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1 Introduction

There has been some progress recently in the study of two-dimensional N = (2, 2) su-

persymmetric field theories, and of supersymmetric gauge theories in particular, using

localization techniques — see for instance [1–9]. A crucial ingredient in this line of devel-

opment is a proper understanding of rigid supersymmetry on curved space. In this paper

we revisit the problem of defining N = (2, 2) supersymmetric theories on any two-manifold

Σ with an arbitrary non-dynamical Riemannian metric. We will mostly focus on Σ a

compact orientable Riemann surface without boundaries. We implement the approach to

curved-space rigid supersymmetry advocated by Festuccia and Seiberg [10] (see also [11]

for an earlier discussion in the case of AdS4), which realizes any supersymmetric geometry

as a supersymmetric background for an off-shell supergravity multiplet. See [12–18] for

related works in higher dimensions.

We consider N = (2, 2) theories with a vector-like R-symmetry. On R
2, the N = (2, 2)

supersymmetry algebra reads

{
Q−, Q̃−

}
= 4Pz ,

{
Q+, Q̃+

}
= −4Pz ,

{
Q−, Q̃+

}
= Z ,

{
Q+, Q̃−

}
= Z̃ , (1.1)

with the other anticommutators vanishing. Here Pz, Pz are the left- and right-moving mo-

menta respectively, and Z, Z̃ is the complex central charge that commutes with the vector

R-symmetry (Z and Z̃ are complex conjugate of each other in Lorentzian signature). The

vector-like R-charge of the supercharges Q± and Q̃± is −1 and +1, respectively. The su-

persymmetry current sits together with the energy-momentum tensor in a supersymmetry

multiplet called the R-multiplet, which was studied in detail in [19]. The bottom com-

ponent of the R-multiplet is the conserved R-symmetry current j
(R)
µ . The R-multiplet

naturally couples to an off-shell supergravity multiplet which includes an R-symmetry

gauge field Aµ [20].

Note that we do not require an axial-like R-symmetry. Even when present in flat space,

the axial R-symmetry is typically broken by the curved space background for massive

theories. When the field theory of interest flows to an interacting fixed point, the axial

symmetry is restored as an accidental symmetry in the infrared (IR) and the background

fields that break it explicitly only couple to redundant operators1 of the IR superconformal

field theory. (In this paper, whenever we write R-symmetry we will mean the vector

R-symmetry unless otherwise stated.)

1Redundant operators of a CFT are operators that vanish in any correlation function at separated points.
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It is well-known that one can preserve supersymmetry on any orientable Riemann

surface by the so-called topological A-twist [21], which corresponds to identifying Aµ with

the spin connection or redefining the energy-momentum tensor [22].2 One natural question

that this work answers is whether there are more general ways to preserve supersymmetry

on Σ. We will see that on Riemann surfaces of genus greater than one there are no other

possibilities than the A-twist — perhaps unsurprisingly given that higher genus Riemann

surfaces do not admit ordinary Killing spinors [23]. The case of genus one will be omitted

from our discussion because the supersymmetry is essentially the same as in flat space.

The most interesting supersymmetric backgrounds occur at genus zero. There are three

topologically distinct ways to preserve some supercharge(s) on the sphere, corresponding

to having −1, 0 or 1 unit of flux for the R-symmetry gauge field. The case of vanishing

flux has been studied recently in [1–3], which computed the partition functions of rather

generic N = (2, 2) gauge theories on such spheres using localization methods. The case of

∓1 unit of flux corresponds to the A- (and A-)twist and to some deformations thereof. In

particular, it includes the so-called Ω-background [24, 25] on any S2 with a U(1) isometry.

While our formalism is very similar to its higher dimensional counterparts in three

and four dimensions for theories with four supercharges and an R-symmetry [12, 13, 16],

it is worth pointing out some interesting peculiarities of the two-dimensional setup. First,

while supersymmetry implies the presence of a complex structure in four dimensions (or of

a transversely holomorphic foliation in three dimensions), any orientable two-manifold Σ is

complex and the complex structure is not related to the presence of a Killing spinor. The

complex structure of Σ will however play an important role because the most convenient

way to describe the Killing spinors is in terms of holomorphic sections of some complex

line bundles over Σ. Another two-dimensional peculiarity is that the elementary Killing

spinors (which are Weyl spinors ζ±) have zeros, which does not happen in [12, 13, 16].3 In

this respect, N = (2, 2) curved-space rigid supersymmetry is closer to N = 2 curved-space

supersymmetry in four dimensions (see for instance [17, 26]).

This paper is organized as follows. In section 2, we derive the Killing spinor equa-

tions governing rigid supersymmetry in two-dimensions by taking the rigid limit of the

“new minimal” supergravity multiplet. In section 3, we classify regular supergravity back-

grounds preserving at least one supercharge. In sections 4 and 5, we discuss the case of

two and four supercharges, respectively. In section 6, we present the curved-space rigid su-

persymmetry algebra and its realization on various supersymmetry multiplets, and we give

the curved-space generalization of many standard flat-space supersymmetric Lagrangians.

Our conventions are spelled out in appendix, which also contains various useful formu-

las. In particular, we relate our results to the higher-dimensional results of [12, 13, 16] by

dimensional reduction in appendix C.

2Similarly, the topological B-twist, which is done with respect to an axial R-symmetry, can be obtained

by coupling the two-dimensional Ferrara-Zumino (FZ) multiplet (see for instance [19]) to its corresponding

background supergravity. By the Z2 mirror action, this is equivalent to considering the A-twist and replacing

superfields by their twisted counterparts (e.g. chiral multiplets by twisted chiral multiplets, and vector

multiplets by twisted vector multiplets).
3When we uplift from two to three (or four) dimensions, the 2d Weyl spinors ζ−, ζ+ combine into

a three-dimensional Dirac spinor (or four-dimensional Weyl spinor) ζT = (ζ−, ζ+), which is nowhere

vanishing [12, 13, 16].
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2 The two-dimensional Killing spinor equations

In this section, we derive the generalized Killing spinor equations which governs curved

space supersymmetry for any N = (2, 2) supersymmetric theory with a vector R-symmetry.

Following [10], we couple the R-multiplet to supergravity and read off the Killing spinor

equations from the gravitino variations. The relevant two-dimensional supergravity is the

dimensional reduction of the new minimal supergravity in four dimensions [27, 28] dis-

cussed in [20]. We will only need to consider linearized supergravity, similarly to the

analysis of [16].

2.1 R-multiplet and linearized supergravity

In any N = (2, 2) field theory with a vector-like R-symmetry U(1)R, there exists a super-

current multiplet, called the R-multiplet, which contains the U(1)R conserved current as

its lowest component. The R-multiplet Rµ satisfies [19]

D̃+Rz = −1

4
χ− , D̃−Rz = −1

4
χ+ , D+Rz = −1

4
χ̃− , D−Rz = −1

4
χ̃+ ,

D̃±χ+ = 0 , D̃±χ− = 0 , D±χ̃+ = 0 , D±χ̃− = 0 ,

D+χ− − D̃−χ̃+ = k , D̃+χ̃− −D−χ+ = k ,

(2.1)

where D±, D̃± are supercovariant derivatives. (See appendix A for our flat-space conven-

tions.) The constant k is a space-filling brane charge [19]. We set k = 0 in the following.

Expanding in components, we have

Rz = j(R)
z − iθ−S−z − iθ+S+z − iθ̃−S̃−z − iθ̃+S̃+z + 4θ−θ̃−Tzz − 4θ+θ̃+Tzz

− i

2
θ+θ̃−j

(Z̃)
z +

i

2
θ−θ̃+j(Z)

z − 2θ+θ−θ̃−∂zS+z − 2θ+θ−θ̃+∂zS−z

− 2θ̃+θ̃−θ−∂zS̃+z − 2θ̃+θ̃−θ+∂zS̃−z + 4θ+θ−θ̃+θ̃−∂z∂zj
(R)
z ,

Rz = j(R)
z − iθ−S−z − iθ+S+z − iθ̃−S̃−z − iθ̃+S̃+z − 4θ+θ̃+Tzz + 4θ−θ̃−Tzz

− i

2
θ+θ̃−j

(Z̃)
z +

i

2
θ−θ̃+j

(Z)
z − 2θ+θ−θ̃+∂zS−z − 2θ+θ−θ̃−∂zS+z

− 2θ̃+θ̃−θ+∂zS̃−z − 2θ̃+θ̃−θ−∂zS̃+z + 4θ+θ−θ̃+θ̃−∂z∂zj
(R)
z .

(2.2)

Here j
(R)
µ is the R-symmetry current, S±µ, S̃±µ are the supersymmetry currents and

j
(Z)
µ , j

(Z̃)
µ are conserved currents for the complex central charge Z, Z̃ in (1.1). The en-

ergy momentum tensor Tµν is symmetric and conserved. At first order around flat space,

the R-multiplet couples minimally to a linearized supergravity multiplet Hµ:

Lsugra = −4

∫
d4θ(HzRz +HzRz) . (2.3)

Due to the constraints (2.1), the superfield (Hz,Hz) enjoys the gauge freedom

δLHz = −D−L̃− + D̃−L− , δLHz = D+L̃+ − D̃+L+ , (2.4)

– 3 –
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where L±, L̃± are fermionic multiplets such that

D̃+D−D+L̃− − D̃−D−D+L̃+ +D+D̃−D̃+L− −D−D̃−D̃+L+ = 0 . (2.5)

One can use (2.4) to fix a Wess-Zumino gauge for Hµ:

Hz = −θ−θ̃−hzz + θ+θ̃+hzz +
1

2
θ−θ̃+Cz +

1

2
θ+θ̃−C̃z + iθ+θ−θ̃+ψ̃+z

+ iθ+θ−θ̃−ψ̃−z − iθ̃+θ̃−θ+ψ+z − iθ̃+θ̃−θ−ψ−z + 2θ+θ−θ̃+θ̃−Az ,

Hz = −θ−θ̃−hzz + θ+θ̃+hzz +
1

2
θ−θ̃+Cz +

1

2
θ+θ̃−C̃z + iθ+θ−θ̃+ψ̃+z

+ iθ+θ−θ̃−ψ̃−z − iθ̃+θ̃−θ+ψ+z − iθ̃+θ̃−θ−ψ−z + 2θ+θ−θ̃+θ̃−Az ,

(2.6)

with hzz = hzz. The residual gauge transformations are

δLhµν = ∂µξν + ∂νξµ , δLCµ = ∂µΛ
(C) , δLC̃µ = ∂µΛ

(C̃) ,

δLAµ = ∂µΛ
(A) , δLψ±µ = ∂µε± , δLψ̃±µ = ∂µε̃± .

(2.7)

We can therefore identify hµν with the graviton. The complex gauge fields Cµ, C̃µ are

graviphotons which couple to the complex central charges Z, Z̃ in the flat-space supersym-

metry algebra (1.1), Aµ is a gauge field coupling to the vector R-symmetry current and

ψ±µ, ψ̃±µ are gravitini. In Euclidean signature, the superfields L and L̃ are not complex

conjugate of each other, and the gauge parameters in (2.7) are generally complex. We will

impose that the metric is real, therefore ξµ must be real in (2.7). The other background

fields Cµ, C̃µ, Aµ are allowed to take general values, but we will restrict ourselves to real

gauge transformations (this means that Λ(C̃) is the complex conjugate of Λ(C) while Λ(A)

is real) because the theories we consider are generally only invariant under those real gauge

transformations. In Wess-Zumino gauge, the linearized supergravity coupling (2.3) reads

Lsugra = −hµνTµν +Aµj(R)
µ − i

2

(
Cµj

(Z̃)
µ − C̃µj(Z)

µ

)
− 1

2

(
Sµψµ − S̃µψ̃

)
. (2.8)

Note that Cµ, C̃µ couples to the conserved current j
(Z̃)
µ , j

(Z)
µ , respectively. In the following,

we will mostly encounter the graviphoton dual field strengths, defined as

H = −iǫµν∂µCν , H̃ = −iǫµν∂µC̃ν . (2.9)

Note that the definition (2.9) is also valid in curved space (with ǫµν the Levi-Civita tensor).

On a compact two-manifold Σ, the presence of non-zero flux for Aµ, Cµ, C̃µ will generally

lead to quantization conditions for the charges R,Z, Z̃.

