in Sec. 3.3 of
[41], in which the full FFT convolution is applied to
a series of unit model vectors, and an equivalent
matrix is constructed row-by-row.

(9) The covariance matrix of the power spectrum
measurement in ðk; μÞ bins was estimated by evalu-
ating the sums described in Sec. 3.4 of [41]. Initially
the measured power spectrum in each bin was used
to specify the cosmic variance component. This
produces an error estimate that is correlated with
the data. To resolve this we modified the com-
putation using an iterative procedure in which the
best-fitting (convolved) theoretical model was de-
termined and the covariance was reestimated using
that model. Two iterations were used to ensure
convergence.

We repeated the above analysis for three different
clipping thresholds δ0 ¼ f8; 5; 4g. These values were
selected on the basis of generating a suppression of linear
power between 30% and 60%. This provides an appropriate
balance between the elimination of nonlinear structure and
maintaining a high degree of signal to noise. The three
thresholds affect approximately 0.7%, 2.1%, and 3.2% of
the field in terms of volume, and approximately 6.4%, 15%,
and 20% in terms of galaxies. The latter quantity is defined
as the fractional reduction in the value of

P
Dð~xÞ due to

clipping.
Unlike nonlocal transforms such as those used for

reconstructing the baryon acoustic oscillations, clipping
commutes with the window function. This facilitates our
interpretation of clipped power spectra, since the clipping
transformation associated with the full (nonwindowed)
universe can be evaluated first, before compensating for
the impact associated with the window function of the
survey.

VII. RESULTS FROM GAMA

In this section we perform a likelihood analysis to
estimate the normalized growth rate fσ8 at z ¼ 0.18.
The effective redshift of power spectrum measurements
in the GAMA regions was determined by [41]. The
methodology from Sec. IV is applied to each of the clipped
galaxy power spectra from each of the three fields of the
GAMA survey.
Figure 7 illustrates the effect of the clipping trans-

formation. The solid bars represent the probability density
function of the galaxy density field within the G09 region,
defined in terms of 40 bins which are spaced equally in
logð1þ δÞ. The hollow bars show the resulting distribution
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FIG. 7. The solid bars represent the probability density function
for the galaxy density field within the G09 GAMA region. The
hollow bars demonstrate the effect that applying a clipping
threshold of δ0 ¼ 4 would have on this field. A vertical dotted
line demarcates the underdense and overdense regimes.
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FIG. 8. The galaxy power spectra Pgðk; μÞ measured within the three GAMA regions, each divided into five angular bins. Within
each panel the original power spectrum is shown as the upper set of data while the middle and lower sets correspond to the power
spectra generated after the number density field has been clipped with thresholds of δ0 ¼ 8 and δ0 ¼ 4 respectively. These
thresholds generate a drop in large scale power of approximately 30% and 60%. The upper dashed line is generated from the
conventional model given by (28). The lower dashed line is the fiducial model for the clipped linear power (27). At each clipping
strength β and σv are set to their maximum likelihood values. The theoretical lines differ slightly between each region since each
has been convolved with the window function of their respective region. For visual clarity a small horizontal offset is applied to the
black and blue data.

GALAXY AND MASS ASSEMBLY: REDSHIFT SPACE … PHYSICAL REVIEW D 93, 023525 (2016)

023525-15



function if we then apply a clipping transformation with a
threshold of δ0 ¼ 4. The distribution function remains
unaltered below the threshold value δ0, while all contri-
butions from greater overdensities are compressed into the
bin associated with the threshold value.

A. Clipped power spectra

The panels in Fig. 8 illustrate the anisotropic power
spectra derived from the three fields (G09, G12, and G15).
As with the simulations, the power spectrum is divided into
five equal bins in μ, spanning 0 < μ < 1, while the wave
number bin width is taken to be Δk ¼ 0.05. Within each
field the three sets of points correspond to the power in the
field before (black) and after the application of clipping
thresholds δ0 ¼ 8 (red) and δ0 ¼ 4 (blue). At each clipping

strength, the dashed line reflects the linear model, with the
maximum likelihood values of β, σv, and bσ8. Estimates of
the aL parameter are shown in Fig. 9. These are determined
by the fractional drop in Pðk; μÞ for k < 0.1 hMpc−1 and
μ < 0.6, after clipping is applied.

