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1 Introduction

It has long been recognized that supersymmetric quantum field theories enjoy many special properties

that make them particularly useful testing grounds for more general ideas about quantum field theory.

This is largely a consequence of the fact that many observables in such theories are “protected”, in the

sense of being determined by a semiclassical calculation with a finite number of corrections taken into

account, or alternatively by some related “finite-dimensional” problem that admits the type of closed-

form solution that is uncharacteristic of interacting quantum field theories. In most circumstances,

these techniques have a semiclassical flavor to them. For example, in cases where supersymmetric

partition functions can be computed by localization, the calculation is generally performed starting

from a weakly coupled Lagrangian description of the theory.

A notable omission from the currently available techniques is a way to directly access the inter-

acting superconformal phases of theories that do not admit a Lagrangian formulation. By now, there

exists a veritable menagerie of models in various dimensions that exhibit conformal phases with vary-

ing amounts of supersymmetry, but only in the nicest cases do such models belong to families that

include free theories as special points, allowing for properties of the interacting theory to be studied

semiclassically. Even for those Lagrangian models, the standard supersymmetric toolkit does not seem

to exploit some of the most powerful structures of conformal field theory, such as the existence of a

state/operator map and of a well-controlled and convergent operator product expansion.

Meanwhile, recent years have witnessed a surprising resurgence of progress centering around pre-

cisely these aspects of conformal field theory in the form of the conformal bootstrap [1, 2]. In large part,

this progress has been inspired by the development of numerical techniques for extracting constraints

on the defining data of a CFT using unitarity and crossing symmetry [3, 4]. Generally speaking, these

techniques are equally applicable to theories with and without supersymmetry, and despite promising

early results [5–8], it has not been entirely clear the extent to which supersymmetry improves the sit-

uation. Nevertheless, the possibility that supersymmetry may act as a crucible in which exact results

can be forged even for strongly interacting CFTs is irresistible, and we are led to ask the question:

Do the conformal bootstrap equations in dimension d > 2 admit a solvable truncation in

the case of superconformal field theories?

Having formulated the question, it is worth pausing to consider in what sense the answer could be “yes”.

The most natural possibilities correspond to known situations in which bootstrap-type equations are

rendered solvable. There are two primary scenarios in which the constraints of crossing symmetry are

nontrivial, yet solvable:

(I) Meromorphic (and rational) conformal field theories in two dimensions.

(II) Topological quantum field theories.

The subject of this paper is the realization of the first option in the context of N > 2 superconformal

field theories in four dimensions. The same option is in fact viable for (2, 0) superconformal theories

in six dimensions. That subject is elaborated upon in a separate article [9]. Although we will not

discuss the subject at any length in the present work, the second option can also be realized using

similar techniques to those discussed herein.

The primary hint that such an embedding should be possible was already observed in [7, 10], build-

ing upon the work of [11–16]. In a remarkable series of papers [10–16], the constraints of superconformal

symmetry on four-point functions of half-BPS operators in N = 2 and N = 4 superconformal field
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theories were studied in detail. This analysis revealed that the superconformal Ward identities obeyed

by these correlators can be conveniently solved in terms of a set of arbitrary real-analytic functions

of the two conformal cross ratios (z, z̄), along with a set of meromorphic functions of z alone. In a

decomposition of the four-point function as an infinite sum of conformal blocks, these meromorphic

functions capture the contribution to the double operator product expansion of intermediate “pro-

tected” operators belonging to shortened representations. The real surprise arises when these results

are combined with the constraints of crossing symmetry. One then finds [7, 10] that the meromorphic

functions obey a decoupled set of crossing equations, whose general solution can be parametrized in

terms of a finite number of coefficients. For example, in the important case of the four-point function

of stress-tensor multiplets in an N = 4 theory, there is a one-parameter family of solutions, where

the parameter has a direct physical interpretation as the central charge (conformal anomaly) of the

theory. The upshot is that the protected part of this correlator is entirely determined by abstract

symmetry considerations, with no reference to a free-field description of the theory.

In this paper we establish a conceptual framework that explains and vastly generalizes this obser-

vation. For a general N = 2 superconformal field theory, we define a protected subsector by passing

to the cohomology of a certain nilpotent supercharge Q . This is a familiar strategy – for example, the

definition of the chiral ring in an N = 1 theory follows the same pattern – but our version of this

maneuver will be slightly unconventional, in that we take Q = Q+ S to be a linear combination of a

Poincaré and a conformal supercharge. In order to be in the cohomology of Q , local operators must

lie in a fixed plane R2 ⊂ R4. Crucially, their correlators can be shown to be non-trivial meromorphic

functions of their positions. This is in contrast to correlators of N = 1 chiral operators, which are

purely topological in a general N = 1 model, and strictly vanish in an N = 1 conformal theory due

to R-charge conservation.

The meromorphic correlators identified by this cohomological construction are precisely the ingre-

dients that define a two-dimensional chiral algebra.1 Our main result is thus the definition of a map χ

from the space of four-dimensional N = 2 superconformal field theories to the space of two-dimensional

chiral algebras,
χ : 4d N = 2 SCFT −→ 2d Chiral Algebra.

In concrete terms, the chiral algebra computes correlation functions of certain operators in the four-

dimensional theory, which are restricted to be coplanar and further given an explicit space-time depen-

dence correlating their SU(2)R orientation with their positions, see (2.27). For the case of four-point

functions of half-BPS operators, assigning the external operators this “twisted” space-time depen-

dence accomplishes precisely the task of projecting the full correlator onto the meromorphic functions

appearing in the solution to the superconformal Ward identities. To recapitulate, those mysterious

meromorphic functions are given a direct interpretation as correlators in the associated chiral algebra,

and turn out to be special instances of a much more general structure.

The explicit space-time dependence of the four-dimensional operators is instrumental in making

sure that they are annihilated by a common supercharge Q for any insertion point on the plane. From

this viewpoint, our construction is in the same general spirit as [17] (see also [18]). These authors

considered particular examples of correlators in N = 4 super Yang-Mills theory that are invariant

1We have settled on the expression “chiral algebra” as it is the most common in the physics literature. We consider it
to be synonymous with “vertex operator algebra”, though in the mathematical literature some authors make a distinction
between the two notions. We trust no confusion will arise with the overloading of the word “chiral” due to its unavoidable
use in the four-dimensional context, e.g., “chiral and anti-chiral 4d supercharges”, “the N = 1 chiral ring”, etc.
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under supercharges of the same schematic form Q+ S. Their choices of supercharges are inequivalent

to ours, and do not lead to meromorphic correlators.

The operators captured by the chiral algebra are precisely the operators that contribute to the

Schur limit of the superconformal index [19–21], and we will refer to them as Schur operators. Impor-

tant examples are the half-BPS operators that are charged under SU(2)R but neutral under U(1)r,

whose vacuum expectation values parameterize the Higgs branch of the theory, and the SU(2)R
Noether current. The class of Schur operators is much larger, though, and encompasses a variety of

supermultiplets obeying less familiar semi-shortening conditions. Operators associated to the Coulomb

branch of the theory (such as the half-BPS operators charged under U(1)r but neutral under SU(2)R)

are not of Schur type. In a pithy summary, the cohomology of Q provides a “categorification” of the

Schur index. It is a surprising and useful fact that this vector space naturally possesses the additional

structure of a chiral algebra.

Chiral algebras are rigid structures. Associativity of their operator algebra translates into strong

constraints on the spectrum and OPE coefficients of Schur operators in the parent four-dimensional

theory. We have already pointed out that this leads to a unique determination of the protected

part of four-point function of stress-tensor multiplets in the N = 4 context [7]. Another canonical

example is the four-point function of “moment map” operators in a general N = 2 superconformal

field theory. The moment map M is the lowest component of the supermultiplet that contains the

conserved flavor current of the theory, and as such it transforms in the adjoint representation of the

flavor group G. We find that the associated two-dimensional meromorphic operator J(z) := χ[M ] is

the dimension-one generating current of an affine Lie algebra ĝk2d , with level k2d fixed in terms of the

four-dimensional flavor central charge. As the four-point function of affine currents is uniquely fixed,

this relation completely determines the protected part of the moment map four-point function. In

turn, this information serves as essential input to the full-fledged bootstrap equations that govern the

contributions from generic long multiplets in the conformal block decomposition of these four-point

functions. These equations can be studied numerically to derive interesting bounds on non-protected

quantities, following the approach of [7]. We will present numerical bounds that arise for various

choices of G in a separate publication [22]. It is worth emphasizing that the protected part of the

four-point function receives contributions from an infinite tower of intermediate shortened multiplets,

and without knowledge of its precise form the numerical bootstrap program would never get off the

ground. In theories that admit a Lagrangian description, one could appeal to non-renormalization

theorems and derive the same protected information in the free field limit; the chiral algebra then just

serves as a powerful organizing principle to help obtain the same result. However, the abstract chiral

algebra approach seems indispensable for the analysis of non-Lagrangian theories – for example, when

G is an exceptional group.

As a byproduct of a detailed study of the moment map four-point function, we are able to derive

new unitarity bounds that must be obeyed by the central charges of any interacting N = 2 supercon-

formal field theory. By exploiting the relation between the two- and four-dimensional perspectives,

we are able to express certain coefficients of the four-dimensional conformal block decomposition of

the four-point function in terms of central charges; the new bounds arise because those coefficients

must be non-negative in a unitary theory. Saturation of the bounds signals special properties of the

Higgs branch chiral ring. This is a particular instance of a more general encoding of four-dimensional

physics in the chiral algebra, the surface of which we have only barely scratched. One notable aspect of

this correspondence is the interplay between the geometry of the Higgs branch and the representation

theory of the chiral algebra; for example, null vectors that appear at special values of the affine level

imply Higgs branch relations.
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We describe several structural properties of the map χ. Two universal features are the affine

enhancement of the global flavor symmetry, and the Virasoro enhancement of the global conformal

symmetry. The affine level in the chiral algebra is related to the flavor central charge in four di-

mensions as k2d = − 1
2k4d, while the Virasoro central charge is proportional to the four-dimensional

conformal anomaly coefficient,2 c2d = −12c4d. A perhaps surprising feature of these relations is that

the two-dimensional central charges and affine levels must be negative. Another universal aspect of

the correspondence is a general prescription to derive the chiral algebra associated to a gauge theory

whenever the chiral algebra of the original theory whose global symmetry is being gauged is known.

Turning to concrete examples, we start with the SCFTs of free hypermultiplets and free vector

multiplets, which are associated to free chiral algebras. With the help of the general gauging prescrip-

tion, we can combine these ingredients to find the chiral algebra associated to an arbitrary Lagrangian

SCFT. We also sketch the structure of the chiral algebras associated to SCFTs of class S, which are

generally non-Lagrangian. In several concrete examples, we present evidence that the chiral algebra

has an economical presentation as a W-algebra, i.e., as a chiral algebra with a finite set of generators

[25]. We do not know whether all chiral algebras associated to SCFTs are finitely generated, or how

to identify the complete set of generators in the general case. Indeed, an important open problem

is to give a more precise characterization of the class of chiral algebras that can arise from physical

four-dimensional theories. Ideally the distinguishing features of this class could be codified in a set of

additional axioms. Since chiral algebras are on sounder mathematical footing than four-dimensional

quantum field theories, it is imaginable that this could lead to a well-defined algebraic classification

problem. If successful, this approach would represent concrete progress towards the loftier goal of

classifying all possible N = 2 SCFTs.

On a more formal note, four-dimensional intuition leads us to formulate a number of new conjec-

tures about chiral algebras that may be of interest in their own right. The conjectures generally take

the form of an ansatz for the cohomology of a BRST complex, and include new free-field realizations

of affine Lie algebras at special values of the level and new examples of quantum Drinfeld-Sokolov

reduction for nontrivial modules. We present evidence for our conjectures obtained from a low-brow,

level-by-level analysis, but we suspect that more powerful algebraic tools may lead to rigorous proofs.

The organization of this paper is as follows. In §2 we review the arguments behind the appearance

of infinite-dimensional chiral symmetry algebras in the context of two-dimensional conformal field theo-

ries. We explain how the same structure can be recovered in the context of N = 2 superconformal field

theories in four dimensions by studying observables that are well-defined after passing to the cohomol-

ogy of a particular nilpotent supercharge in the superconformal algebra. This leads to the immediate

conclusion that chiral symmetry algebras will control the structure of this subclass of observables. In

§3, we describe in greater detail the resulting correspondence between N = 2 superconformal mod-

els in four dimensions and their associated two-dimensional chiral algebras. We outline some of the

universal features of the correspondence. We further describe an algorithm that defines the chiral

algebra for any four-dimensional SCFT with a Lagrangian description in terms of a BRST complex.

In §4, we describe the immediate consequences of this structure for more conventional observables of

the original theory. It turns out that superconformal Ward identities that have previously derived for

four-point functions of BPS operators are a natural outcome from our point of view. We further derive

new unitarity bounds for the anomaly coefficients of conformal and global symmetries, many of which

2There are two tensorial structures in the four-dimensional trace anomaly, whose coefficients are conventionally
denoted a and c. It is the c anomaly that is relevant for us, in contrast to the better studied a anomaly, which decreases
monotonically under RG flow [23, 24].
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are saturated by interesting superconformal models. We point out that the state space of the chiral

algebra provides a categorification of the Schur limit of the superconformal index. In §5, we detail

the construction and analysis of the chiral algebras associated to some simple Lagrangian SCFTs. We

also make a number of conjectures as to how to describe these chiral algebras as W-algebras. In §6
we provide a sketch of the class of chiral algebras that are associated to four-dimensional theories of

class S. We conclude in §7 by listing a number of interesting lines of inquiry that are opened up by

the results reported here. Several appendices are included that review relevant material concerning

the superconformal algebras and representation theory used in our constructions.

2 Chiral symmetry algebras in four dimensions

The purpose of this section is to establish the existence of infinite chiral symmetry algebras acting on

a restricted class of observables in any N = 2 superconformal field theory in four dimensions. This is

accomplished in two steps. First, working purely in terms of the relevant spacetime symmetry algebras,

we identify a particular two-dimensional conformal subalgebra of the four-dimensional superconformal

algebra,3

sl(2)× ŝl(2) ⊂ sl(4 | 2) ,

with the property that the holomorphic factor sl(2) commutes with a nilpotent supercharge, Q , while

the antiholomorphic factor ŝl(2) is exact with respect to the same supercharge. We then characterize

the local operators that represent nontrivial Q -cohomology classes. The only local operators for which

this is the case are restricted to lie in a plane R2 ⊂ R4 that is singled out by the choice of conformal

subalgebra. The correlation functions of these operators are meromorphic functions of the insertion

points, and thereby define a chiral algebra. As a preliminary aside, we first recall the basic story of

infinite chiral symmetry in two dimensions in order to distill the essential ingredients that need to be

reproduced in four dimensions. The reader who is familiar with chiral algebras in two-dimensional

conformal field theory may safely proceed directly to §2.2.

2.1 A brief review of chiral symmetry in two dimensions

Let us take as our starting point a two-dimensional quantum field theory that is invariant under the

global conformal group SL(2,C). The complexification of the Lie algebra of infinitesimal transforma-

tions factorizes into holomorphic and anti-holomorphic generators,

L−1 = −∂z , L0 = −z∂z , L+1 = −z2∂z ,

L̄−1 = −∂z̄ , L̄0 = −z̄∂z̄ , L̄+1 = −z̄2∂z̄ ,
(2.1)

which obey the usual sl(2)× sl(2) commutation relations,

[L+1, L−1] = 2L0 , [L0, L±1] = ∓L±1 ,

[L̄+1, L̄−1] = 2L0 , [L̄0, L̄±1] = ∓L̄±1 .
(2.2)

We need not assume that the theory is unitary, but for simplicity we will assume that the space

of local operators decomposes into a direct sum of irreducible highest weight representations of the

3In this section, we adopt the convention of specifying the complexified versions of symmetry algebras. This will
turn out to be particularly natural in the discussion of §2.2. We generally attempt to select bases for the complexified
algebras that are appropriate for a convenient real form. Our basic constructions are insensitive to the signature of
spacetime, though in places we explicitly impose constraints that follow from unitarity in Lorentzian signature.
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global conformal group. Such representations are labelled by holomorphic and anti-holomorphic scaling

dimensions h and h̄ of the highest weight state,

L0|ψ〉h.w. = h|ψ〉h.w. , L̄0|ψ〉h.w. = h̄|ψ〉h.w. , (2.3)

and we further assume that h and h̄ are not equal to negative half-integers (in which case one would

find finite-dimensional representations of sl(2)).

Chiral symmetry arises as a consequence of the existence of any local operator O(z, z̄) which obeys

a meromorphicity condition of the form

∂z̄O(z, z̄) = 0 =⇒ O(z, z̄) := O(z) . (2.4)

Under the present assumptions, such an operator will transform in the trivial representation of the

anti-holomorphic part of the symmetry algebra and by locality will have h equal to an integer or

half-integer. Meromorphicity implies the existence of infinitely many conserved charges (and their

associated Ward identities) defined by integrating the meromorphic operator against an arbitrary

monomial in z,

On :=

∮
dz

2πi
zn+h−1O(z) . (2.5)

The operator product expansion of two meromorphic operators contains only meromorphic operators,

and the singular terms determine the commutation relations among the associated charges, cf. [25].

This is the power of meromorphy in two dimensions: an infinite dimensional symmetry algebra orga-

nizes the space of local operators into much larger representations, and the associated Ward identities

strongly constrain the correlation functions of the theory.

Some examples of this structure are ubiquitous in two-dimensional conformal field theory. The

energy-momentum tensor in a two-dimensional CFT is conserved and traceless in flat space, ∂µTµν =

T µ
µ = 0, leading to two independent conservation equations

∂z̄Tzz(z, z̄) = 0 =⇒ Tzz(z, z̄) := T (z) ,

∂zTz̄z̄(z, z̄) = 0 =⇒ Tz̄z̄(z, z̄) := T (z̄) .
(2.6)

The holomorphic stress tensor T (z) is a meromorphic operator with (h, h̄) = (2, 0), and its self-OPE

is fixed by conformal symmetry to take the form

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
, (2.7)

which implies that the associated conserved charges obey the commutation relations of the Virasoro

algebra with central charge c,

Ln :=

∮
dz

2πi
zn+1T (z) , [Lm, Ln] = (m− n)Lm+n +

c

12
m(m2 − 1)δm+n,0 . (2.8)

Similarly, global symmetries can give rise to conserved holomorphic currents JAz (z, z̄) =: JA(z) with

(h, h̄) = (1, 0). The self-OPEs of such currents are fixed to take the form

JA(z)JB(w) ∼ k δAB

(z − w)2
+
∑
C

ifABC
JC(w)

(z − w)
, (2.9)
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with the structure constants fABC those of the Lie algebra of the global symmetry. The conserved

charges in this case obey the commutation relations of an affine Lie algebra at level k,

JAn :=

∮
dz

2πi
zn JA(z) , [JAm, J

B
n ] =

∑
c

ifABCJCm+n +mk δABδm+n,0 . (2.10)

The algebra of all meromorphic operators, or alternatively the algebra of their corresponding charges,

constitutes the chiral algebra of a two-dimensional conformal field theory.

In most physics applications, the spectrum of a CFT will include non-meromorphic operators that

reside in modules of the chiral algebra of the theory. In the generic case in which the chiral algebra is the

Virasoro algebra, this just means that there are Virasoro primary operators with h̄ 6= 0. Nevertheless,

the correlation functions of the meromorphic operators can be taken in and of themselves to define

a certain meromorphic theory. Such theories are referred to by various authors as chiral algebras,

vertex operator algebras, or meromorphic conformal field theories. Though some of these names are

occasionally assigned to structures that possess some extra nice properties, such as modular invariant

partition functions, we will be discussing the most basic version. Henceforth, by chiral algebra we will

mean the operator product algebra of a set of meromorphic operators in the plane.4 So defined, a

chiral algebra is strongly constrained by the requirements of crossing symmetry. In what follows, we

show that any N = 2 superconformal field theory in four dimensions possesses a class of observables

that define a chiral algebra in this sense.

2.2 Twisted conformal subalgebras

Chiral algebras are ordinarily thought to be a special feature of conformal-invariant models in two

dimensions. Indeed, the appearance of an infinite number of conserved charges as defined in (2.5)

follows from the interaction of two different ingredients that are special to two dimensions. Firstly, the

operators that give rise to the chiral symmetry charges are invariant under (say) the anti-holomorphic

factor of the two-dimensional conformal algebra, while transforming in a nontrivial representation of

the holomorphic factor, so they are nontrivial holomorphic operators on the plane. The powerful

machinery of complex analysis in a single variable then produces the infinity of conserved charges in

(2.5).5

In dimension d > 2, it is the first of these conditions that fails the most dramatically, while

the latter seems more superficial. Indeed, correlation functions in a conformal field theory in higher

dimensions can be restricted so that all operators lie on a plane R2 ⊂ Rd, and the resulting observables

will transform covariantly under the subalgebra of the d-dimensional conformal algebra that leaves the

R2 in question fixed,

sl(2)× sl(2) ⊂ so(d+ 2) . (2.11)

These correlation functions will be largely indistinguishable from those of an authentic two-dimensional

CFT, and if one could locate operators that were chiral with respect to this subalgebra, then the

arguments of §2.1 would go through unhindered and a chiral symmetry algebra could be constructed

4In a preview of later discussions, we mention that byW-algebra we will mean a chiral algebra for which the space of
local operators is generated by a finite number of operators via the operations of taking derivatives and normal-ordered
multiplication.

5From another point of view, one can hardly hope to find a meromorphic sector in a higher dimensional CFT due
to Hartogs’ theorem, which implies the absence of singularities of codimension greater than one in a meromorphic
function of several variables. This has been overcome in, e.g., [26, 27] by considering extended operators that intersect
in codimension one. The problem, then, is that the meromorphic structure does not impose constraints on the natural
objects in the original theory – the local operators.
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that would act on R2-restricted correlation functions. However, a local operator that transforms in

the trivial representation of either copy of sl(2) in (2.11) will necessarily be trivial with respect to all

of so(d+ 2). As such, the only “meromorphic” operator on the plane in a higher dimensional theory

is the identity operator, and no chiral symmetry algebra can be constructed. This is ultimately a

consequence of the simple fact that the higher dimensional conformal algebras do not factorize into a

holomorphic and anti-holomorphic part: any two sl(2) subalgebras will be related by conjugation.

The brief arguments given above are common knowledge, and essentially spell the end to any hopes

of recovering chiral symmetry algebras in a general higher-dimensional conformal field theory. We have

reproduced them here to clarify the mechanism by which they will be evaded in the coming discussion.

In particular, we will see that the additional tools at our disposal in the case of superconformal

field theories are sufficient to give life to chiral algebras in four dimensions. Before describing the

construction, let us recall a simple example which illustrates the mechanism that will be used.

2.2.1 Intermezzo: translation invariance from cohomology

In a quantum field theory with N = 1 supersymmetry in four dimensions, there exists a special class

of operators known as chiral operators (not to be confused with the meromorphic operators of §2.1,

which are chiral in a different sense) that lie in short representations of the supersymmetry algebra

and satisfy a shortening condition in terms of a chiral half of the supercharges,

{Qα,O(x)] = 0 , α = ± . (2.12)

The translation generators in R4 are exact with respect to the chiral supercharges,

Pαα̇ = {Qα, Q̃α̇} , (2.13)

and consequently, via the Jacobi identity, the derivative of a chiral operator is also exact,

[Pαα̇,O(x)] = {Qα,O′(x)] . (2.14)

Because the chiral supercharges are nilpotent and anti-commute, the cohomology classes of chiral

operators with respect to the supercharges Qα are well-defined and independent of the insertion point

of the operator. Schematically, one can write

[Oi(x)]Qα := Oi . (2.15)

Products of chiral operators are then free of short distance singularities and form a ring at the level of

cohomology. Correlation functions of chiral operators have the excellent property of being independent

of the positions of the operators,

〈O1(x1)O2(x2) . . .On(xn)〉 = 〈[O1(x1)][O2(x2)] . . . [On(xn)]〉 = 〈O1O2 . . .On〉 . (2.16)

A suggestive way of phrasing this well-known feature of the chiral ring is that although chiral operators

transform in a nontrivial representation of the four-dimensional translation group, their cohomology

classes with respect to the chiral supercharges transform in the trivial representation. The passage

from local operators to their cohomology classes modifies the transformation properties of these local

operators under the spacetime symmetry algebra, in this case rendering them trivial.
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2.2.2 Holomorphy from cohomology

To recover chiral algebras in four dimensions, we adopt the same philosophy just illustrated in the

example of the chiral ring. We will find a nilpotent supercharge with the property that cohomology

classes of local operators with respect to said supercharge transform in a chiral representation of

an sl(2) × ŝl(2) subalgebra of the full superconformal algebra, and as such behave as meromorphic

operators. Such local operators will then necessarily constitute a chiral algebra as described in §2.1.

The first task that presents itself is an algebraic one. To realize chiral symmetry at the level

of cohomology classes, we identify a two-dimensional conformal subalgebra of the four-dimensional

superconformal algebra,

sl(2)× ŝl(2) ⊂ sl(4 | 2) ,

along with a privileged supercharge Q for which the following criteria are satisfied:

• The supercharge is nilpotent: Q 2 = 0.

• sl(2) and ŝl(2) act as the generators of holomorphic and anti-holomorphic Möbius transformations

on a complex plane C ⊂ R4.