2.2 Gravitino variations and Killing spinor equations

Curved space supersymmetry for N = (2, 2) theories with an R-multiplet is dictated by the

rigid limit of the supergravity multiplet introduced above. A supersymmetric background is

– 4 –
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such that the supersymmetry variations of the gravitini vanish for some non-trivial Killing

spinors. In the linearized theory, we find

δQψ−z = 2ǫ−(∂zhzz − ∂zhzz − iAz) ,

δQψ+z = 2ǫ+(∂zhzz − ∂zhzz − iAz)− ǫ−H̃ ,

δQψ−z = 2ǫ−(∂zhzz − ∂zhzz − iAz)− ǫ+H ,

δQψ+z = 2ǫ+(∂zhzz − ∂zhzz − iAz) ,

(2.10)

with ǫ± a constant spinor. The supersymmetry variations δ
Q̃
ψ̃±µ are similar (in terms of

a constant spinor ǫ̃±). We can infer the gravitino variations in the full non-linear theory

(in the rigid limit) from (2.10) by promoting ǫ± to a space-dependent supersymmetry

parameter ζ±(x). The final answer is completely fixed by diffeomorphism invariance and

dimensional analysis. See [16] for more details about this procedure.

Any orientable two-dimensional manifold Σ is complex. Let us introduce a Hermitian

metric gµν on Σ and a complex zweibein e1 = e1zdz, e
1 = e1zdz such that

ds2 = 2gzz(z, z) dzdz = e1e1 . (2.11)

We will often use the holomorphic and antiholomorphic frame indices 1, 1 in the following.

(See appendix A for more details.) The equations δQψ±µ = 0 are equivalent to the following

(generalized) Killing spinor equations

(∇z − iAz)ζ− = 0 , (∇z − iAz)ζ− =
1

2
H e1z ζ+ ,

(∇z − iAz)ζ+ =
1

2
H̃ e1z ζ− , (∇z − iAz)ζ+ = 0 .

(2.12)

Similarly, from δ
Q̃
ψ̃±µ = 0 we obtain

(∇z + iAz)ζ̃− = 0 , (∇z + iAz)ζ̃− =
1

2
H̃ e1z ζ̃+ ,

(∇z + iAz)ζ̃+ =
1

2
H e1z ζ̃− , (∇z + iAz)ζ̃+ = 0 .

(2.13)

The Killing spinors ζ± and ζ̃± carry R-charge 1 and −1, respectively, and the Killing spinor

equations are invariant under complexified local vector R-symmetry transformations. They

are also invariant under the axial R-symmetry transformations

ζ− → λaxζ− , ζ+ → λ−1
ax ζ+ , ζ̃− → λ−1

ax ζ− , ζ̃+ → λaxζ̃+ ,

Aµ → Aµ , H → λ2axH , H̃ → λ−2
ax H̃ ,

(2.14)

with λax a complex constant. Note that (2.13) can be formally obtained from (2.12) by

ζ± → ζ̃± , Aµ → −Aµ , H → H̃ , H̃ → H . (2.15)

The equations (2.12), (2.13) subsume the various Killing spinor equations used in pre-

vious works such as [1–3], which studied N = (2, 2) theories for particular supersymmetric

– 5 –
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background on the two-sphere. To make contact with the notation of those papers, let us

consider the Dirac spinors ζT = (ζ−, ζ+), ζ̃
T =

(
ζ̃−, ζ̃+

)
and the two-dimensional gamma

matrices γµ, γ3 — see appendix A for our conventions. We also introduce the supergravity

background fields H,G such that

H = H + iG , H̃ = H − iG . (2.16)

For unitary theories, the fields H,G would be real in Lorentzian signature. To preserve su-

persymmetry in Euclidean signature we must generally give them complex expectation val-

ues, which violates reflection positivity [10]. The Killing spinor equations (2.12), (2.13) read

(∇µ − iAµ)ζ = −1

2
Hγµζ +

i

2
Gγµγ

3ζ ,

(∇µ + iAµ)ζ̃ = −1

2
Hγµζ̃ −

i

2
Gγµγ

3ζ̃ .

(2.17)

For instance, [2] considered the round metric on S2 with H = − i
R

S2
(with RS2 the S2

radius) and Aµ = G = 0. The authors of [1] considered instead a round S2 with Aµ = H = 0

and G = − i
R

S2
. Those two backgrounds are part of a continuous family of backgrounds

preserving four supercharges on the round S2, which are all related by (2.14).

3 Backgrounds preserving one supercharge

Consider an orientable compact Riemann surface Σg of genus g with a Hermitian

metric (2.11). Let
√
g = 2gzz(z, z) be the square root of the metric determinant in complex

coordinates, which transforms according to

√
g′ = UU

√
g , with U ≡ ∂z

∂z′
, U ≡ ∂z

∂z′
, (3.1)

under change of holomorphic coordinates. In other words,
√
g is a global section of the

determinant line bundle. In this section, we classify backgrounds that preserve at least one

supercharge, corresponding to solutions to the Killing spinor equations (2.12).

3.1 Solving the Killing spinor equation

Locally, given any metric (2.11), one can use (2.12) to solve for the supergravity background

fields in terms of the Killing spinors. If ζ+ζ− 6= 0, we have

Az = −i ∂z log
(
ζ−

g
1

8

)
, H =

2√
g
∂z

(
g

1

4
ζ−

ζ+

)
,

Az = −i ∂z log
(
ζ+

g
1

8

)
, H̃ =

2√
g
∂z

(
g

1

4
ζ+

ζ−

)
.

(3.2)

The case ζ+ζ− = 0 will be discussed separately below. Given a globally defined solu-

tion ζ±, we can construct the one-form pµ = ζγµζ of R-charge 2. Its holomorphic and

antiholomorphic components

pz = g
1

4 (ζ−)
2 , pz = −g 1

4 (ζ+)
2 (3.3)

– 6 –
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are sections of K ⊗ L2 and K ⊗ L2 respectively, where K and K are the canonical and

anticanonical line bundles while L denotes the U(1)R line bundle. The objects (3.3)

transform as

p′z′ = (WR)
2 U pz , p′z′ = (WR)

2 U pz , (3.4)

between coordinate patches, with U defined in (3.1) and WR a corresponding transition

function for L. It follows that ζ± transform as

ζ ′− =WR

(
U

U

) 1

4

ζ− , ζ ′+ =WR

(
U

U

)− 1

4

ζ+ , (3.5)

under a holomorphic coordinate change. A supersymmetric background is partly deter-

mined by a choice of U(1)R line bundle L, which is equivalent to a choice of transition

functions WR. As mentioned above, we should restrict ourselves to real R-symmetry gauge

transformations, which means that WR is a pure phase. Topologically, U(1) line bundles

are determined by their first Chern class (or degree). Let us denote

c1(L) = m ∈ Z . (3.6)

In general, for each m we have a 2g real-dimensional family of inequivalent line bun-

dles Σg, corresponding to turning on Wilson lines. However, Wilson lines for the vector

R-symmetry would break supersymmetry and are therefore disallowed.4 Without further

loss of generality, we take L such that

LC
∼=

√
K⊗n

, with n ≡ m

g − 1
. (3.7)

Here LC is the holomorphic line bundle associated to L,5 while
√
K corresponds to the

spin bundle with fully periodic fermions. (In general there are many inequivalent ways of

taking the (g− 1)-th root of
√
K in (3.7), but this subtlety will not affect our conclusions.)

It follows from (3.7) that

WR =

(
U

U

)n

4

. (3.8)

Note that, if either ζ− or ζ+ is nowhere vanishing, its associated line bundle is trivial and

therefore (3.5) implies that n = −1 or n = 1, respectively. To proceed further, we note that

the sections ζ± can be factorized into a globally defined piece which transforms like (3.1)

and a holomorphic or an antiholomorphic piece. This leads to the following ansatz for ζ±:

ζ−(z, z) = λvec(z, z)λax(z, z)g
1+n

8 s−(z) , ζ+(z, z) =
λvec(z, z)

λax(z, z)
g

1−n

8 s+(z) . (3.9)

4When the theory possesses both the vector and axial R-symmetries, one could turn on Wilson lines

for the left-moving (or right moving) R-symmetry, which would still preserve the right-moving (resp. left-

moving) supercharges. This is what is done in the case of the N = (2, 2) elliptic genus (see for instance [6]).

Such Wilson lines are not available to us because we only consider the R-multiplet and its corresponding

background supergravity fields.
5Namely, LC is such that the phase of its transition functions are the transition functions of the U(1)

bundle L: if α(z) is a transition function of LC, the corresponding transition function of L is
√

α/α.

– 7 –
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Here λvec and λax are globally defined nowhere vanishing functions on Σg, while s− and

s+ transform as

s−(z
′)′ =

1

U
1+n

2

s−(z) , s+(z
′)′ =

1

U
1−n

2

s+(z) . (3.10)

In other words, s± are identified as (locally) holomorphic sections of some power of the

spin bundle
√
K:

s− ∈ Γ
(√

K−1−n
)
, s+ ∈ Γ

(√
K−1+n

)
. (3.11)

Plugging (3.9) into (3.2), we find

Az =
n

2
ωz − i ∂z log (λvecλax) , H =

2√
g
∂z

(
g

1+n

4
λ2ax s−

s+

)
,

Az =
n

2
ωz − i ∂z log

(
λvec

λax

)
, H̃ =

2√
g
∂z

(
g

1−n

4
s+

λ2ax s−

)
,

(3.12)

with ωµ the spin connection. Note that λvec corresponds to a vector R-symmetry pure gauge

transformation, while λax can be interpreted as a local axial R-symmetry transformation

(recall however that there is no gauge connection for the axial R-symmetry). Using the

Gauss-Bonnet theorem, one can check that

c1(L) =
1

2π

∫

Σ
dA = n(g − 1) = m, (3.13)

as it should be by construction.

The careful reader will have noted that several different factorizations would have been

possible in (3.9). For instance we could factorize a holomorphic piece in ζ− instead of an

antiholomorphic one. However, such alternate factorizations introduce physical poles in

Aµ when plugged into (3.2), corresponding to the zeros (or poles) of the corresponding

holomorphic (or meromorphic) sections. We do not consider such singular supergravity

backgrounds.

3.2 The A-twist

The special cases when either ζ+ or ζ− identically vanishes must be treated separately. For

ζ− = 0, the general solution to (2.12) reads

Aµ =
1

2
ωµ − i ∂µ log ζ+ , H = 0 , H̃ = (arbitrary) . (3.14)

This corresponds to a line bundle with n = 1 in (3.8). Then ζ+ is effectively a scalar — a

section of a trivial line bundle — and we can set it to a constant by a complexified U(1)R
gauge transformation. Similarly, for ζ+ = 0 we have

Aµ = −1

2
ωµ − i ∂µ log ζ− , H = (arbitrary) , H̃ = 0 , (3.15)

with n = −1. The backgrounds (3.14) and (3.15) correspond to the A- and A-twists, respec-

tively. (More precisely, this is called the 1
2A-twist when only one supercharge is involved.

However this background also preserves a second supercharge of opposite R-charge, which

we will consider in the next section.) The possibility to turn on an arbitrary background

for H or H̃ does not affect the supersymmetry algebra.

– 8 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
5

3.3 Global properties of the Killing spinors

Since we are considering compact Riemann surfaces without punctures, the sections s±
in (3.11) should be globally holomorphic, so that supersymmetry maps smooth field con-

figurations into smooth field configurations. Since there are no holomorphic sections of

a line bundle of negative degree over Σg, this regularity condition severely restricts the

allowed Killing spinors. Moreover, one should verify that the background fields H, H̃ de-

termined by (3.12) have no singularities at the zeros of s±.

The canonical bundle of a Riemann surface of genus g has degree 2g− 2, therefore the

line bundles with sections (3.11) have degrees (g− 1)(−1∓ n) = 1− g∓m. For g > 1, at

least one of the two line bundles has negative degree and no holomorphic section. Therefore

either s− or s+ is identically zero, and the only supersymmetric backgrounds correspond

to the well-known A- or A-twist (3.14) or (3.15).

On the torus (g = 1), the spinors ζ± are sections of a trivial line bundle and the

supersymmetry is essentially the same as in flat space. We will not study the torus in any

detail in this paper.

The genus zero case is somewhat richer. On the Riemann sphere, (3.11) reads

s− ∈ Γ (O(n+ 1)) , s+ ∈ Γ (O(−n+ 1)) , (3.16)

in the standard notation O(k) ∼= H⊗k for CP
1. Regularity imposes that |n| ≤ 1 for any

non-trivial solution. The case n = ±1 leads to the A-twist mentioned above and to some

deformation thereof. The case n = 0 (with no flux for the R-symmetry) corresponds to

the supersymmetric spheres of [1–3] and their generalization to more general metrics on

the sphere.

3.4 Flux and charge quantization

The presence of non-trivial flux for the gauge fields in the supergravity multiplet can lead

to restrictions on the allowed values of the charges R,Z, Z̃. The R-charge has the standard

Dirac quantization condition,

rm ∈ Z , m ≡ 1

2π

∫

Σ
dA , (3.17)

with r the R-charge and m the flux from the real part of Aµ. (The imaginary part of Aµ is

a well-defined one-form by assumption, therefore it does not lead to any flux.) Similarly,

the restriction on Z, Z̃ due to non-trivial fluxes for the graviphotons reads

Re
1

4π

∫

Σ
d2x

√
g
(
zH̃ − z̃H

)
∈ Z , (3.18)

with z, z̃ the central charges.