B. Linear model

Following the procedure outlined in Sec. V B, we use the
clipped power spectra from the three GAMA regions to
measure the normalized growth rate fσ8ðz ¼ 0.18Þ. Here
we shall present results which combine the likelihoods of
the three regions. Individual results from the three separate
regions can be found in Appendix C.
First we employ the linear model defined by (28) and

(27), while fixing the shape of the linear power spectrum to
the fiducial model. The left-hand panel of Fig. 10 show the
maximum likelihood values and 68% error bars associated
with fσ8, under a range of different clipping thresholds and
kmax values. As before, the squares, triangles and inverted
triangles correspond to clipping thresholds of δ0 ¼ 8, 5 and
4 respectively. The shaded regions represent their 68%
confidence limits. For reference, the maximum likelihood
points from the original unclipped field are shown as black
circles. Their confidence limits are suppressed for clarity, as
they do not provide an acceptable fit to the data.
With the unclipped data the constraint on fσ8 is highly

sensitive to variations in kmax, which is consistent with the
behavior found in the simulations. Since the model inevi-
tably underestimates the amount of real space power
towards larger k, this leads to an underestimation of σv
which in turn biases the estimate of β to be low. Applying a
high clipping threshold (δ0 ¼ 8) show a modest improve-
ment in terms of consistency and goodness of fit. Stronger
thresholds of δ0 ¼ 5 and δ0 ¼ 4 provide a much improved

G09 G12 G15
0

0.2

0.4

0.6

0.8

1

a
L

FIG. 9. Estimates of the fractional drop in linear power in each
of the three GAMA regions as a result of applying clipping
thresholds of δ0 ¼ 8 (upper points) and δ0 ¼ 4 (lower points).

FIG. 10. Constraints on fσ8 from the power spectra of the galaxy field from GAMA. Results from the linear model are presented in the
left-hand panel, while those from the nonlinear model are illustrated in the central panel. The right-hand panel uses the same model as
the central panel but only includes intermediate wave vector angles (0.2 < μ < 0.8). Within each panel the squares, triangles and
inverted triangles correspond to clipping thresholds δ0 of 8, 5, and 4 respectively. The circles represent the maximum likelihood points
when using the original field without clipping.
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agreement with the model, and more consistent results
towards higher wave numbers. The maximum likelihood
values are displayed in Table I, and the reduced χ2 values
can be found in Table II. The power spectra associated with
the clipped fields are found to adhere to the linear theory
prediction more closely than the original field. From the
simulations we expect a significant systematic error to arise
at kmax ≳ 0.3 hMpc−1, so for the linear model we use k <
0.2 hMpc−1 to find fσ8ðz ¼ 0.18Þ ¼ 0.26� 0.10.
Constraints from the clipped fields show a more consistent
result across the range of wave numbers than the original
field, and also have a much improved goodness of fit.
Extracting robust constraints from higher wave numbers

requires a higher order model, since at these scales the
amplitude of the linear power spectrum falls far below the
nonlinear contributions.

C. Nonlinear model

The central panel of Fig. 10 shows the constraints on fσ8
when using the extended model defined by (29). Again we
find consistent behavior between different clipping
strengths, and across a variety different maximum wave
numbers. The extra degree of freedom does not appear to
significantly weaken the constraints. Guided both by the
performance of simulations, and the goodness of fit
between the data and the model, we adopt our benchmark
measurement to be fσ8ðz ¼ 0.18Þ ¼ 0.29� 0.10, using

k < 0.3 hMpc−1 and δ0 ¼ 4. This measurement is consis-
tent with that derived from the linear model, and serves as
the central result of this work. Our result is consistent with
the findings of Blake et al. [41], who used the same
(unclipped) galaxy field to determine fσ8ðz ¼ 0.18Þ ¼
0.36� 0.09. The full set of constraints on fσ8 is presented
in Table III, while the reduced χ2 values are displayed in
Table IV.
A more conservative approach is to restrict our analysis

to intermediate wave vectors, 0.2 < μ < 0.8, and the results

TABLE I. The maximum likelihood fσ8 values and their
associated 68% confidence intervals, when fitting the linear
model to the GAMA data. Each column represents a different
clipping threshold while each row represents a different kmax

condition. Table elements associated with a value of χ2red < 1.2
are highlighted in bold. There is a strong covariance between
nearby table elements, so we do not attempt to combine
constraints from different clipping strengths in this work.