• The holomorphic generators spanning sl(2) commute with Q .

• The anti-holomorphic generators spanning ŝl(2) are Q commutators.

In searching for such a subalgebra, we can first restrict our attention to subalgebras of sl(4|2)

that keep the plane fixed set-wise. There are two inequivalent maximal subalgebras of this kind:

sl(2|1) × sl(2|1), which is the symmetry algebra of an N = (2, 2) SCFT in two dimensions, and

sl(2) × sl(2|2), which is the symmetry algebra of an N = (0, 4) SCFT in two dimensions. One easily

determines that the first subalgebra cannot produce the desired structure; we proceed directly to

consider the second case.

The four-dimensional N = 2 superconformal algebra and the two-dimensional N = (0, 4) super-

conformal algebra are summarized in Appendix A. In embedding the latter into the former, we take

the fixed two-dimensional subspace to be the one that is fixed pointwise by the rotation generator

M⊥ :=M +
+ −M+̇

+̇
. (2.17)

The generator of rotations acting within the fixed plane is the orthogonal combination,

M :=M +
+ +M+̇

+̇
. (2.18)

In more conventional terms, we are picking out the plane with x1 = x2 = 0. Introducing complex

coordinates z := x3 + ix4, z̄ := x3 − ix4, the two-dimensional conformal symmetry generators in

sl(2)× sl(2|2) can be expressed in terms of the four-dimensional ones as

L−1 = P++̇ , L+1 = K+̇+ , 2L0 = H+M ,

L̄−1 = P−−̇ , L̄+1 = K−̇− , 2L̄0 = H−M .
(2.19)

The fermionic generators of sl(2) × sl(2|2) are obviously all anti-holomorphic, and upon embedding

are identified with four-dimensional supercharges according to

QI = QI− , Q̃I = Q̃I−̇ , SI = S−I , S̃I = S̃I−̇ , (2.20)
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where I = 1, 2 is an sl(2)R index. Finally, the sl(2|2) superalgebra has a central element Z, which

upon embedding is given in terms of four-dimensional symmetry generators as

Z = r +M⊥ , (2.21)

where r is the generator of U(1)r.

Amongst the supercharges listed in (2.20), one finds a variety of nilpotent operators. Any such

operator will necessarily commute with the generators L±1 and L0 in (2.19) since all of the supercharges

do so. The requirement of Q -exact anti-holomorphic Möbius transformations is harder to satisfy. In

fact, up to similarity transformation using generators of the bosonic symmetry algebra, there are only

two possible choices:

Q 1 := Q1 + S̃2 , Q 2 := S1 − Q̃2 ,

Q
†
1 := S1 + Q̃2 , Q

†
2 := Q1 − S̃2 .

(2.22)

Interestingly, Q 1 and Q 2 give rise to the same Q -exact generators of an anti-holomorphic ŝl(2) algebra,

{Q 1 , Q̃1} = {Q 2 ,−Q2} = L̄−1 +R− =: L̂−1 ,

{Q 1 ,S2} = {Q 2 , S̃1} = L̄+1 −R+ =: L̂+1 ,

{Q 1 , Q
†
1} = {Q 2 , Q

†
2} = 2(L̄0 −R) =: 2L̂0 .

(2.23)

In addition, the central element of sl(2|2) is exact with respect to both supercharges,

{Q 1 , Q 2} = −Z . (2.24)

Note that while ŝl(2) does act on the plane by anti-holomorphic conformal transformations, it is

not simply a subalgebra of the original global conformal algebra. Rather, it is an sl(2)R twist of

sl(2).6 Because the relevant real forms of the sl(2) conformal algebra and sl(2)R are different, the

generators of ŝl(2) do not enjoy any reasonable hermiticity properties when acting on the Hilbert space

of the four-dimensional theory. In particular, we can immediately see that L̂†±1 6= L̂∓1. This would

complicate matters considerably if our intention was to study operators that transform in nontrivial

representations of this twisted algebra. Fortunately, our plan is precisely the opposite: chiral algebras

can appear after passing to Q -cohomology, at which point all of the objects of interest will effectively

be invariant under the action of ŝl(2). Consequently, reality/hermiticity conditions will play no role

in the structure of the “physical” operators/observables defined at the level of cohomology.

2.3 The cohomology classes of local operators

Our next task is to study the properties of operators that define non-trivial Q i-cohomology classes. For

the purposes of the present paper, we are restricting our attention to local operators in four dimensions;

the inclusion of non-local operators, such as line or surface operators, is an interesting extension that

will be addressed in future work.

We begin by identifying the requirements for an operator inserted at the origin to define a nontrivial

6In light of this, we may understand the absence of a similar construction using the sl(2|1) × sl(2|1) algebra as
a consequence of there being no sl(2)R with which to twist. Similarly, our construction does not extend to N = 1
superconformal theories since they only have an abelian R-symmetry.
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Q i-cohomology class. In particular, we will derive the conditions under which an operator O(x) obeys

{Q i,O(0)] = 0 , O(0) 6= {Q i,O′(0)] , (2.25)

for i = 1 or i = 2. Because both Q i commute with L̂0 and Z, we lose no generality in restricting

to definite eigenspaces of these charges. A standard cohomological argument then implies that since

L̂0 and Z are actually Q i-exact, an operator satisfying (2.25) must lie in the zero eigenspace of both

charges. In terms of four-dimensional quantum numbers, this means that such an operator must obey7

1
2 (E − (j1 + j2))−R = 0 , r + (j1 − j2) = 0 , (2.26)

where E is the conformal dimension/eigenvalue of H, j1 and j2 are sl(2)1 and sl(2)2 Lorentz quantum

numbers/eigenvalues of M +
+ and M+̇

+̇
, and R is the sl(2)R charge/eigenvalue of R. As long as

the four-dimensional SCFT is unitary, the last line of (2.23) implies that any operator with zero

eigenvalue under L̂0 must be annihilated by Q i and Q
†
i for both i = 1 and i = 2. The relations in (2.26)

therefore characterize the harmonic representatives of Q i-cohomology classes of operators at the origin,

and we see that the two supercharges actually define the same cohomology. Notably, these relations

are known to characterize the operators that contribute to the Schur (and Macdonald) limits of the

superconformal index in four dimensions [21], suggesting that the cohomology will be non-empty in

any nontrivial N = 2 SCFT. We will refer to the class of local operators obeying (2.26) as the Schur

operators of the SCFT. We will have more to say about the features of these operators in §3.

Note that in contrast to the case of ordinary chiral operators in a supersymmetric theory, which

are annihilated by a given Poincaré supercharge regardless of the insertion point, for operators to be

annihilated by the Q i when inserted away from the origin requires that they acquire a more intricate

dependence on their position in R4. This is a consequence of the fact that the translation generators

do not commute with the superconformal charges S−1 and S̃2−̇ appearing in the definitions of the Q i.

Indeed, there is no way to define the translation of a Schur operator from the origin to a point outside

of the (z, z̄) plane so that it continues to represent a Q i-cohomology class. Within the plane, though,

we can accomplish this task using the Q i-exact, twisted ŝl(2) of the previous subsection. In particular,

because the twisted anti-holomorphic translation generator L̂−1 is a Q i anti-commutator and the

holomorphic translation generator L−1 is Q i-closed, we can define the twisted-translated operators

O(z, z̄) = ezL−1+z̄L̂−1 O(0) e−zL−1−z̄L̂−1 , (2.27)

where O(0) is a Schur operator. One way of thinking about this prescription for the translation

of local operators is as the consequence of introducing a constant, complex background gauge field

for the sl(2)R symmetry that is proportional to the sl(2) raising operator. By construction, the

twisted-translated operator is Q i closed for both i = 1, 2, and the cohomology class of this operator is

well-defined and depends on the insertion point holomorphically,

[O(z, z̄)]Q =⇒ O(z) . (2.28)

What does such an operator look like in terms of a more standard basis of local operators at the point

(z, z̄)? To answer this, we must first note that Schur operators at the origin occupy the highest-weight

7In fact, the second relation in (2.26) follows from the first as a consequence of unitarity and the four-dimensional
superconformal algebra (see §3.1). We list it separately here since it is an algebraically independent constraint at the
level of the quantum numbers.
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states of their respective sl(2)R representation (this fact will be explained in greater detail in §3). If we

denote the whole spin k representation of sl(2)R as OI1I2···I2k with Ii = 1, 2, then the Schur operator

at the origin is O11···1(0), and the twisted-translated operator at any other point is defined as

O(z, z̄) := uI1(z̄) · · · uI2k(z̄) OI1...I2k(z, z̄) , uI(z̄) := (1, z̄) . (2.29)

At any given point (z, z̄), this is a particular complex-linear combination of the different elements of

the sl(2)R representation of the corresponding Schur operator. The precise combination depends on

the insertion point as indicated. What we have discovered is that the correlation functions of these

operators are determined at the level of their Q i-cohomology classes, and are therefore meromorphic

functions of the insertion points.8

2.4 A chiral operator product expansion

The most efficient language for describing chiral algebras is that of the operator product expansion.

Let us therefore study the structure of the operator product expansion of the twisted-translated Schur

operators in order to see the emergence of meromorphic OPEs befitting a chiral algebra.

Consider two operators: O1(z, z̄) is the twisted translation of a Schur operator from the origin to

(z, z̄), and O2(0, 0) is a Schur operator inserted at the origin. Given the general expression for the

twisted-translated operator given in (2.29), the OPE of these two operators should take the form

O1(z, z̄)O2(0) =
∑
k

λ12k
z̄R1+R2−Rk

zh1+h2−hk z̄h̄1+h̄2−h̄k
Ok(0) , (2.30)

where the z̄R1+R2−Rk in the numerator comes from the explicit factors of z̄ appearing in (2.29), and Rk
is the R-charge of the operator Ok. This form of the OPE is so far a consequence of two-dimensional

conformal invariance and conservation of R-charge under multiplication. We have introduced the two-

dimensional quantum numbers h and h̄, which are expressible in terms of four-dimensional quantum

numbers as

h =
E + (j1 + j2)

2
, h̄ =

E − (j1 + j2)

2
. (2.31)

Though the OPE does not look meromorphic yet, we are already well on our way. The left hand side

of (2.30) is Q i-closed for any (z, z̄), with the z̄ dependence being Q i-exact. As a result, each individual

term on the right hand side must be Q i-closed, and the sum should be reorganized into two groups.

The first group will consist of the terms in which the operator Ok(0) is a Schur operator, while the

second will consist of the remaining terms, for which the operator Ok(0) is Q i-exact. Recalling that

the quantum numbers of Schur operators obey h̄ = R, we immediately see that for those terms in

the OPE the z̄ dependence cancels between the denominator and the numerator, thus providing the

desired meromorphicity result:

O1(z, z̄)O2(0, 0) =
∑
kSchur

λ12k

zh1+h2−hk
Ok(0) + {Q , . . . ] . (2.32)

From the four-dimensional construction, we expect this OPE to be single-valued, which implies that

h1 + h2 − hk should be an integer. Indeed, this integrality follows from the fact that h is a sum of

SU(2) Cartans after applying SU(2) selection rules. Clearly, in passing to Q i-cohomology classes the

8For N = 4 SYM, a similar contraction of the SU(4)R indices with position-dependent vectors was studied in [17].
The twists considered in that paper are different, and do not give rise to meromorphic operators and chiral algebras.
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OPE stays well-defined and the Q i-exact piece can be set to zero. Thus at the level of cohomology,

the twisted-translated operators can be reinterpreted as two-dimensional meromorphic operators with

interesting singular OPEs.

It may be instructive to see how this meromorphic OPE plays out in a simple example. An

extremely simple case, to which we shall return in §3, is that of free hypermultiplets in four dimensions.

The scalar squarks Q and Q̃ of the hypermultiplet are Schur operators, and the corresponding twisted-

translated operators take the form

q(z) := [Q(z, z̄) + z̄Q̃∗(z, z̄)]Q , q̃(z) := [Q̃(z, z̄)− z̄Q∗(z, z̄)]Q . (2.33)

The singular OPE of these twisted operators can be easily worked out using the free OPE in four

dimensions; we have
q(z)q(w) ∼ regular , q̃(z)q̃(w) ∼ regular ,

q(z)q̃(w) ∼ 1

z − w
, q̃(z)q(w) ∼ − 1

z − w
.

(2.34)

This is example is in some respects deceptively simple, in that the terms appearing in the singular part

of the OPE are meromorphic on the nose. In more complicated theories, there will be cohomologically

trivial terms appearing in the singular part of the OPE, and meromorphicity will depend on a more

detailed knowledge of the action of the nilpotent supercharges.

Let us briefly point out one difference between the structure observed here and that of a more

conventional cohomological subalgebra. The chiral ring in the free hypermultiplet theory is generated

by the operators q(x) and q̃(x). Because these operators both have R = 1/2, there can be no nonzero

correlation functions in the chiral ring. The existence of nontrivial correlation functions in the chiral

algebra described here follows precisely from the presence of subleading terms in the z̄ expansion (2.33)

with SU(2)R quantum numbers of opposite sign relative to the leading term.

Having established existence of nontrivial Q-cohomology classes with meromorphic OPEs and cor-

relators, we now take some time to develop the dictionary between four-dimensional SCFT structures

and their two-dimensional counterparts.

3 The SCFT/chiral algebra correspondence

For any four-dimensionalN = 2 superconformal field theory, we have identified a subsector of operators

whose correlation functions are meromorphic when they are restricted to be coplanar. This sector thus

defines a map from four-dimensional SCFTs to two-dimensional chiral algebras:

χ : 4d SCFT −→ 2d Chiral Algebra.

The aim of this section is to elaborate on the structure of this correspondence, focusing primarily on

its more universal aspects. We begin with a short preview of some of the more prominent features of

the correspondence.

Our first main result is the generic enhancement of the global sl(2) conformal symmetry algebra

to a full fledged Virasoro algebra. In other words, for any SCFT T , we find that χ[ T ] contains a

meromorphic stress tensor. The two-dimensional central charge turns out to have a simple relationship

to the four-dimensional conformal anomaly coefficient,

c2d = −12c4d .
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In particular, this implies that when T is unitary (which we always take to be the case), χ[ T ] is

necessarily non-unitary. In a similar vein, we find that global symmetries of T are always enhanced

into affine symmetries of χ[ T ], and the respective central charges of these flavor symmetries enjoy

another simple relationship,

k2d = −1

2
k4d .

It is often helpful to think of a chiral algebra in terms of its generators. In the chiral algebra

sense of the word, generators are those operators that cannot be expressed as the conformally normal-

ordered products of derivatives of other operators. While we do not find a complete characterization

of the generators of our chiral algebras, we do identify certain operators in four dimensions whose

corresponding chiral operator will necessarily be generators. In particular, operators that are N = 1

chiral and satisfy the Schur shortening condition form a ring which is a consistent truncation of the

N = 1 chiral ring, to which we refer as the Hall-Littlewood (HL) chiral ring. We find that every

generator of the HL chiral ring necessarily leads to a generator of the associated chiral algebra. There

may be additional generators of the chiral algebra beyond the stress tensor and the operators associated

to generators of the HL chiral ring. We will find such additional generators in the example of §5.4.

For the special case of free SCFTs we completely characterize the associated chiral algebras. Un-

surprisingly, free SCFTs give rise to free chiral algebras. In particular, free hypermultiplets correspond

to the chiral algebra of dimension 1/2 symplectic bosons, while free vector multiplets correspond to

the small algebra of a (b, c) ghost system of dimension (1, 0).

Finally, we describe the two-dimensional counterpart of gauging a flavor symmetry G in some

general SCFT TG. Assuming that the chiral algebra associated to the ungauged SCFT is known,

the prescription to find the chiral algebra of the new theory is as follows. The direct product of the

original chiral algebra χ[ TG ] with a (b, c) system in the adjoint representation of G admits a nilpotent

BRST operator precisely when the beta function for the four-dimensional gauge coupling vanishes.

The chiral algebra of the gauged theory is then obtained by restricting to the BRST coholomogy. We

find that this BRST operator precisely captures the one-loop correction to a certain four-dimensional

supercharge, so that restricting to its cohomology is equivalent to the requirement that one should

only retain those states that remain in their original short representations once one-loop corrections

are taken into account.

3.1 Schur operators

As a first order of business, we pursue a more concrete characterization of the four-dimensional opera-

tors whose correlation functions are captured by the chiral algebra. Let us first reiterate the basic facts

about these operators that were derived in §2. The chiral algebra computes correlation functions of

operators that define nontrivial cohomology classes of the nilpotent supercharges Q i. Such operators

are obtained by twisted translations (2.29) of Schur operators from the origin to an arbitrary point

(z, z̄) on the plane. A Schur operator is any operator that satisfies

[L̂0,O] = 0 ⇐⇒ 1
2 (E − (j1 + j2))−R = 0 , (3.1)

[Z,O] = 0 ⇐⇒ r + j1 − j2 = 0 . (3.2)

If T is unitary, then these conditions can be equivalently formulated as the requirement that when in-

serted at the origin, an operator is annihilated by the two Poincaré and the two conformal supercharges
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that enter in the definition of the Q i, i.e.,

[Q 1
−,O(0)] = [Q̃ 2−̇,O(0)] = [S−1 ,O(0)] = [S̃2−̇,O(0)] = 0 . (3.3)

This follows from the hermiticity conditions Q1†
− := S−1 and Q†

2−̇ := S̃2−̇ in conjunction with the

relevant anticommutators from Appendix A,

{Q1
− ,Q

1†
− } = L̂0 −

1

2
Z , {Q̃2−̇ , Q̃

†
2−̇} = L̂0 +

1

2
Z . (3.4)

It follows immediately that the state O(0)|0〉 is annihilated by all four supercharges if and only if its

quantum numbers obey (3.1) and (3.2). Actually, (3.4) implies the additional inequality

L̂0 >
|Z|
2

, (3.5)

from which we may conclude that imposing only (3.1) is a necessary and sufficient condition to define

a Schur operator. We further note that Schur operators are necessarily the highest-weight states

of their respective SU(2)R representations, and so carry the maximum eigenvalue R of the Cartan

generator. If this were not the case, states with greater R would have negative L̂0 eigenvalues, in

contradiction with unitarity. Similarly, Schur operators are necessarily the highest weight states of

their SU(2)1 × SU(2)2 Lorentz symmetry representation, carrying the largest eigenvalues for j1 and

j2. The index structure of a Schur operator is therefore of the form O1...1
+···+ +̇...+̇

.

From the definition of L0 in (2.19) and (3.1) we find that the holomorphic dimension h of a Schur

operator is non-zero and fixed in terms of its quantum numbers,

h = 1
2 (E + j1 + j2) = R+ j1 + j2 . (3.6)

This is always a half integer, since R, j1 and j2 are all SU(2) Cartans. It follows from (3.2) and

(3.6), in conjunction with the non-negativity of j1 and j2, that the holomorphic dimension of a Schur

operator is bounded from below in terms of its four-dimensional R-charges,

h = R+ j1 + j2 > R+ |j1 − j2| = R+ |r| . (3.7)

The inequality is saturated if and only if j1 or j2 is zero.

3.1.1 Supermultiplets of Schur type

Schur operators belong to shortened representations of the N = 2 superconformal algebra. The

complete list of possible shortening conditions is reviewed in Appendix B. In the notations of [28], the

superconformal multiplets that contain Schur operators are the following,

B̂R , DR(0,j2) , D̄R(j1,0) , ĈR(j1,j2) . (3.8)

For the purpose of enumeration, it is sufficient to focus on those Schur operators that are conformal

primaries. Given such a primary Schur operator, there is a tower of descendant Schur operators

that are obtained by the action L−1 = P++̇ = −∂++̇. It turns out that each of the supermultiplets

listed in (3.8) contains exactly one conformal primary Schur operator. In the case of B̂R, this is

also the superconformal primary of the multiplet, whereas in the other cases it is a superconformal
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Multiplet OSchur h r Lagrangian “letters”

B̂R Ψ11...1 R 0 Q, Q̃

DR(0,j2) Q̃1
+̇

Ψ11...1
+̇...+̇

R+ j2 + 1 j2 + 1
2 Q, Q̃, λ̃1

+̇

D̄R(j1,0) Q1
+Ψ11...1

+···+ R+ j1 + 1 −j1 − 1
2 Q, Q̃, λ1

+

ĈR(j1,j2) Q1
+Q̃1

+̇
Ψ11...1

+···+ +̇...+̇
R+ j1 + j2 + 2 j2 − j1 Dn

++̇
Q, Dn

++̇
Q̃, Dn

++̇
λ1

+, Dn
++̇
λ̃1

+̇

Table 1. This table summarizes the manner in which Schur operators fit into short multiplets of the N = 2
superconformal algebra. For each supermultiplet, we denote by Ψ the superconformal primary. There is then
a single conformal primary Schur operator OSchur, which in general is obtained by the action of some Poincaré
supercharges on Ψ. We list the holomorphic dimension h and U(1)r charge r of OSchur in terms of the quantum
numbers (R, j1, j2) that label the shortened multiplet (left-most column). We also indicate the schematic form
that OSchur can take in a Lagrangian theory by enumerating the elementary “letters” from which the operator
may be built. We denote by Q and Q̃ the complex scalar fields of a hypermultiplet, by λIα and λ̃Iα̇ the left-
and right-moving fermions of a vector multiplet, and by Dαα̇ the gauge-covariant derivatives.

descendant. This representation-theoretic information is summarized in Table 1, where we also provide

the schematic form taken by each type of operator in a Lagrangian theory.

The shortening conditions obeyed by the Schur operators make crucial use of the extended N = 2

supersymmetry. Indeed, the hallmark of a Schur operator is that it is annihilated by two Poincaré

supercharges of opposite chiralities (Q1
− and Q̃2−̇ in our conventions). This defines a consistent short-

ening condition because the supercharges have the same SU(2)R weight, and thus anticommute with

each other. No analogous shortening condition exists in an N = 1 supersymmetric theory, because

the anticommutator of opposite-chirality supercharges necessarily yields a momentum operator, which

annihilates only the identity.

Although the most general Schur operators, which are those belonging to ĈR(j1,j2) multiplets, may

seem somewhat exotic, the Schur operators of type B̂R, DR(0,j2) and D̄R(j1,0) are relatively familiar.

Indeed, they can be understood as special cases of conventional N = 1 chiral or anti-chiral operators.

Let us focus for the moment on the N = 1 Poincaré subalgebra that contains the supercharges

Q2
α , Q̃2α̇ . (3.9)

We then ask what subset of Schur operators are also elements of the chiral ring for this N = 1

subalgebra. In particular, such operators will be annihilated by both spinorial components of the

anti-chiral supercharge Q̃2α̇, α̇ = ±̇. These operators have j2 = 0, and a quick glance at Table 1 tells

us that they are Schur operators of types B̂R and D̄R(j1,0). These operators saturate the inequality

(3.7), with r = −j1 < 0 for D̄R(j1,0) and r = 0 for the B̂R. As these are precisely the operators

that contribute to the Hall-Littlewood (HL) limit of the superconformal index, we refer to them as

Hall-Littlewood operators. They form a ring, the Hall-Littlewood chiral ring, which is a consistent

truncation of the full N = 1 chiral ring.

In a Lagrangian theory, the B̂R type Schur operators are gauge-invariant combinations of Q and

Q̃, the complex hypermultiplet scalars that are bottom components of N = 1 chiral superfields (we

are suppressing color and flavor indices). Schur operators of type D̄R(j1,0) are obtained by further

allowing as possible letters the gauginos λ1
+, which are the bottom components of the field strength

chiral superfield W+. In the full N = 1 chiral ring, one also has the other Lorentz component W−
of the field strength, as well as the N = 1 chiral superfield belonging to the N = 2 vector multiplet.
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Operators that contain those letters are, however, not a part of the HL chiral ring.

In complete analogy, we may also define a Hall-Littlewood anti-chiral ring, which contains the

Schur operators of type B̂R and DR(0,j2). These operators are annihilated by chiral supercharges Q1
α,

α = ±, and are thus N = 1 anti-chiral with respect to the N = 1 subalgebra that is orthogonal to

(3.9). Schur operators of type B̂R belong to both HL rings – these are half-BPS operators that are

annihilated by both Q1
α and Q̃2α̇. They form a further truncation of the N = 1 chiral ring to the Higgs

chiral ring, and their vacuum expectation values parametrize the Higgs branch of the theory. We note

that in Lagrangian theories that are represented by acyclic quiver diagrams, all D-type multiplets

recombine and are lifted from the N = 1 chiral ring at one-loop order [21]. In such cases, the HL

chiral ring will coincide with the more restricted Higgs branch chiral ring.

Let us now look in greater detail at some Schur-type shortened multiplets of particular physical

interest:

• Ĉ0(0,0): Stress-tensor multiplet. The superconformal primary is a scalar operator of dimension

two that is a singlet under the SU(2)R×U(1)r. The SU(2)R and U(1)r conserved currents, the

supercurrents, and the stress tensor all lie in this multiplet. The Schur operator is the highest

weight component of the SU(2)R current: J11
++̇

of the SU(2)R.

• Ĉ0(j1,j2): Higher-spin currents multiplets. These generalize the stress-tensor multiplet and con-

tain conserved currents of spin higher than two. If any such multiplets are present, the SCFT

must contain a decoupled free sector [29]. Requiring the absence of these higher spin multiplets

will lead to interesting unitarity bounds for the central charge of interacting SCFTs in §4.