3.5 The case of CP1

Let us consider supersymmetry on the Riemann sphere in more details. We can cover

the sphere with two patches with coordinates z and z′ = 1
z
, respectively, and consider

– 9 –
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an arbitrary metric (2.11). In the case of vanishing flux for the R-symmetry gauge field,

n = m = 0, we have the Killing spinor

ζ =

(
ζ−

ζ+

)
= g

1

8

(
λax s−(z)

λ−1
ax s+(z)

)
, (3.19)

up to a complexified R-symmetry gauge transformation. (We write all quantities in the

northern patch with complex coordinate z.) Here s± are both holomorphic sections of

O(1), which therefore have a single zero on the sphere. Since the zeros of s− and s+ do not

coincide, we can set s− = 1 and s+ = z by a change of coordinates. (Then s− has a zero

at the “south pole” z′ = 0 while s+ has a zero at the “north pole” z = 0.) A necessary

and sufficient condition for the background fields H, H̃ given by (3.2) to be regular is that

the metric takes the form

gzz ∼ c0 + c1|z|2 , gz′z′ ∼ c2 + c3|z′|2 , c0, c1, c2, c3 ∈ R , (3.20)

near the zeros z = 0 and z′ = 0, respectively, and similarly for the function λax.
6 In the

case of n = −m = 1 unit of flux for the R-symmetry, we have the Killing spinor

ζ =

(
ζ−

ζ+

)
=

(
g

1

4 λax s−(z)

λ−1
ax

)
, (3.21)

where we have set s+ = 1 and s− is a section of O(2). Choosing s− = z, which has zeros

at the poles, we have a non-singular background for any metric satisfying the boundary

conditions (3.20). A similar story holds for n = −m = −1.

4 Backgrounds preserving two supercharges

In this section, we study backgrounds which allow for a second Killing spinor ζ̃± solv-

ing (2.13). In the presence of ζ± and ζ̃± one can construct a complex vector of zero R-charge

Kµ = ζγµζ̃ . (4.1)

In the frame basis, K1 = ζ−ζ̃− and K1 = −ζ+ζ̃+. It follows from (2.12), (2.13) that K is

Killing. We have several possibilities:

• if K = 0, we have the ordinary topological A- or A-twist. This is what happens on

Riemann surfaces of genus g > 1, which do not admit Killing vectors.

• If K and K are linearly independent and [K,K] = 0, we are on the flat torus.

• If K and K are linearly independent and [K,K] 6= 0, we are on the sphere with

its round metric, and we actually have four supercharges [1, 2]. This case will be

discussed in section 5.

• If K and K are linearly dependent, we are either on the sphere or on the torus with

a U(1) isometry. This is the most interesting case. (We focus on the sphere in the

following, the torus is comparatively trivial.)

6It follows from the analysis of the next section that we then have a second supercharge ζ̃± locally, near

the zeros of s±.
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Consider the Riemann sphere. Similarly to the previous subsection, we can restrict our-

selves to the ansatz

ζ̃−(z, z) =
1

λvec(z, z)λax(z, z)
g

1−n

8 t−(z) , ζ̃+(z, z) =
λax(z, z)

λvec(z, z)
g

1+n

8 t+(z) (4.2)

for the Killing spinor ζ̃, where t± are holomorphic sections of the following line bundles:

t− ∈ Γ (O(−n+ 1)) , t+ ∈ Γ (O(n+ 1)) . (4.3)

The Killing vector (4.1) is then

K = −2s+(z)t+(z) ∂z + 2s−(z)t−(z) ∂z . (4.4)

Without loss of generality, let us consider the real coordinates θ, ϕ on the sphere, θ ∈ [0, π],

ϕ ∼ ϕ+ 2π, with complex coordinate

z = h(θ) eiϕ . (4.5)

Here h(θ) is a smooth real positive function with the same asymptotics as tan θ
2 at θ = 0, π.

By assumption, K lies along the azimuthal direction ∂ϕ = i(z∂z − z∂z).

Solving for the background fields in terms of ζ̃±, we have the same Aµ as in (3.12)

while H, H̃ are given by

H =
2√
g
∂z

(
g

1+n

4
λ2ax t+

t−

)
, H̃ =

2√
g
∂z

(
g

1−n

4
t−

λ2ax t+

)
. (4.6)

In order for the background to preserve two supercharges of opposite R-charge, (4.6) must

be compatible with (3.12). If we further impose that λax be invariant along K, (4.6) is

compatible with (3.12) if and only if

s−t− = c0 z , s+t+ = c0 z , s+ ∂zt+ = t− ∂zs− , t+ ∂zs+ = s− ∂zt− , (4.7)

with c0 a complex constant. Note that s+t+ and s−t− both correspond to the holomorphic

section of the line bundle O(2) with zeros at the north and south poles (θ = 0, π respec-

tively). One easily checks that any regular solution of the first two equations in (4.7) (for

the allowed values of n, n = 0,±1) is also solution of the last two equations. We discuss

such solutions more explicitly in the following subsections.

4.1 The A-twist (bis)

Let us first address the case when K = 0 in (4.1). This can only happen for ζ− = 0 or

ζ+ = 0, corresponding to the A- or the A-twist (3.14), (3.15), which are defined on any

Riemann surface Σg. The topological A-twist corresponds to

s− = 0 , s+ = 1 , t− = 1 , t+ = 0 , (4.8)

in the ansatz (3.21), (4.2) with n = 1. Here s+ and t− are sections of the trivial line

bundle. Note that given the background (3.14) we automatically have a second Killing

spinor ζ̃− ∝ 1
ζ+

, ζ̃+ = 0. The case of the A-twist is similar. In these backgrounds, the

R-charge is quantized in units of 1
g−1 due to (3.17).

– 11 –
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Note that for the A-twist we have the freedom of turning on an arbitrary H̃, and

similarly with an arbitrary H for the A-twist. This is a rather mild deformation. In

particular, one can show that the partition function does not depend on any continuous

deformations of H̃ because such deformations are Q-exact in this case. The supersymmetry

algebra is also unaffected. However, if there is a non-trivial flux for H̃ the quantization

condition (3.18) holds and constrains the central charge.

4.2 The Ω-background on the sphere

On the sphere, the A-twist admits an interesting U(1)-equivariant deformation, correspond-

ing to turning on s− and t+ in (4.8), which are holomorphic sections of the holomorphic

tangent bundle TCP1 ∼= O(2). Let us consider the azimuthal Killing vector

V = ∂ϕ = i (z∂z − z∂z) . (4.9)

The Killing vector (4.1) is proportional to (4.9),

K = ǫΩV , ǫΩ ∈ C , (4.10)

and equation (4.7) implies

s− = i
ǫΩ

2
z , s+ = 1 , t− = 1 , t+ = −iǫΩ

2
z . (4.11)

For ǫΩ = 0 we recover the ordinary A-twist (4.8). The Killing spinors (3.21), (4.2) can be

conveniently written in terms of (4.9),

ζ =

(
ζ−

ζ+

)
=

(
ǫΩV1

1

)
, ζ̃ =

(
ζ̃−

ζ̃+

)
=

(
1

−ǫΩV1

)
. (4.12)

(Here we have set λvec = λax = 1 for simplicity.) The corresponding background super-

gravity fields are

Aµ =
1

2
ωµ , H = −iǫΩ

2
ǫµν∂µVν , H̃ = 0 . (4.13)

The background R-symmetry gauge field takes its standard A-twist value withm = −1 unit

of flux through the sphere (in our conventions). Therefore the R-charge must be integer

quantized. The equivariant deformation ǫΩ 6= 0 corresponds to a non-trivial expectation

value for the graviphoton Cµ,

Cµ =
ǫΩ

2
Vµ , C̃µ = 0 , (4.14)

up to a gauge transformation. Note that H has vanishing flux through the sphere, therefore

the central charge is not constrained in this background.

It is instructive to consider the supersymmetry algebra corresponding to (4.12). The

A-twist has the effect of twisting the spin S to S′ = S + R
2 , where R is the R-charge. In

particular the twisted spins of the supersymmetry parameters ζ−, ζ+, ζ̃−, ζ̃+ are 1, 0, 0,

−1, respectively. On a field ϕ(r,z,z̃,s) of R-, Z-, Z̃-charges r, z, z̃ and spin s, we have the

supersymmetry algebra
{
δζ , δζ̃

}
ϕ(r,z,z,s) = −2i

(
z + ǫΩLV |s→s′

)
ϕ(r,z,z,s) ,

δ2ζ ϕ(r,z,z,s) = 0 , δ2
ζ̃
ϕ(r,z,z,s) = 0 ,

(4.15)
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where LV |s→s′ is the Lie derivative along V with the spin s replaced by the twisted spin

s′ = s+ r
2 . (See appendix A for the definition of the Lie derivative.) This result easily follows

by plugging the Killing spinors (4.12) and background fields (4.13)–(4.14) in the more

general supersymmetry algebra (6.1) to be introduced below. It is manifest from (4.15)

that the background (4.13)–(4.14) realizes a U(1)-equivariant deformation of the A-twist

on S2 with equivariant parameter ǫΩ. This is also known as the Ω-background — see for

instance [24, 25, 29, 30].

4.3 The sphere without R-symmetry flux

Another background of recent interest is the sphere without flux for the R-symmetry gauge

field. In this case, s±, t± are sections of O(1), and the most general solution to (4.7) is

either

s− = 1 , s+ = iz , t− = −iz , t+ = 1 , (4.16)

or

s− = −iz , s+ = 1 , t− = 1 , t+ = iz . (4.17)

(The factors of i are chosen for future convenience.) Let us consider (4.16) for definiteness.

The Killing spinors (3.21), (4.2) read

ζ =

(
ζ−

ζ+

)
= g

1

8

(
λax

iλ−1
ax z

)
, ζ̃ =

(
ζ̃−

ζ̃+

)
= g

1

8

(
iλ−1

ax z

λax

)
, (4.18)

where we set λvec = 1 for simplicity, and the Killing vector (4.1) is K = −2∂ϕ. The

corresponding supergravity fields can be obtained from (3.2), and one can check that H, H̃
are regular at the poles. Therefore we have two supercharges on any squashed sphere with

U(1) isometry and vanishing R-flux.

As a concrete example of such a supersymmetric squashed sphere, consider the metric

ds2 = f(θ)2dθ2 + sin2 θdϕ2 = c(z, z)2dzdz , (4.19)

with f(θ) an arbitrary smooth function such that f ∼ 1+ o
(
θ2
)
at θ = 0, and similarly at

θ = π. We must have

c(z, z) = g
1

4 =
sin θ

h(θ)
, f(θ) = sin θ

h′(θ)

h(θ)
, (4.20)

with h(θ) the function introduced in (4.5). A convenient choice of λax in (4.18) is

λax =

√
h(θ)

tan θ
2

. (4.21)

In this case, the background supergravity fields take the simple form

Aµdx
µ =

1

2

(
1− 1

f(θ)

)
dϕ , H = H̃ =

i

f(θ)
. (4.22)
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This background was studied in [3]. Note that
∫
S2 dA = 0 and that we could set Aµ = 0

by choosing λax to be constant. On the other hand we have non-trivial fluxes for the

graviphotons, leading to the quantization condition

RS2 Im(z − z̃) ∈ Z (4.23)

for the central charge. Here we restored the overall radius RS2 in the metric (4.19) for

dimensional reasons.

5 Maximally supersymmetric backgrounds

It follows from (2.12), (2.13) that a supersymmetric background preserves four supercharges

(two ζ’s and two ζ̃’s) if and only if

∂µAν − ∂νAµ = 0 ,
1

2
R = HH̃ , ∂µH = 0 , ∂µH̃ = 0 , (5.1)

with R the Ricci scalar. In particular, the two-manifold must have constant scalar curva-

ture. For compact two-manifolds, (5.1) can only be satisfied on the round sphere of radius

RS2 with HH̃ = − 1
R2

S2

, or on the flat torus with HH̃ = 0.

Up to a U(1)R gauge transformation, the most general maximally supersymmetric S2

background is

ds2 =
4R2

S2

(1 + |z|2)2dzdz , Aµ = 0 , H =
i

RS2

λ2ax , H̃ =
i

RS2

λ−2
ax , (5.2)

with λax ∈ C an arbitrary constant. The four Killing spinors correspond to the two choices

of sections (4.16) and (4.17), which are mutually compatible on the background (5.2).