kmax Unclipped δ0 ¼ 8 δ0 ¼ 5 δ0 ¼ 4

0.1 0.41� 0.07 0.34� 0.19 0.35� 0.19 0.32� 0.19
0.2 0.43� 0.08 0.23� 0.10 0.26� 0.10 0.24� 0.11
0.3 0.25� 0.05 0.19� 0.07 0.22� 0.08 0.22� 0.08
0.4 0.14� 0.02 0.14� 0.04 0.18� 0.05 0.19� 0.06
0.5 0.02� 0.01 0.06� 0.04 0.16� 0.05 0.22� 0.06

TABLE II. The reduced χ2 values for a variety of clipping
thresholds and maximum wave numbers, when fitting the linear
model to the GAMA data.

kmax Unclipped δ0 ¼ 8 δ0 ¼ 5 δ0 ¼ 4

0.1 2.77 1.50 1.31 1.26
0.2 3.68 1.00 0.88 0.73
0.3 2.81 1.26 1.05 1.08
0.4 2.66 1.35 1.01 1.00
0.5 3.06 1.87 1.31 1.21

TABLE III. The same format as Table I but now using the
nonlinear model defined by (29).

kmax Unclipped δ0 ¼ 8 δ0 ¼ 5 δ0 ¼ 4

0.1 0.41� 0.07 0.34� 0.19 0.35� 0.19 0.32� 0.19
0.2 0.39� 0.08 0.23� 0.11 0.27� 0.11 0.25� 0.11
0.3 0.27� 0.07 0.27� 0.11 0.30� 0.11 0.29� 0.10
0.4 0.28� 0.05 0.20� 0.08 0.22� 0.08 0.21� 0.07
0.5 0.34� 0.04 0.32� 0.08 0.32� 0.10 0.30� 0.09

TABLE IV. The reduced χ2 values associated with each of the
maximum likelihood values presented in Table III.

kmax Unclipped δ0 ¼ 8 δ0 ¼ 5 δ0 ¼ 4

0.1 2.77 1.50 1.31 1.26
0.2 3.12 0.96 0.88 0.76
0.3 2.04 1.36 1.12 1.12
0.4 2.34 1.39 1.02 1.02
0.5 2.55 1.86 1.42 1.27
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FIG. 11. The joint likelihood contours at 68% and 95% when
evaluating the GAMA power spectra with δ0 ¼ 4, using the linear
model. The degeneracy with the velocity dispersion σv limits the
gain in measuring the anisotropy parameter β when utilizing
higher wave numbers. The dashed contours show the degeneracy
when fitting kmax ¼ 0.3 hMpc−1, while the solid contours
represent kmax ¼ 0.5 hMpc−1.
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are shown in the right-hand panel of Fig. 10. While the
susceptiblility to systematic errors has been reduced, there
is also a substantial loss of precision. Therefore even
when making use of the full range of wave numbers,
k < 0.5 hMpc−1, the resulting confidence interval is found
to be fσ8 ¼ 0.35� 0.17.
While a significant improvement in precision is achieved

by increasing the kmax value up to 0.3 hMpc−1, thereafter
the gain is not as great as one might expect from the
increased abundance of Fourier modes. One of the key
limitations remains the degeneracy between the anisotropy
parameter β and the velocity dispersion σv. Their joint
likelihood is illustrated in Fig. 11, for two different values
of kmax. Clearly if additional information were available to
measure or predict the value of σv, substantial improve-
ments in the measurement of fσ8 could be made. Another
factor which limits the gains available from smaller scales
is the shot noise. Its fractional importance is amplified by
the reduction in the amplitude of the power, which becomes
particularly apparent at the lowest threshold.