• B̂ 1
2
: This is the superconformal multiplet of free hypermultiplets.

• B̂1: Flavor-current multiplet. The superconformal primary is the “moment map” operator MIJ ,

which is a scalar operator of dimension two that is an SU(2)R triplet, is U(1)r neutral, and

transforms in the adjoint representation of the flavor group GF . The highest weight state of the

moment map – M11 – is the Schur operator. The claim to fame of B̂1 multiplets is that they

harbor the conserved currents JFαα̇ that generate the continuous “flavor” symmetry group GF of

the SCFT, that is, the symmetry group that commutes with the superconformal group. Because

B̂1 multiplets do not appear in any of the recombination rules for short multiplets listed in

Appendix B, it is absolutely protected: JFαα̇ remains conserved on the entire conformal manifold

of the SCFT.9

• D0(0,0) ⊕ D̄0(0,0): This is the superconformal multiplet of free N = 2 vector multiplets.

• D 1
2 (0,0) ⊕ D̄ 1

2 (0,0): “Extra” supercurrent multiplets. The top components of these multiplets are

spin 3/2 conserved currents of dimension ∆ = 7/2 (Jαα̇β̇ and Jαβα̇). They generate additional

supersymmetry transformations beyond the N = 2 superalgebra in question. In particular, in

the N = 2 description of an N = 4 SCFT, one finds two copies of each of these multiplets

transforming as a doublet of the “flavor” SU(2)F ⊂ SU(4)R that commutes with SU(2)R ×
U(1)r ⊂ SU(4)R. The Schur operators have ∆ = 5/2, and have index structure O11

+̇
and O11

+ . In

N = 4 supersymmetric Yang-Mills theory, these are the operators Tr q1
i λ̃

1
+̇

and Tr q1
i λ

1
+, where

i = 1, 2 is the SU(2)F index.

9The only other supermultiplet that contains a global flavor symmetry current is Ĉ0( 1
2
, 1
2
). However, that multiplet

also contains higher-spin currents, thus showing that the only points on a conformal manifold at which the flavor
symmetry enhances are the points where the SCFT develops a free decoupled subsector.
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3.2 Notable elements of the chiral algebra

Armed with a working knowledge of the relevant four-dimensional operators, we now proceed to

derive some universal entries in the 4d/2d dictionary. We first recall from §2.3 the process by which a

meromorphic operator in two dimensions is obtained from an appropriate protected operator in four

dimensions. Starting with a Schur operator in four dimensions, we obtain a two-dimensional chiral

operator via the following series of specializations:

O1···1
+···++̇···+̇(x) Schur operator

O(z, z̄) ∼= uI1(z̄) · · ·uI2R(z̄)O(I1···I2R)(z, z̄) Twisted-translated Schur operator

[O(z, z̄)]Q Chiral cohomology class

O(z) Two-dimensional chiral operator

In general we will refer to this associated chiral operator via the following notation:

O(z) = χ[O1···1
+···++̇···+̇] ,

where sometimes we will be lax about the argument of the χ map and allow O1···1
+···++̇···+̇ to be replaced

by the more generic form of the operator OI1···I2Rα1···α2j1
α̇1···α̇2j2

. Our first task will be to understand the

chiral operators that are related to certain characteristic Schur operators of a four-dimensional theory.

In doing so we will discover some interesting and generic features of this correspondence.

3.2.1 Virasoro enhancement of the sl(2) symmetry

The holomorphic sl(2) algebra generated by {L−1, L0, L1} is a manifest symmetry of the chiral algebra.

Remarkably, this global conformal symmetry is enhanced to the full Virasoro algebra. The Virasoro

algebra is generated by the modes Ln, n ∈ Z, of a holomorphic stress tensor of dimension two T (z).

Surveying Table 1, we find a suitable candidate that is present in any theory T : the Schur operator

belonging to stress tensor multiplet Ĉ0(0,0). One should note that the Schur operator in this multiplet

is not the four-dimensional stress tensor, but rather the component J11
++̇

of the SU(2)R current JIJαα̇ .

The corresponding twisted-translated operator is defined as follows,

JR(z, z̄) := uI(z̄) uJ (z̄) JIJ
++̇

(z, z̄) . (3.10)

Per the discussion of §2, we identify the cohomology class [JR(z, z̄)]Q i with a dimension two meromor-

phic operator in the chiral algebra χ[ T ],

TJ (z) := κ [JR(z, z̄)]Q i . (3.11)

We provisionally include the subscript J as a reminder of the definition (3.11); we still need to establish

that the OPEs of TJ (z) with itself and with other operators in the chiral algebra take the standard

forms appropriate to a two-dimensional stress tensor. With this in mind, we have also included a

normalization factor κ, to be fixed momentarily in order to recover the canonical TT OPE.
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The two- and three-point functions of the R-symmetry current with itself are fixed by N = 2

superconformal invariance in terms of a single parameter c4d, which is one of the two conformal

anomaly coefficients (the other being a4d). Starting from the OPE of two SU(2)R currents [30],

JIJµ (x)JKLν (0) ∼ 3c4d
4π4

εK(IεJ )Lx
2gµν − 2xµxν

x8
+

2i

π2

xµxνx · J (K(IεJ )L)

x6
+ · · · , (3.12)

we find the following OPE of twisted-translated Schur operators,

JR(z, z̄)JR(0, 0) ∼ − 3c4d
2π4z4

− 1

π2

JR(0, 0)

z2

− 1

π2
z̄
uIuJ J

IJ
−−̇(0)

z3
+

i

π2
z̄
J21

++̇
(0)

z2
+

i

π2
z̄2
J21
−−̇(0)

z3
+ · · · . (3.13)

Because the last three terms have non-zero L̂0 eigenvalue, they are guaranteed to be Q i-exact. Upon

setting κ = −2π2, we find the following meromorphic OPE for TJ ,10

TJ (z) TJ (0) ∼ −6 c4d
z4

+
2 TJ (0)

z2
+
∂TJ (0)

z
. (3.14)

Happily, we recognize in (3.14) the familiar two-dimensional TT OPE with central charge c2d given

by

c2d = −12 c4d . (3.15)

This is the first major entry in our dictionary. Note that unitarity of the four-dimensional theory

requires c4d > 0, so the chiral algebra will have negative central charge and will therefore necessarily

be non-unitary.

It is not immediately clear from the arguments presented thus far that TJ (z) will have the correct

OPE with operators of the chiral algebra. In other words, the assertion that TJ acts as the stress

tensor of the chiral algebra means that the “geometric” sl(2) generators {L−1, L0, L+1} defined by

the embedding (2.19) of the two-dimensional conformal algebra into the four-dimensional one should

coincide in cohomology with the generators {LJ−1, L
J
0 , L

J
+1} defined by the mode expansion of TJ (z).

It would be sufficient to verify that this is the case for quasiprimary operators, by which we mean

operators O(z) that, when inserted at the origin, are annihilated by the holomorphic special conformal

generator

[L+1,O(0)] = 0 . (3.16)

In our construction, such an O(z) arises as the cohomology class of a twisted-translated primary Schur

operator. The assertion is then that in the chiral algebra (i.e., up to Q i-exact terms), the TJ OPEs

take the form

TJ (z)O(0) ∼ · · ·+ 0

z3
+
h O(0)

z2
+
∂O(0)

z
, (3.17)

where h is the holomorphic dimension of O and the dots indicate possible poles of order four or

higher. Though we have not been able to find a general proof, we believe (3.17) to be a universal

consequence of superconformal Ward identities. It is thanks to the relation for the conformal dimension

10The term corresponding to the simple pole does not immediately follow from the OPE given in (3.13). In particular,
though the presence of ∂TJ (0) is guaranteed as a consequence of the double pole, we may worry that an additional
quasiprimary (in the two-dimensional sense) may also appear. Such a quasiprimary O would have to be a boson of
holomorphic dimension h = 3 and have nonzero three point function 〈TJ TJO〉. This is forbidden by Bose symmetry.
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h = R + j1 + j2 that the SU(2)R current can reproduce the appropriate scaling dimension, and the

absence of additional operators should be excluded by selection rules for three-point functions of

Schur-type superconformal multiplets. In practice, we have been able to give an abstract argument

that this OPE holds only for the case where O is a scalar operator. For non-scalar operators in the

abstract setting, we leave the structure of these OPEs as a conjecture. Later in this section, the

OPE (3.17) will be shown to hold in full generality in the theories of free hypermultiplets and free

vector multiplets. The abstract claim would follow if the most general solution of the requisite Ward

identity is expressible as a linear combination of structures corresponding to free field models, which

is empirically the case in all analogous situations with which the authors are familiar.

3.2.2 Affine enhancement of the flavor symmetry

We next turn to the role played by the flavor symmetries of T in the associated chiral algebra.

When T enjoys a flavor symmetry GF , the corresponding conserved current Jαα̇ is an element of a

B̂1 supermultiplet, which additionally contains as its Schur primary the moment map operator M11

described in the list at the end of §3.1.1. We expect the presence of GF symmetry to make itself

known via the chiral operator associated to the moment map. Following the now-familiar procedure,

we define a Q i-closed operator M(z, z̄) via twisted translations of the Schur moment-map operator

from the origin, and identify the corresponding cohomology class as a meromorphic operator in the

chiral algebra,

M(z, z̄) := uI(z̄)uJ (z̄)MIJ (z, z̄) , J(z) := κ[M(z, z̄)]Q i . (3.18)

The normalization constant κ will be determined momentarily. The meromorphic operator J(z) has

holomorphic dimension h = 1. We have suppressed flavor indices up to this point, but these operators

all transform in the adjoint representation of the flavor symmetry group, and so we actually find dimGF
dimension one currents JA(z) in the chiral algebra. It is natural to suspect that these operators will

behave as affine currents for the flavor symmetry. Indeed, a little calculation bears out this expectation.

First, recall that the central charge k4d of the flavor symmetry is defined in terms of the self-OPE of

the conserved flavor symmetry current as follows,

JAµ (x) JBν (0) ∼ 3k4d

4π4
δAB

x2gµν − 2xµxν
x8

+
2

π2

xµxνf
ABCx · JC(0)

x6
+ · · · . (3.19)

Here A,B,C = 1, . . . ,dimGF are adjoint flavor indices, and we are using normalizations such that

long roots of a Lie algebra have length
√

2 as in [30]. In the same conventions, the OPE of two moment

maps reads

MA IJ (x)MBKL(0) ∼ − 3k4d

48π4

εK(IεJ )LδAB

x4
−
√

2

4π2

fABCMC (I(KεL)J )

x2
+ · · · . (3.20)

The OPE for the corresponding twisted-translated operators follows directly,

MA(z, z̄)MB(0, 0) ∼ − 3k4d

48π4

δAB

z2
+

√
2

4π2
i
fABCMC(0, 0)

z
+

√
2

4π2
fABCMC 21(0)

z̄

z
+ · · · , (3.21)
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where the last term is Q i-exact. Setting κ = 2
√

2π2, we recognize the canonical current algebra OPE,11

JA(z)JB(w) ∼ k2d
δAB

(z − w)2
+
∑
C

ifABC
JC(w)

z − w
, (3.22)

where the two-dimensional affine level k2d is related to the four-dimensional flavor central charge k4d

by

k2d = −k4d

2
. (3.23)

This is the second important entry in the dictionary.

3.2.3 The Hall-Littlewood chiral ring and chiral algebra generators

An interesting problem that will be of particular concern in §5 is that of giving a simple description of

the chiral algebra χ[ T ] associated to a given T in terms of a set of generating currents. Generators

of a chiral algebra are by definition those sl(2) primary operators {Oj} for which the normal ordered

products of their descendants, i.e., operators of the form ∂n1O1∂
n2O2 . . . ∂

nkOk, span the whole

algebra.12 When the chiral algebra has only a finite number of generators, it is customary to refer to

it as a W-algebra.

While we have given a clear set of rules that identifies the spectrum of the chiral algebra given

the spectrum of the four-dimensional theory T , these rules have little to say about the question of

what operators are generators of χ[ T ]. There turns out to be a subset of generators that is always

relatively easy to identify. Recall from §3.1.1 that the HL chiral and anti-chiral rings are consistent

truncations of the N = 1 chiral and anti-chiral rings of T , respectively. As such, they are commutative

rings, and it is often possible to give them presentations in terms of generators and relations. What

we show now is that the meromorphic operators associated to the generators of the HL chiral and

antichiral rings are in fact generators of χ[ T ] in the chiral algebra sense.

Given the shortening conditions they obey, one finds that the chiral algebra operators associated

to HL operators have holomorphic dimension h = R+ |r|. In order to establish the claim made above,

we will show that an HL operator can never arise as a normal ordered product of other operators

that are not themselves of HL type. Let O1(z, z̄) and O2(z, z̄) be two generic twisted-translated Schur

operators, and let us assume that their OPE contains an HL operator OHL
3 ,

O1(z, z̄)O2(0, 0) ∼ 1

zh1+h2−h3
OHL

3 (0, 0) + . . . (3.25)

By assumption, h3 = R3 + |r3|, while (3.7) implies that h1 > R1 + |r1|, h2 > R2 + |r2|. The U(1)r
charge is conserved, so r3 = r1 + r2 and |r3| 6 |r1|+ |r2|. Furthermore, SU(2)R selection rules imply

the triangular inequality R3 6 R1 + R2. Combining these (in)equalities, we find that h3 6 h1 + h2,

which implies that an HL operator may only appear on the right hand side as a singular term (if

h3 < h1 +h2) or as the leading non-singular term (if h3 = h1 +h2). The latter possibility requires that

O1 and O2 saturate the respective bounds (3.7) for h1 and h2, which is to say that they themselves

11In two dimensions it is standard to define a convention-independent affine level k2d as k2d := 2k̃2d
θ2

, where k̃2d is the

level when the length of the long roots are normalized to be θ. In our conventions θ2 = 2 and so k̃2d = k2d.
12We are adopting the normal ordering conventions of [31], in which a sequence of chiral operators represents left-

nesting of conformally normal-ordered products:

O1O2 · · · On−1On := (O1(O2(· · · (On−1On)))) . (3.24)

The algebra of operators so-defined is non-commutative and non-associative.
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must be HL operators. This argument establishes that HL operators cannot be generated as normal

ordered products of non-HL operators, and so the generators of the HL chiral and antichiral rings

must necessarily be generators of the chiral algebra.

3.2.4 The Hall-Littlewood chiral ring and Virasoro primaries

A further interesting feature of the HL chiral ring operators is that their corresponding meromorphic

operators are always Virasoro primaries. For the generators of the HL chiral ring, this is already clear

since the generators of any chiral algebra that includes a stress tensor are necessarily primaries of the

Virasoro subalgebra. For other HL operators, though, this is a useful result that will help organize

our thinking about some of the examples studied in §5.

The statement follows from a relatively straightforward analysis of the OPE of the meromorphic

stress tensor with an arbitrary HL operator. In particular, let O1(z) be the meromorphic operator

associated to an HL operator in four dimensions. The quantum numbers of O1 obey the HL relation

h1 = R1 + |r1| . (3.26)

Now the crucial observation from which our result follows is this: from a four-dimensional perspective,

the meromorphic stress tensor is a z̄-dependent linear combination of operators with r = 0 and

R = 0,±1. Consequently, in the OPE of the meromorphic stress tensor with O1(0), the only operators

that may appear will have R = R1 ± 1 or R = R1 and r = r1. With what power of z can such an

operator appear in the OPE? A Schur operator Oγ(0) with R = R1 + γ and M = |r1|+ 2min(j1, j2)

will appear in the OPE as

T (z)O1(0) ⊃ Oγ(0)

z2+R1+|r1|−R−M
=

Oγ(0)

z2−γ−2min(j1,j2)
. (3.27)

This is at most a pole of order three (when γ = −1 and j1 = 0 or j2 = 0), but such a pole cannot

appear because HL operators are always sl(2) primaries – thus the most singular term possible is a

pole of order two. This is precisely the property that characterizes Virasoro primary operators, and

so we have our result.

3.3 The chiral algebras of free theories

The simplest N = 2 SCFTs are the theories of a free hypermultiplet and that of a free vector multi-

plet. For these special cases, we give a complete description of the associated chiral algebras. These

chiral algebras are useful as the building blocks of interacting Lagrangian theories, some of which are

discussed in §4. We describe in turn the cases of hypermultiplets and vector multiplets.

3.3.1 Free hypermultiplets

Let us consider the field theory of a single free hypermultiplet. The hypermultiplet itself lies in the

short supermultiplet B 1
2
, in which the primary Schur operators are the scalars Q and Q̃. These are

the highest weight states in a pair of SU(2)R doublets,

QI =

 Q

Q̃∗

 , Q̃I =

 Q̃

−Q∗

 . (3.28)
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The single free hypermultiplet enjoys an SU(2)F flavor symmetry, under which QI and Q̃I transform

as a doublet. To work covariantly in terms of this SU(2)F , we can introduce the following tensor,

QIÎ :=

 Q Q̃

Q̃∗ −Q∗

 , (3.29)

where Î = 1, 2 is the newly minted SU(2)F index.

The Schur operators in this free theory are all the “words” that can be constructed out of the

“letters” {Q, Q̃, ∂++̇}. As there are no singularities in the products of (∂++̇ derivatives of) Q and Q̃,

the operator associated to any given word is well-defined and the Schur operators in this theory form a

commutative ring. The set of all meromorphic operators in the free hypermultiplet chiral algebra are

therefore precisely the Q i cohomology classes of the twisted-translated versions of these words. This

chiral algebra is itself a free chiral theory in two dimensions. Let us see how this works.

The twisted-translated operators and the associated meromorphic operators for the hypermultiplet

scalars themselves are defined as follows,

QÎ(z, z̄) := uI(z̄)QIÎ(z, z̄) , qÎ(z) := [QÎ(z, z̄)]Q i . (3.30)

The relation to the operators defined in §2.4 is qÎ(z) = (q(z), q̃(z)). This is an SU(2)F doublet of

dimension 1/2 meromorphic fields, the OPE of which can be computed using the free-field OPE in

four dimensions and the definition of the twisted translated operators in (3.30),

qÎ(z) qĴ (w) ∼
εÎĴ
z − w

. (3.31)

It is reasonably easy to see that the entire spectrum of the chiral algebra of four-dimensional hy-

permultiplets is obtained by taking normal ordered products of the qÎ(z) and their descendants. In

particular, one can show that the following diagram commutes,13

{Oi ,Oj} OiOj

{[Oi] , [Oj ]} : [Oi][Oj ] :

×4d

Q i Q i

×::

, (3.32)

where the top row represents multiplication in the ring of Schur operators, the bottom row represents

creation/annihilation normal ordered products of chiral vertex operators, and the vertical arrows

represent the identification of a Schur operator with its meromorphic counterpart in the chiral algebra.

It follows that the meromorphic operator associated to any given word in (∂++̇derivatives of) Q and Q̃

is simply the corresponding creation/annihilation normal ordered product of (holomorphic derivatives

of) q and q̃.

The chiral algebra of the free hypermultiplet is thus none other than the free symplectic boson

algebra (cf. [32]). This simple example serves to illustrate some of the general points made in the

13We will see when we come to consider interacting theories in §5 that product structures on Schur operators do not
always translate so simply into those of the chiral algebra.
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previous subsections. The symplectic boson theory has a canonical stress tensor,

T (z) =
1

2
εÎĴ qÎ∂qĴ (z) , (3.33)

and it is easy to check that the modes {L+1, L0, L−1} appearing in Laurent expansion of (3.33)

reproduce the action of the holomorphic sl(2) symmetry inherited from four dimensions. Thus the

holomorphic sl(2) is indeed enhanced to Virasoro symmetry. Moreover, we observe that given the

form of the SU(2)R current in four dimensions

J IJµ (x) ∼ εÎĴQ(I
Î
∂µQ

J )

Ĵ
(x) , (3.34)

The corresponding meromorphic operator TJ (z) will be equivalent to the canonical stress tensor,

T (z) = TJ (z) . (3.35)

From the TT OPE we read off the central charge c2d = −1. Recalling that the conformal anomaly

coefficient of a free hypermultiplet is c4d = 1/12, this result is in agreement the universal relation

c2d = −12c4d. The symplectic boson theory is like the theory of a complex free fermion (which of

course has c2d = 1), but with opposite statistics, hence the opposite value of the central charge.

Finally we mention a minor generalization of the above story for hypermultiplets. Gauge theories

with N = 2 supersymmetry are often described in terms of half-hypermultiplets instead of whole

hypermultiplets. The generalization of the chiral algebra to the half-hypermultiplet conventions is

straightforward. Let us consider half-hypermultiplets transforming in a pseudo-real representation R

of some symmetry group G (at the moment we are working at zero coupling, so G is just a global

symmetry group). The corresponding chiral algebra will be generated by dimR meromorphic fields,

qi , i = 1, . . . ,dimR , (3.36)

and the singular OPE of these operators will be given by

qi(z)qj(w) ∼ Ωij
z − w

. (3.37)

Here Ωij is the anti-linear involution that maps the representation R to its conjugate and squares to

minus one. The description of the single full hypermultiplet in (3.31) actually fits into this framework

with G = SU(2)F .

3.3.2 Free vector multiplet

The other key ingredient in Lagrangian SCFTs is the theory of free vector multiplets. Free vectors lie

in the short supermultiplet D̄0(0,0) and its conjugate D0(0,0), whose superconformal primaries are the

complex scalar φ and its conjugate φ̄, respectively. The primary Schur operators in these multiplets

are the fermions λ1
+ and λ̃1

+̇
, and as in the case of hypermultiplets, the entire set of Schur operators

in this theory is comprised of the words built out of the letters λ1
+, λ̃1

+̇
, and ∂++̇.

The twisted-translated operators associated to the vector multiplet fermions are defined as follows,

λ(z, z̄) := uI(z̄)λI+(z, z̄) , λ̃(z, z̄) := uI(z̄)λ̃I+̇(z, z̄) , (3.38)

and the Q i-cohomology classes of these operators are Grassmann-odd, holomorphic fields of dimension
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h = 1,

λ(z) := [λ(z, z̄)]Q i , λ̃(z) := [λ̃(z, z̄)]Q i . (3.39)

Using the four-dimensional free field OPEs, it is easy to derive the OPEs of these holomorphic fields.

They are again the OPEs of a free chiral algebra:

λ̃(z)λ(0) ∼ 1

z2
, λ(z)λ̃(0) ∼ − 1

z2
. (3.40)

Indeed, the free-field form of these OPEs leads to an analogous commutative diagram to (3.32), which

ensures that all the meromorphic operators in this theory are generated by λ(z) and λ̃(z) in the chiral

algebra sense. We can recognize this chiral algebra as the (b, c) ghost system of weight (1, 0),14

λ̃ := b(z) , λ(z) := ∂c(z) . (3.41)

In making this identification, we have introduced an extra spurious mode – the zero mode c0 of c(z)

– which is of absent in the algebra generated by λ(z) and λ̃(z). Thus, the more precise statement is

that the chiral algebra associated to the vector multiplet is the so-called “small algebra” of the (b, c)

system, which is by definition the algebra generated by b(z) and ∂c(z) (cf. [33, 34]). In other words,

the Fock space of the small algebra is the subspace of the (b, c) Fock space that does not contain c0,

or equivalently, the subspace annihilated by b0,

Fsmall := {ψ ∈ Fbc | b0ψ = 0} . (3.42)

The small algebra enjoys a global SL(2,R) symmetry under which λ(z) and λ̃(z) transform as a

doublet. We can make this symmetry manifest by introducing the notation ρα with α = ±, where

ρ+ := λ̃ and ρ− := λ. Note that the Cartan generator of this symmetry acts as the U(1)r charge. In

the language of the small algebra, the OPE can be put in a covariant form,

ρα(z) ρβ(0) ∼ εαβ

z2
. (3.43)

As in the hypermultiplet case, the action of the {L+1, L0, L−1} modes of the canonical ghost

stress tensor can easily be seen to match the action of the geometric sl(2) action inherited from the

four-dimensional conformal algebra. Furthermore, given the SU(2)R current of the free vector theory,

J IJαα̇ (x) ∼ λ(I
α λ̃
J )
α̇ (x) , (3.44)

we see that the canonical stress tensor coincides precisely with the dimension two current TJ obtained

from the R-symmetry current by the usual map,

T (z) = −1

2
εαβρ

αρβ(z) = TJ (z) . (3.45)

The central charge of the (b, c) ghost system/small algebra is c2d = −2, which can be seen to agree

with the relation (3.15) upon recalling that c4d = 1
6 for a free vector multiplet.

14Recall that the derivative of a dimension zero conformal primary field – c(z) in this case – is again a conformal
primary.
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3.4 Gauging prescription

The natural next step is to consider interacting SCFTs. Lagrangian N = 2 SCFTs can be described

using hypermultiplets and vector multiplets as elementary building blocks (see [35] for a recent clas-

sification of all possibilities). In particular, such an SCFT consists of vector multiplets transforming

in the adjoint representation of a semisimple gauge group G = G1 × G2 · · · × Gk, along with a col-

lection of (half)hypermultiplets transforming in some representation R of the gauge group such that

the one-loop beta functions for all gauge couplings vanish. Supersymmetry ensures that the theory

remains conformal at the full quantum level. The building blocks of the corresponding chiral algebra

are a collection of symplectic bosons {q , q̃} in the representation R, and a collection of (b , c) ghost

small algebras in the adjoint representation of G. When the gauge couplings are strictly zero, the

chiral algebra is simply obtained by imposing the Gauss law constraint, i.e., by restricting to the

gauge-invariant operators of the free chiral algebra of symplectic bosons and ghosts. Our next step

will be to determine what happens as we turn on the gauge couplings.