In terms of the real coordinates θ, ϕ with z = tan θ
2 eiϕ, they read, up to a constant

normalization,

ζ =

(
λax cos

θ
2

iλ−1
ax sin θ

2e
iϕ

)
, η =

(
iλax sin

θ
2e

−iϕ

λ−1
ax cos θ

2

)
,

ζ̃ =

(
iλ−1

ax sin θ
2e

−iϕ

λax cos
θ
2

)
, η̃ =

(
λ−1
ax cos θ

2

iλax sin
θ
2e

iϕ

)
.

(5.3)

The three Killing vectors ζγµη̃, ηγµζ̃ and ζγµζ̃ = ηγµη̃ generate the SO(3) isometry of the

round sphere.

Relaxing the requirement that the two-manifold is compact, an interesting one-

complex-parameter family of backgrounds with four supercharges is provided by the

Ω-background on R
2, which was studied from the field theory viewpoint in [25]. This back-

ground can be obtained as the flat space limit of the Ω-background on S2 of section 4.2,

focusing on the north pole patch. The metric is flat and all the other supergravity back-

ground fields vanish except for the graviphoton (4.14), which leads to a constant background

for H = −iǫΩ. In addition to the two supercharges (4.12) that exist on curved space, the

– 14 –
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flat space Ω-background preserves two ordinary flat space supercharges. The four Killing

spinors are:

ζ =

(
ǫΩVz

1

)
, η =

(
1

0

)
,

ζ̃ =

(
1

−ǫΩVz

)
, η̃ =

(
0

1

)
.

(5.4)

From those Killing spinors we can build the Killing vectors

ζγµζ̃ ∂µ = ǫΩV , ζγµη̃ ∂µ = −2∂z , ηγµζ̃ ∂µ = 2∂z , (5.5)

with V the rotational Killing vector (4.9). Note that with our present definition of the

Ω-background, we obtain supersymmetric actions which differ from the ones of e.g. [25, 31].7

It would be interesting to understand better the relation between the two approaches.

6 Supersymmetry multiplets and supersymmetric Lagrangians

In this section, we study the curved-space generalization of the standard N = (2, 2) su-

persymmetry multiplets. Recall that two-dimensional Lorentz invariance (or rotation in-

variance, in our case) allows for more general supersymmetry multiplets than in higher

dimensional theories with the same amount of supersymmetry [32, 33]. We will discuss

in detail the chiral and twisted chiral multiplets, possibly coupled to vector or twisted

vector multiplets, respectively. Note that a symmetry that acts only on chiral multiplets

can be gauged with an ordinary vector multiplet, while a symmetry that acts only on the

twisted chiral multiplets can be gauged with a twisted vector multiplet. The gauging of

more general symmetries can also be considered, but it requires more complicated vector

multiplets [34, 35] which we will not consider in this work. Yet another family of inter-

esting N = (2, 2) multiplets are the semi-chiral multiplets [33], which we briefly discuss in

appendix E.

6.1 Supersymmetry algebra

The generalization of the flat space N = (2, 2) supersymmetry algebra (1.1) to any curved-

space supersymmetric background of the kind discussed in previous sections is:
{
δζ , δζ̃

}
ϕ(r,z,z̃) = −2i

[
L′
K + ζ+ζ̃−

(
z − r

2
H
)
− ζ−ζ̃+

(
z̃ − r

2
H̃
)]
ϕ(r,z,z̃) ,

{δζ , δη}ϕ(r,z,z̃) = 0 ,
{
δ
ζ̃
, δη̃

}
ϕ(r,z,z̃) = 0 .

(6.1)

Here ϕ(r,z,z̃) is a field of arbitrary spin, R-charge r, and central charge z, z̃. We use L′
K

to denote a modified Lie derivative along Kµ, which is covariant under local R-, Z- and

Z̃-transformations,

L′
Kϕ(r,z,z̃) =

(
LK − irKµAµ +

1

2
zKµC̃µ − 1

2
z̃KµCµ

)
ϕ(r,z,z̃) , (6.2)

7The main difference is that we effectively shift the central charge z to z + ǫΩLV while keeping z̃ fixed,

which is allowed in Euclidean signature, while in [25, 31] both z and z̃ are being shifted.
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with Kµ = ζγµζ̃ the Killing vector (4.1). The most straightforward way to derive (6.1) is

by twisted dimensional reduction of the three-dimensional algebra of [16], as we explain in

appendix C.

6.2 General multiplet

Let us consider a general complex multiplet S whose bottom component is a complex scalar

or R-charge r and central charges z, z̃, with components

S =
(
C,χ±, χ̃±,M, M̃, aµ, σ, σ̃, λ±, λ̃±, D

)
. (6.3)

It has 8 + 8 complex components. In flat space it is represented by the unconstrained

complex superfield

S = C + iθ−χ− + iθ+χ+ + iθ̃−χ̃− + iθ̃+χ̃+ + iθ+θ−M + iθ̃+θ̃−M̃

− 2
(
θ−θ̃−az − θ+θ̃+az

)
+ iθ−θ̃+σ − iθ+θ̃−σ̃ + 2iθ̃+θ̃−θ− (λ− + i∂zχ̃+)

+ 2iθ̃+θ̃−θ+ (λ+ + i∂zχ̃−)− 2iθ+θ−θ̃−
(
λ̃− − i∂zχ+

)

− 2iθ+θ−θ̃+
(
λ̃+ − i∂zχ−

)
− 2θ+θ−θ̃+θ̃− (D + 2∂z∂zC) .

(6.4)

In the following, we spell out its curved space generalization. We work in the complex

frame e1, e1 (see appendix A) and express all tensors, including covariant derivatives, in

the frame basis. Let us also define the R- and Z, Z̃-covariant derivative

Dµϕ(r,z,z̃) =

(
∇µ − irAµ +

1

2
zC̃µ − 1

2
z̃Cµ

)
ϕ(r,z,z̃) , (6.5)

acting on any field ϕ(r,z,z̃) of R-charge r and complex central charge z, z̃.8 The curved

space supersymmetry algebra is represented on the general multiplet (6.3) by:

δC = i(ζ+χ− − ζ−χ+) + i
(
ζ̃+χ̃− − ζ̃−χ̃+

)
,

δχ− = ζ−M − ζ̃−

(
σ +

(
z − r

2
H
)
C
)
+ 2ζ̃+ (D1C + ia1) ,

δχ+ = ζ+M − ζ̃+

(
σ̃ +

(
z̃ − r

2
H̃
)
C
)
+ 2ζ̃− (D1C + ia1) ,

δχ̃− = ζ̃−M̃ − ζ−

(
σ̃ −

(
z̃ − r

2
H̃
)
C
)
+ 2ζ+ (D1C − ia1) ,

δχ̃+ = ζ̃+M̃ − ζ+

(
σ −

(
z − r

2
H
)
C
)
+ 2ζ− (D1C − ia1) , (6.6)

δM = −2
(
ζ̃+λ̃− − ζ̃−λ̃+

)
+ 2i

(
z̃ − r

2
H̃
)
ζ̃+χ− − 2i

(
z − r

2
H
)
ζ̃−χ+

+ 4iζ̃+D1χ+ − 4iζ̃−D1χ− ,

δM̃ = 2 (ζ+λ− − ζ−λ+)− 2i
(
z − r

2
H
)
ζ+χ̃− + 2i

(
z̃ − r

2
H̃
)
ζ−χ̃+

+ 4iζ+D1χ̃+ − 4iζ−D1χ̃− ,

8In this section z always denotes the central charge and not a complex coordinate. Since we are working

in the frame basis this should cause no confusion.
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δa1 = −iζ−λ̃− − iζ̃−λ− +D1

(
ζ+χ− − ζ−χ+ − ζ̃+χ̃− + ζ̃−χ̃+

)
,

δa1 = iζ+λ̃+ + iζ̃+λ+ +D1

(
ζ+χ− − ζ−χ+ − ζ̃+χ̃− + ζ̃−χ̃+

)
,

δσ = 2ζ−λ̃+ + 2ζ̃+λ− + i
(
z − r

2
H
)(

ζ+χ− − ζ−χ+ − ζ̃+χ̃− + ζ̃−χ̃+

)
,

δσ̃ = −2ζ̃−λ+ − 2ζ+λ̃− + i
(
z̃ − r

2
H̃
)(

ζ+χ− − ζ−χ+ − ζ̃+χ̃− + ζ̃−χ̃+

)
,

δλ− = iζ−

(
D − 2i(D1a1 −D1a1) + H̃σ +

1

2

(
z̃ − r

2
H̃
)
σ − 1

2

(
z − r

2
H
)
σ̃

)

+ 2iζ+

(
D1σ − i

(
z − r

2
H
)
a1

)
,

δλ+ = iζ+

(
D + 2i(D1a1 −D1a1) +Hσ̃ − 1

2

(
z̃ − r

2
H̃
)
σ +

1

2

(
z − r

2
H
)
σ̃

)

+ 2iζ−

(
D1σ̃ − i

(
z̃ − r

2
H̃
)
a1

)
, (6.7)

δλ̃− = −iζ̃−
(
D + 2i(D1a1 −D1a1) +Hσ̃ +

1

2

(
z̃ − r

2
H̃
)
σ − 1

2

(
z − r

2
H
)
σ̃

)

− 2iζ̃+

(
D1σ̃ − i

(
z̃ − r

2
H̃
)
a1

)
,

δλ̃+ = −iζ̃+
(
D − 2i(D1a1 −D1a1) + H̃σ − 1

2

(
z̃ − r

2
H̃
)
σ +

1

2

(
z − r

2
H
)
σ̃

)

− 2iζ̃−

(
D1σ − i

(
z − r

2
H
)
a1

)
,

δD = −2D1

(
ζ+λ̃+ − ζ̃+λ+

)
+ 2D1

(
ζ−λ̃− − ζ̃−λ−

)

+
(
z − r

2
H
)(

ζ+λ̃− − ζ̃−λ+

)
−

(
z̃ − r

2
H̃
)(

ζ−λ̃+ − ζ̃+λ−

)

+ i

(
r

4
R− 1

2
Hz̃ − 1

2
H̃z

)(
ζ+χ− − ζ−χ+ − ζ̃+χ̃− + ζ̃−χ̃+

)
.

In the last line, R stands for the Ricci scalar of the two-manifold. These transformations

realize the algebra (6.1) for any spinors ζ±, ζ̃± satisfying the Killing spinor equations.

6.3 Chiral and twisted chiral multiplets

A chiral multiplet Φ of R-charge r and central charges z, z̃ is a general multiplet satisfying

the constraints

χ̃− = χ̃+ = 0 . (6.8)

This is equivalent to the superspace constraint D̃±Φ = 0 on the corresponding superfield

in flat space. The chiral multiplet has components

Φ =
(
φ, ψ−, ψ+, F

)
, (6.9)
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of R-charges r, r − 1, r − 1, r − 2, respectively, whose embedding into the general multi-

plet (6.3) is given in appendix D. Its supersymmetry transformations are

δφ =
√
2(ζ+ψ− − ζ−ψ+) ,

δψ− =
√
2ζ−F − i

√
2ζ̃−

(
z − r

2
H
)
φ+ 2i

√
2ζ̃+D1φ ,

δψ+ =
√
2ζ+F − i

√
2ζ̃+

(
z̃ − r

2
H̃
)
φ+ 2i

√
2ζ̃−D1φ ,

δF =
√
2i

(
z̃ − r − 2

2
H̃
)
ζ̃+ψ− −

√
2i

(
z − r − 2

2
H
)
ζ̃−ψ+

+ 2i
√
2D1

(
ζ̃+ψ+

)
− 2i

√
2D1

(
ζ̃−ψ−

)
.

(6.10)

Similarly, an antichiral multiplet Φ̃ of R-charge −r and central charge −z, −z̃ is a general

multiplet satisfying the constraints

χ− = χ+ = 0 , (6.11)

or D±Φ̃ = 0 in flat space. It has components

Φ̃ =
(
φ̃, ψ̃−, ψ̃+, F̃

)
, (6.12)

of R-charges −r,−r + 1,−r + 1,−r + 2, respectively. Its embedding into (6.3) is given in

appendix D and its supersymmetry transformations are

δφ̃ = −
√
2
(
ζ̃+ψ̃− − ζ̃−ψ̃+

)
,

δψ̃− =
√
2ζ̃−F̃ + i

√
2ζ−

(
z̃ − r

2
H̃
)
φ̃− 2i

√
2ζ+D1φ̃ ,

δψ̃+ =
√
2ζ̃+F̃ + i

√
2ζ+

(
z − r

2
H
)
φ̃− 2i

√
2ζ−D1φ̃ ,

δF̃ =
√
2i

(
z − r − 2

2
H
)
ζ+ψ̃− −

√
2i

(
z̃ − r − 2

2
H̃
)
ζ−ψ̃+

+ 2i
√
2D1

(
ζ+ψ̃+

)
− 2i

√
2D1

(
ζ−ψ̃−

)
.