VIII. DISCUSSION

We have developed the clipping procedure proposed in
Simpson et al. [20] to enable its application to anisotropic
fields, and applied this new analysis technique to the z <
0.25 sample from the GAMA survey. A simple model
based on the linear power spectrum is used to measure the
normalized growth rate fσ8ðz ¼ 0.18Þ ¼ 0.26� 0.10 at
kmax ¼ 0.2 hMpc−1. Employing a higher order model from
perturbation theory allows the use of higher wave numbers,
while still not requiring numerical simulations for calibra-
tion. For this case we find fσ8ðz ¼ 0.18Þ ¼ 0.29� 0.10
when using kmax ¼ 0.3 hMpc−1 and density fluctuations
δg < 4. These results alone are not in significant tension
with expectations from the Planck data [43] within the
context of a standard ΛCDM model. However, they do add
to a growing body of evidence that appears to prefer a lower
amplitude of density perturbations at low redshifts. Such
evidence includes weak gravitational lensing [44], galaxy
clusters [45], and a number of other measurements of
redshift space distortions [46]. This trend is also visibly
apparent in Fig. 12, but there are several possible explan-
ations for this behavior. One interpretation of this is the
reduction in the quadrupole generated by nonlinear
motions, relative to the Kaiser prediction, as illustrated
in Fig. 2 of [35]. However our result would be largely
insensitive to this effect. Another interpretation is the
presence of nonlinear galaxy bias. An additional isotropic
contribution to the power dilutes the strength of the
anisotropic clustering signal. This effect can be seen in
Fig. 5 where, before clipping is applied, the inferred value
of fσ8 is significantly lower than the correct value even
when using k≲ 0.1 hMpc−1. The simplest forms of non-
linear bias are strongly suppressed by clipping, but others

such as stochastic bias are likely to remain, and therefore
merit further investigation. It is also important to note that
most studies of redshift space distortions rely upon a prior
on the range of possible background geometries based on
results from WMAP. The portion of the error budget
associated with the Alcock-Paczynski effect in each survey
will therefore be highly correlated [25,47,48].
As was found to be the case in real space [9], the

preferred range of clipping thresholds are typically those
that reduce the linear power by around 25%–50%. For our
galaxy field this corresponded to thresholds in the range
4 < δ0 < 8. Higher thresholds lead to weaker clipping,
which is less effective at removing the problematic con-
tributions from nonlinear structure. Meanwhile stronger
clipping from lower thresholds leads to reduced signal-to-
noise and may also induce a significant cross-correlation
between the Gaussian and residual fields.
At present the precision of our measurement of the

growth of structure is limited by the degeneracy with the
velocity dispersion σv. By applying a group finding
algorithm to the galaxy catalogue it may be possible to
reduce the influence of the fingers of God. This would also
improve the efficiency with which clipping removes peaks
in the density field.
Previous measurements of redshift space distortions

either rely heavily on calibration from numerical simula-
tions or on more complex approaches to perturbation
theory. Each of these rely on certain model-dependent
assumptions, such as a linear bias model. Clipping is a
complementary approach as it can identify whether the
galaxy bias is showing signs of scale-dependence. The
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FIG. 12. Comparison of measurements of fσ8 as measured
from anisotropic clustering in galaxy redshift data. These include
6dGFS [49]; WiggleZ [50]; BOSS [51,52]; BOSS P(k) [53];
VVDS [54]; SDSS-II [55,56]; VIPERS [57]; GAMA [41]. The
dotted and dashed lines represent theoretical predictions for a flat
LCDM cosmology, as given by [Ωm, σ8] pairs from the maximum
likelihood values from Planck [43] using only polarization
[0.286; 0.796], and the full data set [0.3156; 0.831].
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degree of covariance between parameter constraints
obtained from the clipped analysis and a conventional
nonlinear analysis has yet to be quantified; however,
potentially these two approaches could be combined to
yield considerable additional information within the same
survey volume. It may also be beneficial to perform a
combined analysis of power spectra from multiple clipping
thresholds.
Clipping may also be applicable to a number of other

cosmological fields, which we shall consider in turn.
1. Cosmic microwave background

In the early Universe, cosmological perturbations
are know to be highly Gaussian. A recent analysis of
the cosmic microwave background (CMB) from
Planck severely limits the amplitude of local depar-
tures from Gaussianity fNL ¼ 2.5� 5.7 [58]. Ap-
plying a clipping transformation to the CMB
anisotropies is unlikely to be beneficial, since the
Gaussian component is already highly dominant.
However it may be of interest to identify whether
features such as the lack of power on large angular
scales, and the power asymmetry on the sky, remain
intact after clipping, or are exacerbated.

