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ABSTRACT

In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal
magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to
driving such global simulations is that the required horizontal electric field cannot be uniquely determined from
such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully
reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these
cases, the true solution is known because the electric field was generated from a surface flux-transport model. The
match for these cases is further improved by including the non-inductive electric field contribution from surface
differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-
potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field,
without including additional physical observations which are not routinely available.

Key words: magnetohydrodynamics (MHD) – Sun: corona – Sun: coronal mass ejections (CMEs) – Sun:
magnetic fields

1. INTRODUCTION

Non-potential solar coronal magnetic field simulations using
the magnetofrictional (MF) method (Yang et al. 1986) have
been demonstrated to be a practical alternative to global
magnetohydrodynamic (MHD) simulations in long-term com-
putationally expensive coronal studies (see, e.g., Yeates 2014).
By allowing for the build up of electric currents and free
magnetic energy, the MF method can better approximate
physical processes in the corona compared to potential-field
source-surface (PFSS) extrapolations. Such non-potential fields
have benefits to solar wind and space weather forecasting
(Edwards et al. 2015).

Similar to full MHD simulations, global MF simulations of
the coronal magnetic field require Eθ, Ef as inner boundary
conditions on the photosphere. In MHD, this horizontal electric
field Ê depends on the vector plasma velocity v, the vector
magnetic field B, and a non-ideal dissipation term. Since
complete observations of these quantities are not routinely
available, previous authors (see Amari et al. 2003; Fisher
et al. 2010; Mackay et al. 2011; Cheung & DeRosa 2012; Yang
et al. 2012; Kazachenko et al. 2014) have shown how this
boundary electric field can be inferred from line-of-sight
magnetograms to drive both MHD and MF simulations.

In this paper, we present MF simulations. However, the
photospheric boundary motions are very slow compared to the
coronal Alfvén speed, and the plasma beta is low. As a result,
for both MHD simulations and MF simulations, we would
expect the coronal magnetic field evolution to closely
approximate a sequence of quasi-steady force-free states.
Under these approximations, the MHD approach and MF
approach produce very similar results. If we are interested
primarily in the long-lived structure of the magnetic field rather
than the high-frequency dynamics of MHD waves, then the MF
method captures the essential evolution more efficiently.

In the case of MF simulations, published results using Ê
determined solely from observed magnetogram sequences have

been limited to simulations of individual active regions
(Mackay et al. 2011; Cheung & DeRosa 2012; Gibb
et al. 2014). Global simulations, on the other hand, have used
specified velocity and dissipation terms to determine Ê
through flux-transport models (Mackay & Yeates 2012). In
this work, for the first time, we explore the driving of global
MF simulations directly from sequences of q fB t, ,r ( ) maps of
the whole solar surface, rather than from a flux-transport
model. Since we currently have no observed magnetograms of
the far side of the Sun, these maps must have been based partly
on modeling to determine how Br evolves in the unobserved
regions (see Schrijver & DeRosa 2003; Arge et al. 2010;
Henney et al. 2012; Upton & Hathaway 2014). For this paper,
we assume that the sequence of maps has already been
constructed.
A particular challenge of applying this technique is the non-

uniqueness of Ê (see Fisher et al. 2010). This is discussed
further in Section 4, and essentially reduces to the question of
how to approximate the “non-inductive” component of Ê . This
is the curl-free component which cannot (in principle) be
deduced purely from observations of B. In this paper, we
illustrate two different approaches for reconstructing Ê : (i) the
non-inductive component is simply neglected (i.e., the simplest
solution); (ii) the dominant non-inductive contribution is
assumed to come from advection by solar differential rotation,
for which the appropriate correction may be computed.
We demonstrate our approaches for estimating Ê through

three different cases. First, we simulate the decay of a single
bipolar active region in a low-background magnetic field.
Second, we apply our reconstruction approaches to a full Sun

q fB t, ,r ( ) sequence containing multiple evolving bipolar
regions. These two sequences of maps are taken from our
own surface flux-transport simulations, allowing us to compare
the reconstructed electric field with the known electric field
from the original simulation. Third, in order to demonstrate the
applicability of this method to deal with real observational data,
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we show how our global non-potential coronal magnetic field
simulation can be driven by Air Force Data Assimilative
Photospheric Flux Transport (ADAPT) maps (Arge et al. 2010;
Henney et al. 2012; Hickmann et al. 2015). This poses
additional challenges to the method, as new observational data
are integrated into these maps when they become available,
which produces a time discontinuity that has a non-negligible
effect on the simulation (see Section 5.3).

Although we begin with tests based on flux-transport
simulations, where Ê is known, the technique we are
developing has much wider applicability. The standard flux-
transport model (Section 3.1) has three main components: two
advection velocities (meridional flow and differential rotation)
and a macroscopic diffusion term. While advection acts over all
spatial scales, the diffusion is designed to represent the net
effect of the random walk of many small convective cells
dispersing magnetic flux over the solar surface, thus limiting
the standard flux-transport model to spatial scales larger than
that of the supergranulation. Under these approximations, the
flux-transport model successfully models the evolution of the
global magnetic field and the dispersal of flux out of active
regions. It cannot, however, model the complex small-scale
dynamics that occur within active regions. Nor can it account
for localized variations in the solar surface flows. We aim to
circumvent these limitations by developing a technique to drive
MF simulations from arbitrary sequences of magnetic maps.
Although we begin by validating against the standard flux-
transport model, future simulations will be limited only by the
spatial resolution of observations and the available computing
power.

This paper is organized as follows. The non-potential
coronal model we use is described in Section 2, and the three
cases of simulated input Br maps are described in Section 3.
Our methods for electric field inversion are described in
Section 4, and the resulting non-potential simulations are
discussed in Section 5.