(6.13)

One can also define the twisted chiral multiplet Ω, which is a general multiplet satisfying

χ− = χ̃+ = 0 , (6.14)

or D−Ω = D̃+Ω = 0 in flat space. Note that this multiplet is special to two dimensions.

It turns out that such a multiplet can only be embedded into a general multiplet (6.3) of

vanishing R- and Z, Z̃-charges, r = z = z̃ = 0. It has components

Ω =
(
ω, η−, η̃+, G

)
, (6.15)

of R-charges 0, 1,−1, 0, respectively. Its embedding into (6.3) is given in appendix D and

its supersymmetry variations are

δω =
√
2
(
ζ̃+η− − ζ−η̃+

)
,

δη− =
√
2ζ−G+ 2i

√
2ζ+D1ω ,

δη̃+ =
√
2ζ̃+G+ 2i

√
2ζ̃−D1ω ,

δG = 2i
√
2
(
ζ+D1η̃+ − ζ̃−D1η−

)
.

(6.16)
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The twisted antichiral multiplet Ω̃ is similarly defined by

χ− = χ̃+ = 0 , (6.17)

or D−Ω̃ = D̃+Ω̃ = 0 in flat space. It has components

Ω̃ =
(
ω̃, η̃−, η+, G̃

)
, (6.18)

of R-charges 0,−1, 1, 0, respectively. Its embedding into (6.3) is given in appendix D and

its supersymmetry transformations are

δω̃ = −
√
2
(
ζ+η̃− − ζ̃−η+

)
,

δη̃− =
√
2ζ̃−G̃− 2i

√
2ζ̃+D1ω̃ ,

δη+ =
√
2ζ+G̃− 2i

√
2ζ−D1ω̃ ,

δG̃ = 2i
√
2
(
ζ̃+D1η+ − ζ−D1η̃−

)
.

(6.19)

The chiral and twisted chiral multiplet both have 2+2 complex components. Another

interesting set of constrained multiplets are given by the semi-chiral multiplets, which are

general multiplets with either χ+, χ−, χ̃− or χ̃+ set to zero. They have 4 + 4 complex

components. We briefly discuss them in appendix E. Finally, we could also consider a

stronger constraint which sets three of the χ±, χ̃± to zero. For instance, consider the case

χ̃− = χ̃+ = χ+ = 0. Such an ultra-short multiplet has 1 + 1 components (ϕ, ψ−) of

vanishing R,Z, Z̃-charges which are constrained to be holomorphic:

∂1ϕ = D1ψ− = 0 . (6.20)

They have the supersymmetry transformations

δϕ =
√
2ζ+ψ− , δψ− = 2i

√
2 ζ̃+∂1ϕ . (6.21)

This multiplet is the supersymmetrization of the two-dimensional chiral boson (see for

instance [36]). We will not discuss it any further in this work.

6.4 Linear and twisted linear multiplets

The linear multiplet is a general multiplet J of vanishing R- and Z, Z̃-charges which

satisfies the constraint

M = M̃ = 0 . (6.22)

This corresponds to D+D−J = D̃+D̃−J = 0 in flat space. It has components

J =
(
J, j±, j̃±, jµ,K, K̃

)
, (6.23)
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of R-charges 0,−1, 1, 0, 0, 0, where jµ is a conserved current, ∇1j1 + ∇1j1 = 0. The em-

bedding of J into (6.3) is given in appendix D and its supersymmetry transformations are

δJ = i (ζ+j− − ζ−j+) + i
(
ζ̃+j̃− − ζ̃−j̃+

)
,

δj− = ζ̃−K + 2ζ̃+ (D1J − ij1) ,

δj+ = ζ̃+K̃ + 2ζ̃− (D1J − ij1) ,

δj̃− = ζ−K̃ + 2ζ+ (D1J + ij1) ,

δj̃+ = ζ+K + 2ζ− (D1J + ij1) ,

δj1 = −D1

(
ζ+j− + ζ−j+ − ζ̃+j̃− − ζ̃−j̃+

)
,

δj1 = D1

(
ζ+j− + ζ−j+ − ζ̃+j̃− − ζ̃−j̃+

)
,

δK = −4iζ−D1j− + 4iζ̃+D1j̃+ ,

δK̃ = −4iζ̃−D1j̃− + 4iζ+D1j+ .

(6.24)

Such a multiplet can be minimally coupled to the ordinary vector multiplet V to be dis-

cussed in section 6.6 below.

The twisted linear multiplet Ĵ is a general multiplet of vanishing R- and Z, Z̃-charges

which satisfies the constraint

σ = σ̃ = 0 , (6.25)

or D+D̃−Ĵ = D−D̃+Ĵ = 0 in flat space. It has components

Ĵ =

(
Ĵ , ĵ±,

˜̂
j±, K̂,

˜̂
K, ĵµ

)
, (6.26)

of R-charges 0,−1, 1,−2, 2, 0, where ĵµ is a conserved current, ∇1ĵ1 +∇1ĵ1 = 0. The em-

bedding of Ĵ into (6.3) is given in appendix D and its supersymmetry transformations are

δĴ = i
(
ζ+ĵ− − ζ−ĵ+

)
+ i

(
ζ̃+

˜̂
j− − ζ̃−

˜̂
j+

)
,

δĵ− = ζ−K̂ + 2ζ̃+

(
D1Ĵ + iĵ1

)
,

δĵ+ = ζ+K̂ + 2ζ̃−

(
D1Ĵ − iĵ1

)
,

δ
˜̂
j− = ζ̃−

˜̂
K + 2ζ+

(
D1Ĵ − iĵ1

)
,

δ
˜̂
j+ = ζ̃+

˜̂
K + 2ζ−

(
D1Ĵ + iĵ1

)
,

δĵ1 = D1

(
ζ+ĵ− − ζ−ĵ+ − ζ̃+

˜̂
j− + ζ̃−

˜̂
j+

)
,

δĵ1 = −D1

(
ζ+ĵ− − ζ−ĵ+ − ζ̃+

˜̂
j− + ζ̃−

˜̂
j+

)
,

δK̂ = −4iζ̃−D1ĵ− + 4iζ̃+D1ĵ+ ,

δ
˜̂
K = −4iζ−D1

˜̂
j− + 4iζ+D1

˜̂
j+ .

(6.27)

Such a multiplet can be minimally coupled to the twisted vector multiplet V̂ to be discussed

in section 6.6 below.
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6.5 Multiplying multiplets

Starting from (6.6)–(6.7), it is straightforward to take the product of any two general

multiplets. The product of two general multiplets S1,S2 of lowest components C1, C2 of

charges r1, z1, z̃1 and r2, z2, z̃2, respectively, is a general multiplet S = S1S2 of charges

r1 + r2, z1 + z2, z̃1 + z̃2 given by

C = C1C2 ,

χ∓ = χ1∓C2 + C1χ2∓ ,

χ̃∓ = χ̃1∓C2 + C1χ̃2∓ ,

M =M1C2 + C1M2 − i(χ1+χ2− − χ1−χ2+) ,

M̃ = M̃1C2 + C1M̃2 − i(χ̃1+χ̃2− − χ̃1−χ̃2+) , (6.28)

a1 = a11C2 + C1a21 −
1

2
(χ1−χ̃2− − χ̃1−χ2−) ,

a1 = a11C2 + C1a21 +
1

2
(χ1+χ̃2+ − χ̃1+χ2+) ,

σ = σ1C2 + C1σ2 − i(χ1−χ̃2+ − χ̃1+χ2−) ,

σ̃ = σ̃1C2 + C1σ̃2 + i(χ1+χ̃2− − χ̃1−χ2+) ,

λ− = λ1−C2 +
i

2
M̃1χ2− +

i

2
χ̃1−(σ2 + z2HC2)− iχ̃1+(D1C2 + ia21) + (1 ↔ 2) ,

λ+ = λ1+C2 +
i

2
M̃1χ2+ +

i

2
χ̃1+(σ̃2 + z̃2HC2)− iχ̃1−(D1C2 + ia21) + (1 ↔ 2) ,

λ̃− = λ̃1−C2 −
i

2
M1χ̃2− − i

2
χ1−(σ̃2 − z̃2HC2) + iχ1+(D1C2 − ia21) + (1 ↔ 2) ,

λ̃+ = λ̃1+C2 −
i

2
M1χ̃2+ − i

2
χ1+(σ2 − z2HC2) + iχ1−(D1C2 − ia21) + (1 ↔ 2) ,

D = D1C2 + C1D2 +
1

2

(
M̃1M2 +M1M̃2

)
− 1

2
(σ̃1σ2 + σ1σ̃2)− 2D1C1D1C2

− 2D1C1D1C2 +
1

2
(z̃1Hz2H + z1Hz̃2H)C1C2 − 2(a11a21 + a21a11) (6.29)

− iD1χ1−χ̃2− + iχ1−D1χ̃2− + iχ̃1−D1χ2− − iD1χ̃1−χ2−

+ iD1χ1+χ̃2+ − iχ1+D1χ̃2+ − iχ̃1+D1χ2+ + iD1χ̃1+χ2+

− i

2
(z1H − z2H) (χ1+χ̃2− + χ̃1−χ2+) +

i

2
(z̃1H − z̃2H) (χ̃1+χ2− + χ1−χ̃2+)

− (λ1+χ2− − λ1−χ2+) + (χ1−λ2+ − χ1+λ2−)

+ (χ̃1+λ̃2− − χ̃1−λ̃2+)− (λ̃1−χ̃2+ − λ̃1+χ̃2−) ,

where we introduced the notation:

ziH =
(
zi −

ri

2
H
)
, z̃iH =

(
z̃i −

ri

2
H̃
)
, i = 1, 2 . (6.30)

Let us discuss some important special cases. The product of two chiral multiplets

of R- and Z, Z̃-charge (r1, z1, z̃1) and (r2, z2, z̃2) give another chiral multiplet of charge

(r1+r2, z1+z2, z̃1+ z̃2). More generally, consider any holomorphic functionW (φi), with φi

the bottom components of some chiral multiplets. We have the associated chiral multiplet
(
φW , ψW

− , ψW
+ , FW

)
=

(
W, ψi

−∂iW, ψ
i
+∂iW, F

i∂iW + ψi
−ψ

j
+∂i∂jW

)
, (6.31)
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provided thatW is quasi-homogeneous with respect to the R- and Z, Z̃-symmetries, namely

∑

i

zi φ
i∂iW =

(∑

i

zi

)
W ,

∑

i

ri φ
i∂iW =

(∑

i

ri

)
W . (6.32)

We can also consider W̃
(
φ̃i
)
an antiholomorphic function of antichiral multiplets.

Similarly, the product of two twisted chiral multiplets gives another twisted chiral

multiplet. We can consider a general holomorphic function Ŵ (ωi), with ωi the bottom

components of some twisted chiral multiplets. Ŵ is the bottom component of a twisted

chiral multiplet with components(
ωŴ , ηŴ− , η̃Ŵ+ , GŴ

)
=

(
Ŵ , ηi−∂iŴ , η̃i+∂iŴ , Gi∂iŴ + ηi−η̃

j
+∂i∂jŴ

)
, (6.33)

We can also consider
˜̂
W

(
ω̃i
)
an antiholomorphic function of twisted antichiral multiplets.

Note that the formulas (6.31), (6.33) are like in flat space. (The only difference with

flat space, which will be important below, is that the supersymmetry variation of the

G-component of a twisted chiral multiplet is not a total derivative by itself.)