2. Lyman-α forest
At later times, the cosmological perturbations are

again detectable in the absorption lines of quasars.
This technique has been used to detect the baryon
acoustic oscillations in BOSS [59]. In this case
the observed tracer already experiences a trans-
formation similar to clipping, in that the highest
density regions form damped Ly α systems. The
results of Sec. II may be generalized to other local
transformations. For example the transformation
relating the local density to the observed flux F is
often approximated as

gðδÞ ¼ exp ½−Að1þ δÞα�; ð38Þ

which can be used in conjunction with (3) to directly
compute the flux correlation function in terms of the
linear power spectrum.

3. Weak gravitational lensing
The shapes of high redshift galaxies are coher-

ently distorted by the intervening matter pertur-
bations. Cosmic shear offers the most direct
insight into the dark matter distribution at lower
redshifts, yet uncertainties in the small scale
power spectrum limit the amount of cosmological
information that may be extracted. Gaussianiza-
tion of the convergence field have been proposed
by several authors, such as Seo et al., Joachimi
et al., and Yu et al. [60–62]. However as high-
lighted in [61], in the presence of shape noise the
benefits of the transformation are minimal. This is
due to the substantial reduction in the amplitude

of the resulting power spectrum. Applying clip-
ping here with a suitably high threshold may be
advantageous as it can suppress the strongest
sources of nonlinearity while still preserving a
high level of signal to noise. But the observable
field appears in a projected two-dimensional
form, due to the broad lensing kernel, so the
identification and suppression of peaks is a less
efficient procedure compared with the full three-
dimensional data that can be acquired from the
distribution of galaxies.

4. Galaxy clustering
Cosmological information from the galaxy

power spectrum can be split into three categories:
geometric information from the baryon acoustic
oscillations, primordial information from the
broader shape of the power spectrum, and gravita-
tional information from the degree of anisotropic
clustering.

Local density transformations such as clipping amelio-
rate nonlinearities associated with high density regions.
One form of nonlinearity for which this is not the case is
that associated with the smoothing of the baryon acoustic
peak in the galaxy correlation function. Nonlocal trans-
formations are more appropriate for this form of peak
reconstruction, as demonstrated in [63–65], where the
signal can be largely restored by reversing the inferred
large scale displacements.
The large-scale shape of the galaxy power spectrum is

sensitive to a variety of cosmological parameters such as
the matter density, the spectral index, and the neutrino
mass. The precision of these parameter measurements is
limited by the uncertain nature of galaxy bias, which is
expected to be linear on very large scales k≲
0.1 hMpc−1 but not on smaller scales where the vast
majority of the information resides. Clipping can greatly
assist in linearizing the galaxy bias, thereby ensuring the
clipped galaxy power spectrum bears a close resem-
blance to the clipped dark matter power spectrum.
Interpreting the shape is less straightforward since
stronger clipping leads to a change in the shape of
the power spectrum, but this is fully specified by the
transformation defined in (5). Overall, then, we see
considerable scope for further applications of the
method presented here.
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APPENDIX A: SPECTRAL DISTORTION

First we view how rapidly the series expansion given
by (8) converges on the numerical solution. Taking the
z ¼ 127 snapshot as our fiducial Gaussian random field
(GRF) we apply clipping and evaluate the true clipped
power spectrum, PcðkÞ. We then generate an estimate of
the clipped power, P̂cðkÞ, by truncating the series of (8)
at n ¼ 0, 2, 4. Figure 13 illustrates the ratio of the true
and estimated power spectra in each case. In order to
establish subpercent precision in the estimated power
spectrum, it is sufficient to stop at n ¼ 2 provided the
parameter aL > 0.5. Throughout this work we evaluate
terms at n ≤ 4.