In fact, as Lagrangian theories are a small subset of all possible N = 2 SCFTs, it is worthwhile

to put the discussion in a more general context. Given a general superconformal field theory T
with GF flavor symmetry, a new SCFT is obtained by gauging a subgroup G ⊂ GF provided the

gauge coupling beta function vanishes. We will denote the gauged theory with a nonzero gauge

coupling g as TG.15 Though T may be strongly coupled, the gauging procedure can be described

in semi-Lagrangian language. By assumption, T possesses a conserved flavor symmetry current JAαα̇,

where A = 1, . . .dim G, which by N = 2 supersymmetry is the top component of the moment map

supermultiplet B̂1. The gauged theory TG is described by minimally coupling an N = 2 vector

multiplet to B̂1. Of particular importance is the addition to the action, in N = 1 notation, of the

superpotential coupling

g

∫
d2θΦAM11,A + h.c. , (3.46)

where Φ is the N = 1 chiral superfield in the N = 2 vector multiplet, and M11 is the N = 1 chiral

superfield whose bottom component is the complex moment map M11; both transform in the adjoint

representation of G.

Let us assume that the chiral algebra χ[T ] is known. It will suffice to work abstractly, in the

sense that the only features of χ[T ] that we will use follow directly from the existence of the global

G symmetry. In particular, there will be an affine current JA(z) at level k2d = − 1
2k4d (cf. §3.2).

As we mentioned above, at zero gauge coupling the chiral algebra of the gauged theory is obtained

by imposing the Gauss law constraint on the tensor product algebra of χ[T ] with the G-ghost small

algebra (ρ+, ρ−). In fact, it will be more useful to introduce the full (b, c) system and restrict to the

small algebra by imposing the auxiliary condition bA0 ψ = 0 for any state ψ.

The affine current associated to the G symmetry in the ghost sector is

JAgh := −i fABC (cBbC) . (3.47)

The Gauss law, or gauge-invariance, constraint requires that all physical states should have vanishing

total gauge charge, which is measured by the zero mode of the total gauge symmetry current,

JAtot(z) := JA(z) + JAgh(z) . (3.48)

15More precisely, there is one independent gauge coupling for each simple factor of the gauge group. To avoid clutter
we focus on the procedure for gauging one simple factor at the time, so G will taken to be a simple group in what
follows.
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Symbolically, we can therefore define the chiral algebra at zero gauge coupling as follows:

χ[T (0)
G ] = {ψ ∈ χ[T ]⊗ (bA, cA) | bA0 ψ = JAtot 0ψ = 0} . (3.49)

We are now ready to address the problem of identifying the chiral algebra for TG with g 6= 0.

3.4.1 BRST reduction of the chiral algebra

On general grounds, we expect that the chiral algebra of the interacting gauge theory will contain

fewer operators than the non-interacting version, because some of the short multiplets containing

Schur operators that are present at zero coupling will recombine into long multiplets and acquire

anomalous dimensions. Ideally, we would like to describe this phenomenon using only the general

algebraic ingredients that we have introduced so far. A crucial hint comes from phrasing the condition

of conformal invariance of the gauge theory more abstractly. The vanishing of the one-loop beta

function amounts to the requirement that in the ungauged theory, the flavor symmetry central charge

is given by

k4d = 4h∨ , (3.50)

where h∨ is the dual Coxeter number of the gauge group. This means that in two-dimensional language,

the corresponding symmetry in χ[T ] must have its affine level given by

k2d = −2h∨ . (3.51)

The affine level of the ghost-sector flavor currents Jgh is easily calculated to be 2h∨, so the requirement

of conformal invariance translates into the condition that the level of the total affine current JAtot be

zero. Precisely in this case, it is possible to construct a nilpotent BRST operator in the chiral algebra.

Imitating a construction familiar from coset conformal field theory [36], we define

QBRST :=

∮
dz

2πi
jBRST(z) , jBRST := cA

[
JA +

1

2
JAgh

]
. (3.52)

Our contention is that the chiral algebra corresponding to the gauged theory at finite coupling is

obtained by passing to the cohomology of QBRST relative to the ghost zero modes bA0 ,16

χ[TG] = H∗BRST[ψ ∈ χ[T ]⊗ (bA, cA)
∣∣ bA0 ψ = 0] . (3.53)

Apart from its elegance, there are compelling physical arguments behind this claim. We will show

that states of the chiral algebra that define nontrivial cohomology classes of QBRST correspond to the

four-dimensional Schur states that survive in the interacting theory. By construction, all states of
χ[T (0)

G ] are annihilated by the four supercharges in (3.3). As we turn on the gauge coupling, those

supercharges receive quantum corrections, and only a subset of states remains supersymmetric. We

will see that QBRST precisely implements the O(g) correction to one of the Poincaré supercharges,

which will justify our conjecture under the assumption that higher order corrections do not remove

any additional states.

A preliminary remark is that the Gauss law constraint is imposed automatically. Because

{bA0 , QBRST} = JAtot 0 , (3.54)

16In other terms, the BRST cohomology is being defined entirely in the small algebra: two QBRST-closed states belong
to the same cohomology class if and only if they differ by an exact state QBRSTλ, where λ is also in the small algebra.
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states in the small algebra that are QBRST-closed are automatically gauge invariant. Consequently,

we have the simpler expression,
χ[TG] = H∗BRST[χ[T (0)

G ]] . (3.55)

We can rewrite QBRST and separate out the ghost zero modes,

QBRST = cA0 J
A
tot 0 + bA0 X

A +Q− , (3.56)

where we have defined

XA := − i
2
fABC

∑
n 6=0

: cB−nc
C
n : −cB0 cC0

 , (3.57)

while Q− anticommutes with both cA0 and bA0 and can thus be expressed purely in terms of (ρ+A, ρ−A),

Q− :=
∑
n 6=0

1

n
: ρ−A−nJ

A
n : +

i

2
fABC

∑
n 6=0
m 6=0
m 6=n

1

nm
: ρ−A−n ρ

−B
m ρ+C

n−m : . (3.58)

The operator Q− fails to be nilpotent by a term proportional to JAtot 0, so it is nilpotent when acting

on gauge-invariant states. It follows that (3.54) can be equivalently written as

χ[TG] = H∗Q− [ψ ∈ χ[T ]⊗ (ρ+A, ρ−A) ,with JAtot 0ψ = 0] . (3.59)

This is the form of our conjecture that makes more immediate contact with four-dimensional physics.

We will show that the action of Q− precisely matches to the action of Q̃(1)

2−̇, the O(g) term in the

expansion of the supercharge Q̃2−̇,

Q̃2−̇ = Q̃(0)

2−̇ + g Q̃(1)

2−̇ +O(g2) . (3.60)

In fact, Q− is the lowest component of an SL(2,R) doublet of operators Qα, with

Q+ :=
∑
n 6=0

1

n
: ρ+A
−nJ

A
n : +

i

2
fABC

∑
n 6=0
m 6=0
m 6=n

1

mn
: ρ+A
−nρ

+B
m ρ−Cn−m : . (3.61)

In complete analogy, the action of Q+ will be shown to be isomorphic to that of Q1(1)
− , the O(g) term

in the expansion of Q1
−. The two Poincaré supercharges Q1

− and Q̃2−̇ play a completely symmetric

role in the definition of Schur operators. The fact that QBRST contains Q− rather than Q+ is a

consequence of our choice (3.41), which treated λ and λ̃ in a slightly asymmetric fashion.

Fortunately, to leading order in the gauge coupling the action of the relevant supercharges takes

a universal form in the subspace of operators that obey the tree-level Schur condition. Such operators

are obtained by forming gauge-invariant combinations of more elementary building blocks, namely the

conformal primaries of the “matter” SCFT T , the gauge-covariant derivative D++̇, and the gauginos

λ̃1
+̇

and λ1
+. The supersymmetry variation of a gauge-invariant “word” is found by using the Leibniz

rule to act on each elementary “letter”.17 It is then sufficient to specify the SUSY variations of the

17For the special case of N = 2 superconformal QCD, a very explicit description of the action of Q1(1)
− in the subsector

of tree-level Schur operators can be found in Section 5 of [37].
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letters:

1. Q1
− and Q̃2−̇ (anti)commute with the conformal primary operators in the matter sector T .

2. For the gauge-covariant derivative D++̇ := ∂++̇ + gA++̇,

[Q1
−, D++̇] = gλ̃1

+̇ , [Q̃2−̇, D++̇] = gλ1
+ , (3.62)

where we have just used the tree-level variation of the gauge field, times the explicit factor of g.

3. Finally the variations of the gauginos can be deduced from the non-linear classical equations of

motions of the vector multiplet, minimally coupled to the moment map supermultiplet B̂1,

{Q̃2−̇, λ̃
1
+̇} = {Q1

−, λ
1
+} = F 11 = gM11 (3.63)

{Q̃2−̇, λ
1
+} = {Q1

−, λ̃
1
+̇} = 0 ,

where F 11 is the highest-weight of the SU(2)R triplet of auxiliary fields in the N = 2 vector

multiplet.18

If a Schur operator in the free theory is to retain its Schur status at O(g), then when inserted

at the origin it must be annihilated by the one-loop corrections to the four relevant supercharges,

{Q̃(1)

2−̇, (Q̃
(1)

2−̇)†,Q1(1)
− , (Q1(1)

− )†}. Equivalently, it must define a nontrivial cohomology class with respect

to Q̃(1)

2−̇ and Q1(1)
− . Conveniently, the recombination rules for shortened multiplets of Schur type (cf.

Appendix B) are such that in any such recombination, the Schur operators of T (0) are lifted in quar-

tets that are related by the action of these two supercharges in the manner indicated in the following

diagram:

ĈR+ 1
2 (j1− 1

2 ,j2)

ĈR(j1,j2) ĈR+1(j1− 1
2 ,j2−

1
2 )

ĈR+ 1
2 (j1,j2− 1

2 )

Q̃(1)

2−̇Q1(1)
−

Q̃(1)

2−̇ Q1(1)
−

(3.64)

In the diagram, we are labeling Schur operators by the name of the supermultiplet to which they

belong.19 Consequently, if an operator remains in the cohomology of either supercharge, it necessarily

remains in the cohomology of both, and so stays a Schur operator at one-loop order. For example,

if an operator becomes Q1(1)
− exact then it is either at the right or at the top of the diagram and it

follows that it is either Q̃(1)

2−̇ exact or not Q̃(1)

2−̇ closed, respectively. The other cases can be treated

analogously.

Under the 4d/2d identifications

Q̃(1)

2−̇ → Q− , Q1(1)
− → Q+ , D++̇ → ∂ , λ1

+ → ρ− , λ̃1
+̇ → ρ+ , (3.65)

18In an N = 1 description of the N = 2 vector multiplet, F 11 = F̄ , where F is the top component of chiral superfield
φ, whose superpotential coupling with the moment map is given in (3.46).

19To include all possible recombinations, we must formally allow j1 and j2 to take the value − 1
2

as well, and re-

interpret a Ĉ multiplet with negative spins as a B̂, D or D̄ multiplet, according to the rules:
ĈR(j1,− 1

2
)

:= D̄R+ 1
2
(j1,0)

, ĈR(− 1
2
,j2)

:= DR+ 1
2
(0,j2)

, ĈR(− 1
2
,− 1

2
)

:= B̂R+1.
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one easily checks that (3.58) and (3.61) have precisely the right form to reproduce the action of the

O(g) correction to the four-dimensional supercharges. Thus, the BRST cohomology specified in (3.53)

is just the right thing to project out states whose corresponding Schur operators are lifted at one-loop

order.

It is of some interest to note that this story of one-loop corrections to the spectrum of Schur

operators admits a simple truncation to the case of HL chiral ring operators. The tree-level HL

operators will be gauge-invariant combinations of the HL operators of T and the gaugino λ1
+. The

operators that are lifted from the spectrum at one-loop will be those that are related by the corrected

supercharge Q̃(1)

2−̇, whose action in this sector is completely determined by (3.63). The problem of

finding the HL operators in the spectrum of the interacting theory thus becomes a miniature “HL-

cohomology” problem. In examples, it is sometimes useful to solve this problem as a first step in order

to determine some important operators that will necessarily make an appearance in the chiral algebra.

Finally, a caveat is in order. We have assumed that the Schur operators that persist at infinitesimal

coupling will remain protected at any finite value of the coupling. In some concrete cases, it can be

demonstrated that no further recombination of shortened multiplets is possible. Moreover, in the

examples of §5 we will propose simple economical descriptions for the chiral algebras defined by this

cohomological recipe, and demonstrate that they have the symmetries expected at finite coupling from

S-duality, giving strong evidence for our proposal, at least in those examples.

3.4.2 Non-renormalization of three-point couplings

So far, we have studied how the spectrum of operators is modified when the coupling is turned on, but

we have said nothing about the OPE coefficients of the remaining physical operators in the gauged

theory. Our implicit assumption has been that the OPE coefficients of operators that remain protected

at finite coupling are actually independent of the coupling. From a two-dimensional perspective, it

seems unlikely that the OPE coefficients could change due to the extremely rigid structure of chiral

algebras, and we expect a corresponding non-renormalization statement to hold in four dimensions.

Indeed, such a non-renormalization theorem directly follows from the methods and results of [38]. Let

us consider the four-point function of three Schur-type operators and of the exactly marginal operator

Oτ responsible for changing the complexified gauge coupling,

〈OI11 (x1)OI22 (x2)OI33 (x3)Oτ (x4) 〉 , (3.66)

where I = (I(1) . . . I(k)) with I(i) = 1, 2 are SU(2)R multi-indices and we have suppressed Lorentz

indices. Non-renormalization of the appropriate three-point function of Schur-type operators will

follow at once if we can argue that the above four-point function vanishes for any x4 when x1,2,3 all

lie on the plane. By a conformal transformation, we can always take the fourth operator to lie on

the same plane, and then focus on the SU(1, 1|2) subalgebra of SU(2, 2|2) defined by the embedding

(2.20). The Schur-type operators are chiral primaries of this subalgebra. The marginal operator

Oτ , being the top component of an Ē2 multiplet of SU(2, 2|2), is of the form Oτ = {Q1, [Q2, . . . ]}
where QI := QI− are supercharges of SU(1, 1|2).20 All the properties exploited in [38] to show the

vanishing of the four-point function (3.66) are satisfied. The authors of [38] interpreted this result as

a non-renormalization theorem for three-point functions of chiral primaries of two-dimensional (0, 4)

theories, but exactly the same argument applies to our case as well.

20Similarly, the conjugate operator Ōτ is the top component of an E2 and can be written as {Q̃1, [Q̃2, . . . ]}. An
entirely analogous argument holds for the four-point function containing Ōτ .
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We close this section by pointing out a curious aspect of the gauging prescription given here.

Given a chiral CFT χ[T ] with affine G symmetry, one can introduce a two-dimensional vector field Az̄
and gauge G. Following standard arguments (for example, see [36, 39]), a change of variables in the

path integral eliminates the gauge field in favor of an extra G current algebra at level −(2h∨ + k2d)

and an adjoint-valued (b, c) ghost system. One must also impose invariance under the standard BRST

operator associated to the gauge symmetry. In our case, 2h∨ + k2d = 0 so the extra current algebra

is trivial, and the BRST operator associated to the two-dimensional gauging takes precisely the form

of (3.52). In some sense, we have found that “4d gauging = 2d gauging”. We find it plausible that a

localization-style argument may shed light on this correspondence.

4 Consequences for four-dimensional physics

The chiral symmetry algebras that we have uncovered have extensive consequences for the spectrum

and structure constants of any N = 2 SCFT. To give a simple example, Virasoro symmetry implies

that any Higgs branch half-BPS supermultiplet B̂R is accompanied by an entire module of semi-short

ĈR′(j,j) multiplets with R′ = R−1, R,R+ 1. In the four-dimensional theory, the descendant operators

arise by taking repeated normal ordered products with certain components of the SU(2)R current,

but the chiral algebra perspective makes this structure much more transparent.

In this section we elaborate on the relationship between the observables associated to the chiral

algebra (i.e., its correlation functions and torus partition function) and those of the parent four-

dimensional theory. We first point out that the superconformal Ward identities for four-point func-

tions of B̂R operators [15, 16] are a simple consequence of our cohomological construction. This new

perspective makes it clear that analogous Ward identities must hold for four-point functions of general

Schur operators. The presence of meromorphic functions in the solution of the Ward identities of

[11, 15, 16] was one of the initial clues that led to our work. We now have a neat conceptual inter-

pretation for them: they are nothing but the correlation functions of the associated chiral algebra.

By exploiting the relationship between the two-dimensional and four-dimensional perspectives we are

able to derive new unitarity bounds that must be satisfied by the conformal and flavor anomalies of

a general interacting N = 2 SCFT. Finally, we delineate the relationship between the torus partition

function of the chiral algebra and the superconformal index of the parent four-dimensional theory.

4.1 Conformal twisting and superconformal Ward identities

By construction, for a given SCFT T , the correlation functions of χ[T ] are equal to certain correlation

functions of physical operators in T restricted to lie on the plane. From the four-dimensional point of

view these are somewhat unnatural correlators to study, as they have explicit space-time dependence

built into the operators. On the other hand, each correlation function of χ[T ] is canonically associated

to a family of more natural correlation functions of T that are obtained by replacing the twisted-

translated operators with the corresponding untwisted operators at the same points in R2.

Let us consider such a correlator now. For simplicity, we specialize to a four-point function, in

which case there is actually no loss of generality in restricting the operators to be coplanar. We

denote the untwisted operators as OI(z, z̄), with SU(2)R multi-indices I = (I(1), . . . , I(k)) where

I(i) = 1, 2. The components of the multi-index are symmetrized; the operator transforms in the

spin k/2 representation of SU(2)R. Recall that in our conventions, the Schur operator in this SU(2)R
multiplet is the highest-weight state O1...1(z, z̄). We represent the four-point function of such operators

as

FI1I2I3I4(zi, z̄i) = 〈 OI11 (z1, z̄1)OI22 (z2, z̄2)OI33 (z3, z̄3)OI44 (z4, z̄4) 〉 . (4.1)
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This is actually a collection of four-point functions labelled by the different possible assignments for

the R-symmetry indices. The full collection of four-point functions can be conveniently packaged by

introducing two-component SU(2)R vectors u(yi) = (1, yi) and defining contracted operators that

depend on the auxiliary variable y as follows [15, 16]

Oi(zi, z̄i; yi) = uI1(yi) · · ·uIki (yi)O
(I1···Iki )
i (zi, z̄i) . (4.2)

A single function of xi and yi can be defined that encodes the full content of the collection of correlation

functions in (4.1),

F(zi, z̄i; yi) = 〈 O1(z1, z̄1; y1)O2(z2, z̄2; y2)O3(z3, z̄3; y3)O4(z4, z̄4; y4) 〉 . (4.3)

Charge conservation ensures that this function is homogeneous in the auxiliary yi with weight 1
2

∑
ki,

and the correlation function for a given choice of external R-symmetry indices can be read off by

selecting the coefficient of the appropriate monomial in the yi variables.

This repackaging makes it simple to state the relationship with correlation functions of χ[T ]. The

twisted chiral operators defined in §2.2 are the specialization of the repackaged operators in (4.2) to

yi = z̄i. So if the related four-point function of meromorphic operators Oi(z) = χ[Oi(z, z̄)] is defined

as

f(z1, z2, z3, z4) = 〈O1(z1)O2(z2)O3(z3)O4(z4)〉 , (4.4)

then the correlation functions are related according to

f(zi) = F(zi, z̄i; yi)
∣∣
yi→z̄i

. (4.5)

The fact that the left-hand side of this equation is a meromorphic function of the operator insertion

points is a consequence of the cohomological arguments of the previous sections, but it is also precisely

the final form of the superconformal Ward identities for such a correlation function [11–16].

This is a rather wonderful result: the entirety of the constraints imposed by superconformal Ward

identities on the four-point function of half-BPS operators are captured by the existence of the twist

of §2.2. It is worth noting that while the Ward identities of [15] were derived specifically for half-BPS

operators in B̂R multiplets, here we see that the same type of Ward identities holds more generally for

any Schur-type operators.

4.2 Four-dimensional unitarity and central charge bounds

The natural inner product on the Hilbert space of the radially quantized four-dimensional theory T
does not survive the passage to Q cohomology. This is an immediate consequence of the fact that Q

is not hermitian. Hence, unitarity in four dimensions does not imply unitarity in the chiral algebra.

In fact, we have seen that a unitary theory T always gives rise to a chiral algebra χ[T ] with negative

central charge, which is necessarily non-unitary. Nevertheless, there is an interesting interplay between

the structure of the chiral algebra and four-dimensional unitarity. This leads to new unitarity bounds

for the anomaly coefficients of any four-dimensional SCFT. In this section, we explore an elementary

example that provides us with such bounds. It is possible that more extensive analysis could lead to

further constraints; we leave such an analysis for future study.

The origin of nontrivial consistency conditions can be found in the fact that, as summarized in

(4.5), the meromorphic correlator f(zi) can be computed in two different ways that must agree. The

first computation is the two-dimensional one: once the singular OPEs of the meromorphic operators
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appearing in the correlator are known, the full correlation function is completely fixed by meromorphy.

The meromorphic correlator further admits a unique decomposition into sl(2) conformal blocks,21

leading to an expression of the form

f(zi) =

(
z24

z14

)h12
(
z14

z13

)h34 1

zh1+h2
12 zh3+h4

34

∞∑
`=0

(−1)` a` g`(z) , g`(z) := (− 1
2z)

`−1z 2F1(`, `; 2`; z) ,

(4.6)

where we have adopted the standard notation zij := zi − zj and z := z12z34
z13z24

. Additionally, hi is the

holomorphic scaling dimension of the i’th operator, and we have defined hij = hi − hj .
The second computation is the four-dimensional one. The correlator in (4.1) admits a decom-

position into su(2, 2|2) superconformal blocks that each represent the contribution of a given super-

conformal multiplet to the four-point function. The contribution of each superconformal block to the

meromorphic part of the amplitude defined by (4.5) is fixed up to the three-point coefficients. Thus

for a given theory T , the spectrum and three-point coefficients of BPS operators appearing in the

conformal block expansion of a given correlation function can be determined directly from the corre-

lation functions of χ[T ]. Non-trivial constraints arise when we require that the three-point coefficients

determined in this manner be consistent with unitarity.

Let us now turn to a specific example to study in detail. We consider the four-point function of

superconformal primary operators in B̂1 multiplets. As was explained in §3, these multiplets contain

the spin one conserved currents that generate the global (non-R) symmetry of the theory, and the

superconformal primaries are scalar moment map operators MA. Consequently the results derived

from this example will be relevant to any theory with non-trivial flavor symmetry. The moment map

operators have dimension two and transform in the adjoint representations of both the flavor group GF
and SU(2)R. The four-point function of such operators can be expanded in channels corresponding

to each irreducible representation R of GF in which the exchanged operators in the conformal block

expansion may transform,

〈MA(z1, z̄1; y1)MB(z2, z̄2; y2)MC(z3, z̄3; y3)MD(z4, z̄4; y4)〉 =
∑

R∈⊗2adj

PABCDR FR(zi, z̄i; yi) , (4.7)

where PABCDR is the projector onto the irreducible representation denoted by R. The projectors for

the various groups can be obtained following the procedures described in [40].

Per the discussion of §3.2, the chiral operators JA = χ[MA] are affine currents, and the mermorphic

correlators that emerge in the limit yi → z̄i are equal to the four-point functions in the corresponding

chiral algebra,

z2
12z

2
34〈JA(z1)JB(z2)JC(z3)JD(z4)〉 = fABCD(z) =

∑
R
PABCDR fR(z) . (4.8)

Each such function can be examined independently as a potential source of nontrivial consistency

conditions. In §3 we found that the level of the affine Lie algebra symmetry generated by these

currents is k2d = − 1
2k4d, so this meromorphic four-point function is completely fixed in terms of the

21The result could also be expanded in Virasoro conformal blocks, but this is less natural for comparison to four-
dimensional quantities.
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structure constants of the associated non-affine Lie algebra and the flavor central charge,22

fABCD(z) = δABδCD + z2δACδBD +
z2

(1− z)2
δADδCB − z

k2d
fACEfBDE − z

k2d(z − 1)
fADEfBCE .

(4.9)

This correlator can be decomposed into GF channels, each of which can be expanded in sl(2) conformal

blocks as in (4.6). For example, for the singlet channel R = 1, the above correlator gives

fR=1 = dimGF + z2

(
1 +

1

(1− z)2

)
+

4z2h∨

k2d(z − 1)

= dimGF −
∑

`=0,2,···

2`(`+ 1)(`!)2 (2(`+ 1)(`+ 2)k2d − 8h∨)

k2d(2`+ 1)!
g`+2(z) ,

(4.10)

where h∨ is the dual Coxeter number.

This operator product expansion can be compared with that of the full four-point function in four

dimensions. The superconformal block decomposition of such a four-point function has been worked

out in [13]. In particular, operators that can potentially appear in the intermediate channel must

belong to one of the following superconformal multiplets:

• A∆(j,j): Long multiplets that are SU(2)R singlets with j1 = j2 = j.

• Ĉ0(j,j): Semishort multiplets with j1 = j2 = j that contain conserved currents of spin 2j + 2.