The product rules (6.28)–(6.29) are easily generalized. In particular, given any number

of general multiplets Sa of R- and Z, Z̃-charges ra, za, z̃a,

Sa =
(
Ca, χa

±, χ̃
a
±,M

a, M̃a, aaµ, σ
a, σ̃a, λa±, λ̃

a
±, D

a
)
, (6.34)

we can build a general multiplet K(Sa) of lowest component K = K(Ca) with K any

function. Let us define

Ka1a2···an =
∂

∂Ca1
· · · ∂

∂Can
K , (6.35)

which is totally symmetric in its indices. We will consider the case of K neutral and

quasi-homogeneous of degree zero:
∑

a

raCaKa = 0 ,
∑

a

zaCaKa = 0 ,
∑

a

z̃aCaKa = 0 . (6.36)

It is straightforward to extract the components of K. In particular, its D-term is given by

DK = Ka

(
Da − 1

2
zaHz̃

a
HC

a

)

+Kab

(
1

2
MaM̃ b − 1

2
σaσ̃a − 2D1C

aD1C
b − 2aa1a

b
1

)
,

+Kab

(
iχa

−D1χ̃
b
− − iD1χ

a
− χ̃

b
− − iχa

+D1χ̃
b
+ + iD1χ

a
+ χ̃

b
+

− i

2
zaH

(
χ̃a
−χ

b
+ − χ̃b

−χ
a
+

)
+
i

2
z̃aH

(
χa
−χ̃

b
+ − χb

−χ̃
a
+

)

−
(
λa+χ

b
− − λa−χ

b
+

)
+
(
λ̃a+χ̃

b
− − λ̃a−χ̃

b
+

))

+
1

2
Kabc

(
iσaχ̃b

−χ
c
+ + iσ̃aχb

−χ̃
c
+ + iMaχ̃b

−χ̃
c
+ + iM̃aχb

−χ
c
+

+ 2aa1χ̃+χ
c
+ − 2aa

1
χ̃b
−χ

c
−

)

− 1

2
Kabcd χ

a
+χ

b
−χ̃

c
+χ̃

d
− ,

(6.37)

where we sum over repeated indices (for instance, Kaz
a
Hφ

a =
∑

aKaz
a
Hφ

a).
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6.6 Vector and twisted vector multiplets

Consider a compact Lie group G and its Lie algebra g. Assume that G is a symmetry of

the theory which acts non-trivially on chiral multiplets Φ while leaving the twisted chiral

multiplets Ω invariant. Such a symmetry can be gauged with an ordinary vector multiplet

V , which is a general multiplet of vanishing R- and Z, Z̃-charges valued in the adjoint

representation of g and subject to the gauge freedom

exp (−2V) → exp
(
iΛ̃

)
exp (−2V) exp (−iΛ) , (6.38)

with Λ and Λ̃ some arbitrary g-valued chiral and anti-chiral multiplets of vanishing R- and

Z, Z̃-charges. The expression (6.38) is to be understood in terms of products of general

multiplets like in the previous subsection. One can use (6.38) to fix a WZ gauge

V =
(
0, 0, 0, 0, 0, aµ, σ, σ̃, λ±, λ̃±, D

)
. (6.39)

At first order in the gauge parameters, (6.38) reads

δΛV =
i

2

(
Λ− Λ̃

)
+
i

2

[
Λ + Λ̃,V

]
, (6.40)

when expanded around (6.39). The residual gauge transformations are given by Λ = Λ̃ =

(ω, 0, 0, 0), which corresponds to

δωaµ = ∂µω + i [ω, aµ] , δωσ = i [ω, σ] , δωσ̃ = i [ω, σ̃] ,

δωλ± = i [ω, λ±] , δωλ̃± = i
[
ω, λ̃±

]
, δωD = i [ω,D] .

(6.41)

This identifies aµ as a g-valued gauge field. The supersymmetry transformations of V in

WZ gauge are

δa1 = −iζ−λ̃− − iζ̃−λ− ,

δa1 = iζ+λ̃+ + iζ̃+λ+ ,

δσ = 2ζ−λ̃+ + 2ζ̃+λ− ,

δσ̃ = −2ζ̃−λ+ − 2ζ+λ̃− ,

δλ− = iζ−

(
D + 2if11 + H̃σ +

1

2
[σ, σ̃]

)
+ 2iζ+D1σ ,

δλ+ = iζ+

(
D − 2if11 +Hσ̃ − 1

2
[σ, σ̃]

)
+ 2iζ−D1σ̃ ,

δλ̃− = −iζ̃−
(
D − 2if11 +Hσ̃ +

1

2
[σ, σ̃]

)
− 2iζ̃+D1σ̃ ,

δλ̃+ = −iζ̃+
(
D + 2if11 + H̃σ − 1

2
[σ, σ̃]

)
− 2iζ̃−D1σ ,

δD = −2D1

(
ζ+λ̃+ − ζ̃+λ+

)
+ 2D1

(
ζ−λ̃− − ζ̃−λ−

)

−
[
σ, ζ+λ̃− − ζ̃−λ+

]
−
[
σ̃, ζ̃+λ− − ζ−λ̃+

]
.

(6.42)
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where we defined the field strength

fµν = ∂µaν − ∂νaµ − i[aµ, aν ] , (6.43)

and the covariant derivative Dµ is also gauge-covariant, for instance Dµλ± = ∇µλ± −
iAµλ± − i[aµ, λ±].

We can similarly consider the case when some gauge group Ĝ only acts non-trivially on

twisted chiral multiplets. The corresponding gauge field sits in a twisted vector multiplet

V̂, which is a ĝ-valued general multiplet with vanishing R- and Z, Z̃-charges subject to the

gauge freedom

exp
(
−2V̂

)
→ exp

(
i
˜̂
Λ

)
exp

(
−2V̂

)
exp

(
−iΛ̂

)
, (6.44)

with Λ̂ and
˜̂
Λ some arbitrary ĝ-valued twisted chiral and twisted antichiral multiplets. Let

us define the fields

b1 ≡ −a1 , b1 ≡ a1 , κ ≡ M̃ , κ̃ ≡M ,

ρ− ≡ −λ− − 2iD1χ̃+ , ρ+ ≡ λ+ + 2iD1χ̃− ,

ρ̃− ≡ −λ̃− + 2iD1χ+ , ρ̃+ ≡ λ̃+ − 2iD1χ− , E ≡ −D − 4D1D1C ,

(6.45)

in terms of the components of a ĝ-valued general multiplet of vanishing R,Z, Z̃-charges.

Using (6.44) we can fix a WZ gauge where only the components (6.45) are nonzero,

V̂ = (bµ, κ, κ̃, ρ±, ρ̃±, E) . (6.46)

The fields (6.45) transform as

δω̂bµ = ∂µω̂ + i[ω̂, bµ] , δω̂κ = i[ω̂, κ] , δω̂κ̃ = i[ω̂, κ̃] ,

δω̂ρ± = i[ω̂, ρ±] , δω̂ρ̃± = i[ω̂, ρ̃±] , δω̂E = i[ω̂, E] ,
(6.47)

under residual gauge transformation with Λ̂ =
˜̂
Λ = (ω̂, 0, 0, 0). In particular bµ is the gauge

field. The supersymmetry transformations in WZ gauge are

δb1 = −iζ−ρ̃− − iζ̃−ρ− ,

δb1 = iζ+ρ̃+ + iζ̃+ρ+ ,

δκ = −2ζ−ρ+ − 2ζ+ρ− ,

δκ̃ = 2ζ̃−ρ̃+ + 2ζ̃+ρ̃− ,

δρ− = iζ−

(
E + 2if̂11 +

1

2
[κ, κ̃]

)
− 2iζ̃+D1κ− iζ̃−Hκ ,

δρ+ = −iζ+
(
E + 2if̂11 −

1

2
[κ, κ̃]

)
+ 2iζ̃−D1κ+ iζ̃+H̃κ ,

δρ̃− = −iζ̃−
(
E − 2if̂11 +

1

2
[κ, κ̃]

)
+ 2iζ+D1κ̃+ iζ−H̃κ̃ ,

δρ̃+ = iζ̃+

(
E − 2if̂11 −

1

2
[κ, κ̃]

)
− 2iζ−D1κ̃− iζ+Hκ̃ ,

δE = 2D1

(
ζ+ρ̃+ − ζ̃+ρ+

)
+ 2D1

(
ζ−ρ̃− − ζ̃−ρ−

)

+
[
κ, ζ̃+ρ̃− − ζ̃−ρ̃+

]
+ [κ̃, ζ+ρ− − ζ−ρ+] ,

(6.48)
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where we defined the field strength

f̂µν = ∂µbν − ∂νbµ − i[bµ, bν ] , (6.49)

and Dµ is also gauge-covariant. Note that the scalars κ, κ̃ in the twisted vector multiplet

have R-charge ±2, respectively.

6.7 Field strength multiplets

In the case of an Abelian vector multiplet or twisted vector multiplet, one can define inter-

esting gauge-invariant field strength multiplets. Given an Abelian vector multiplet (6.39),

we can define the twisted chiral multiplet

Σ = (ω, η−, η̃+, G) =
(
σ,

√
2λ−, −

√
2λ̃+, iD − 2f11 + iH̃σ

)
, (6.50)

which in flat space superfield notation reads Σ = −iD−D̃+V , and the twisted antichiral

multiplet

Σ̃ =
(
ω̃, η̃−, η+, G̃

)
=

(
σ̃,

√
2λ̃−, −

√
2λ+, −iD − 2f11 − iHσ̃

)
, (6.51)

which in flat space reads Σ̃ = iD+D̃−V .
Similarly, given an Abelian twisted vector multiplet (6.46) we can define the chiral

multiplet

Σ̂ = (φ, ψ−, ψ+, F ) =
(
κ, −

√
2ρ−,

√
2ρ+, −iE + 2f̂11

)
, (6.52)

which in flat space reads Σ̂ = −iD̃−D̃+V̂ , and the antichiral multiplet

˜̂
Σ =

(
φ̃, ψ̃−, ψ̃+, F̃

)
=

(
κ̃, −

√
2ρ̃−,

√
2ρ̃+, iE + 2f̂11

)
, (6.53)

which in flat space reads
˜̂
Σ = iD+D−V̂. Note that Σ̂ and

˜̂
Σ have R-charge ±2 and vanishing

central charge.

6.8 Charged chiral and twisted chirall multiplets

Consider a chiral multiplet Φ and an antichiral multiplet Φ̃ in some representation R and

R of the gauge algebra g, respectively, with the infinitesimal gauge transformations

δΛΦ = iΛΦ , δΛΦ̃ = −iΦ̃Λ̃ . (6.54)

Here Λ is a R-valued chiral multiplet and Λ̃ a R-valued antichiral multiplet of vanishing R-

and Z, Z̃-charges. The supersymmetry transformations of Φ minimally coupled to a vector

multiplet V in WZ gauge are

δφ =
√
2(ζ+ψ− − ζ−ψ+) ,

δψ− =
√
2ζ−F − i

√
2ζ̃−

(
z − σ − r

2
H
)
φ+ 2i

√
2ζ̃+D1φ ,

δψ+ =
√
2ζ+F − i

√
2ζ̃+

(
z̃ − σ̃ − r

2
H̃
)
φ+ 2i

√
2ζ̃−D1φ ,

δF =
√
2i

(
z̃ − σ̃ − r

2
H̃
)
ζ̃+ψ− −

√
2i

(
z − σ − r

2
H
)
ζ̃−ψ+ ,

+ 2i
√
2ζ̃+D1ψ+ − 2i

√
2ζ̃−D1ψ− + 2i

(
ζ̃+λ̃− − ζ̃−λ̃+

)
φ ,

(6.55)

– 25 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
5

where Dµ is gauge covariant and the vector multiplet fields
(
aµ, σ, σ̃, λ±, λ̃±

)
are R-valued.

Similarly, for Φ̃ we have

δφ̃ = −
√
2(ζ̃+ψ̃− − ζ̃−ψ̃+) ,

δψ̃− =
√
2ζ̃−F̃ + i

√
2ζ−φ̃

(
z̃ − σ̃ − r

2
H̃
)
− 2i

√
2ζ+D1φ̃ ,

δψ̃+ =
√
2ζ̃+F̃ + i

√
2ζ+φ̃

(
z − σ − r

2
H
)
− 2i

√
2ζ−D1φ̃ ,

δF̃ =
√
2i ζ+ψ̃−

(
z − σ − r

2
H
)
−
√
2i ζ−ψ̃+

(
z̃ − σ̃ − r

2
H̃
)

+ 2i
√
2ζ+D1ψ̃+ − 2i

√
2ζ−D1ψ̃− + 2iφ̃ (ζ+λ− − ζ−λ+) ,

(6.56)

with R-valued vector multiplet fields.

Consider also a twisted chiral multiplet Ω and a twisted antichiral multiplet Ω̃

in the representations R and R of the gauge algebra ĝ, with the infinitesimal gauge

transformations

δ
Λ̂
Ω = iΩΛ̂ , δ

Λ̂
Ω̃ = −iΩ̃˜̂

Λ . (6.57)

Here Λ̂ is a R-valued twisted chiral multiplet and
˜̂
Λ a R-valued twisted antichiral multiplet

of vanishing R- and Z, Z̃-charges. The supersymmetry transformations of Ω minimally

coupled to a twisted vector multiplet V̂ in WZ gauge are

δω =
√
2
(
ζ̃+η− − ζ−η̃+

)
,

δη− =
√
2ζ−G− i

√
2ζ̃−κω + 2i

√
2ζ+D1ω ,

δη̃+ =
√
2ζ̃+G− i

√
2ζ+κ̃ω + 2i

√
2ζ̃−D1ω ,

δG = 2i
√
2
(
ζ+D1η̃+−ζ̃−D1η−

)
+i

√
2
(
ζ+κ̃η−−ζ̃−κη̃+

)
+2i

(
ζ+ρ̃− − ζ̃−ρ+

)
ω ,

(6.58)

where Dµ is also gauge covariant (including the gauge field bµ) and the twisted vector mul-

tiplet fields (bµ, κ, κ̃, ρ±, ρ̃±) are R-valued. Similarly, for the twisted antichiral multiplet:

δω̃ = −
√
2
(
ζ+η̃− − ζ̃−η+

)
,

δη̃− =
√
2ζ̃−G̃+ i

√
2ζ−ω̃κ̃− 2i

√
2ζ̃+D1ω̃ ,

δη+ =
√
2ζ+G̃+ i

√
2ζ̃+ω̃κ− 2i

√
2ζ−D1ω̃ ,

δG̃ = 2i
√
2
(
ζ̃+D1η+−ζ−D1η̃−

)
+i

√
2
(
ζ̃+η̃−κ−ζ−η+κ̃

)
+2i ω̃

(
ζ̃+ρ−−ζ−ρ̃+

)
,

(6.59)

with R-valued twisted vector multiplet fields.