APPENDIX B: CLIPPED ANISOTROPIC
FIELDS

In this section we explore the consequences of (8) by
performing numerical tests on anisotropic fields. We take
the z ¼ 127 Millennium-I density field in real space and
impose a distortion along one axis consistent with the
prescription of [26]:

δsðk; μÞ ¼ δrðkÞð1þ βμ2Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2μ2σ2v=2

p ; ðB1Þ

where μ is the cosine of the angle between the wave
vector and the line of sight, and the longitudinal
amplification factor β≡ f=b. This leaves us with an
anisotropic GRF whose power spectrum recovers the
standard form

Pðk; μÞ ¼ PrðkÞð1þ βμ2Þ2 1

1þ k2μ2σ2v=2
: ðB2Þ

In Fig. 14 we can see that the fractional change in the
angle-averaged power spectrum induced by clipping is
slightly reduced when the velocity dispersion σv is
introduced. The larger gradient in PðkÞ leads to a
stronger contribution from higher order terms in (8).
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FIG. 13. The convergence of series given in (8) to the numerical
solution, as the number of terms in the summation is increased
from n ¼ 0, 2, 4. For this case the sample GRF was clipped at the
0.7σ level, resulting in an approximately 40% loss of power on
large scales.
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FIG. 14. The fractional change in the angle-averaged power
spectrum of the field described by (B2), where we have set
β ¼ 0.5 and we explore σ ¼ 0 and σ ¼ 5, each evaluated at
two different clipping thresholds (removing 5% and 10% of
the mass). The real-space density field is taken from the z ¼
127 snapshot of the Millennium-I simulation. Larger values of
σ can be seen to slightly reduce the effects of clipping on
small scales. This arises from the contribution from terms in
(8), which involve the self-convolution of the power spectrum.
The horizontal dotted lines are the estimated clipped power
when only using the first term from (8), while adding in the
second leads to the dashed lines, which are in good agreement
with the numerical results.
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FIG. 15. The same format as Fig. 3 but we now use a finer grid to define the number density field, at 1.95 Mpc=h instead of
3.9 Mpc=h. Since the total variance of the field is greater, slightly less power is lost after removing the same fraction of galaxies as
before.
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However in all cases the dashed line of the model
successfully reproduces the behavior of the data.
Next we evaluate the power spectrum from the mock

galaxy fields at lower redshifts. Figure 15 repeats the
analysis of Fig. 3 but now with a smoothing length of
1.95 Mpc=h. The sets of parameter constraints derived
from these two different smoothing lengths are found to be
highly consistent with each other.

APPENDIX C: THE GAMA REGIONS

Figures 16 and 17 present constraints on β and fσ8 from
the three separate GAMA regions. In each case the results
appear consistent between the three regions, and across the
three thresholds within each region.
The clipping statistics for each field are presented in

Table V.

FIG. 16. Constraints on the anisotropy parameter β from the three individual GAMA regions, from left to right: G09, G12, G15, for the
case of the unclipped galaxy field and three clipping thresholds δ0 of 8, 5, and 4.

FIG. 17. Constraints on fσ8 from the three individual GAMA regions, from left to right: G09, G12, G15, for the case of the unclipped
galaxy field and three clipping thresholds δ0 of 8, 5, and 4.

TABLE V. The fraction of the field volume fV and the
effective fraction of the galaxies fm subject to clipping from
each of the GAMA regions, for each of the three threshold
values.

Region δ0 fV fm

9 4 0.025 0.169
12 4 0.037 0.210

15 4 0.035 0.217

9 5 0.016 0.119

12 5 0.024 0.157

15 5 0.024 0.165

9 8 0.005 0.047

12 8 0.008 0.065

15 8 0.008 0.081
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APPENDIX D: ANISOTROPIC CLUSTERING

Here we present constraints on the anisotropy parameter
β from the clipped galaxy power spectrum. To do so we
marginalize over the three model parameters (aL, σv, bσ8)
while fixing the shape of the linear power spectrum to the
fiducial model.

Figure 18 illustrates the confidence intervals derived
from the combination of the three fields. The maximum
likelihood values for β are plotted as a function of the
maximum wave number used to compare to the model. The
behavior closely reflects that of fσ8, as seen in the central
panel of Fig. 10.
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