2. NON-POTENTIAL CORONAL MODEL

The magnetofrictional (MF) technique follows the evolution
of the large-scale magnetic field in the solar corona. Instead of
solving the full MHD momentum equation, the velocity v is
approximated by the magnetofrictional form introduced by
Yang et al. (1986), namely,

n= ´-v J B B , 11 2( ) ( )

where =  ´J B and ν is a friction coefficient. This form
enforces the relaxation of the magnetic field toward a nonlinear
force-free state where ´ =J B 0. The MF model allows for
the gradual build up and conservation of magnetic energy and
electric currents in the corona, in contrast to common
extrapolation methods, which have no memory of magnetic
connectivity.

The two flowcharts in Figure 1 indicate how the non-
potential magnetic field is evolved over time, contrasting
previous flux-transport driven simulations (Figure 1(a)) with
the new simulations described in this paper (Figure 1(b)). In
both cases, the vector potential A in the coronal volume is
evolved through the same MF technique, and the time stepping
is done using the Euler method. The difference lies in how the
lower boundary condition for Ê is implemented. In the original
simulations (Figure 1(a); e.g., Yeates et al. 2010), Ê is given

by a surface flux-transport model with imposed flows, whereas,
in the new simulations (Figure 1(b)), Ê is determined directly
from a sequence of surface magnetic maps. For the single and
multiple bipole simulations, the hyperdiffusion coefficient is set
to zero, whereas, in the simulations using the ADAPT maps, it
is ´ -1 10 km s11 4 1.
All of the simulations in this paper use a fixed, regular

spherical grid   R r R2.5 ,  q 8 .3 171 .7 (i.e., the
poles are cut off),  f 0 360 , with grid cells equally
spaced in the stretched coordinates x, y, z (see Appendix A.1),
with 28 cells in radius, 160 cells in latitude, and 192 cells in
longitude. At the latitudinal boundaries (q = 8 .3 and
q = 171 .7), we impose = =q qB v 0. The inner boundary
conditions (at = r R ) are the main subject of this paper (see
Section 4). At the outer boundary ( = r R2.5 ), we follow our
previous simulations and impose zero radial gradient in Bθ and
Bf, along with a radial outflow to ensure that B remains
predominantly radial near this boundary, while allowing flux
ropes to be ejected (see Mackay & van Ballegooijen 2006;
Yeates et al. 2010).

3. INPUT DATA

In this paper, we consider three different sequences of
q fB t, ,r ( ) for the photospheric boundary conditions, with

corresponding initial conditions for q f =B t 0r, , ,( ). Two
sequences are taken from our own surface flux-transport
simulations, while the third is taken from the ADAPT model.
From first to third, the test sequences have decreasing amounts
of available information about Ê , in addition to the sequence
of Br itself. Using test cases where Ê is known allows us to
validate our reconstructed Ê , as well as to compare three-
dimensional (3D) output quantities such as photospheric flux,
open flux, magnetic energy, or electric current. In principle, any
data processed to give a 360° radial magnetic map of the Sun
can be used as input to our method. However, we will see in
Section 5.3 that the quality of the map (for example, how new
data is assimilated) has an impact on the outcome. As the
method is not limited to larger spatial scales, future simulations
(given sufficient computing resources) could model local
regions of the Sun directly from observed magnetograms at
their full resolution. An application of a similar technique to
active regions observed by Solar and Heliospheric Observa-
tory/MDI can be seen in Gibb et al. (2014).

3.1. Single-bipole Simulation

For this sequence, a single bipolar magnetic region is
evolved for over 1200 hr (50 days), under the influence of
surface flux-transport effects, but with no flux emergence
during the simulation (see Mackay & van Ballegooi-
jen 2001, 2005, 2006). Here, the sequence of q fB t, ,r ( ) maps
is computed from the surface flux-transport model, whose
electric field q fÊ t, ,( ) is known completely and given by

= - ´ +  ´Ê v e eB D B , 2r r r r( ) ( ) ( )

where = -D 500 km s2 1 is the supergranular diffusivity and v
is a steady axisymmetric flow comprising a poleward
meridional flow uθ (due to Schüssler & Baumann 2006) along
with differential rotation uf (Snodgrass 1983), expressed in the
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Carrington frame, given by

l p l= -qu u
16

110
sin 2 exp 2 , 30 ( ) ( ∣ ∣) ( )

f q= Wf u R sin , 4( ) ( )

qW = - - -0.18 2.3cos 1.62cos deg day ,2 4 1

with l p q= -2 and u0 being a constant controlling the flow
amplitude. The q fB t, ,r ( ) map is saved once per hour in order
to test our reconstruction of Ê .

The initial magnetic bipole takes the form given by Mackay
& van Ballegooijen (2001), which also defines its initial 3D
magnetic field for the MF simulations. This initial 3D magnetic
field is not potential, but includes a non-zero twist in the center
of the bipole. For this test, the bipole is embedded in a weak
background magnetic field, computed by assuming a potential
field with q f q=B R , , 0.01 cosr

7( ) .

3.2. Multiple-bipole Simulation

The second sequence of q fB t, ,r ( ) is taken from the same
surface flux-transport model as the single bipole simulation.
The main difference is that now multiple bipolar regions
emerge during a continuous evolution over 1512 hr (63 days).
This represents the photospheric driver used in the global MF
simulations that have been carried out to date by Yeates et al.
(2008, 2010), Yeates & Mackay (2012), and Yeates (2014).
The simulation is initialized with a potential-field extrapolation
from an observed synoptic magnetogram (corrected for
differential rotation). The simulated time is 2012 September
11, 12:00 UT, to 2012 November 13, 12:00 UT.
In this case, Ê still follows the known evolution described

by flux-transport processes (2) between emergence events.
However, the new bipoles emerge instantaneously (always at
12:00 on the corresponding day), following the method
described by Yeates et al. (2008). The q fB t, ,r ( ) sequence is
therefore discontinuous in time, with each bipole emergence
corresponding to an instantaneous impulse of Ê of infinite

Figure 1. Simulation flowcharts.
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strength. We will show in Section 5.2 how our method of
reconstructing Ê approximates this impulse with an electric
field of finite strength and duration, depending on the chosen
cadence between maps in the Br sequence.