• Ĉ1(j,j): Semishort multiplets with j1 = j2 = j.

• B̂1: Half-BPS multiplets containing Higgs branch moment map operators.

• B̂2: Half-BPS multiplets containing Higgs branch chiral ring operators of dimension four.

• I: The identity operator.

The contribution of each such multiplet to the full four-point function is fixed up to a single coefficient

corresponding to the three-point coupling (squared), and unitarity requires that this coefficient be real

and positive. The contribution of each multiplet to the meromorphic functions fR(z) appearing in

the superconformal Ward identities has also been determined in [13]. The results are summarized as

follows:
A∆( `2 ,

`
2 ) : 0 ,

Ĉ0( `2 ,
`
2 ) : λ2

Ĉ
0( `

2
, `
2
)

g`+2(z) ,

Ĉ1( `2 ,
`
2 ) : −2λ2

Ĉ
1( `

2
, `
2
)

g`+3(z) ,

B̂1 : λ2
B̂1
g1(z) ,

B̂2 : −2λ2
B̂2
g2(z) ,

Id : λ2
Id .

(4.11)

The coefficient λ2
• of each contribution is required by unitarity to be non-negative.

22Here we have rescaled the currents in such a way that the identity operator appears with unit normalization in the
current-current OPE.
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GF h∨ dimGF GF h∨ dimGF

SU(N) N N2 − 1 E6 12 78

SO(N) N − 2 N(N−1)
2 E7 18 133

USp(2N) N + 1 N(2N + 1) E8 30 248

G2 4 14 F4 9 52

Table 2. Dual Coxeter number and dimensions for simple Lie groups.

Some of the coefficients appearing in (4.11) can be completely fixed by symmetry. For example, the

identity operator can only appear in the singlet channel fR=1(z), where the corresponding coefficient

is necessarily given by

λ2
Id = dimGF . (4.12)

The multiplet Ĉ0(0,0) contains a spin two conserved current, i.e., the stress tensor. There can only be

one such multiplet, and it contributes to the meromorphic part of the four point function only in the

singlet channel. The three-point coupling is fixed in terms of the four-dimensional central charge. In

particular, one finds that in fR=1(z),

λ2
Ĉ0(0,0)

=
dimGF

3c4d
. (4.13)

Finally, multiplets of type B̂1 can contributes only to the adjoint channel, and the corresponding

three-point coupling in fadj(z) is fixed to be

λ2
B̂1

=
4h∨

k4d
. (4.14)

As far as we know, these are the only contributions to this four-point function that are fixed by

symmetry in terms of anomaly coefficients. Additionally, the multiplets Ĉ0( `2 ,
`
2 ) for ` 6= 0 necessarily

contain conserved currents of spin greater than two, and so are expected to be absent in interacting

theories [29]. We will take this to be the case in the following analysis.

We can determine the three-point coefficients in, say, the R = 1 channel by comparing with the

expansion of the χ[T ] four-point function in (4.10). In particular, we find

λ2
Id = dimGF ,

λ2
Ĉ0(0,0)

− 2λ2
B̂2

=
8h∨

k4d
− 4 ,

λ2
Ĉ
1( `

2
, `
2
)

=
2`+1(`+ 2)((`+ 1)!)2

k4d(2`+ 3)!
((`+ 2)(`+ 3)k4d − 4h∨) ,

(4.15)

where in the last line only odd ` may appear. The second line of (4.15), after substituting the

contribution of the stress tensor multiplet from (4.13), implies a nontrivial bound that must be satisfied
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GF Bound Representation

SU(N) N > 3 k4d > N N2 − 1symm

SO(N) N = 4, . . . , 8 k4d > 4 1
24N(N− 1)(N− 2)(N− 3)

SO(N) N > 8 k4d > N − 4 1
2 (N + 2)(N− 1)

USp(2N) N > 3 k4d > N + 2 1
2 (2N + 1)(2N− 2)

G2 k4d > 10
3 27

F4 k4d > 5 324

E6 k4d > 6 650

E7 k4d > 8 1539

E8 k4d > 12 3875

Table 3. Unitarity bounds for the anomaly coefficient k4d arising from positivity of the B̂2 three-point function
in non-singlet channels.

in order for the contribution of the B̂2 multiplet to be consistent with unitarity,

dimGF
c4d

>
24h∨

k4d
− 12 . (4.16)

For reference, the dimensions and dual Coxeter numbers of the semi-simple Lie algebras are displayed

in Table 2. Similarly, the positivity of the last line in (4.15) for ` = 1 implies the bound

k4d >
h∨

3
. (4.17)

The same analysis can be performed for the functions fR6=1(zi). In these channels there will

be no contribution from the stress tensor multiplet, so the resulting bounds make reference only to

the anomaly coefficient k4d, as in (4.17). A priori, an independent bound may be obtained for each

representation R appearing in the tensor product of two copies of the adjoint. For example, in the

adjoint channel itself, there can be contributions from B̂1 and Ĉ1( `2 ,
`
2 ) multiplets with even `. Unitarity

then imposes a bound on k4d that turns out to be equivalent to that of (4.17). Stronger bounds can

be found by considering other choices of R, the possible values of which will depend on the particular

choice of simple Lie algebra we consider. In general, we find that for a given choice of GF , the strongest

bound comes from requiring positivity of the contributions of B̂2 multiplets in a single channel. The

bounds from other channels are then automatically satisfied when the strongest bound is imposed.

These strongest bounds are displayed in Table 3, where we also indicate the representation R ∈ ⊗2adj

that leads to the bound in question. It should be noted that for the special case GF = SO(8), the

same strongest bound is obtained from multiple channels. The representation appearing in the third

line of Table 3 is in fact decomposable as 70 = 35s ⊕ 35c, and the degeneracy in the bounds can be

understood as a consequence of SO(8) triality. For GF = SU(2) one finds no additional bounds to the

ones given in (4.16) and in (4.17). Finally, we can see that the bound (4.17) arising from positivity

of the Ĉ1( 1
2 ,

1
2 ) multiplet in the singlet channel is made obsolete by bounds arising from other channels
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GF A1 A2 D4 E6 E7 E8 F4 G2

h∨ 2 3 6 12 18 30 9 4

k4d
8
3 3 4 6 8 12 5 10

3

c4d
1
2

2
3

7
6

13
6

19
6

31
6

5
3

5
6

Table 4. Central charges for N = 2 SCFTs with Higgs branches given by one-instanton moduli spaces for
GF instantons. Models corresponding to the right-most two columns are not known to exist, but must satisfy
these conditions for their central charges if they do.

for all choices of GF listed in the table.

4.3 Saturation of unitarity bounds

Given the existence of these unitarity bounds, it is incumbent upon us to consider the question of

whether the bounds are saturated in any known superconformal models. To understand what sort

of theory might saturate the bounds, it helps to identify any physical properties that a theory will

necessarily possess if it saturates a bound. When the inequalities in (4.16) or Table 3 are saturated, it

means precisely that there is no B̂2 multiplet in the corresponding representation of GF contributing

to the four-point function in question. The absence of such an operator is intimately connected with a

well-known feature of theories withN = 2 supersymmetry in four dimensions. Recalling that the Schur

operators in the B̂R multiplets are Higgs branch chiral ring operators, the absence of a B̂2 multiplet

contributing to the four-point function of B̂1 multiplets in the R channel amounts to a relation in the

Higgs branch chiral ring of the form

(M ⊗M)
∣∣
R = 0 , (4.18)

where M is the moment map operator and the tensor product is taken in the chiral ring.

There exists an interesting set of theories for which precisely such relations are known to hold.

These are the superconformal field theories that arise on a single D3 brane probing a codimension one

singularity in F -theory on which the dilaton is constant [41–46]. There are seven such singularities,

labelled H0, H1, H2, D4, E6, E7, E8, for which the corresponding SCFT has global symmetry given by

the corresponding group (with Hi → Ai). The Higgs branch of each such theory is isomorphic to

the minimal nilpotent orbit of the flavor group GF . These minimal nilpotent orbits admit a simple

description: they are generated by a complex, adjoint-valued moment map M , subject to a set of

relations that defined the so-called “Joseph ideal” (see [47] for a nice discussion),

(M ⊗M)
∣∣
I2

= 0 , Sym2(adj) = (2 adj)⊕ I2 , (4.19)

where (2 adj) is the representation with Dynkin indices twice those of the adjoint representation.

This leads to an interesting set of conclusions. For one, these theories must saturate some of the

B̂2-type bounds listed above. In particular, this allows us to predict the value of c4d and k4d for these

theories as a direct consequence of the Higgs branch relations. These predictions are listed in Table

4. Indeed, these anomaly coefficients have been computed by other means and the results agree [48].

On the other hand, an N = 2 superconformal theory with GF symmetry can have as its Higgs branch

the one-instanton moduli space of GF instantons only if the B̂2 bound for all representations in I2

can be simultaneously saturated. It is not hard to verify that the list of cases for which this can be

true includes the cases described above in F-theory, along with GF = F4 and GF = G2. Theories with

Higgs branches isomorphic to the one-instanton F4 and G2 moduli spaces appear to be absent from
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the literature, and it is tempting to speculate that such theories should nonetheless exist and have as

their central charges the values listed in the right-most two columns of Table 4.

Finally, it is interesting to rephrase the above discussion purely in the language of the chiral

algebra χ[T ]. From this perspective, there is a marked difference between the bound (4.16) for the

singlet sector and those of Table 3 for non-singlets. In a theory saturating the non-singlet bounds, the

coefficient of a conformal block is actually set to zero in the OPE of 4.6. This should be considered in

contrast to a theory that saturates the singlet bound, in which case all of the sl(2) conformal blocks

are present with nonzero coefficients. It follows that saturation of a non-singlet bound is equivalent to

the presence of a null state in the chiral algebra. In particular, because the bounds in question appear

in the B̂1 four-point function, such null states can be understood entirely in terms of the affine Lie

subalgebra of the chiral algebra. This interpretation can be verified directly by studying an affine Lie

algebra with the level listed in Table 3.

The bound (4.16), on the other hand, does not imply the presence of a null state in the chiral

algebra. Instead, a theory χ[T ] that saturates the singlet bound should have the property that the

only sl(2) primary of dimension two that appears in the OPE of two affine currents is identically equal

to the chiral vertex operator that arises from the Ĉ0(0,0) multiplet in four dimensions, i.e., it should be

the two-dimensional stress tensor. We thus identify saturation of the singlet bound with the property

that the Sugawara construction gives the true stress tensor of the chiral algebra,

T2d =
1

k2d + h∨
(JaJa) . (4.20)

Sure enough, if the bound (4.16) is saturated, then we can rewrite the bound as an equation for the

central charge

c2d =
k2d dimGF
k2d + h∨

. (4.21)

This is precisely the central charge associated with the Sugawara construction for the stress tensor of

an affine Lie algebra.

Finally, we mention a number of additional theories that saturate some of the unitarity bounds

derived here. In particular, though the rank one theory corresponding to the H0 singularity has no

flavor symmetry, it will have an extra SU(2) symmetry for rank larger than one (as will all the other

rank > 1 theories). In particular, for the case of rank two the flavor central charge corresponding to

this extra SU(2) is 17
5 and the central charge is c4d = 17

12 [48]. This theory therefore saturates the

bound (4.16). Additionally, we have found a number of theories that saturate bounds appearing in

Table 3. In particular, the new rank one SCFTs found in [49] with flavor symmetry USp(10)7 and

USp(6)5×SU(2)8, where k4d is indicated as a subscript for each group, saturate the bounds on k4d for

the USp factors. However for these theories the central charge bound is not saturated. The following

theories described in [50] also saturate bounds on k4d: S5 with flavor symmetry SU(10)10 (but not

the rest of the SN series), the R0,N series with flavor symmetry SU(2)6 × SU(2N)2N , and the R2,N

series with SO(2N + 4)2N × U(1) flavor symmetry.

4.4 Torus partition function and the superconformal index

Just as correlators of the chiral algebra are related to certain supersymmetric correlators of the parent

four-dimensional theory, it will not come as a surprise that the torus partition function of the chiral

algebra is related to a certain four-dimensional supersymmetric index – indeed, to the Schur limit of

the superconformal index, as foreshadowed in our terminology.
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We should first identify which quantum numbers can be meaningfully assigned to chiral algebra

operators. Of the various Cartan generators of the four-dimensional superconformal algebra, only

the holomorphic dimension L0 and the transverse spin M⊥ = j1 − j2 (which is equal to −r for Schur

operators) survive as independent conserved charges of the chiral algebra. The torus partition function

therefore takes the form23

Z(x, q) := TrxM
⊥
qL0 . (4.22)

As usual, the trace is over the Hilbert space in radial quantization, or equivalently over the local

operators of the chiral algebra.

Specializing to x = −1, and noting that by the four-dimensional spin-statistics connection implies

(−1)j1−j2 = (−1)F , where F is the fermion number, we find a weighted Witten index,

I(q) := Z(−1, q) = Tr (−1)F qL0 = Tr (−1)F qE−R . (4.23)

We recognize this as the trace formula that defines the Schur limit of the superconformal index [21],

cf. Appendix B.24 We should check that in the two-dimensional and four-dimensional interpretations

of this formula the trace can be taken over the same space of states. Strictly speaking, in the four-

dimensional interpretation the trace is over the entire Hilbert space of the radially quantized theory.

However, the point of the Schur index is that only states obeying the Schur condition can conceivably

contribute – the contributions of all other states cancel pairwise. As the states of the chiral algebra

are in one-to-one correspondence with Schur states, the chiral algebra index (4.23) is indeed equivalent

to the Schur index.

The index is a cruder observable than the partition function, but because it is invariant under

exactly marginal deformations, it is generally easier to evaluate. In practice, to evaluate the index

of a Lagrangian SCFT, one enumerates all gauge-invariant states that can be formed by combining

the elementary “letters” that obey the Schur condition, see Table 1. This combinatorial exercise is

efficiently solved with the help of a matrix integral, where the integration over the gauge group enforces

the projection onto gauge singlets. Examples of this prescription will be seen in the following section.

By this procedure, one enumerates all gauge-invariant states that obey the tree-level Schur condition;

there will be cancellations in the index corresponding to the recombinations of Schur multiplets into

long multiplets that are a priori allowed by representation theory.

There is an entirely isomorphic computation in the associated chiral algebra. The “letters” obeying

the tree-level Schur condition are nothing but the states of the symplectic bosons and the ghost small

algebra (in the appropriate representations), and one is again instructed to project onto gauge singlets.

To reiterate, to evaluate the index we do not really need to compute the cohomology of Q−, which

defines the states of the chiral algebra of the interacting gauge theory, cf. (3.59). We can simply let

the trace run over the redundant set of states of the free theory. By contrast, the trace in the partition

function (4.22) must be taken over only the states of the chiral algebra for the interacting theory,

which are the cohomology classes of Q−.

At the risk of being overly formal, we may point out that the physical state space of the chiral

algebra (which for gauge theories is defined by the cohomological problem (3.59)), acts as a categori-

23To avoid clutter, we have omitted the obvious refinement by flavor fugacities. If the theory is invariant under some

global symmetry group GF , we may refine the trace formula by
∏
i a
fi
i , where the fi are Cartan generators of GF and

ai the associated fugacities.
24It was observed in [51] that the Schur index has interesting modular properties under the action of SL(2,Z) on the

superconformal and flavor fugacities. The identification of the Schur index with a two-dimensional index may serve to
shed some light on these observations.
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fication of the Schur index. Once this vector space and the action of the charges are known, we can

perform the more refined counting (4.22). In physical terms, the categorification contains extra infor-

mation relative to the Schur index in that it knows about sets of short multiplets that are kinematically

allowed to recombine but do not. In addition, there may be multiplets that cannot recombine but

nonetheless make accidentally cancelling contributions to the index, and these are also seen in the

categorification. Of course, the chiral algebra structure goes well beyond categorification – it is a

rich algebraic system that also encodes the OPE coefficients of the Schur operators, and is subject to

non-trivial associativity constraints.

It should be noted that as a graded vector space, we also have a categorification of the Macdonald

limit of the superconformal index. Recall that the states contributing to the Macdonald index are

really the same as the states that contribute to the Schur index, but their counting is refined by

an extra fugacity t/q associated to the charge r + R (for t = q we recover the Schur index). Since

each state in the vector space defined by the chiral algebra corresponds to a Schur operator, the

additional grading by r + R is perfectly well-defined. However, there is no obvious chiral algebra

interpretation of the Macdonald limit of the superconformal index, because the additional grading is

incompatible with the chiral algebra structure. More precisely, while L0 and r are conserved charges

for the twisted-translated operators (2.29), r +R is not, since away from the origin the operators are

linear combinations of operators with different R eigenvalues. In particular r +R is not preserved by

the OPE.

5 Examples and conjectures

In this section we consider a number of illustrative examples in which the four-dimensional supercon-

formal field theory T admits a weakly coupled Lagrangian description. In such cases, the chiral algebra

χ[T ] can be defined via the BRST procedure of §3, which at the very least allows for a level-by-level

analysis of the physical states/operators in the algebra.

We can also consider the problem of giving an economical description of the chiral algebra in terms

of a set of generators and their singular OPEs. A natural question is whether this set is finite, or in

other words whether the chiral algebra is aW-algebra. The results of §3.2 suggest a very general ansatz

for a possible W-algebra structure: the generators should be the operators associated to HL chiral

ring generators in four dimensions, and possibly in addition the stress tensor. In each of the first three

examples, our results are compatible with this guess, and we formulate concrete conjectures for the

precise definition of each chiral algebra as aW-algebra. In the final example, we find a counterexample

to this simplistic picture. Namely, we find a theory for which the chiral algebra contains at least one

additional generator beyond those included in our basic ansatz.

For the first example, we turn to perhaps the most familiar N = 2 superconformal gauge theory.

5.1 SU(2) superconformal QCD

The theory of interest is the SU(2) gauge theory with four fundamental hypermultiplets. Many aspects

of this theory that are relevant to the structure of the associated chiral algebra have been analyzed

in, e.g., [52]. The field content is an SU(2) vector multiplet and four fundamental hypermultiplets.

Because the fundamental representation of SU(2) is pseudo-real, the obvious U(4) global symmetry

is enhanced to SO(8), with the four fundamental hypermultiplets being reinterpreted as eight half-

hypermultiplets. In N = 1 notation we then have an adjoint-valued N = 1 field strength superfield

WA
α , an adjoint-valued chiral multiplet ΦB , and fundamental chiral multiplets Qia transforming in

the 8v of SO(8). Here a, b = 1, 2 are vector color indices that can be raised and lowered with epsilon
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tensors, A,B = 1, 2, 3 are adjoint color indices, and i = 1, . . . , 8 are SO(8) vector indices. By a common

abuse of notation, we use the same symbol for the scalar squarks in the matter chiral multiplets as

for the superfields, whereas the gauginos in the vector multiplet are denoted λAα and λ̃Aα̇. In terms of

the N = 1 superfields listed above, the Lagrangian density takes the form

L = Im

[
τ

∫
d2 θd2θ̄ Tr

(
Φ†eV Φ +Q†ie

VQi
)

+ τ

∫
d2θ

(
1
2TrWαW

α +
√

2QiaΦabQ
ib
)]

, (5.1)

Where τ = θ/2π+ 4πi/g2
YM is the complexified gauge coupling. The central charge of the SU(2) color

symmetry acting on the hypermultiplets is k
SU(2)
4d = 8, which satisfies condition (3.50) for τ to be

an exactly marginal coupling. The central charge for the SO(8) flavor symmetry and the conformal

anomaly c4d can also be read off directly from the field content,

k
SO(8)
4d = 4 , c4d =

7

6
. (5.2)

Although this description is sufficient to set up a BRST cohomology problem that defines the

chiral algebra in the manner of §3, it is useful to first review some of the features of this theory that

we expect to see reflected in the two-dimensional analysis. We have seen that a special role is played

in the chiral algebra by the HL chiral ring, the elements of which are the superconformal primary

operators in B̂ and D-type multiplets. In this example, these are the lowest components of N = 1

chiral superfields that are gauge-invariant polynomials in Qia and WA
α . As this theory is represented

by an acyclic quiver diagram, all D-type multiplets recombine and the HL chiral ring is identically the

Higgs chiral ring.

In purely gauge invariant terms, the Higgs branch chiral ring is generated by a single dimension

two operator in the adjoint of SO(8),

M [ij] = QiaQ
aj . (5.3)

This is the moment map for the action of SO(8) on the Higgs branch.25 There are additional relations

that make the structure of the Higgs branch more interesting. Already at tree-level, there are relations

that follow automatically from the underlying description in terms of squarks. When organized in

representations of SO(8), the of generators of these relations are as follows,

M ⊗M
∣∣
35s

= 0 , M ⊗M
∣∣
35c

= 0 . (5.4)

On the other hand, there are F -term relations as a consequence of the superpotential in (5.1). They

are absent in the theory with strictly zero gauge coupling, and encode the fact that certain operators

that are present in the chiral ring of the free theory recombine and are lifted from the protected part

of the spectrum when the coupling is turned on. The generators of F -term relations, again organized

according to SO(8) representation, are as follows,

M ⊗M
∣∣
35v

= 0 , M ⊗M
∣∣
1

= 0 . (5.5)

One immediately recognizes the complete set of relations in (5.4) and (5.5) as defining the SO(8) Joseph

ideal described in §4. Indeed, for the particular case of GF = SO(8) we have I2 = 1⊕35v⊕35s⊕35c.

25It is a special feature of this theory (in contrast to, say, the Nf = 2Nc theories with Nc > 2 that will be considered
next) that the generators of the Higgs branch chiral ring all have dimension two. In general, there will be higher-
dimensional baryonic generators that are not directly related to the global symmetry currents of the theory.
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The Higgs branch of this theory is known to be isomorphic to the SO(8) one-instanton moduli space,

and the central charges (5.2) do in fact saturate the appropriate unitarity bounds outlined in §4.

As a final comment, let us recall that the gauge coupling appearing in the Lagrangian (5.1) is

exactly marginal and parameterizes a one-complex-dimensional conformal manifold. S-duality acts by

SL(2,Z) transformations on τ , and the conformal manifold is identified with the familiar fundamental

domain of SL(2,Z) in the upper half plane. In the various weak-coupling limits the theory can always

be described using the same SU(2) gauge theory, but in comparing one such limit to another, the

duality transformations act by triality on the SO(8) flavor symmetry. Consequently, though a given

Lagrangian description of this theory (and of the chiral algebra in the next subsection) singles out a

certain triality frame, the protected spectrum of the theory, and so in particular the chiral algebra,

should be triality invariant.

5.1.1 BRST construction of the associated chiral algebra

The chiral algebra can now be constructed using the procedure of §3. We first define the chiral algebra
χ[ Tfree ] of the free theory. Each half-hypermultiplet gives rise to a pair of commuting, dimension 1/2

currents, whose OPE is that of symplectic bosons

qia(z) := χ[Qia ] , qia(z) qjb(w) ∼ δijεab
z − w

. (5.6)

Meanwhile, the vector multiplet contributes a set of adjoint-valued (b, c) ghosts of dimension (1, 0)

with the standard OPE,

bA(z) := χ[ λ̃A] , ∂cB(z) := χ[λB ] , bA(z)cB(w) ∼ δAB

z − w
. (5.7)

The generators of the SU(2) gauge symmetry in the matter sector arise from the moment maps in the

free theory, while in the ghost system they take the canonical form described in §3,

JA(TA)ba = qiaq
ib , JAgh = −ifABC(cB bC) . (5.8)

The chiral algebra of the free theory is then given by the gauge-invariant part of the tensor product

of the symplectic boson and small algebra Fock spaces,

χ[Tfree] = {ψ ∈ F(qia, ρ
A
+, ρ

A
−) | JAtot,0ψ = 0} . (5.9)

The current algebra generated by the JAmat has level k
SU(2)
2d = −4 = −2h∨, which ensures the

existence of a nilpotent BRST differential. The BRST current and differential are then constructed

in terms of these currents,

JBRST = cA
(
JA +

1

2
JAgh

)
, QBRST =

∮
dz

2πi
JBRST(z) . (5.10)

The chiral algebra of the interacting theory is now the BRST cohomology

χ[ T ] = H∗BRST [χ[Tfree]] . (5.11)

We now perform a basic analysis of this cohomology. Already at this rudimentary level, we will find

that a substantial amount of four-dimensional physics is packaged elegantly into the chiral algebra
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framework.

5.1.2 Enumerating physical states

It is a straightforward exercise to enumerate the physical operators up to any given dimension and to

compute the singular terms in their OPEs. This is made easier with computer assistance – we have

made extensive use of K. Thielemans’ Mathematica package [31]. We now describe this enumeration

in detail for operators of dimension one and two in the chiral algebra. In this example, the material we

have reviewed above is already enough to predict the results of this enumeration. We will nevertheless

find it instructive to explore in some detail how the inevitable spectrum comes about.