6.9 Supersymmetric Lagrangians

Using the above results, it is straightforward to construct supersymmetric actions of

the form

S =

∫

Σ
d2x

√
gL , (6.60)

which generalize the usual flat space formulas to the case of rigid supersymmetry on a

Riemann surface Σ. We have the following possibilities:
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1. D-Terms. It is clear from (6.7) that theD-term of any general multiplet S of vanishing

R- and Z, Z̃-charge is a good supersymmetric Lagrangian,

LD = D . (6.61)

2. F-Terms. Given any chiral multiplet Φ with r = 2 and z = z̃ = 0, and an anti-chiral

multiplet Φ̃ with r = −2 and z = z̃ = 0, we have

LF = F + F̃ . (6.62)

3. Twisted F-Terms (G-Terms). Similarly, given any twisted chiral multiplet Ω and

twisted antichiral multiplet Ω̃, the Lagrangian

LG =
(
G− iH̃ω

)
+
(
G̃+ iHω̃

)
(6.63)

is supersymmetric. SuchG-terms are special to two dimensions and play an important

role in curved space backgrounds.

4. Improvement of the R-multiplet. Another interesting supersymmetric Lagrangian

can be obtained by coupling the R-symmetry gauge field Aµ to a conserved current

sitting in a linear multiplet J . Using (6.27) and the integrability condition for the

Killing spinor equation (see appendix B), one can see that the following Lagrangian

is supersymmetric:

LJ = Aµj
µ +

1

4
H̃K +

1

4
HK̃ − 1

4
RJ , (6.64)

where R is the Ricci scalar. This Lagrangian is special to curved space super-

symmetry (it vanishes in flat space). Note that the conserved current jµ in (6.64)

should be conserved off-shell. However, the Lagrangian (6.64) also appears as an im-

provement of the R-symmetry current by an ordinary (on-shell) conserved current,

j
(R)
µ → j

(R)
µ +∆r jµ, and it is supersymmetric at first order in the deformation param-

eter ∆r (seagull terms are needed at second order by gauge invariance). Note also that

there is no similar supersymmetric completion of Aµĵ
µ, with ĵµ the conserved current

of a twisted linear multiplet Ĵ , consistent with the fact that we cannot improve the

R-symmetry current by an axial symmetry (i.e. a symmetry acting on twisted chiral

multiplets) without also violating the R-multiplet constraints (2.1) [37].9

From the above rules we can directly work out all the standard Lagrangians. The

canonical kinetic term for a chiral multiplet Φ of charges r, z, z̃, coupled to a vector multiplet

V like in section 6.8, can be extracted from the D-term of −1
2 Tr Φ̃e

−2VΦ, with lowest

9This is the same as saying that we need r = 0 for our curved-space twisted chiral multiplets, a fact we

mentioned in section 6.3.
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component −1
2 Tr φ̃φ in Wess-Zumino gauge. One finds:

L
Φ̃Φ

= 2D1φ̃D1φ+ 2D1φ̃D1φ− F̃F + 2iψ̃+D1ψ+ − 2iψ̃−D1ψ− + φ̃Dφ

−
(
r

4
R− 1

2
Hz̃ − 1

2
H̃z

)
φ̃φ+ φ̃

(
z̃ − σ̃ − r

2
H̃
)(

z − σ − r

2
H
)
φ

+
1

2
φ̃ [σ, σ̃]φ+ iψ̃+

(
z̃ − σ̃ − r

2
H̃
)
ψ− − iψ̃−

(
z − σ − r

2
H
)
ψ+

+ i
√
2
(
ψ̃+λ̃− − ψ̃−λ̃+

)
φ+ i

√
2 φ̃ (λ+ψ− − λ−ψ+) .

(6.65)

Here R is the Ricci scalar, the covariant derivatives are also gauge covariant (with the

gauge field aµ) and the overall trace over the gauge group is implicit. We can also have

superpotential terms like in flat space. For any quasi-homogeneous holomorphic function

W of the chiral multiplets, of R-charge 2 and vanishing Z, Z̃-charges (and similarly for the

anti-chiral multiplets), we have

L
W+W̃

= F i∂iW + ψi
−ψ

j
+∂i∂jW + F̃ i∂iW̃ − ψ̃i

−ψ̃
j
+∂i∂jW̃ . (6.66)

Combining (6.65) with (6.66), we see that the superpotential contributes ∂iW̃∂iW to the

scalar potential, like in flat space.

The kinetic Lagrangian for the twisted chiral multiplet coupled to a twisted vector

multiplet V̂ is given by the D-term of 1
2 Tr Ω̃e

−2V̂Ω, with lowest component 1
2 Tr ω̃ω in

Wess-Zumino gauge. It reads

L
Ω̃Ω

= 2D1ω̃D1ω + 2D1ω̃D1ω − G̃G+ 2i η+D1η̃+ − 2i η̃−D1η−

+
1

2
ω̃ (κκ̃+ κ̃κ)ω + ω̃Eω − iη̃−κη̃+ + iη+κ̃η−

+ i
√
2 (η+ρ̃− − η̃−ρ+)ω + i

√
2 ω̃ (ρ̃+η− − ρ−η̃+) ,

(6.67)

where the covariant derivatives are also gauge-covariant (with the gauge field bµ) and the

trace over the gauge group is implicit. Using (6.33) and (6.63) we can also construct twisted

superpotential couplings from any holomorphic function Ŵ and any antiholomorphic

function
˜̂
W :

L
Ŵ+

˜̂
W

= Gi∂iŴ + ηi−η̃
j
+∂i∂jŴ + iH̃Ŵ + G̃i∂i

˜̂
W − η̃i−η

j
+∂i∂j

˜̂
W − iH˜̂

W . (6.68)

Note that the twisted superpotential Lagrangian contains an extra contribution iH̃W −
iH˜̂
W with respect to its flat space expression.

The Yang-Mills Lagrangian for the ordinary vector multiplet (6.39) in WZ gauge is

obtained by extracting the D-term of the gauge-invariant general multiplet of lowest com-

ponent 1
4 Tr (σ̃σ). This gives

LV =
1

2

(
2if11 +

1

2
H̃σ − 1

2
Hσ̃

)2

+D1σ̃D1σ +D1σ̃D1σ +
1

8
[σ, σ̃]2

+ 2iλ̃+D1λ+ − 2iλ̃−D1λ− + iλ̃−[σ, λ+]− iλ̃+[σ̃, λ−]

− 1

2

(
D +

1

2
H̃σ +

1

2
Hσ̃

)2

,

(6.69)
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where fµν is the field strength defined in (6.49). The trace over the gauge group and

the overall gauge coupling 1
g2

are implicit. For a U(1) vector multiplet, we can also con-

sider the Fayet-Iliopoulous (FI) coupling, which is the G-term of the field strength multi-

plet (6.50), (6.51):

LΣ = ξD + i
θ

2π
2if11 . (6.70)

Here ξ is the FI parameter and θ is the topological angle (of period 2π). They pair into

a holomorphic coupling τ = θ
2π − iξ, which can be viewed as the bottom component of a

background twisted chiral multiplet. (The FI term (6.70) is a special case of the twisted

superpotential (6.68) with Ŵ = 1
2τΣ.)

The Yang-Mills Lagrangian for a twisted vector multiplet (6.46) in WZ gauge is ob-

tained by extracting the D-term of the gauge invariant general multiplet of lowest compo-

nent −1
4 Tr(κ̃κ). We obtain

L
V̂
=

1

2

(
2if̂11

)2
+D1κ̃D1κ+D1κ̃D1κ+ 2iρ̃+D1ρ+ − 2iρ̃−D1ρ−

− 1

2
E2 +

1

8
[κ, κ̃]2 − 1

4

(
R− 2HH̃

)
κ̃κ− iH ρ̃−ρ+ + iH̃ ρ̃+ρ−

− iρ̃+[κ, ρ̃−] + iρ+[κ̃, ρ−] ,

(6.71)

where f̂11 is the field strength defined in (6.49), R is the Ricci scalar, and the trace over

the gauge group and the overall gauge coupling 1
ĝ2

are implicit. Note that the coupling to

curved space generally induces a mass term for the complex scalar in the twisted vector

multiplet. However, in the case of a background preserving four supercharges this effective

mass vanishes. For a U(1) twisted vector multiplet, we also have the twisted FI parameter,

which is the F -term of the twisted field strength chiral multiplet (6.52), (6.53):

L
Σ̂
= ξ̂E + i

θ̂

2π
2if̂11 . (6.72)

The twisted FI parameter and θ̂ angle are paired as τ̂ = θ̂
2π − iξ̂, which can be viewed as

the bottom component of a background chiral multiplet. (The FI term (6.72) is a special

case of the superpotential (6.66) with W = 1
2 τ̂ Σ̂.)

Finally, consider the improvement Lagrangian (6.64) with a linear multiplet J = F+F̃ ,

with F = F
(
Ωi

)
a holomorphic function of twisted chiral multiplets and F̃ = F̃

(
Ω̃i

)
an

antiholomorphic function of twisted antichiral multiplets. We find the supersymmetric

Lagrangian

L
F+F̃

= 2iA1 ∂1

(
F − F̃

)
− 2iA1 ∂1

(
F − F̃

)
− 1

4
R
(
F + F̃

)

+
i

2
H̃

(
G̃i∂iF̃ + ηi+η̃

j
−∂i∂jF̃

)
− i

2
H

(
Gi∂iF + ηi−η̃

j
+∂i∂jF

)
,

(6.73)

with R the Ricci scalar. Note that (6.73) leads to a dimensionless action whenever ωi, ω̃i are

themselves dimensionless. This provides an interesting finite counterterm on any Riemann

surface of nonzero curvature — in particular on the sphere [38].10

10We thank Zohar Komargodski for interesting discussions on this point.
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6.10 Supersymmetric non-linear sigma models

Finally, using the formula (6.37) we can write down the curved-space supersymmetric

Lagrangian for any non-linear sigma model with flat-space Lagrangian

L
K(Φ̃,Φ) =

∫
d4θK

(
Φ̃,Φ

)
, L

K(Ω̃,Ω) =

∫
d4θK

(
Ω̃,Ω

)
, (6.74)

for some chiral multiplets Φi or twisted chiral multiplets Ωn. The curved-space

Lagrangians presented below generalize the ones given in [39] for the round S2 without

R-symmetry flux.11

Consider first a theory of chiral multiplets Φi with charges ri, zi, z̃i and antichiral multi-

plets Φ̃i of charges ri = −ri, zi = −zi, z̃i = −z̃i. Defining the Kähler metric on target space

gij = Kij , (6.75)

the corresponding non-vanishing Christoffel symbols are given by

Γk
ij = gklKijl , Γk

ij
= glkKijl . (6.76)

We also denote ordinary derivatives of the metric by a comma, for instance gij,k = Kijk.

Up to a total derivative, the Lagrangian is given by −1
2D

K:

L
K(Φ̃,Φ)

= gij

(
2D1φ

iD1φ̃
j + 2D1φ

iD1φ̃
j − F iF̃ j − 1

2

(
ziHz̃

j
H + z

j
Hz̃

i
H

)
φiφ̃j

)

− 1

2
Ki

(
ri

4
R− 1

2

(
ziH̃+ z̃iH

))
φi +

1

2
Ki

(
ri

4
R− 1

2

(
ziH̃+ z̃iH

))
φ̃i ,

+ gij

(
2iψ̃j

+D1ψ
i
+ − 2iψ̃j

−D1ψ
i
−

)

− i

2
ψ̃
j
−ψ

i
+

(
glj∇i(zHφ)

l − gil∇j

(
zHφ̃

)l
)

+
i

2
ψ̃
j
+ψ

i
−

(
glj∇i(z̃Hφ)

l − gil∇j

(
z̃Hφ̃

)l
)

− gik,j ψ
i
−ψ

j
+F̃

k + gki,j ψ̃
i
−ψ̃

j
+F

k + gij,kl ψ
i
+ψ

k
−ψ̃

k
+ψ̃

l
− ,

(6.77)

where we have defined the covariant derivatives

Dµψ
i
± = Dµψ

i
± + Γi

jk

(
Dµφ

k
)
ψ
j
± ,

∇iX
j = ∂iX

j + Γj
ikX

k ,

∇iX̃
j = ∂iX̃

j + Γj

ik
X̃k

(6.78)

and used the notation (zHφ)
l ≡ zlHφ

l, etc.