3.3. ADAPT Maps

Our third sequence of q fB t, ,r ( ) is taken from the the global
magnetic maps generated by the ADAPT model. ADAPT uses
a photospheric flux-transport model based on that of Worden &
Harvey (2000), together with data assimilation techniques (in
this case, ensemble least squares) from the Los Alamos
National Laboratory (LANL) framework, in order to generate
more realistic global photospheric magnetic field maps. The
flux-transport model includes differential rotation and mer-
idional flow similar to the model used in Sections 3.1 and 3.2.
However, instead of a simple diffusion model of super-
granulation, it models the small-scale clumping of magnetic
flux on the solar surface through a combination of random
attractors and random daily background flux emergence.

Magnetograms from the National Solar Observatory (NSO)
Global Oscillation Network Group (GONG; Harvey
et al. 1996) are used as the input data source to produce the
ADAPT maps employed in this work. The ADAPT model
assimilates new observations once per day from line-of-sight
magnetograms, or, if no new observations are available (due to
the weather), from the evolved model. Between the daily data
assimilation steps, maps of q fB t, ,r ( ) are output every two
hours from the model, and it is these maps that we use as input.
The sequence of maps used here runs from 2014 November 1,
00:00 UT, to 2014 December 23, 22:00 UT (1270 hr). None of
the maps we use correspond exactly to the time of data
assimilation.

While the data assimilation ensures that Earth-facing regions
of the solar surface match more closely to observations, it does
mean that the true Ê is not known for the ADAPT sequence.
This is in contrast to the bipole simulations where it is known.
As a result, it is important to begin by testing the electric field
inversion on known cases of the bipole sequences before
applying it to the ADAPT sequence.

As only half of the Sun is visible from the Earth at one time,
the far-side data in the ADAPT maps are outdated, using only
previous observations and the flux-transport model. The data
for these regions are only updated as the regions appear again
on the east limb, with the data assimilation technique taking
into account the observational errors at the limb. This,
however, creates a discontinuity in the data at the respective
longitude, particularly when significant flux emergence or
active-region evolution has taken place on the far side. This has
some effect on the simulation, as we will see in Section 5.3.

Before computing Ê , we rotate the ADAPT maps into the
Carrington frame, interpolate them to match our computational
grid (from an original resolution of 360× 180), and remove
any monopole component using a multiplicative flux correc-
tion. The ADAPT maps come as an ensemble of 12 realizations
which account for model parameter uncertainties in the
supergranular flow. We arbitrarily picked one of these
realizations for our runs in Section 5.3, although we have
verified that the results are only slightly changed if a different
realization is selected.

4. METHODS FOR ELECTRIC FIELD INVERSION

The basic problem is to determine Ê from Br, where the two
quantities are related through the radial component of Fara-
day’s law:

¶
¶

= -  ´ ^e E
B

t
. 5r

r · ( )

It is convenient to make a Helmholtz decomposition of Ê (e.g.,
Amari et al. 2003; Fisher et al. 2010) and express it as

⎜ ⎟⎛
⎝

⎞
⎠

y
= - ´

¶F
¶

- 
¶
¶

^ ^E e
t t

, 6r ( )

where the time derivatives are included for later convenience.
As we will show below, the potential q fF t, ,( ) may be
determined from a sequence of Br maps using Equation (5) (see
also Fisher et al. 2010; Cheung & DeRosa 2012; Yang et al.
2012). For this reason, we call the first part of the
decomposition the “inductive component.”
In contrast, the potential y q f t, ,( ) is impossible to

determine from Br using Equation (5), since the horizontal
gradient vanishes under the operation ´er · . We call this the
“non-inductive” component. This freedom means that the total
electric field Ê is not uniquely determined by Br alone. The
simplest practical solution is to ignore the non-inductive
component (i.e., set y = 0), as in the works of Mackay et al.
(2011), Yang et al. (2012), and Gibb et al. (2014). However,
we will show that this component is non-negligible in our
bipole simulations, leading to significant differences in the
coronal magnetic field. We will therefore propose, in
Section 4.2, a practical first-order approximation to this
component for global simulations.

4.1. Purely Inductive Solution

For a given sequence q fB t, ,r ( ), the inductive component
- ´ ¶F ¶ et r( ) is uniquely determined for suitable bound-
ary conditions. To appreciate the solution uniqueness, we
substitute Equation (6) into Faraday’s law (5) to obtain the two-
dimensional Poisson equation


¶F
¶

= -
¶
¶^

t

B

t
. 7r2 ( )

In practice, we follow Mackay et al. (2011) in the equivalent
method of first solving the Poisson equation

 F = -^ B , 8r
2 ( )

then taking the time derivative. On the full sphere, this equation
would have a unique solution for Φ. However, our simulation
domain omits the poles, and so it is necessary to impose
boundary conditions on the θ boundaries. As a physically
reasonable choice, we take the Neumann boundary conditions

q¶F ¶ = 0, so that =fE 0 on these boundaries, which is
consistent with global magnetic flux conservation. To solve the
Poisson equation, we have implemented a spherical multigrid
solver (see Appendix A.2).
The purely inductive approximation

⎜ ⎟⎛
⎝

⎞
⎠= - ´

¶F
¶

Ê e
t

9r ( )
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is, computationally speaking, the simplest electric field
consistent with a given Br sequence. To illustrate that in the
global simulations this term alone is not satisfactory, Figure 2
shows a snapshot of the purely inductive Ê components Eθ, Ef

derived from the multiple bipole sequence, alongside the true
electric field components (from the flux-transport simulations).
It can be clearly seen, particularly at high latitudes, that the
inductive-only version neglects to include the east–west
structures (most obviously for Eθ) which are a consequence
of differential rotation. It is not surprising that the inductive
component misses this as at higher latitudes the field becomes
more axisymmetric. As a consequence, differential rotation has
the effect of acting along contours of the same value of Br.
Thus, when the time derivative of Equation (8) is taken, no
change is found. The next section describes our approach to
improve the approximation to Ê ; further comparisons will be
given in Section 5.