We begin at dimension one. Dimension one currents in the chiral algebra can only originate in

D0(0,0) and B̂1 multiplets (cf. Table 1). The former contain free vector multiplets, and so are not gauge

invariant. Thus the physical spectrum at dimension one should be isomorphic to the spectrum of B̂1

multiplets. Sure enough, the complete list dimension-one operators in χ[ Tfree ] is the following,

J [ij] = qiaq
ja , (5.12)

and these operators are the chiral counterparts of the SO(8) moment maps, i.e.,

J [ij] = χ[M [ij]] . (5.13)

Direct computation further verifies that these operators exhaust the nontrivial BRST cohomology

at dimension one. It is also straightforward to determine the singular terms in the OPEs of these

currents,

J [ij](z)J [kl](0) ∼ −2(δikδjl − δilδjk)

z2
+
if

[ij][kl]
[mn] J [mn](0)

z
. (5.14)

This is just an so(8) affine Lie algebra at level k2d = −2, which confirms the general prediction of §3
that flavor symmetries are affinized in the chiral algebra, subject to the relation k2d = − 1

2k4d.

Moving on, the four-dimensional multiplets that can give rise to two-dimensional quasi-primary

currents of dimension two are Ĉ0(0,0), B̂2, D0(0,1), and D 1
2 (0, 12 ) multiplets (along with the conjugates

of the last two). In addition, conformal descendants of dimension two can arise from holomorphic

derivatives of the dimension one operators. Since no D-type multiplets appear in this theory, the only

quasi-primaries at dimension two will correspond to Higgs branch operators and the two-dimensional

stress tensor.

The latter descends from the four-dimensional SU(2)R current. That current being bilinear in the

free fields of the noninteracting theory, the corresponding two-dimensional operator can be obtained

by simply replacing the four-dimensional fields with their chiral counterparts and conformally normal

ordering,

T2d = 1
2q
i
a∂q

ia − bA∂cA . (5.15)

Alternatively, this is just the canonical stress tensor for the combined system of free symplectic bosons

and ghosts. Given the multiplicities of matter and ghost fields, the two-dimensional central charge is

easily determined to be c2d = −14.

The remaining BRST-invariant currents of dimension two can be constructed as normal ordered

products and derivatives of the so(8) affine currents,

∂J [ij] , (J ⊗ J)
∣∣
1,35,35,35,300

. (5.16)
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The singlet term in the tensor product above, once appropriately normalized, is the Sugawara stress

tensor of the so(8) affine Lie algebra,

T so(8)
sug = 1

8 (J [ij]J [ij]) . (5.17)

The Sugawara central charge is determined by the usual formula,

csug =
k2d dimGF
k2d + h∨

= −14 . (5.18)

This matches the value for the canonical stress-tensor. This comes as no surprise, since the central

charges of this theory saturate the unitarity bound (4.16), which implies that the canonical stress

tensor should be equivalent to the Sugawara stress tensor. Indeed, (5.15) and (5.16) constitute an

overcomplete list, and we in fact have the following relations,

J ⊗ J
∣∣
1

= T2d + {QBRST, q
i
aq
ibbab} , (5.19a)

J ⊗ J
∣∣
35v

= {QBRST, q
(i
a q

j)bbab} , (5.19b)

J ⊗ J
∣∣
35c

= 0 , (5.19c)

J ⊗ J
∣∣
35s

= 0 , (5.19d)

The relations appearing here can be traced back to different aspects of the four-dimensional physics.

Relations (5.19a) and (5.19b) are the two-dimensional avatars of the F -term relations in (5.5). Note

that the first relation appears differently in this two-dimensional context due to the presence of the

two-dimensional stress tensor on the right hand side. This is a remnant of the more complicated

structure of normal ordering in the chiral algebra as compared to the chiral ring. Relations (5.19c)

and (5.19d) are the tree-level relations. In the context of the chiral algebra, they can be seen as a

simple consequence of Bose symmetry and normal ordering without making any reference to the BRST

differential. This perfectly mirrors of the nature of tree-level relations in four dimensions.

5.1.3 A W-algebra conjecture

Although the cohomological description of the chiral algebra is sufficient to compute the physical

operators to any given level, it would be ideal to have a characterization entirely in terms of physical

operators – for example, we may hope for a description as aW algebra. We have seen that the physical

dimension two currents are all generated by the affine currents of dimension one, i.e., the physical

states enumerated so far all lie in the vacuum module of the so(8) affine Lie algebra at level k = −2.

What’s more, these operators exhaust the list of operators that are guaranteed to be generators of the

chiral algebra according to §3. We are thus led to a natural conjecture:

Conjecture 1 When T is N = 2 SU(2) SQCD with four fundamental flavors, then χ[ T ] is isomor-

phic to the so(8) affine Lie algebra at level k2d = −2.

This is a mathematically well-posed conjecture, since the cohomological characterization of the

chiral algebra is entirely concrete. It seems plausible that a more sophisticated approach to the

cohomological problem could lead to a proof of the conjecture. We will be satisfied in the present

work to test it indirectly.
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level SO(8) representations and their multiplicities

0 1

1 28

2 1, 28, 300

3 1, 2× 28, 300, 350, 1925

4 2× 1, 3× 28, 35v, 35s, 35c, 3× 300, 350, 1925, 4096, 8918

5 2× 1, 6× 28, 35v, 35s, 35c, 4× 300, 3× 350, 567v, 567s, 567c, 3× 1925,

2× 4096, 8918, 25725, 32928′

Table 5. The operator content of the chiral algebra up to level 5.

5.1.4 The superconformal index and affine characters

Conjecture 1 can be tested at the level of the indices of these theories. In particular, we have the

following conjectural relationship

ISchur(q;~a) = Trχ[Tfree](−1)F qL0

4∏
i=1

aµii = Trso(8)−2
(−1)F qL0

4∏
i=1

aµii . (5.20)

The shorthand ~a = (a1, a2, a3, a4) denotes the SO(8) fugacities. Of course, the affine Lie algebra has

only bosonic states, so the factor of (−1)F is immaterial. In particular this observation implies that

if Conjecture 1 is correct, then all possible recombinations of tree-level Schur operators occur already

at one loop.

On the one hand, the Schur limit of the superconformal index for this theory can be computed

directly to fairly high orders in the q expansion by starting with the defining matrix integral,

ISchur(q;~a) =

∮
[db]P.E.

[( √
q

1− q

)
χ8
SO(8)(~a)χ2

SU(2)(b) +

(
−2q

1− q

)
χ3
SU(2)(b)

]
, (5.21)

and expanding the exponential. Here
∮

[db] denotes integration over the fugacity for the gauge group

with the Haar measure.

On the other hand, the vacuum character of the so(8) affine Lie algebra at level k = −2 can be

computed once the spectrum of null primaries is known. Said spectrum can be determined with the

aid of the Kazhdan-Lusztig polynomials, as we review in Appendix C. Ultimately, both the character

and the index are expanded in the form

1 +

∞∑
i=1

qn

(∑
R

dRχ
R(~a)

)
,

where the dR are positive integer multiplicities. At a given power of q, there are only a finite number

of non-zero dR. Up to O(q5), the resulting degeneracies have been computed in both manners and

agree. They are displayed in Table 5.
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5.2 SU(N) superconformal QCD with N > 3

We next consider the generalization of the previous example to the case of SU(N) superconformal

QCD with N > 3. In these theories, the Higgs branch has generators of dimension greater than

two, thus guaranteeing the existence of nonlinear W-symmetry generators in the chiral algebra. The

cohomological construction of the corresponding chiral algebra is analogous to the SU(2) case, mutatis

mutandi. We will not repeat the description here in any detail. We first provide a brief outline of

the relevant four-dimensional physics of these models, and then perform a systematic analysis of the

physical operators of low dimension in the associated chiral algebra.

As in the SU(2) theory, there is a Lagrangian description of these models in terms of the N = 1

chiral superfields

WA
α , ΦB , Qia , Q̃bj , (5.22)

where a, b = 1, . . . , N are vector color indices, A,B = 1, . . . , N2 − 1 are adjoint color indices, and

i, j = 1, . . . , Nf with Nf = 2N are vector flavor indices. The central charge is fixed by the field

content to c4d = 2N2−1
6 .

For our purposes, the principal difference between the N > 3 theories and the N = 2 case is in the

structure of the Higgs branch chiral ring. In the higher rank theories, the hypermultiplets transform

in a complex representation of the gauge group, so the global symmetry is not enhanced and we have

GF = SU(Nf ) × U(1). The moment map operators for the global symmetry reside in mesonic B̂1

multiplets, which can be separated into SU(Nf ) and U(1) parts,

M i
j := Q̃ajQ

i
a =⇒ µ := M i

i , µ i
j := M i

j −
1

Nf
µ δ ij . (5.23)

The level of the non-Abelian part of the global symmetry is k
SU(Nf )
4d = 2N . The baryons are of

dimension N and no longer generate any additional global symmetries. Rather, they transform in the

N -fold antisymmetric tensor representations of the flavor symmetry:

Bi1...iN := Qi1a1 · · ·Q
iN
aN ε

a1...aN ,

B̃i1...iN := Q̃a1i1 · · · Q̃
aN
iN
εa1...aN .

(5.24)

The mesons and baryons satisfy a set of polynomial relations. Following [52], we introduce notation

where “·” denotes contraction of an upper and a lower index and “∗” denotes the contraction of flavor

indices with the completely antisymmetric tensor in Nf indices. The relations are then given by

(∗B)B̃ = ∗(MN ) , M · ∗B = M · ∗B̃ = 0 ,

M ′ ·B = B̃ ·M ′ = 0 , M ·M ′ = 0 ,
(5.25)

where (M ′) ji := M j
i − 1

N µδ
j
i = µ j

i − 1
2N µδ

j
i . Additionally, all quantities antisymmetrized in more

than N flavor indices must vanish.

This completes the description of the Hall-Littlewood chiral ring, since again this theory admits

a linear quiver description, so there are no D-type multiplets after turning on interactions. The final

representation of canonical interest is the Ĉ0(0,0) multiplet, which again contributes an important Schur

operator in the form of the R = 1 component of the SU(2)R current:

J R=1
++̇ ∼ 1

2

(
Qia∂++̇Q̃

a
i − Q̃ai ∂++̇Q

i
a

)
+ λA+λ̃+̇A . (5.26)
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Like the SU(2) theory, these models all have one-complex-dimensional conformal manifolds with

interesting behaviors at the boundary points, where S-dual descriptions become appropriate. In

contrast to the SU(2) theory, these S-dual descriptions are not the same as the original description,

and rather involve intrinsically strongly-coupled non-Lagrangian sectors. While such dualities imply

interesting structures for the associated chiral algebras, their dependence on non-Lagrangian theories

takes us outside the scope of the current examples. This is discussed in much greater detail in [53].

5.2.1 Physical operators of low dimension

The nontrivial BRST cohomology classes of the chiral algebra can be computed by hand for small

values of the dimension. The physical operators of dimension one again correspond to the moment map

operators of the global symmetry, which in this case includes only the mesonic chiral ring operators,

Jji := qaiq̃
aj − 1

Nf
δji qakq̃

ak = χ[µji ] , (5.27)

J := qakq̃
ak = χ[µ] . (5.28)

The singular OPEs of these currents are given by

Jji (z)J lk(0) ∼ −
N(δliδ

j
k − trace)

z2
+

δliJ
j
k(z)− δjkJ li (z)

z
,

J(z)J(0) ∼ − 2N2

z2
.

(5.29)

This is an su(Nf )× u(1) affine Lie algebra at level k2d = −N .

At dimension two, we first consider the operators that are invariant under the flavor symmetry.

As expected, there is a canonical stress tensor,

T :=
1

2

(
qai∂q̃

ai − q̃ai∂qai
)
− bab∂cba = χ[J 1

++̇] , (5.30)

whose self-OPE fixes the two-dimensional central charge,

c2d = 2− 4N2 . (5.31)

Additionally, the algebra generated by the affine su(Nf )×u(1) currents (5.27) contains a dimension

two singlet that is the Sugawara stress tensor of the current algebra,

Tsug :=
1

Nf

(
Jji J

i
j −

1

Nf
JJ

)
. (5.32)

The corresponding Sugawara central charge is also equal to 2−4N2, which suggests that the two stress

tensors T and T sug may be equivalent operators as they were in the N = 2 theory. Indeed, we expect

this to be the case since the central charges in this theory again saturate the unitarity bound (4.16).

A short computation verifies that their difference is BRST exact,

T − Tsug =
1

Nf
{QBRST, qaiq̃

bjbab} . (5.33)

A complete basis for the physical flavor singlets of dimension two is given by T , JJ , and ∂J .
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The remaining physical operators of dimension two are charged under U(Nf ). An overcomplete

basis of such operators is given by flavored current bilinears Jji J
l
k and Jji J , in addition to derivatives of

the currents ∂Jji . These operators are not all independent. For example, the usual rules of conformal

normal ordering imply that

Jji J
l
k − J lkJ

j
i = δli∂J

j
k − δ

j
k∂J

l
i , (5.34)

so the antisymmetric normal ordered product of two SU(Nf ) currents is a combination of descendants.

For the symmetrized normal ordered product there exists another relation:

1

2
(Jki J

j
k + JjkJ

k
i ) = δji

(
1

N2
f

JJ + T

)
− {QBRST, qαiq̃

βjbαβ} . (5.35)

In group-theoretic terms, the relations amount to the statement that the parts of the symmetric

product of two currents that transform in the singlet and adjoint representations do not correspond

to independent operators.

It is worth jumping ahead to the case of dimension N/2, where we find operators that correspond

to the baryonic chiral ring generators (5.24):

bi1i2...iNc := εα1α2...αNc qα1i1qα2i2 . . . qαNc iNc = χ[Bi1i2···iN ] ,

b̃i1i2...iNc := εα1α2...αNc
q̃α1i1 q̃α2i2 . . . q̃αNc iNc = χ[B̃i1i2···iN ] .

(5.36)

These are Virasoro primaries of dimension Nf/4. The only non-trivial OPE that is not entirely fixed

by symmetry is the b× b̃ OPE. For Nc = 3, for example, it is given by

bi1i2i3(z)b̃j1j2j3(0) ∼
36 δ

[j1
[i1
δ
j2
i2
δ
j3]
i3]

z3
−

36 δ
[j1
[i1
δ
j2
i2
J
j3]
i3] (0)

z2
+

18 δ
[j1
[i1
J
j2
i2
J
j3]
i3] (0)− 18 δ

[j1
[i1
δ
j2
i2
∂J

j3]
i3] (0)

z
, (5.37)

where square brackets denote antisymmetrization with weight one.

5.2.2 Relation to the Higgs branch chiral ring

Again, certain features of the Higgs branch chiral ring arise organically from the chiral algebra. Ac-

cording to the general discussion in §3.2, the dimension two operators in the chiral algebra should

in particular contain the image of the Schur operators in B̂2 multiplets, which in the theories under

consideration simply correspond to the product of two of the mesonic operators µ and µji subject to

the final relation in (5.25). Furthermore, these Schur operators necessarily become Virasoro primary

operators in the chiral algebra.

From amongst the BRST cohomology classes at level two – spanned by T , JJ , Jji J , the sym-

metrized combination Jji J
l
k + J lkJ

j
i modulo relation (5.35), and derivatives of level one currents – we

find exactly three Virasoro primary operators:

X := JJ −
N2
f

N2
f − 2

T ,

X ji := Jji J ,

X jlik :=
1

2
(Jji J

l
k + J lkJ

j
i )− Nf

N2
f − 2

(
δliδ

j
k −

1

Nf
δji δ

l
k

)
T ,

(5.38)
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which are subject to the additional constraints,

X jlik = X ljki , X ilik = 0 , X jkij =
1

N2
f

δki X + {QBRST, . . .} . (5.39)

We see that we should identify X = χ[µµ ], X ji = χ[µµji ] and X jlik = χ[µjiµ
l
k ]. The first two relations

in (5.39) then reflect the natural symmetry properties of the original Schur operator, whilst the last

equation precisely reproduces the final equation in (5.25).

We note that the definitions (5.38) somewhat obscure the relationship to four-dimensional physics

because of the conformal normal ordering used to define the products of interacting fields. The same

dimension two operators take a completely natural form in terms of creation/annihilation normal

ordered products of symplectic bosons,

X = : qαiq̃
αiqβj q̃

βj : ,

X ji = : qαiq̃
αjqβk q̃

βk : ,

X jlik = : qαiq̃
αjqβk q̃

βl : ,

(5.40)

and this description also nicely illustrates the commutative diagram of §3.3.

Finally, at the level of Virasoro representations, the OPEs of the dimension one currents can now

be summarized by the following fusion rules,

Jji × J
l
k → −N(δliδ

j
k − trace)1+ (δliJ

j
k − δ

j
kJ

l
i ) + X jlik + . . . ,

Jji × J → X ji + . . . ,

J × J → − 2N21 + X + . . . ,

(5.41)

where we have omitted operators of dimension higher than two. We see that the product structure of

the Higgs branch chiral ring is reproduced precisely by the O(1) terms in these fusion rules.26

5.2.3 A W-algebra conjecture

The chiral algebra is not as simple in this case as it was for the SU(2) theory, since the generators b

and b̃ are higher-spin W-symmetry generators rather than simple affine currents. Nevertheless, there

is a natural guess as to how to describe this more involved theory as a W algebra. It is useful to think

of the operator content of the algebra in terms of representations of the affine u(Nf ) current algebra.

From the analysis of levels one and two, we know that there is the vacuum representation – which in

particular contains the affine currents and the stress tensor – and the “baryonic” representations, for

which the highest weight state is given by the baryon or anti-baryon of (5.36). Other representations

of the affine Lie algebra can only come from multi-baryon states or from new generators of dimension

greater than two, where we have not performed a detailed analysis of the cohomology.

In four dimensions the mesons and the baryons are the complete set of generators for the Hall-

Littlewood chiral ring. The most obvious conjecture is then that the corresponding two-dimensional

operators generate the entire W-algebra:

Conjecture 2 When T is N = 2 SU(N) superconformal QCD for with 2N flavors for N > 2, then
χ[T ] is isomorphic to the W algebra generated by affine u(Nf ) currents at level ksu(Nf ) = −N along

with baryonic generators b and b̃ with the OPE (5.37) (or its generalizations to N > 4).

26We may similarly speculate that the Poisson bracket is encoded in the terms of the OPE that correspond to simple
poles, but we have not checked this in detail.
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Because no additional generators make an appearance in the singular OPEs of the affine currents

and baryons, it is guaranteed to be the case that the W algebra we have just described forms a chiral

subalgebra of χ[T ]. Our conjecture is that this is in fact the whole thing. If true, this conjecture would

imply that the Schur index for the Nf = 2N theories decomposes into characters of affine u(2N)−N
with highest weights given by the vacuum or by one or more baryons.

5.2.4 Superconformal Index

We can provide support for this conjecture by comparing with the superconformal index. The Schur

index of the theory is given by the following contour integral,

ISchur(q; c,~a) =

∫
[d~b]P.E.

[ √
q

1− q

(
c χNf

SU(Nf )(~a)χN
SU(N)(

~b) + c−1 χNf

SU(Nf )(~a
−1)χN

SU(N)(
~b−1)

)
+

(
−2q

1− q

)
χN2−1
SU(N)(

~b)

]
, (5.42)

where c is the U(1) fugacity and ~a = (a1, a2, . . . , aNf−1) denotes SU(Nf ) fugacities. For N = 3, the

first few orders are given by

ISchur(q; c,~a) =1 +
(

1 + χ35
SU(6)(~a)

)
q + (c3 + c−3)χ20

SU(6)(~a)q3/2

+
((
χ
sym2(35)
SU(6) (~a)− χ35

SU(6)(~a)
)

+ 2χ35
SU(6)(~a) + 2

)
q2

+ (c3 + c−3)
(

2χ20
SU(6)(~a) +

(
χ35⊗20
SU(6) (~a)− χ20

SU(6)(~a)− χ70
SU(6)(~a)− χ70

SU(6)(~a)
))

q5/2

+ . . . , (5.43)

where we have explicitly indicated the presence of relations by listing them with a minus sign. The

dimension two relations in the chiral algebra were elaborated upon in the previous subsection. At level

5/2, we can similarly determine the Virasoro primaries

Yijk = Jbijk + ∂bijk, Ỹ ijk = Jb̃ijk − ∂b̃ijk (5.44)

Y ji,klm =
1

2

(
J j
i bklm + bklmJ

j
i −

1

6
δji ∂bklm + δj[k∂b|i|lm]

)
(5.45)

Ỹ j,klmi =
1

2

(
J j
i b̃

klm + b̃klmJ j
i +

1

6
δji ∂b̃

klm − δ[k
i ∂b̃

|j|lm]

)
, (5.46)

subject to the constraints

εiklmnp
(
Y ji,mnp +

1

6
δji Ymnp

)
= 0, Y ji,jlm −

1

6
Yilm = {QBRST, . . .} (5.47)

εjklmnp

(
Ỹ j,mnpi +

1

6
δji Ỹ

mnp

)
= 0, Ỹ j,klii − 1

6
Ỹ jkl = {QBRST, . . .} , (5.48)

which again encode precisely the Higgs branch relations.

At level three, we have checked agreement between the Schur index and the cohomology generated

by the SU(6)× U(1) currents and the baryons by explicitly computing the null states.
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5.3 N = 4 supersymmetric Yang-Mills theory

The theories considered in the previous two subsections all shared the special quality of admitting

descriptions as linear quiver gauge theories, which meant that D-type multiplets played no role in the

analysis. We now turn to a case where this simplification no longer holds, and so there will necessarily

be generators outside of the Higgs chiral ring. The theory in question is N = 4 supersymmetric Yang-

Mills theory with gauge group SU(N). For our purposes, this is an N = 2 theory with an SU(N)

vector multiplet and a single adjoint-valued hypermultiplet. In N = 1 notation, we have the following

chiral superfields,

WA
α , ΦA , QAi , (5.49)

where A = 1, . . . N2 − 1 an SU(N) adjoint index and i = 1, 2 is an SU(2)F vector index. The flavor

symmetry SU(2)F is the commutant of SU(2)R × U(1)r ⊂ SU(4)R, and so is an R-symmetry with

respect to the full superalgebra. The central charges of the theory are given by

k
SU(2)
4d = N2 − 1 , c4d =

(N2 − 1)

4
. (5.50)

The Higgs branch chiral ring has N − 1 generators. In terms of the N ×N matrices Qi := QAi t
A,

these are given by

TrQ(i1 · · ·Qik) , k = 1, . . . , N − 1 , (5.51)

subject to trace relations. In this theory, the Hall-Littlewood chiral ring contains additional D-type

multiplets that are not described by the Higgs chiral ring. More specifically, for SU(N) gauge group

there are an additional N − 1 HL generators given by

TrQ(i1 · · ·Qik)λ̃
1
+̇ , k = 1, . . . , N − 1 . (5.52)

There are corresponding generators of the HL anti-chiral ring that lie in D multiplets and take the

same form with λ̃1
+̇

replaced by λ1
+. Finally, the Schur component of the SU(2)R current, which will

give rise to the stress tensor in two-dimensions, is given in terms of four-dimensional fields by

J R=1
++̇ ∼ 1

2
TrQi∂++̇Qjε

ij − Tr λ̃+̇λ+ . (5.53)

5.3.1 Cohomological description of the associated chiral algebra

The free chiral algebra follows the same pattern as the previous examples. The two dimensional

counterparts of the hypermultiplet scalars and gauginos can be introduced as usual,

qAi (z) := χ[QAi ] , bA(z) := χ[λ̃A] , ∂cA(z) := χ[λA] . (5.54)

The free chiral algebra has the free OPEs,

qAi (z)qBj (0) ∼ εijδ
AB

z
, bA(z)cB(0) ∼ δAB

z
.

The stress tensor is given by the usual canonical expression

T =
1

2
qAi ∂q

B
j εij − bA∂cA , (5.55)
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which has a central charge of c2d = −3(N2 − 1). The SU(2)F currents are given by

Jij = −1

2
qAi q

A
j , (5.56)

and satisfy a current algebra at level k2d = −N
2−1
2 . The current algebra contains a Sugawara stress

tensor of the usual form,

TSug(z) =
1

N2 − 5
JijJkl ε

ikεjl , (5.57)

with central charge equal to 3(N2−1)
N2−5 . Note that precisely for N = 2 and for no other value of N ,

the Sugawara central charge matches with the true central charge. As we will see, this is again a

consequence of the two stress tensors being equivalent in BRST cohomology.

The SU(N) currents for the matter and ghost sectors are given by

JA =
i

2
fABCqBi q

C
j εij , JAgh = −ifABCcBbC . (5.58)

The levels for the corresponding current algebras are −2N and 2N , respectively. The BRST current

is constructed as usual,

JBRST = cA
(
JASU(N) +

1

2
JAgh

)
, (5.59)

and its zero mode defines the nilpotent BRST operator QBRST.

5.3.2 Low-lying physical states

Let us first consider the case of SU(2) gauge group. In this case the difference between the Sugawara

stress tensor and the canonical stress tensor is BRST exact,

T − TSug ∼ {QBRST , fABCqAi q
B
j b

C εij} . (5.60)

Based on the description of the HL chiral ring generators, we expect that amongst the physical states

should be an SU(2)F triplet of affine currents and an SU(2)F doublet of dimension 3/2 fermionic

generators. Up to dimension two, the cohomology is generated by precisely these operators,

Jij = −1

2
(qAi q

A
j ) = χ[TrQiQj ] ,

Gi :=
√

2(qAi b
A) = χ[TrQiλ̃+] ,

G̃i :=−
√

2(qAi ∂c
A) = χ[TrQiλ+] .