4.2. Non-inductive Component

Fisher et al. (2012) and Kazachenko et al. (2014) use
additional observations (e.g., Doppler velocities) and assump-
tions (such as ideal Ohm’s law) in order to estimate the non-
inductive component y- ¶ ¶^ t in individual active regions.
These additional measurements, however, are not routinely
available for the full solar surface including the far side.

Here, we propose an alternative way to approximate the non-
inductive component, using only routinely available global
line-of-sight magnetograms and knowledge of large-scale
differential rotation. Our approach is motivated by the
observation that for the multiple bipole sequence, the purely
inductive approximation works well for a sequence where
differential rotation is turned off. This is shown in Figure 3
where both Eθ and Ef show much better agreement than in the
original Figure 2.

Since we know the differential rotation velocity q= f fv ev ( )
that produced the multiple bipole sequence, we can include the
corresponding non-inductive component from the ideal Ohm’s

law = - ´Ê v eBr r( ). Taking the divergence removes the
inductive component, leaving a new Poisson equation:

y


¶
¶

=  f q^ e
t

v B , 10r
2 · ( ) ( )

which we solve to provide an approximation to y¶ ¶t. For
consistency with the the inductive part, we have to impose
homogenous Dirichlet boundary conditions (i.e., y = 0) on the
θ boundary. Since in global simulations differential rotation is
the dominant large-scale flux-transport effect with a timescale
of 1/4 year, we expect that this will be the dominant
contribution to the non-inductive electric field, at least away
from times when new bipoles emerge. The correction may also
be applied to the ADAPT sequence, which we show produces
reasonable results, although we will see that the purely
inductive solution actually works rather well in that case.
Figure 4 shows that the reconstructed electric field

components, which include the non-inductive component, are
in better agreement with the original multiple bipole sequence.
In the following section, Section 5, we discuss the effect of the
reconstructed non-inductive component in more detail for the
simulations with different input sequences.

5. RESULTS

5.1. Single-bipole Sequence

The comparisons in Figures 2–4 suggest that including a
non-inductive component in the reconstruction of Ê can
improve the match to the original flux-transport Ê , at least
away from times of flux emergence. To quantify this effect
more carefully, we begin by examining 3D simulation results
for the simplest case of a single bipole time sequence.
Figure 5 shows four diagnostic quantities for the non-

potential simulations. The different curves show a simulation
driven by the original Ê (green), one driven by the purely
inductive Ê (red), and one driven by the combined
(“improved”) Ê (i.e., including our approximation of the
non-inductive component, blue line). While the photospheric

Figure 2. Electric field components qE and fE 984 hr into the original and inductive-only multiple bipole simulation. The original simulation, and therefore also the
input maps for the data-driven simulation, include differential rotation.
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flux is the same in all of the cases (since all three Ê produce
the same Br), the benefit of the combined reconstruction
becomes clear from the three coronal diagnostics. The most
significant feature of this particular MF simulation is the
gradual formation and strengthening of a flux rope above the
bipole center (see Mackay & van Ballegooijen 2006 and
Mackay 2006 for a similar case study), followed by its sudden
eruption (after about 670 hr in the original simulation). The rise
and ejection of this flux rope is most obviously seen in the open
flux. While both reconstructions lead to an eruption, only the
combined reconstruction reproduces the original simulation
timing. The timing of the ejection is delayed by almost 500 hr
in the purely inductive simulation. The combined solution
follows the original simulation closely, with only a short delay

in the eruption. It is also clear that for the magnetic energy and
electric current, the combined simulation produces a much
more realistic reproduction of the original simulation. This
indicates that differential rotation, which is included through
the non-inductive term, plays a key role in the evolution of the
coronal field.
Figure 6 exhibits model snapshots of the magnetic field lines,

traced from identical starting points, before and after the
original flux rope eruption. The bipole can be seen in black and
white on the gray sphere. The three cases are compared in
Figure 6. For example, after 240 hr (shown in the first row), the
shape of the field lines is still quite similar in all three cases,
however, by 600 hr (middle row) the original (green) and
improved-reconstruction (blue) plots show a strongly sheared

Figure 3. Electric field components qE and fE 984 hr into the original and inductive-only multiple bipole simulation. Here, the original simulation, and therefore also
the input maps for the data-driven simulation, do not include differential rotation.

Figure 4. Electric field components qE and fE 984 hr into the original multiple bipole simulation and the improved-reconstruction multiple bipole simulation (i.e.,
including the non-inductive part). The original simulation, and therefore also the input maps for the data-driven simulation, include differential rotation.

6

The Astrophysical Journal, 823:55 (16pp), 2016 May 20 Weinzierl et al.



field over the polarity inversion line (PIL). This strongly
sheared field is not present for the inductive-only plot (red). In
the bottom row (hour 696), the original field lines have already
almost settled down again after the eruption and the combined-
reconstruction field lines have just erupted, whereas the
inductive-only field lines are still in the process of building
up a sheared field. Overall, the structure and shape of the blue
and green field lines are very similar.