(5.61)
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The OPEs of these generators can be computed directly,

Jij(z)Jkl(w) ∼ −N
2 − 1

2

εl(iεj)k

(z − w)2
+

2ε(k(iJj)l)

z − w
, (5.62)

Jij(z)Gk(w) ∼
1
2 (εkiGj(w) + εkjGi(w))

z − w
, (5.63)

Jij(z)G̃k(w) ∼
1
2 (εkiG̃j(w) + εkjG̃i(w))

z − w
, (5.64)

Gi(z)Gj(w) ∼ 0 , (5.65)

G̃i(z)G̃j(w) ∼ 0 , (5.66)

Gi(z)G̃j(w) ∼ −2(N2 − 1)εij
(z − w)3

+
4Jij(w)

(z − w)2
+

2εijT (w) + 2∂Jij(w)

z − w
, (5.67)

where N = 2 and the symmetrization in the indices i, j and k, l has weight one. The value of N has

been left unspecified in (5.62) because the OPEs will continue to hold for higher rank gauge groups.

For the same reason, T (z) has been included separately, though for N = 2 it not a distinct generator,

but rather is identified with the Sugawara stress tensor.

The operator product algebra in (5.62) can be immediately recognized to be the “small” N = 4

superconformal algebra with central charge c2d = −3(N2 − 1) [54]. It is natural that there should

be supersymmetry acting in the chiral algebra, since the holomorphic sl(2) that commutes with the

supercharges Q i is in enhanced to a holomorphic sl(2 | 2) when the four-dimensional theory is N = 4

supersymmetric. However, like the case of the global conformal algebra being generated not by the

four-dimensional stress tensor but by the chiral operator associated to the SU(2)R current, here the

enhanced supersymmetry in the chiral algebra is generated not by the four-dimensional supercurrents,

but by the Schur operators that lie in the same D 1
2 (0,0) and D 1

2 (0,0) multiplets with them. Those are

the Schur operators that are transmuted into the two-dimensional supercurrents Gi and G̃i.

In SU(3) theory there are additional generators arising from the additional HL generators. Sure

enough, direct computation produces the following list of new generators of dimension less than or

equal to 5/2:

Bijk := Tr qiqjqk = χ[TrQiQjQk] ,

Bij := Tr qiqjb = χ[TrQiQj λ̃+] ,

B̃ij := Tr qiqj∂c = χ[TrQiQjλ+̇] ,

Bi := 3Tr qib∂c+ Tr ∂qjq
jqi = χ[3TrQiλ̃+λ+̇ + Tr ∂++̇QjQ

jQi] .

(5.68)

Precisely for the SU(3) case, the operator Bi is in fact equivalent to a composite operator,

Bi ∼ εjj
′
εkk
′
JjkBij′k′ . (5.69)

This is a consequence of a chiral ring relation for this value of N which sets εjj
′
εkk
′
TrQjQkTrQiQj′Qk′

to zero. This will not be the case for higher rank gauge groups, and Bi will be an authentic generator

of the algebra.
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5.3.3 A super W-algebra conjecture

Because the chiral algebras of N = 4 SYM theories are supersymmetric, we can introduce a more

restrictive notion of generators for these algebras. More precisely, we would like to identify those

operators that generate the chiral algebra under the operations of normal ordered products and su-

perderivatives, or the action of sl(2 | 2). In other words, we allow not just L1 descendants, but also

Gi,− 1
2

and G̃i,− 1
2

descendants.

The last three generators in (5.68) are superdescendants of Bijk, so we have really only found one

additional super-generator in the SU(3) theory. In general, HL operators will be grouped by N = 4

supersymmetry into multiplets comprised of a single B̂-type operator, an SU(2)F doublet of D-type

operators, and an SU(2)F doublet worth of D̄-type operators.

For a general simple gauge group, the natural guess is that the chiral algebra is generated by the

small N = 4 superconformal algebra along with additional chiral primary operators arising from the

Higgs chiral ring generators. Our conjecture is then the following:

Conjecture 3 The chiral algebra for N = 4 SYM theory with gauge group G is isomorphic to an

N = 4 super W-algebra with rank(G) generators given by chiral primaries of dimensions di
2 , where di

are the degrees of the Casimir invariants of G.

We now perform some tests of this conjecture at the level of the superconformal index.

5.3.4 The superconformal index

Conjecture 3 can be tested up to any given level by comparing the index of the chiral algebra defined

in the conjecture with the superconformal index of N = 4 SYM in the Schur limit. For gauge group

SU(N), the Schur index is given by a contour integral,

ISchur(q; a) =

∮
[d~b]P.E.

[( √
q

1− q

)
χ2(a)χN2−1(~b) +

(
−2q

1− q

)
χN2−1(~b)

]
, (5.70)

where a is an SU(2)F flavor fugacity. For SU(2) gauge group, expanding the integrand in powers of

q and integrating gives the following result up to O(q4), where we have collected terms into SU(2)F
characters χR(a),

ISchur(q; a) =1 + χ3(a)q − 2χ2(a)q3/2 +
(
χ1(a) + χ3(a) + χ5(a)

)
q2

− 2
(
χ2(a) + χ4(a)

)
q5/2 +

(
χ1(a) + 3χ3(a) + χ5(a) + χ7(a)

)
q3

−
(
4χ2(a) + 4χ4(a) + 2χ6(a)

)
q7/2

+
(
3χ1(a) + 7χ3(a) + 4χ5(a) + χ7(a) + χ9(a)

)
q4 + . . . . (5.71)

We can compare this result with the index of the W-algebra appearing in the conjecture (in this case,

just the small superconformal algebra with the appropriate value of the central charge) by enumerating

the states of the chiral algebra and then finding and subtracting the null states at each level. We have

checked up to level four, and the results match exactly.

The same comparison can be done for the SU(3) case, where the Schur index to O(q3) is given by

ISchur(q; a) =1 + χ3(a)q +
(
χ4(a)− 2χ2(a)

)
q3/2 +

(
2χ1(a) + χ5(a)− χ3(a)

)
q2

+
(
χ6(a)− 3χ2(a)

)
q5/2 +

(
5χ1(a) + χ3(a) + 2χ7(a)− 3χ5(a)

)
q3 + . . . . (5.72)
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Figure 1. Weak coupling limits of the genus two class S theory.

Up to level three the nulls were computed and they agree with the index. Note that in this case

there are cancellations in the index of the chiral algebra, since there are bosonic and fermionic states

appearing at the same level.

5.4 Class S at genus two

At this point, the reader may be starting to get the impression that the chiral algebra of any four-

dimensional theory be entirely determined by the structure of its various chiral rings. The purpose of

this next example is to show that such a simplistic picture is untenable.

Our example is the rank one class S theory associated to an unpunctured genus two Riemann

surface [55, 56]. The theory admits two inequivalent weak-coupling limits, or S-duality frames, corre-

sponding to the two generalized quiver constructions illustrated in Fig. 5.4. We will focus on the first

case, which is sometimes called the dumbbell quiver. The gauge groups are denoted SU(2)1 for the

left loop, SU(2)2 for central line, and SU(2)3 for the right loop. The fields of the theory are two sets

of half-hypermultiplets transforming in the trifundamental representation of SU(2)3 and three SU(2)

vector multiplets. In N = 1 notation, we denote these by

Qa1b1a2 , Sa3b3a2 , W
(ν)
α Aν

, Φ
(ν)
Bν

, (5.73)

where ν = 1, 2, 3 indexes the three SU(2) gauge groups, aν , bν are fundamental indices of SU(2)ν , and

Aν , Bν are adjoint indices of SU(2)ν . It is convenient to rearrange the fields Qa1b1a2 and Sa3b3a2 in

terms of irreducible representations of the gauge groups. In particular, we can define

QA1a2 :=−iQa1b1a2(TJ)a1b1 , Qa2 :=
1√
2
εa1b1Qa1b1a2 ,

SA3a2 := −iSa3b3a2(TJ)a3b3 , Sa2 :=
1√
2
εa3b3Sa3b3a2 .

(5.74)

Finally, we introduce the fields

φa2 =
1√
2

(Qa2 + iSa2) , φ̄a2 =
1√
2

(Qa2 − iSa2) . (5.75)

The theory has a U(1)F flavor symmetry that is not completely obvious given the usual structure of

flavor symmetries in class S theories. The fields φ and φ̄ have charges +1 and −1 respectively under

the flavor symmetry, and the remaining fields are neutral.

The BRST cohomology problem for this theory can be set up as in the previous sections. In fact,
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the analysis may be somewhat simplified by leveraging the N = 4 analysis of the previous section. In

particular, each loop in the quiver corresponds to a small N = 4 superconformal algebra along with

a decoupled SU(2) doublet of symplectic bosons. The genus two theory is obtained by gauging the

diagonal subgroup of the SU(2) flavor symmetries for each side. Nevertheless, the resulting cohomology

problem is substantially more intricate than those of the previous examples, and we will not describe

the level-by-level analysis.

Instead, we will take an indirect approach to understand the spectrum of generators of this chiral

algebra at low levels. In particular, by analyzing various superconformal indices of this theory and

comparing with the structure of the HL chiral ring, we will be able to prove that the full chiral algebra

must have generators in addition to those related to HL chiral ring generators and the stress tensor.

More precisely, by studying the spectrum up to dimension three, we find that there must be additional

generators that arise from Ĉ1(0,0) multiplets in four dimensions.

The Higgs branch chiral ring for this theory has been analyzed in [57]. It has three generators: a

U(1)F neutral operator of dimension two, which is actually the moment map for U(1)F ,

M = −εa2a
′
2φa2 φ̄a′2 , (5.76)

and two operators of dimension four,

O1 = 2 φa2φa′2 ε
a2b2εa

′
2b
′
2 QA1b2QB1b′2

δA1B1 . (5.77)

O2 = 2 φ̄a2 φ̄a′2 ε
a2b2εa

′
2b
′
2 QA1b2QB1b′2

δA1B1 , (5.78)

that have charges +2 and −2 under the flavor symmetry. These generators satisfy a flavor neutral

relation of dimension eight:

O1O2 = M4 . (5.79)

It will be helpful for us to write down the Hilbert series [57] for this theory, refined by the U(1)F flavor

symmetry:

g(τ, a) =
1− t4

(1− t)(1− a2t2)(1− a−2t2)
= 1 + t+

(
a2 + a−2 + 1

)
t2 +

(
a2 + a−2 + 1

)
t3 + . . . , (5.80)

where a is the U(1)F fugacity, and t is the fugacity for the dimension of the operator.

The generalized quiver for this theory has closed loops, so there will be additional elements of the

HL chiral ring coming from D-type multiplets. The HL index for this theory can be computed by

standard methods, and is given by

IHL(t; a) = 1 + t+ (a2 + a−2 − 2a− 2a−1 + 1)t2 + (a2 + a−2 − 2a− 2a−1 + 2)t3 + . . . . (5.81)

By subtracting off the contributions of the Higgs chiral ring operators (obtained from (5.80)), we can

find the contributions of just the D-type multiplets. In turn, we can extract the structure of the

D-type generators.27 All told, at dimension two there are two D1(0,0) multiplets with U(1)F charge

+1 and two with charge −1, and at dimension three there is a single D 3
2 (0, 12 ) multiplet that is U(1)F

neutral. The two-dimensional counterparts of these operators can be defined in an explicit calculation

27We have checked by a computation of the HL cohomology that the HL index captures faithfully the complete
spectrum of D-type multiplets up to dimension three.
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Multiplet Index contribution h U(1)R U(1)F

B̂1
t

1−q 1 0 0

B̂2
t2a2

1−q 2 0 +2

B̂2
t2/a2

1−q 2 0 −2

2×D1 (0,0) −2 t2a
1−q 2 1

2 +1

2× D̄1 (0,0) −2 tqa
1−q 2 − 1

2 +1

2×D1 (0,0) −2 t
2/a

1−q 2 1
2 −1

2× D̄1 (0,0) −2 tq/a1−q 2 − 1
2 −1

D 3
2 (0, 12 )

t3

1−q 3 1 0

D̄ 3
2 ( 1

2 ,0)
tq2

1−q 3 −1 0

Ĉ0(0,0)
tq

1−q 2 0 0

3× Ĉ1(0,0) 3 t2q
1−q 3 0 0

Table 6. Chiral algebra generators for the genus two theory with h 6 3. The first columns lists the name
and multiplicity of the four dimensional multiplets giving rise to the generators. The second column lists the
contribution of each multiplet to the Macdonald superconformal index, including the flavor fugacity. The last
columns list the two-dimensional quantum numbers of the generators. The first block of the table consists of
Higgs chiral ring generators, the second the remaining HL chiral and anti-chiral ring generators, the third the
two-dimensional stress tensor, and the last block the extra generators deduced from the superconformal index.

of the BRST cohomology.

Up to dimension three, we have now determined all of the generators of the HL chiral ring. The

question is whether these operators (along with the conjugates of the D-type operators), in addition

to the two-dimensional stress tensor, are sufficient to explain the full spectrum of the chiral algebra

(up to dimension three). The generators are listed in the three blocks of Table 6, together with their

contribution to the Macdonald index and the quantum numbers of the corresponding Schur operators.

The Macdonald limit of the superconformal index of this theory is obtained from the following

contour integral,

IMD(q, t; a) =

∮
[db1][db2][db3]P.E.

[ √
t

1− q
[(
χ3(b1)χ2(b3) + χ3(b2)χ2(b3)

)
+ (a+ a−1)χ2(b3)

]
+

(
−t− q
1− q

)(
χ3(b1) + χ3(b2) + χ3(b3)

)]
, (5.82)

and the expansion including all operators up to dimension three is as follows,

IMD(q, t;a) = 1 + t+ (a2 + a−2 − 2a− 2a−1 + 1)t2 + (−2a− 2a−1 + 2)qt+ (5.83)

+(a2 + a−2 − 2(a+ a−1) + 2)t3 + (3− 2(a+ a−1))q2t+ (a2 + a−2 − 4(a+ a−1) + 5)t2q + . . . .

We find that not all of the terms in this expansion can be accounted for by enumerating normal ordered

products of generators and their descendants. In particular, from the list of known generators, the only
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operators that could contribute as t2q to the index (with no flavor fugacity) are the normal-ordered

product of a B̂1 and a Ĉ0(0,0) and the derivative of the normal-ordered product of two B̂1 operators.

This leaves a contribution of 3t2q remains to be explained. We can thus conclude that there are at

least three new operators, and they must all must correspond to Ĉ1,(0,0) multiplets that are uncharged

under the flavor symmetry. We have included these as the last entry in Table 6. The argument

presented above shows that at least these three multiplets must be present, however it does not take

into account possible cancellations in the index, which could hide even more additional generators.

6 Beyond Lagrangian theories

Although the discussion of the previous section focused on theories admitting Lagrangian descriptions,

the correspondence between N = 2 SCFTs and chiral algebras is of course much more general. In

particular, the vast landscape of superconformal theories of class S, most of which are non-Lagrangian

in nature, will be mapped to an intricate and interesting class of chiral algebras. The purpose of

this section is to draw a sketch of the class of chiral algebras defined by this map. Most of the

features discussed here follow from the general structure of class S and the correspondence with chiral

algebras. We do however include a few specific claims that will be left unsubstantiated here, but which

are explained in the more complete analysis of [53]. To begin, we offer a quick reminder of the salient

features of N = 2 SCFTs of class S.

6.1 A review of class S in four dimensions

Class S theories [55, 56] are those that arise from compactification of any of the N = (2, 0) six-

dimensional superconformal theories on a Riemann surface C, known as the UV curve, possibly with

the inclusion of real codimension two defect operators at points of C.28 We will be interested in the

case of superconformal theories of class S, which means that the mass parameters associated to defect

operators will all be set to zero. The conformal manifold of a theory of class S is equal to the complex

structure moduli space of the UV curve, with boundaries at which the curve degenerates corresponding

to physical limits in which a gauge coupling goes to zero and a free vector multiplet decouples from

the rest of the spectrum.

For our purposes, the most useful way to think about these theories is in terms of a set of four-

dimensional “building block” theories associated to three-punctured spheres, or trinions [55]. Such a

theory can be denoted T
(ρ1,ρ2,ρ3)
g , where g is the lie algebra of the underlying six-dimensional theory,

and the ρi label the defects at the three punctures. When all three embeddings are trivial, the theory

is sometimes simply denoted Tg (or TN for the case that g = AN−1). These building blocks can be

assembled into more complex theories in a manner that is represented by a generalized quiver diagram

such as those displayed in §5.4. The shape of the generalized quiver is necessarily a tropical limit of

the corresponding UV curve, with different tropical limits corresponding to different S-duality frames

of the same theory.

A number of known features of the building block theories can be used to predict the structure of

the associated chiral algebras. In the interest of simplifying the discussion, we shall henceforth restrict

to the case where g = AN−1. The maximal building block (that is, the one with the largest flavor

symmetry group) is then the TN theory mentioned above. We begin by reviewing its properties.

28We restrict to the case of regular defects in all that follows. These are defects that are specified by an embedding
ρ : su(2) → g, where g is the simply laced Lie algebra that labels the six-dimensional theory. Such a defect supports a
flavor symmetry equal to the centralizer of the embedded su(2) subalgebra of g.
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Generically, TN has SU(N)1 × SU(N)2 × SU(N)3 flavor symmetry, and central charges [58, 59]

c4d =
N3

6
− N2

4
− N

12
+

1

6
, k

SU(N)
4d = 2N = 2h∨ . (6.1)

When N = 2, this is just the theory of free trifundamental half-hypermultiplets that appeared in

the example of §5.4, so the associated chiral algebra is already known. In the special case of the T3

theory, the global symmetry is enhanced to E6 and this is the classic theory of [44]. In that case, the

four-dimensional level for the E6 symmetry is kE6

4d = 6.

The generators of the Higgs branch chiral ring are known for these theories. There are always

dimension two moment maps µi=1,2,3 that transform in the adjoint of SU(N)i and obey the relation

Trµk1 = Trµk2 = Trµk3 , k = 2, . . . , N . (6.2)

These are supplemented by generators Q(k) of dimension k(N − k) for k = 1, . . . , N − 1, which

transform in the (∧k,∧k,∧k) representation of SU(N)1 × SU(N)2 × SU(N)3, where ∧k denotes the

k-fold antisymmetric tensor representation. For N = 2 the only operator of this type is Q(1), which

is the free hypermultiplet itself. The moment maps are actually composites of this basic operator.

For the N = 3 case the operators are Q(1) and Q(2), which are the additional moment maps of E6.

For higher values of N , these are genuine new generators of the Higgs branch chiral ring, all with

dimension greater than two. Some of the relations amongst these higher generators and the moment

maps have been derived in [60], though we do not list them here. In the case of the E6 theory, the full

set of Higgs branch relations are precisely those that define the Joseph ideal for the E6 one-instanton

moduli space.

The trinion theories with reduced punctures (i.e., with nontrivial defining embeddings ρi) can be

thought of as arising by coupling the theory with a maximal puncture to a certain superconformal

tail and then turning on specific Higgs branch vacuum expectation values [61, 62]. Though we do

not write down the explicit formulae, the central charges for these theories can be computed for any

choice of defining representations [50]. Important special cases are the trinions for which the theory

that results from reducing the punctures of the non-Lagrangian TN theory is described in terms of

free fields. A canonical example is the theory where ρ1 and ρ2 are trivial, but ρ3 is the subregular

embedding of su(2) into su(N). In this case puncture three is known as a minimal punctures, and the

resulting trinion theory is that of N free hypermultiplets.

Finally, we mention that index considerations suggest that there are no D-type multiplets for these

theories, in which case the HL chiral ring is just the Higgs chiral ring [21, 60].

6.2 An outline of class S chiral algebras

We now turn to the class of chiral algebras that form the image of the class S SCFTs under the map
χ. In parallel with the full four-dimensional story, there will be a set of basic building block chiral

algebras corresponding to the sphere with three maximal punctures. These will be the chiral algebras
χ[TN ]. General aspects of the chiral algebra correspondence allow us to predict a number of properties

of these theories. The two-dimensional central charge is fixed by the usual proportionality with the

four-dimensional conformal anomaly,

c2d = −2N3 + 3N2 +N − 2 . (6.3)
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Additionally, these chiral algebras have ŝu(n)3
k affine symmetry with

k2d = −h∨ . (6.4)

It is interesting to note that this is precisely the level that is relevant for the connection between

two-dimensional vertex algebras and the geometric Langlands program (see, e.g., [63]). In addition to

the generating currents of the affine flavor symmetry, the chiral algebra will have additional generators
χ[Q(k)] of holomorphic dimension h = 1

2k(N − k) transforming in the appropriate representations of

the flavor symmetries.

For the case of the T3 theory, the Higgs chiral ring generators are just the E6 moment maps. The

relations are generated by the E6 Joseph ideal, and correspondingly the central charges of this theory

saturate the appropriate unitarity bounds of §4.2. In particular, this means that the stress tensor is

not an independent generator, but rather is equivalent to the Sugawara stress tensor of the E6 current

algebra (see §4.3). Given our prior experience in §5.1, it is natural to make a preliminary conjecture

concerning the description of the T3 chiral algebra:

Conjecture 4 The chiral algebra for the rank one E6 theory, also known as T3, is isomorphic to the

E6 affine Lie algebra at level k2d = −3.

It is difficult to directly address this conjecture, since we do not have the free-field realization of this

chiral algebra that was present for Lagrangian theories. Nevertheless, a variety of indirect checks have

been performed and are presented in [53].

The chiral algebras associated to more general punctured Riemann surfaces can be realized in

a procedure that parallels the gluing construction in four dimensions. In particular, for a given

generalized quiver construction we start with a number of copies of χ[TN ] along with SU(N) ghost

small algebras, and then perform the BRST reduction associated to four-dimensional gauging to

define the chiral algebra. Because the chiral algebra that is associated to a given four-dimensional

theory is independent of the exactly marginal couplings, the chiral algebras associated to a given

UV curve will not depend on the complex structure moduli of the curve, and in particular will not

depend on the choice of generalized quiver within a given topological class. Thus, there will be a

generalized topological quantum field theory that associates a chiral algebra to any appropriately

decorated Riemann surface. This is very much in the spirit of [64] and [65], where the superconformal

index and the symplectic holomorphic variety of the Higgs branch, respectively, were used to define a

generalized TQFT via class S. Associativity of the gluing imposes highly nontrivial requirements on

the chiral algebra of the elementary TN building block. There are three a priori inequivalent gauging

procedures of two TN theories that must lead to the unique theory associated to the four-punctured

sphere. From the 2d perspective, the BRST complexes associated to the different gaugings must give

the same cohomology. In the simple case of T2, this follows at once from Conjecture 1, as the ŝo(8)

current algebra is manifestly independent of the choice of gluing.

Having focused thus far on the case of maximal punctures, we should also consider chiral algebras
χ[T

(ρ1,ρ2,ρ3)
N ] associated to the non-maximal theories. The task of reducing the rank of a puncture

can be accomplished directly within the two-dimensional chiral algebra setting. We propose that the

chiral algebra for the theory T
(ρ1,ρ2,ρ3)
N is determined by quantum Drinfeld-Sokolov (DS) reduction of

the TN theory with respect to the three embeddings. In the canonical setting, quantum DS reduction

is an operation that is performed on an affine Lie algebra in order to produce a different W-algebra as

the cohomology of an appropriate BRST operator. In the present setting, the reduction is performed

on a theory with an affine Lie subalgebra, so one may think of this as quantum DS reduction with
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modules. The generalization is conceptually straightforward, but somewhat involved technically. This

proposal passes several checks, most notably that the central charges of the reduced theory precisely

reproduce the expected answers. The behavior of the class S chiral algebras under the reduction of

punctures imposes additional powerful constraints on the form of these two-dimensional theories. In

particular, complete reduction of a puncture (corresponding to choosing a maximal embedding ρ) must

lead to the chiral algebra for the theory with one fewer puncture. Similarly, reducing one maximal

puncture in χ[TN ] to a minimal punctures must lead to the free hypermultiplet chiral algebra. A

detailed discussion will be presented in [53].

The connection between reducing the rank of a puncture and quantum DS reduction has made

previous appearances in the context of the AGT correspondence [66, 67], and the fact that the same

procedure is used here suggests a deeper connection between the chiral algebras defined here and those

that appear in the AGT correspondence.

7 Open questions

We have outlined the main features of a new surprising correspondence between the four-dimensional

N = 2 superconformal field theories and chiral algebras. It should be apparent that there is a great

deal more to learn about this rich structure. There are many aspects that should be clarified further,

and many natural directions in which the construction could be generalized. We will simply provide

a concise list of what we consider to be the most salient open questions, some of which are currently

under investigation.

• For the Lagrangian examples considered in §5, as well as the class S examples sketched in §6, we

have made specific conjectures for the description of the resulting chiral algebras as W-algebras.

We hope that some of these conjectures can be proved by more advanced homological-algebraic

techniques.

• A detailed analysis of the B̂1 four-point function that compared 4d and 2d perspectives led to

powerful new unitarity bounds that must be obeyed in any interacting N = 2 SCFT with flavor

symmetry. It is likely that applying the same methods to more general correlators will lead to

further unitarity constraints.

• A better understanding of the implications of four-dimensional unitarity may help clarify what

sort of chiral algebra can be associated to a four-dimensional theory. A sharp characterization

of the class of chiral algebras that descend from four-dimensional SCFTs could prove invaluable,

both as a source of structural insights and as a possible first step towards a classification program

for N = 2 SCFTs.