To quantify the amount of sheared field built up above the
PIL, Yeates & Mackay (2012) defined a measure called
“skew.” This is the sine of the angle between the horizontal
field B̂ at a certain height > r R and the direction Br
(normal to the PIL) in the photosphere, i.e.,

g =
 ´ ^

^

e B
B

B

B
sin . 11r r

r

·
∣ ∣∣ ∣

( )

A magnitude of g =sin 1∣ ∣ indicates that the field at height r is
directed along the PIL, while g =sin 0 indicates that the field
is perpendicular to the PIL. Here, we use gsin to compare the
amount of horizontal magnetic field built up in the corona by
the different reconstructions of Ê . Figure 7(a) shows the
maximum skew (along the length of the PIL) at a height of
= r R0.3448 for the three cases. The skew increases until the

flux rope erupts in each case, and then declines rapidly. Again,
the simulation driven by the combined reconstruction matches
the original simulation closely in this measure, while the build
up of skew is significantly slower in the purely inductive case.
Clearly, the non-inductive electric field from differential
rotation makes an important contribution here.

An alternative comparison between the inductive and
combined reconstructions is given by Figure 7(b), which
shows the correlation for Bθ (Bf gives similar results) between
each simulation and the original (averaged over r). The
correlation is almost perfect for the improved reconstruction,

except for a dip around the time of the flux rope eruption. This
corresponds to the slight delay in the eruption compared to the
original simulation, which is likely due to the omitted
contribution of supergranular diffusion to the non-inductive
electric field. For the purely inductive simulation, the
correlation is significantly worse at all times.

5.2. Multiple-bipole Sequence

We have already seen in Figures 2 and 4 how including the
non-inductive component improves the agreement of our
simulated electric field with the original field from the multiple
bipole simulation. Figure 8 shows how other simulated
quantities, including magnetic flux, magnetic energy, and
electric current, differ when we omit or include the non-
inductive component in the multiple bipole simulation. For the
original simulation (green line), one can see the jumps in
energy and photospheric flux, and the corresponding drops in
the open flux, when new bipoles are inserted into the
simulation domain. These drops are not visible in the two
reconstructed versions, as they are due to the idealized bipole
insertion procedure of the original simulation and vanish when
we interpolate the electric field between the times when new Br

maps are imposed. The photospheric flux matches closely, as it
is imposed each time a new map is incorporated for both
reconstruction cases. The total electric current and the magnetic
energy match quite closely for both cases, although the
inductive-only simulation leads to a slightly higher average
current. The difference in the open flux becomes larger over
time, with more open flux and a bigger difference compared to
the original simulation in the inductive-only case.
The plots in Figure 9 show the progression of the correlation

coefficient values with time between Bθ of the two data-driven
runs and that of the original simulation. The correlation is
initially very good, but decreases with time. It is clear that the
improved reconstruction produces much better results, with its

Figure 5. Integrated quantities in the single bipole simulations. The top panel shows the total unsigned magnetic flux through the photosphere, the second panel
represents the total unsigned open magnetic flux (i.e., through the outer boundary), the third panel depicts the total magnetic energy, and the fourth panel features the
averaged electric current j∣ ∣ in the volume.
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correlation staying above 0.9 over the entire simulation. In
contrast, by the end of the inductive-only simulation, it has a
correlation of 0.7. The decrease of correlation over time in both
cases is due to an accumulation and propagation over time of
small deviations, owing to the “memory” of previous
interactions in the MF model. The correlation values in
Figure 9 were averaged over depth r. If we instead look at
the correlation over r, then we observe that there is also a drop

when we move higher up into the corona. This is due to the fact
that while the field is line-tied near the photosphere where the
boundary conditions are imposed, the field has more freedom
further away from the fixed layer.
In addition, Figure 8 demonstrates how the diagnostic

quantities discussed above change for the improved-recon-
struction case when we vary the cadence between the input
maps, i.e., the frequency of imposing new photospheric

Figure 6. Selected magnetic field lines illustrate the single bipole simulation at different times during the evolution. The original simulation (green) and the improved-
reconstruction simulation (blue) quickly build up sheared field (first two rows) above the polarity inversion line of the bipole and then erupt. In the last row, the
original field lines have almost settled down after the eruption, while the improved-reconstruction field lines have just started to settle. The inductive-only simulation
(red) builds up the sheared field much more slowly, resulting in a much later eruption (not shown in this figure).
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boundary conditions. The curves are very close and always
coincide at the input times. In between, the interpolation of the
electric field produces a smooth curve. The effect of newly
inserted bipoles is missed when the time step between new
boundary conditions >dt h24 (the cadence at which new
bipoles emerged in the original simulation). This highlights the
point that in any future application of this technique to the solar
corona, it is very important that the cadence for the input of the
maps be less than the cadence of introducing new emergences
into the observed maps. Only through doing this will the full
dynamics of the coronal field be captured.

Increasing the time step dt (and thus decreasing the cadence)
reduces the computational costs of the simulation slightly, as
each time we impose a new electric field we have to solve two
Poisson equations. This takes a few seconds on an average
workstation using our multigrid Poisson solver (see Appendix
A), but that adds up over the whole simulation run. However,
one does not gain anything in the time-stepping process, which
dominates the computational load. Note that the results in
Section 5.3 indicate that the ADAPT maps are more sensitive
to a change in dt.

We tested two alternative computational methods for
imposing the photospheric boundary conditions: (i) interpolat-
ing the input maps Br and calculating a new electric field for
each time step; and (ii) using the same electric field for the

whole hour until a new electric field is imposed. (Our original
method was to interpolate the electric field between input
maps.) The first alternate method increases the computational
workload immensely, whereas for the second method the gain
in computational time is minimal. We did not find significant
differences or improvements in the output with these methods.