• We have seen that the four-dimensional operators that play a role in the chiral algebra are closely

related to the ones that contribute to the Schur and Macdonald limits of the superconformal

index. While the Schur limit has been interpreted in §4.4 as an index of the chiral algebra, the

additional grading that appears in the Macdonald index is not natural in the framework that

we have developed. It would be interesting if the additional refinement of the Macdonald index

could be captured by a deformation of the chiral algebra structure, perhaps along the lines of

[68].

• It seems inevitable that extended operators will ultimately find a place in our construction. We

expect that codimension-two defects orthogonal to the chiral algebra plane will play the role of

– 62 –



vertex operators transforming as non-trivial modules of the chiral algebra. One could also apply

the tools developed here to study protected operators that live on conformal defects that fill the

chiral algebra plane.

• As it was presented here, the definition of a protected chiral algebra appears to use extended

superconformal symmetry in an essential way. Nevertheless, one wonders whether some aspects

of this structure may survive away from conformality, perhaps after putting the theory on a

nontrivial geometry.

• A related question is whether some aspects of our construction for Lagrangian theories may be

accessible to the techniques of supersymmetric localization. The chiral algebra itself may emerge

after an appropriate localization of the four-dimensional path integral.

• In many examples, the structure of the 4d Higgs branch appears to play a dominant role in

determining the structure of the associated chiral algebra. It is an interesting question whether

there is a sense in which the chiral algebra is an intrinsic property of the Higgs branch, possibly

with some additional structure added as decoration.

• The structure that we have utilized in this article does not admit a direct generalization to odd

space-time dimensions. However, a philosophically similar approach leads to a correspondence

between three-dimensional N = 4 superconformal field theories and one-dimensional topological

field theories. The topological field theory captures twisted correlators of three-dimensional

BPS operators whose positions are constrained to a line. We hope to return to investigate this

structure in the future.

• The cohomological approach to chiral algebras that was successfully pursued in this article can

be repeated in two-dimensional theories with at least N = (0, 4) superconformal symmetry and

six-dimensional theories with N = (2, 0) superconformal symmetry [9]. As it was in the four-

dimensional case, correlation functions of the six-dimensional chiral algebra should provide the

jumping off point for a numerical bootstrap analysis of the elusive (2, 0) theories.

• Combining the extension of this story to six dimensions with the inclusion of defect operators

has the potential to provide a direct explanation for the AGT relation between conformal field

theory in two-dimensions and N = 2 supersymmetric field theories in four dimensions.
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A Superconformal algebras

This appendix lists useful superconformal algebras that are used in the body of this paper. We adopt

the convention of working in terms of the complexified version of symmetry algebras. We adopt bases

for the complexified algebras such that the restriction to the real form that is relevant for physics

in Lorentzian signature is the most natural. In general, the structures described in this paper are

insensitive to the spacetime signature of the four-dimensional theory, with the caveat that we will

assume that the theories in question, when Wick rotated to Lorentzian signature, are unitary.

A.1 The four-dimensional superconformal algebra

The spacetime symmetry algebra for N = 2 superconformal field theories in four dimensions is the

superalgebra sl(4 | 2). The maximal bosonic subalgebra is so(6,C)×sl(2)R×C∗. The so(6,C) conformal

algebra, in a spinorial basis with α, α̇ = 1, 2, is given by

[M β
α ,M δ

γ ] = δ βγ M δ
α − δ δαM β

γ ,

[Mα̇
β̇
,Mγ̇

δ̇
] = δα̇δM

γ̇

β̇
− δγ̇

β̇
Mα̇

δ̇
,

[M β
α ,Pγγ̇ ] = δ βγ Pαγ̇ − 1

2δ
β

α Pγγ̇ ,
[Mα̇

β̇
,Pγγ̇ ] = δα̇γ̇Pγβ̇ −

1
2δ
α̇
β̇
Pγγ̇ ,

[M β
α ,Kγ̇γ ] = − δ γα Kγ̇β + 1

2δ
β

α Kγ̇γ ,

[Mα̇
β̇
,Kγ̇γ ] = − δγ̇

β̇
Kα̇γ + 1

2δ
α̇
β̇
Kγ̇γ ,

[H,Pαα̇] = Pαα̇ ,
[H,Kα̇α] = −Kα̇α ,

[Kα̇α,Pββ̇ ] = δ α
β δα̇

β̇
H+ δ α

β M
α̇
β̇

+ δα̇
β̇
M α

β .

(A.1)

The sl(2)R algebra has a Chevalley basis of generators R± and R, where

[R+,R−] = 2R , [R,R±] = ±R± . (A.2)

In Lorentz signature where the appropriate real form of this algebra is su(2)R, these generators will

obey hermiticity conditions (R+)† = R−, R† = R. The generator of the Abelian factor C∗ is denoted

by r and is central in the bosonic part of the algebra. It is also convenient to introduce the basis RIJ ,

with

R1
2 = R+ , R2

1 = R− , R1
1 =

1

2
r +R , R2

2 =
1

2
r −R , (A.3)

where we follow the conventions of [28] for r, and which obey the commutation relations

[RIJ ,RKL] = δKJRIL − δILRKJ . (A.4)

There are sixteen fermionic generators in this superconformal algebra – eight Poincaré supercharges

and eight conformal supercharges – denoted {QIα, Q̃Iα̇, SαJ , S̃J α̇}. The nonvanishing commutators
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amongst them are as follows,

{QIα, Q̃J α̇} = δIJPαα̇ ,

{S̃Iα̇, S α
J } = δIJKα̇α ,

{QIα, S
β
J } = 1

2δ
I
J δ

β
α H+ δIJM β

α − δ β
α RIJ ,

{S̃Iα̇, Q̃J β̇} = 1
2δ
I
J δ

α̇
β̇
H+ δIJMα̇

β̇
+ δα̇

β̇
RIJ .

(A.5)

Finally, the commutators of the supercharges with the bosonic symmetry generators are the following:

[M β
α ,QIγ ] = δ βγ QIα − 1

2δ
β

α QIγ ,

[Mα̇
β̇
, Q̃Iδ̇] = δα̇

δ̇
Q̃Iβ̇ −

1
2δ
α̇
β̇
Q̃Iδ̇ ,

[M β
α ,S

γ
I ] = − δ γα S

β
I + 1

2δ
β

α S
γ
I ,

[Mα̇
β̇
, S̃Iγ̇ ] = − δγ̇

β̇
S̃Iα̇ + 1

2δ
α̇
β̇
S̃Iγ̇ ,

[H,QIα] = 1
2Q
I
α ,

[H, Q̃Iα̇] = 1
2Q̃Iα̇ ,

[H,S α
I ] = − 1

2S
α
I ,

[H, S̃Iα̇] = − 1
2 S̃
Iα̇ ,

[RIJ ,QKα ] = δ KJ QIα −
1

4
δIJQKα ,

[RIJ , Q̃Kα̇] = − δ IK Q̃J α̇ +
1

4
δIJ Q̃Kα̇ ,

[Kα̇α,QIβ ] = δ α
β S̃

Iα̇ ,

[Kα̇α, Q̃Iβ̇ ] = δ α̇

β̇
S α
I ,

[Pαα̇,S β
I ] = − δ β

α Q̃Iα̇ ,

[Pαα̇, S̃Iβ̇ ] = − δ β̇
α̇ Q

I
α .

(A.6)

A.2 The two-dimensional superconformal algebra

The second superalgebra of interest is sl(2|2), which corresponds to the right-moving part of the global

superconformal algebra in N = (0, 4) SCFTs in two dimensions. The maximal bosonic subgroup is

sl(2)× sl(2)R, with generators {L0, L±1} for sl(2) and {R±,R} for sl(2)R. The non-vanishing bosonic

commutation relations are given by

[R,R±] = ±R± , [R+,R−] = 2R ,

[L̃0, L̃±1] = ∓L̃±1 , [L̃1, L̃−1] = 2L̃0 .
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There are additionally right-moving Poincaré supercharges QI , Q̃J and right-moving superconformal

charges SJ , S̃I . The commutation relations amongst the fermionic generators are given by

{QI , Q̃J } = δIJ L̃−1 ,

{S̃I ,SJ } = δIJ L̃+1 ,

{QI ,SJ } = δIJ L̃0 −RIJ −
1

2
δIJZ ,

{Q̃J , S̃I} = δIJ L̃0 +RIJ +
1

2
δIJZ ,

where RIJ are defined as in (A.3), but with r set to zero. Here Z is a central element, the removal of

which gives the algebra psl(2|2). The additional commutators of bosonic symmetry generators with

the supercharges are given by

[L̃−1 , S̃I ] = −QI ,
[L̃−1 ,SI ] = −Q̃I ,
[L̃+1 , Q̃I ] = SI ,
[L̃+1 ,QI ] = S̃I ,
[L̃0 , S̃I ] = − 1

2 S̃
I ,

[L̃0 ,SI ] = − 1
2SI ,

[L̃0 , Q̃I ] = 1
2Q̃I ,

[L̃0 ,QI ] = 1
2Q
I .

(A.7)

B Shortening conditions and indices of su(2, 2 | 2)

The classification of short representations of the four-dimensional N = 2 superconformal algebra

[19, 28, 69] plays a major role in the structure of the chiral algebras described in this paper. This

appendix provides a review of the classification, as well as of the various indices that can be defined

on any representation of the algebra that are insensitive to the recombination of collections of short

multiplets into generic long multiplets.

Short representations occur when the norm of a superconformal descendant state in what would

otherwise be a long representation is rendered null by a conspiracy of quantum numbers. The unitarity

bounds for a superconformal primary operator are given by

E > Ei , ji 6= 0 ,

E = Ei−2 or E >Ei , ji = 0 ,
(B.1)

where we have defined

E1 = 2 + 2j1 + 2R+ r , E2 = 2 + 2j2 + 2R− r , (B.2)

and short representations occur when one or more of these bounds are saturated. The different ways

in which this can happen correspond to different combinations of Poincaré supercharges that will

annihilate the superconformal primary state in the representation. There are two types of shorten-

ing conditions, each of which has four incarnations corresponding to an SU(2)R doublet’s worth of
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Shortening Quantum Number Relations DO KMMR

∅ E > 2R+ r A∆
R,r(j1,j2) aa∆,j1,j2,r,R

B1 E = 2R+ r j1 = 0 BR,r(0,j2) ba0,j2,r,R

B̄2 E = 2R− r j2 = 0 B̄R,r(j1,0) abj1,0,r,R

B1 ∩ B2 E = r R = 0 Er(0,j2) ba0,j2,r,0

B̄1 ∩ B̄2 E = −r R = 0 Ēr(j1,0) abj1,0,r,0

B1 ∩ B̄2 E = 2R j1 = j2 = r = 0 B̂R bb0,0,0,R

C1 E = 2 + 2j1 + 2R+ r CR,r(j1,j2) caj1,j2,r,R

C̄2 E = 2 + 2j2 + 2R− r C̄R,r(j1,j2) acj1,j2,r,R

C1 ∩ C2 E = 2 + 2j1 + r R = 0 C0,r(j1,j2) caj1,j2,r,0

C̄1 ∩ C̄2 E = 2 + 2j2 − r R = 0 C̄0,r(j1,j2) acj1,j2,r,0

C1 ∩ C̄2 E = 2 + 2R+ j1 + j2 r = j2 − j1 ĈR(j1,j2) ccj1,j2,j2−j1,R

B1 ∩ C̄2 E = 1 + 2R+ j2 r = j2 + 1 DR(0,j2) bc0,j2,j2+1,R

B̄2 ∩ C1 E = 1 + 2R+ j1 −r = j1 + 1 D̄R(j1,0) cbj1,0,−j1−1,R

B1 ∩ B2 ∩ C̄2 E = r = 1 + j2 r = j2 + 1 R = 0 D0(0,j2) bc0,j2,j2+1,0

C1 ∩ B̄1 ∩ B̄2 E = −r = 1 + j1 −r = j1 + 1 R = 0 D̄0(j1,0) cbj1,0,−j1−1,0

Table 7. Unitary irreducible representations of the N = 2 superconformal algebra.

conditions for each supercharge chirality:

BI : QIα|ψ〉 = 0 , α = 1, 2 (B.3)

B̄I : Q̃Iα̇|ψ〉 = 0 , α̇ = 1, 2 (B.4)

CI :

{
εαβQIα |ψ〉β = 0 , j1 6= 0

εαβQIαQIβ |ψ〉 = 0 , j1 = 0
, (B.5)

C̄I :

{
εα̇β̇Q̃Iα̇ |ψ〉β = 0 , j2 6= 0

εα̇β̇Q̃Iα̇Q̃Iβ̇ |ψ〉 = 0 , j2 = 0
, (B.6)

The different admissible combinations of shortening conditions that can be simultaneously realized by

a single unitary representation are summarized in Table 7, where the reader can also find the precise

relations that must be satisfied by the quantum numbers (E, j1, j2, r, R) of the superconformal primary

operator, as well as the notations used to designate the different representations in [28] (DO) and [19]

(KMMR).29

At the level of group theory, it is possible for a collection of short representations to recombine

into a generic long representation whose dimension is equal to one of the unitarity bounds of (B.1).

29We follow the R-charge conventions of DO.
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In the DO notation, the generic recombinations are as follows:

A2R+r+2+2j1
R,r(j1,j2) ' CR,r(j1,j2) ⊕ CR+ 1

2 ,r+
1
2 (j1− 1

2 ,j2) , (B.7)

A2R−r+2+2j2
R,r(j1,j2) ' C̄R,r(j1,j2) ⊕ C̄R+ 1

2 ,r−
1
2 (j1,j2− 1

2 ) , (B.8)

A2R+j1+j2+2
R,j1−j2(j1,j2) ' ĈR(j1,j2) ⊕ ĈR+ 1

2 (j1− 1
2 ,j2) ⊕ ĈR+ 1

2 (j1,j2− 1
2 ) ⊕ ĈR+1(j1− 1

2 ,j2−
1
2 ) . (B.9)

There are special cases when the quantum numbers of the long multiplet at threshold are such that

some Lorentz quantum numbers in (B.7) would be negative and unphysical:

A2R+r+2
R,r(0,j2) ' CR,r(0,j2) ⊕ BR+1,r+ 1

2 (0,j2) , (B.10)

A2R−r+2
R,r(j1,0) ' C̄R,r(j1,0) ⊕ B̄R+1,r− 1

2 (j1,0) , (B.11)

A2R+j2+2
R,−j2(0,j2) ' ĈR(0,j2) ⊕DR+1(0,j2) ⊕ ĈR+ 1

2 (0,j2− 1
2 ) ⊕DR+ 3

2 (0,j2− 1
2 ) , (B.12)

A2R+j1+2
R,j1(j1,0) ' ĈR(j1,0) ⊕ ĈR+ 1

2 (j1− 1
2 ,0) ⊕ D̄R+1(j1,0) ⊕ D̄R+ 3

2 (j1− 1
2 ,0) , (B.13)

A2R+2
R,0(0,0) ' ĈR(0,0) ⊕DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2 . (B.14)

The last three recombinations involve multiplets that make an appearance in the associated chiral

algebra described in this work. Note that the E , Ē , B̂ 1
2
, B̂1, B̂ 3

2
, D0, D̄0, D 1

2
and D̄ 1

2
multiplets can

never recombine, along with B 1
2 ,r(0,j2) and B̄ 1

2 ,r(j1,0).

There exist a variety of trace formulas [19, 21] that can be defined on the Hilbert space of an N = 2

SCFT such that the result receives contributions only from states that lie in short representations of

the superconformal algebra, with the contributions being such that the indices are insensitive to

recombinations. The indices are defined and named as follows:

Superconformal Index : TrH(−1)F p
1
2 (E+2j1−2R−r)q

1
2 (E−2j1−2R−r)tR+r, (B.15)

Macdonald : TrHM
(−1)F q

1
2 (E−2j1−2R−r)tR+r , (B.16)

Schur : TrH(−1)F qE−R , (B.17)

Hall-Littlewood : TrHHL
(−1)F τ2E−2R , (B.18)

Coulomb : TrHC(−1)Fσ
1
2 (E+2j1−2R−r)ρ

1
2 (E−2j1−2R−r) . (B.19)

The specialized Hilbert spaces appearing in the trace formulas above are defined as follows,

HM := {ψ ∈ H
∣∣ E + 2j1 − 2R− r = 0} , (B.20)

HHL := {ψ ∈ H
∣∣ E − 2R− r = 0 , j1 = 0} , (B.21)

HC := {ψ ∈ H
∣∣ E + 2j1 + r = 0} . (B.22)

The different indices are sensitive to different superconformal multiplets. In particular, the Coulomb

index counts only E and D0 type multiplets. These can be thought of as N = 1 chiral ring operators

that are SU(2)R singlets. Similarly, the Hall-Littlewood index counts only B̂R and DR multiplets,

which can be thought of as the consistent truncation of the N = 1 chiral ring to operators that are

neutral under U(1)r. The Schur and Macdonald indices count only the operators that are involved in

the chiral algebras of this paper: B̂R, ĈR, D, and D̄ multiplets. The full index receives contributions

from all of the multiplets appearing in Table 7.
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C Kazhdan-Lusztig polynomials and affine characters

Computing the characters of irreducible modules of an affine Lie algebra at a negative integer level is

a nontrivial task. For low levels, the multiplicity and norms of states can be found by hand using the

mode expansion of the affine currents JA(z), but this computation quickly becomes rather involved.

Fortunately there exists another method to compute these characters, based on the work of Kazhdan

and Lusztig [70], which (with the aid of a computer) can produce results to very high order. In this

appendix we give a brief introduction to this method. The interested reader is referred to, e.g., [71, 72]

for more details.

A generic method to obtain an irreducible representation of any (affine) Lie algebra is to start

with the Verma module M built on a certain highest weight state ψh.w., and then to subtract away

all the null states in this module with the correct multiplicities. Let us recall that according to the

Poincaré-Birkhoff-Witt theorem, the Verma module is spanned by all the states of the form

(E−α1,1)n1,1(E−α1,2)n1,2 . . . (E−α1,m1)n1,m1 . . . (E−α2,1)n2,1 . . . (E−αN ,mN )nN,mN ψh.w. , (C.1)

with nonnegative integer coefficients ni,j . Here the E−α,kα are the negative roots with weight −α, and

the auxiliary index kα ∈ {1, . . . ,mα} is only necessary when the multiplicity mα of the given weight is

greater than one. The ordering of the roots in the above equation is arbitrary but fixed. If the highest

weight state ψh.w. has weight µ then the state defined as above has weight

µ− α1(n1,1 + n1,2 + . . .+ n1,m1
)− α2(n2,1 + . . .)− . . .− αN (. . .+ nN,mN ) , (C.2)

and with a moment’s thought one sees that the character Mµ of the Verma module is given by

charMµ = eµ
∏
α>0

(1− e−α)−mult(α) . (C.3)

This is the Kostant partition function. The product is taken over the set of all the positive roots,

which is infinite for an affine Lie algebra.

For a given affine Lie algebra there are special values of the highest weights for which the Verma

module becomes reducible due to the existence of null states. We need to subtract all these null states

to recover the irreducible module. Since any descendant of a null state is also null, the null states are

themselves organized into Verma modules and we can subtract away entire modules at a time. This

procedure is further complicated by the existence of “nulls of nulls”, i.e., null states inside the Verma

module that we are subtracting. In general, this leads to a rather intricate pattern of subtractions.

It follows that the character of the irreducible module with highest weight λ, which we denote as Lλ,

can be obtained from a possibly infinite sum of the form

charLλ =
∑
µ6λ

mλ,µcharMµ , (C.4)

where the integers mλ,µ are not of definite sign and reflect the aforementioned pattern of null states.

Of course mλ,λ = 1. The vectors labeled by µ in the above sum are called the primitive null vectors

of the Verma module Mλ.

This leaves us with the task of determining the weights µ that appear in (C.4) along with their

associated multiplicities mλ,µ. The first task is accomplished by noting that these weights are neces-

sarily annihilated by all raising operators, and therefore must be highest weight states in themselves.
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The quadratic Casimir operator of an affine Lie algebra acts simply on highest weight states with

weight µ as multiplication by |µ + ρ|2, where ρ is the Weyl vector with unit Dynkin labels. On the

other hand, the eigenvalue should be an invariant of the full representation, which means that the only

states µ that can appear in (C.4) have to satisfy

|µ+ ρ|2 = |λ+ ρ|2 . (C.5)

Notice that so far we have made no distinction between unitary representations, where the highest

weight λ is dominant integral (i.e., its Dynkin labels are nonnegative integers), and non-unitary

representations like the ones in which we are interested. This distinction becomes crucial in the

computation of the multiplicities mλ,µ.

For the irreducible representations associated to dominant integral weights, the weight multiplic-

ities are invariant under the action of the Weyl group, and correspondingly charLλ is invariant under

the action of the Weyl group on the fugacities. On the other hand, the Kostant partition function is

essentially odd under this action (cf. [71]),

w(e−ρ−µcharMµ) = sign(w)e−ρ−µcharMµ , (C.6)

where the sign of an element w in the Weyl group is simply given by −1 raised to the power of the

number of generators used to express w. One can easily convince oneself that the multiplicities mλ,µ

therefore necessarily satisfy

mλ,µ = sign(w)mλ,w·µ , (C.7)

where w ·µ := w(µ+ρ)−ρ is the shifted action of the Weyl group on the weight µ. All the multiplicities

mλ,µ for weights µ on the same shifted Weyl orbit are therefore related by factors of sign(w), and

it suffices to know only one multiplicity on each orbit. Happily, if the highest weight λ is dominant

integral, then it lies on the shifted Weyl orbit of any primitive null vector. This essentially follows

from the fact that there is a unique dominant integral weight on every shifted Weyl orbit, and from

(C.5) it can be shown that this has to be λ. So, using that mλ,λ = 1, we find that all the weights

appearing in (C.4) are given by the shifted Weyl orbit of λ and have multiplicities equal to sign(w).

In summary, then,

charLλ =

∑
w∈W sign(w)ew(ρ+λ)−ρ∏
α>0(1− e−α)mult(α)

, (C.8)

which is the famous Weyl-Kac character formula.

Let us return to the case where the λ is not dominant integral. This is the case that interests us:

indeed, for so(8)−2 the vacuum representation has Dynkin labels [−2 0 0 0 0] and the zeroth Dynkin

label is not positive.30 For non-dominant integral weights the above derivation already fails at the

very first step: the weight multiplicities in the irreducible representation are not invariant under the

action of the Weyl group. This is most easily seen by taking the infinite irreducible representation of

su(2) whose highest weight is negative. In this case the single Weyl reflection maps the highest weight,

which of course has multiplicity one, to a positive weight, which has multiplicity zero. The derivation

of the coefficients mλ,µ now becomes considerably more involved. Since we find qualitative differences

depending on the sign of k + h∨, we will in the remainder of this appendix focus on the relevant case

k + h∨ > 0.

30Recall that the zeroth Dynkin label for a weight vector in an affine Lie algebra ĝ is given by k − (λ, θ) with λ the
part of the weight vector corresponding to the original Lie algebra g and θ the highest root of g.

– 70 –



For the non-unitary representations considered here it is still true that all the primitive null vectors

lie on the shifted Weyl orbit of the highest weight λ, and for k+h∨ > 0 there is still a unique dominant

weight Λ on the same orbit such that Λ+ρ has nonnegative Dynkin labels. For example, for the vacuum

module of so(8)−2 the dominant weight has Dynkin labels [0 0 −1 0 0] which happens to be related

to [−2 0 0 0 0] by a single elementary reflection. All the weights in (C.4), including λ itself, can thus

be written as µ = w · Λ for some Weyl element w. We can therefore alternatively try to label these

weights with the corresponding element of the Weyl group w instead of µ. We will see that such a

relabeling has great benefits, but first we need to mention two important subtleties.

The first subtlety concerns the fact that we may restrict ourselves to elementary reflections of

the Weyl group for which the corresponding Dynkin label in Λ is integral, since it is only in those

cases that null states can possibly appear. These reflections generate a subgroup of the Weyl group

that we will denote as WΛ. In the case of so(8)−2 the weights are all integral and WΛ = W . The

second subtlety is the possibility of the existence of a subgroup W 0
Λ of WΛ that leaves Λ invariant.

This happens precisely when some of the Dynkin labels of Λ + ρ are zero - in our case there is a single

such zero. It is clear that the weights µ can then at best be uniquely labeled by elements of the coset

WΛ/W
0
Λ.

It is now a deep result that the multiplicities mλ,µ depend on the dominant integral weight Λ only

through the corresponding elements w and w′ of the coset WΛ/W
0
Λ. We may therefore replace

mλ,µ → mw,w′ , (C.9)

where λ = w · Λ, µ = w′ · Λ and w and w′ are elements of the coset. The celebrated Kazhdan-Lusztig

conjecture tells us that the precise form of these multiplicities is given by

mw,w′ = Q̃w,w′(1) . (C.10)

where the Kazhdan-Lusztig polynomial Q̃w,w′(q) is a single-variable polynomial depending on two

elements w and w′ of the coset WΛ/W
0
Λ. These polynomials are determined via rather intricate

recursion relations that are explained in detail in [72]. For k + h∨ > 0 and integral weights, which is

the case that interests us here, the Kazhdan-Lusztig conjecture was proven in [73, 74].

For the computations mentioned in the main text, we have implemented the recursive definitions

of the Kazhdan-Lusztig polynomials on cosets given in [72] in Mathematica. Equations (C.3), (C.4),

and (C.10) then allow us to compute all the states in the irreducible vacuum character of so(8)−2 up

to level five. The results are shown in Table 5.
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