5.3. ADAPT Simulation

Figure 10 shows the same quantities for the ADAPT
simulation as seen previously for the single and multiple
bipole cases. In the photospheric flux and (less distinctly) in the
magnetic energy, one can see when new data are assimilated in
the ADAPT data set once per day. Overall, the two curves of
the improved and inductive-only cases are much closer than in
the runs with the single and multiple bipole sequences. This is
due to the presence of small-scale features in the ADAPT maps
(see Figure 11), compared to the smooth average Br in the
previous flux-transport model. The motion of these small-scale
features allows the inductive electric field to better capture the
advection of footpoints by differential rotation than in the
bipole simulations, since the field at this location is no longer
axisymmetric. In the bipole simulations, on the other hand, we
have more large-scale features along the direction of the
differential rotation (as in Figure 4). With a more or less
constant Br along this flow direction, the motion is missed by
the inductive component of the electric field. The higher values
for the photospheric flux and the total current for the run with
the ADAPT sequence are also due to the inclusion of small-
scale features.
Although at first sight it might seem that the purely inductive

reconstruction is sufficient for this sequence of Br maps, there
are still times where the two simulations differ. This can be
most easily seen in the open flux displayed in Figure 10 where,
around hour 1000, more smooth large-scale features occur in
the ADAPT maps. Therefore, the non-inductive component is
still important to capture the evolution of these features. It will
be interesting to consider in future work how the inductive-
only and the combined electric fields influence simulations over
larger timescales.
One feature that catches the eye in the ADAPT tests is the

large drop in energy around hour 352 in the simulation.
Figure 11 demonstrates what happens in the simulation at that
time: a large active region southern hemisphere (AR 12209,
which was AR 12192 in the previous rotation) changes its
structure while it is on the far side of the Sun. This change is
recognized in the simulation when this region rotates into view.
The large sudden change in the magnetic field results in a large
electric field, due to Equation (6), which in turn influences the
magnetic field, leading to a rapid rearrangement of magnetic
field lines (discussed below). As we solve Poisson equations
for the electric field, i.e., elliptic equations, the effect of this
change is felt further into the domain, and creates the halos that
we see in the middle column of Figure 11 (note the change of
scale for the electric field components). After a short time, this
defect is corrected by the simulation, as can be seen in the
right-hand column of Figure 11. Similar halo effects can be
seen when new bipoles are inserted in the multiple bipole
simulation, and have been observed by M. D. Kazachenko
et al. (2015, private communication). We are currently testing
methods to remove the halos or at least reduce them.
As shown in Figure 12, during the assimilation of the new

region, the free energy in the simulation increases. This

Figure 7. Comparison of different Ê reconstructions for the single bipole
sequence.
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happens just after the “big drop,” when the potential field
energy drops due to the drop in the photospheric flux, and is
related to disconnection happening in the magnetic field, as
described in the next paragraph. Afterward, it decays gradually
back to a fairly constant value, but at a slightly higher level
than before. This might be due to the assimilation in ADAPT
and the corresponding electric field we chose. Future work
might show to what extent the halo causes additional free
energy outside the active region.

Looking at the magnetic field lines, we can observe that a
large flux rope eruption takes place in our simulation shortly
after AR 12209 rotates into view (see Figure 13), as was
indicated by the peak in the open flux in Figure 10. In the MF
model, this eruption was inevitable because the photospheric
flux content of the region decreased substantially upon re-
assimilation, leaving disconnected magnetic field lines in the
corona. Thus, when an eruption takes place, it is due to the
rapid, near instantaneous change in the surface field due to the
assimilation technique. It is not a consequence of the gradual

process of building stress up in the coronal magnetic field by
observed large-scale processes, as we have described before
(Mackay & van Ballegooijen 2006).
One rotation later, around hour 1012, the same active region

reappears as AR 12237. A bit later, another hump in the open
flux is visible, which is associated with another flux rope
eruption. This later eruption is mainly due to a number of
smaller bipoles which appear. Inspecting the observational data
for AR 12192/12209, we find that in fact no eruptions took
place at those times (as was to be expected). Instead, this region
is known to have produced many, sometimes large flares, but
only one associated CME during the previous rotation as AR
12192 on the Earth-side, which is quite unusual (see Sun
et al. 2015; Thalmann et al. 2015). Since only near-side data
were assimilated, we did not find evidence for or against a
CME when the region was on the far side. As the flux rope
eruptions in our simulation are associated with sudden
rearrangement of the magnetic field lines due to newly
assimilated data, a smoother transition for structural changes
which appear at the far side might well change the nature or
timing of associated eruptions in the simulation.
Compared to Figure 8, the variation of the time step size in

Figure 10 for the improved-reconstruction ADAPT simulation
seems to have a larger impact, especially on the open flux. The
smoothing of the (unphysical) peaks in the photospheric flux at
the data assimilation times for larger dt may actually be
beneficial. However, too large a value for dt may lead to actual
physical effects being missed if the photospheric maps are less
smooth. Up to =dt h6 , the features of the curves still match
each other pretty well, with just some smoothing added.
However, for the two open flux peaks (around hour 352 and
after hour 1000) the open flux curves for larger dt are
qualitatively different (in fact, =dt h8 , which is not shown
here, also matches the =dt h2 curve quite well until hour
1000, after which it becomes different).

Figure 8. Same quantities as in Figure 5, but for the multiple bipole simulations, including the purely inductive reconstruction and a sequence of combined
reconstructions with different time intervals dt between input maps. The first three curves used =dt h1 .

Figure 9. Correlation coefficient (averaged over r) of qB in the improved-
reconstruction multiple bipole simulation and the inductive-only reconstruction
multiple bipole simulation, respectively, with the original simulation.
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In Figures 14 and 15, we show the current-helicity density

a = =
 ´B j B B

B B
. 12

2 2

· · ( ) ( )

Since the coronal magnetic field is close to force-free in the MF
model, this quantity essentially illustrates the locations of
electric current and free energy. We only show the results for
dt h24 . The two chosen times are as follow: (i) during the

large flux rope eruption in the simulation following the
appearance of AR 12209, and (ii) just before it comes around
again as AR 12237. Interestingly, at this second time (hour
962), when all of the lines in Figure 8 match closely, the
differences in α are quite large at some locations: in particular,
between dt = 2 and dt = 6, at around latitude 50°. For hour
386, on the other hand, α is rather similar for all of the shown
dt cases, despite the rather unpredictable behavior of the field
lines during the eruption. A more quantitative difference in the
value of α can be seen in Figure 15 where, for the two cases
shown in Figure 14, the value of α averaged in longitude is
shown as a function of latitude. Here, the main difference at
q = 50 for hour 962 (Figure 15(b)) is clear, where, as the time
step varies from 2 to 24 hr, the value of α at this location
changes significantly from positive to negative. In contrast, for
hour 386 (Figure 15(a)), the sign of α at a given latitude is the
same no matter what cadence is used.

In light of the discussion from Section 5.2 concerning the
limited gain in computational time, the main issue concerning
the choice of dt remains the availability of the Br maps, which
are mostly available at 24 hr intervals. We should therefore
keep in mind that this has a non-negligible influence on the
simulation. One consequence of this is that in the future,
wherever possible, a variety of cadences should be used along
with ensemble averaging.

We already mentioned in Section 3.3 that the ADAPT data
consist of an ensemble of 12 different realizations from which
we deliberately picked realization 1 for our simulation. In
Figure 16, the same diagnostic quantities considered before are
compared for the members of the ensemble. The curves match
very closely, except from the open flux, which is, as we have
seen before, the most sensitive quantity. Future longer
simulation runs might show whether or not the choice of the
realization has a long-term significant influence on the
simulation output.

6. CONCLUSION

We have demonstrated how a global non-potential coronal
magnetic field simulation using the magnetofrictional method
can be successfully driven by a time sequence of radial
magnetic field maps on the photosphere. Two possible
solutions for the electric field reconstruction have been
considered: a purely inductive solution and one including a
non-inductive correction. The second solution was motivated
by tests with our existing flux-transport model, where it lead to
a substantial improvement in the reconstruction of the (known)
electric field. The correction accounts for the non-inductive
electric field caused by the large-scale differential rotation. We
have also applied both electric fields to a sequence of maps
from the ADAPT model where the true electric field is not
known (due to the assimilation of observed data). In this case,
we find that correcting for the non-inductive contribution of
differential rotation is less important, although it does have
some effect later in the simulation.
By varying parameters for the reconstruction of the photo-

spheric electric field in the simulation, we found that the time
step between the input maps has an effect that can become
important at some points. For a time step of up to =dt h6 , we
found the results to be reasonably close to the =dt h2
simulation, but for larger dt, differences such as earlier flux

Figure 10. Same quantities as in Figure 8, but for the ADAPT-driven simulation. Runs with varying time dt between input maps all use the improved reconstruction of
Ê . The first two curves used =dt h2 .
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rope eruptions start to appear. In between the data input times,
it is sufficient to just interpolate the resulting electric field
linearly.
There remain some limitations to our approach, which we

are currently working on. For example, large and sudden
changes in the photospheric field—for example when a new
bipole appears or an active region that has changed its structure
on the far side is assimilated—lead to a large short-term
increase of the electric field. This in turn can have a significant
effect on the evolution of the coronal field, such as the initiation
of an eruption. Due to the nature of our reconstruction, this
change is felt outside the direct region of change in the
photospheric magnetic map, potentially influencing the larger-
scale free energy and open flux. It will therefore be desirable, in
the future, to find an approach to electric field reconstruction
(i.e., a choice of non-inductive component) that minimizes
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Figure 11. Magnetic and electric fields during the big energy drop (assimilation of AR 12209, which is the large active region in the bottom right quadrant of each
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Figure 12. Evolution of the potential energy, non-potential energy, free energy,
and relative energy (free/potential energy, note the different y-axis) in the
improved-reconstruction ADAPT simulation.

12

The Astrophysical Journal, 823:55 (16pp), 2016 May 20 Weinzierl et al.



these so-called halos. Alternatively, improved treatment of the
assimilation discontinuity when constructing the ADAPT maps
themselves may lead to improved simulation results for this
data set. Recent work by Arge et al. (2013) describes how
additional helioseismic far-side detection techniques can be
used to detect new emerging, large active regions on the far-
side of the Sun and to assimilate these before they arrive at the
east limb. Hickmann et al. (2015) describe further improve-
ments to the ADAPT model, in particular, by using local
ensemble transform Kalman filtering instead of ensemble least
squares. Using this improved data when it becomes available
might reduce the effect of the unrealistic sudden changes in the
photospheric field.

We have observed two different processes that can lead to
flux rope ejection: (i) a slow, gradual build up of stress in the
magnetic field, as described by Mackay & van Ballegooijen
(2006); and (ii) rapid changes in the electric field, which are, in
our case, partly due to the data assimilation technique in the
ADAPT maps.

A further contribution to the non-inductive electric field
which we have not yet included is that of additional magnetic
helicity injection. This may arise either from the large-scale
twisted fields in newly emerging active regions (Yeates
et al. 2007, 2008), or from the cumulative effect of small-
scale vortical motions in the photosphere (Antiochos 2013;
Mackay et al. 2014; Knizhnik et al. 2015). Both forms of

helicity injection have been shown to influence the amount and
distribution of free magnetic energy in the corona, however,
neither form is fully accounted for in global radial-field maps.
Even the inductive part of this contribution (due to the
horizontal advection of Br, for example) may be missed in
current maps because the growth of a particular active region
may not be followed while it is on the far side of the Sun.
Nevertheless, we have demonstrated that magnetofrictional

models of the corona may be successfully driven from
sequences of photospheric magnetic maps. Our approximation
to the non-inductive electric field due to differential rotation
may also be useful in MHD simulations. In the future, this new
technique may be applied for space weather models that use a
combination of observations and theoretical modeling to
simulate the variation of the Sun’s open flux and flux rope
ejections.
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Office of Scientific Research (AFOSR) in the AFOSR Basic
Research Initiative “Understanding the Interaction of CMEs
with the Solar-Terrestrial Environment.” D.H.M. would like to
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Observatory (NSO). The ADAPT model development is

Figure 13. Example magnetic field lines (with random colors for identification) of AR 12209 when it appears on the east limb in the improved-reconstruction ADAPT
simulation. Due to the structural change in the active region, the magnetic field lines rearrange and erupt.
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APPENDIX A
NUMERICAL METHODS FOR POISSON EQUATIONS

A.1. Computational Coordinates

So far, we have used standard spherical coordinates notation
to define the equations to be solved in the simulation. Our

Figure 14. Current-helicity density α in the simulation domain in the improved-reconstruction ADAPT simulation for different values for dt and at two different times.
Here, α has been averaged along magnetic field lines and is plotted on a sphere at height r = 1.03327. Units are -m 1.
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computational grid, however, is curvilinear, and the computa-
tional coordinates x y z, ,( ) are defined in terms of f q r, ,( ), as
in van Ballegooijen et al. (2000), by

f

q

=
D

=-
D

=
D

f

f

f



x

y

z
r R

,

log tan 2

and
log

,

( ( ))

( )

where DF is the azimuthal cell size (in radians) at the equator.
The scale factors are given by q= = DFh h rsinx y ( ) and

= Dhz r. This grid is uniformly spaced in x, y, and z, with cell
sizes increasing linearly with radius. Since we remain on the
surface of the sphere when solving the Poisson Equations (8)
and (10), we only need a two-dimensional ( D2 ) Poisson solver.
In Appendix A.2, we describe the solver we use in our
simulation.

The poles are cut off at±81.7° in order to avoid having to
deal with the pole problem (see, e.g., Ronchi et al. 1996;
Kageyama & Sato 2004), and to avoid time-stepping restric-
tions due to the convergence of the cell sizes toward the poles.
See Yeates (2014) for a possible solution by using a variable
grid that doubles the cell size toward the pole. We plan to
integrate this into our simulation code.

Instead of solving the equations on the curvilinear grid
defined by the above coordinates, we take a closer look at the
stencil we receive from a finite volume discretization of
Equation (8) in curvilinear coordinates. With hex and hey being
the distances of the cell centers in the horizontal and vertical
directions, and using compass notation, we obtain
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ÎD N E S W, , ,{ }, and therefore we obtain the standard
Laplace five-point stencil:
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By multiplying both sides of the equation by h hx y, the stencil
becomes that for the Cartesian grid. This means that by
multiplying the right-hand side of the Poisson equation by

q= DFh h sinx y
2 2( ), we can obtain Φ by solving the equation on

a Cartesian grid.
Similarly, the discretized form of Equation (10) in curvi-

linear coordinates can be solved on a Cartesian grid. In the next
section, the benefit of doing so is demonstrated.

A.2. Poisson Solver

We have implemented a geometric multigrid solver (see,
e.g., Briggs et al. 2000; Trottenberg et al. 2001 and references
therein) which uses Red–Black Gauss–Seidel smoothing,
weighted averaging as restriction, and prolongation based on
the Taylor expansion (in order to preserve magnetic flux; see,
e.g., van der Holst & Keppens 2007). Our simulation grid in
this work is a 192×160 cell-centered grid which we coarsen
down to 12×10, which means that we have five levels in the
multigrid hierarchy. Horizontally, we apply periodic boundary
conditions. On the top and bottom, we have homogenous
Neumann boundary conditions for solving Equation (8) and
homogenous Dirichlet for Equation (10). We perform F(2, 1)
cycles, i.e., two pre- and one postsmoothing step. F cycles, as
defined in Brandt (1984), are about as effective as W cycles,
but they are less computationally expensive. The iteration is
stopped when the residual = -r f Aui i (with subscript i the
iteration number, f the right-hand side of the equation, A the
system matrix, and ui the current approximation to the solution)
is smaller than or equal to ´ -1.0 10 8.
To analyze the efficiency of the solver, we take a look at the

convergence factor r = +r ri i1 , and its geometric mean
r = r rmean end start

n , and we also consider V(2, 1) cycles.
Table 1 shows how the solver performs for the multiple bipole
simulation, both on the original curvilinear and on the
Cartesian grid discussed in Appendix A.1. Results are shown
both for the Neumann problem (inductive part of the electric
field) and for the Dirichlet problem (non-inductive part), using

Figure 15. Mean α (i.e., current-helicity density α averaged over longitude) at
height r = 1.03327 for different values of dt and at the same two times as in
Figure 14.
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the stopping criterion imposed in our simulation. One can
observe that the cell-centered grid, combined with Neumann
boundaries, poses some challenges to the solver on the
curvilinear grid where the residual stalls at a certain level due
to boundary effects. On a Cartesian grid, however, the solver
shows reasonable performance for all of the setups. For the
setup in our simulation, we reach the criterion after 17
iterations with a mean convergence factor of 0.24 in the
Neumann case, and r = 0.14mean after 13 iterations in the
Dirichlet case. In tests with different stopping criteria, we
observed that up to a relative stopping criterion of

 ´ -r r 1.0 10n start
6 the solver also converged on the curvi-

linear grid with Neumann boundaries.
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Figure 16. Same quantities as in Figure 8, but for the 12 different members of the ADAPT ensemble (shown in different colors) in the improved-reconstruction case.
All runs used =dt h2 .

Table 1
Convergence of Multigrid Poisson Solver

Curvilinear Cartesian

Cycle/BC rmean #Iterations rmean #Iterations

V(2, 1)/NM * * 0.44 30
F(2, 1)/NM * * 0.24 17
V(2, 1)/DIR 0.34 31 0.25 18
F(2, 1)/DIR 0.19 18 0.14 13

Note. Convergence behavior of the multigrid Poisson solver for stopping
criterion  ´ -r 1.0 10n

8, Neumann (NM) or Dirichlet (DIR) top and bottom
boundaries, and V or F cycles. An asterix refers to a stalled iteration (r » 1end )
before the stopping criterion was reached.
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