11We could also consider more general sigma models involving both chiral and twisted chiral multiplets,

as well as the semi-chiral multiplets of appendix E — see for instance [40] for a discussion in flat space. We

restrict ourselves to (6.74) for simplicity.
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Note the presence in (6.77) of the extra terms in Ki,Ki arising from coupling to

curved space (or from the central charge, which could be there in flat space). The quasi-

homogeneity conditions (6.36) ensure that the curved space Lagrangian (6.77) is invariant

under Kähler transformations

K
(
φ̃i, φi

)
→ K

(
φ̃i, φi

)
+ f

(
φi
)
+ f̃

(
φ̃i
)
, (6.79)

as in flat space.12

Similarly, the Lagrangian of a non-linear sigma model of twisted chiral multiplets Ωn

and twisted antichiral multiplets Ω̃n, which have vanishing charges, is given by 1
2D

K. We

introduce the Kähler metric on target space

gmn = Kmm , (6.80)

with non-vanishing Christoffel symbols

Γp
mn = gpqKmnq , Γp

mn = gpqKmnq . (6.81)

Up to a total derivative, we obtain the non-linear sigma model Lagrangian

L
K(Ω̃,Ω)

= gmn

(
2D1ω

mD1ω̃
n + 2D1ω

mD1ω̃
n −GmG̃n

)
,

+ gmn

(
2iηn+D1η̃

m
+ − 2iη̃n−D1η

m
−

)

− gmn,p η
m
− η̃

p
+G̃

n + gmn,p η̃
n
−η

p
+G

m − gmn,pq η̃
m
+ η̃

n
−η

p
+η

q
− ,

(6.82)

where

Dµη̃
m
+ = Dµη̃

m
+ + Γm

np(Dµω
p)η̃n+ ,

Dµη
m
− = Dµη

m
− + Γm

np(Dµω
p)ηn− .

(6.83)

The non-linear sigma model Lagrangian for twisted chiral multiplets (6.82) is invariant

under Kähler transformations

K
(
ω̃n, ωn

)
→ K

(
ω̃n, ωn

)
+ g (ωn) + g̃

(
ω̃n

)
. (6.84)
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ulating discussions and comments. A preliminary version of these results was presented by

SC at SUSY 2013 at ICTP Trieste (26-31 August 2013). The work of SC is supported in

part by the STFC Consolidated Grant ST/J000353/1. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the funding agencies.

12We thank Guido Festuccia for useful discussions on this point.

– 31 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
5

A Conventions

A.1 Flat space conventions

We work in Euclidean signature.13 The flat-space metric is δµν , µ, ν = 1, 2 and the Levi-

Civita symbol ǫµν is normalized to ǫ12 = 1. We mostly work in complex coordinates

z = x1 + ix2, z = x2 − ix2, in which case δzz = 1
2 , δzz = δzz = 0 and ǫzz = −2i. In

particular, any covector Xµ is decomposed to

Xz =
1

2
(X1 − iX2) , Xz =

1

2
(X1 + iX2) . (A.1)

One may call the holomorphic and antiholomorphic components Xz and Xz the left-moving

and right-moving components, respectively.

The minimal spinors in two Euclidean dimensions are the Weyl spinors ψ− and ψ+

of spin 1
2 and −1

2 , respectively, under Spin(2) ∼= U(1). It is sometimes useful to consider

Dirac spinors

ψ = (ψα) =

(
ψ−

ψ+

)
. (A.2)

Our conventions for the two-dimensional gamma matrices are (γµ)αβ =
(
−σ1,−σ2

)α
β

when µ runs over x1, x2, and γ3 = σ3, with σa the Pauli matrices. They satisfy γµγν =

δµν + iǫµνγ3 and
{
γ3, γµ

}
= 0. In complex coordinates, we have

γz =

(
0 0

−1 0

)
, γz =

(
0 −1

0 0

)
. (A.3)

Dirac indices are raised and lowered with the epsilon symbols ǫαβ , ǫαβ and are contracted

from upper-left to lower-right in the usual way, so that

ψχ = ψ+χ− − ψ−χ− , ψγ3χ = ψ+χ− + ψ−χ− . (A.4)

We could also write the covector (A.1) as a bispinor

X−− = −4Xz , X++ = 4Xz , (A.5)

which manifests the fact that Xz and Xz are objects of definite spin ±1 in flat space.

Flat space superfields are functions of the superspace coordinates
(
z, z, θ±, θ̃±

)
. The

vector R-charge of θ± and θ̃± are ±1, respectively. The supercharges Q±, Q̃± act on

superspace as

Q+ =
∂

∂θ+
+ 2iθ̃+∂z , Q̃+ = − ∂

∂θ̃+
− 2iθ+∂z ,

Q− =
∂

∂θ−
− 2iθ̃−∂z , Q̃− = − ∂

∂θ̃−
+ 2iθ−∂z .

(A.6)

13Our flat-space conventions are the analytical continuations to the Euclidean of the ones of [19]

(appendix C). In particular vectors are analytically continued as
(
X1, X2

)
=

(
X1, iX0

)
, and covectors

as (X1, X2) = (X1,−iX0).
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The supersymmetry covariant derivatives read

D+ =
∂

∂θ+
− 2iθ̃+∂z , D̃+ = − ∂

∂θ̃+
+ 2iθ+∂z ,

D− =
∂

∂θ−
+ 2iθ̃−∂z , D̃− = − ∂

∂θ̃−
− 2iθ−∂z ,

(A.7)

whose non-vanishing anticommutators are
{
D−, D̃−

}
= −4i∂z and

{
D+, D̃+

}
= 4i∂z.

A.2 Curved space conventions

Consider an orientable two-manifold Σ with a Riemannian metric gµν . Any such manifold

is Hermitian and Kähler. The complex structure Jµ
ν is given explicitly by the Levi-Civita

tensor, Jµν = −ǫµν , which is a closed two-form. We therefore consider Σ with Kähler metric

ds2 = 2gzz(z, z)dzdz . (A.8)

To describe spinors, we introduce a complex frame

e1 = g
1

4dz , e1 = g
1

4dz , (A.9)

where g is the determinant of the metric defined through
√
g = 2gzz(z, z) (the factor of

2 in this definition simplifies some formulas). This is the most natural choice of frame in

two dimensions and we always use it throughout this paper. For simplicity of notation, we

often write all tensors including covariant derivatives in the frame basis. Frame indices are

raised and lowered with δ11 = 2, δ11 =
1
2 .

The non-zero Christoffel symbols for the Levi-Civita connection of the metric (A.8) are

Γz
zz =

1

2
∂z log g , Γz

zz =
1

2
∂z log g . (A.10)

The corresponding spin connection ωµ reads

ωz = − i

4
∂z log g , ωz =

i

4
∂z log g , (A.11)

which is really an Abelian connection on the U(1) spin bundle. We defined ωµ ≡ −2iωµ11,

where ωµab is the spin connection in any frame {ea}. The Riemann tensor Rµνρσ has only

one independent component. In complex coordinates,

Rzzzz = igzz (∂zωz − ∂zωz) = −1

2
gzzgzzR , R =

2√
g
∂z∂z log g , (A.12)

with R the Ricci scalar. Note that in our conventions R = −2 on the round sphere of unit

radius. The covariant derivative on any field ϕ(s) of spin s is given by

∇µϕ(s) = (∂µ − isωµ)ϕ(s) . (A.13)

In particular, on left- and right-moving spinors,

∇µψ− =

(
∂µ − i

2
ωµ

)
ψ− , ∇µψ+ =

(
∂µ +

i

2
ωµ

)
ψ+ . (A.14)
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On one-forms, we have

∇µX1 = ez1 ∇µXz , ∇µX1 = ez
1
∇µXz , (A.15)

with ∇µ on the right-hand-side the Levi-Civita connection. (Note that X1 and X1 in the

frame basis are fields of spin ±1, respectively.)

Another important operator is the Lie derivative on a field of arbitrary spin along a

(Killing) vector K:

LKϕ(s) =

[
Kµ(∂µ − isωµ) +

is

2
ǫµν∇µKν

]
ϕ(s) . (A.16)

On can easily check that LK is metric-independent for any vector K and that it reduces

to the usual Lie derivative on forms for s ∈ Z whenever K is Killing.

B Some useful relations

In the frame basis, the Killing spinor equation (2.12) reads

D1ζ− = 0 , D1ζ− =
1

2
Hζ+ , D1ζ+ =

1

2
H̃ζ− , D1ζ+ = 0 , (B.1)

while (2.13) reads

D1ζ̃− = 0 , D1ζ̃− =
1

2
H̃ζ̃+ , D1ζ̃+ =

1

2
Hζ̃− , D1ζ̃+ = 0 , (B.2)

where the covariant derivative is defined as in (6.5), with r = ±1 and z = z̃ = 0 for ζ, ζ̃,

respectively. Let us define the R-symmetry field strength

F11 ≡ ∂1A1 − ∂1A1 . (B.3)

The following relations directly follow from (B.1):

2ζ−F11 +
i

4
ζ−

(
R− 2HH̃

)
− iζ+∂1H = 0 ,

2ζ+F11 −
i

4
ζ+

(
R− 2HH̃

)
+ iζ−∂1H̃ = 0 .

(B.4)

Similarly, from (B.2) we find

−2ζ̃−F11 +
i

4
ζ−

(
R− 2HH̃

)
− iζ̃+∂1H̃ = 0 ,

−2ζ̃+F11 −
i

4
ζ+

(
R− 2HH̃

)
+ iζ̃−∂1H = 0 .

(B.5)

Equations (B.4), (B.5) are very useful for the computations of section 6. These relations

also imply that

Kµ∂µH = 0 , Kµ∂µH̃ = 0 , (B.6)

where Kµ is the Killing vector (4.1).
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C Dimensional reduction and uplift to three and four dimensions

Many of the two-dimensional supersymmetric backgrounds discussed in this paper can be

obtained from twisted dimensional reduction from three or four dimensions, and many of

the two-dimensional supersymmetry transformations and Lagrangians of section 6 can be

formally obtained by dimensional reduction of the three-dimensional results of [16]. In this

section, we briefly spell out this relation and discuss some interesting examples. (We refer to

the appendix of [16] for a thorough discussion of the same dimensional reduction procedure

from four to three dimensions.)

C.1 Relation to rigid supersymmetry on three-manifolds

Three-dimensional rigid supersymmetry for 3d N = 2 theories with an R-symmetry was

systematically studied in [16]. The three-dimensional Killing spinor equation reads [13, 16]

(∇M − iAM )ζ = −1

2
HγMζ − iVMζ −

1

2
ǫMNRV

NγRζ , (C.1)

where M,N, · · · denotes three-dimensional coordinate indices and H,AM ,VM denote the

three-dimensional supergravity backgrounds fields. Let us consider M3 a fiber bundle over

a two-manifold Σ, with metric

ds2 = η2 + gΣµν(x) dx
µdxν , η = dτ + cµ(x) dx

µ , (C.2)

where µ, ν run along Σ, gΣµν is the two-dimensional metric, and τ is the coordinate along

the fiber. It is convenient to choose a frame EA,

E1 = η , E2 = e1 , E3 = e2 , (C.3)

with ea (a = 1, 2) the two-dimensional frame, gΣµν = δab e
a
µe

b
ν . The three-dimensional

gamma-matrices are similarly related to the two-dimensional ones by γ1 = γ3, γ2 = γ1,

γ3 = γ2. Let us assume that we have a Killing spinor ζ which is τ -independent in this

frame. One can check that the projection of the Killing spinor equation (C.1) along E1 = η

is solved without imposing additional constraints on ζ if

H =
i

2
ǫµν∂µcν , V1 = A1 , Va = 0 . (C.4)

The remaining two legs of (C.1) reproduce the two-dimensional Killing spinor

equation (2.17),

(∇µ − iAµ)ζ = −1

2
Hγµζ +

i

2
Gγµγ

3ζ , (C.5)

once we identify

H = 2H , G = ηMAM = ηMVM , Aµ = Aµ −
(
ηMAM

)
ηµ . (C.6)

The same identifications also give a consistent reduction of the Killing spinor equation for

the Killing spinor ζ̃ of opposite R-charge.

– 35 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
5

Let us denote by CM the three-dimensional graviphoton, with VM = −iǫMNR∂
NCR.

Due to (C.4) it can be taken along Σ only. If we define CH
µ = −cµ and CG

µ = Cµ, the

two-dimensional graviphotons Cµ, C̃µ with field strengths (2.9) are given by

Cµ = CH
µ + iCG

µ , C̃µ = CH
µ − iCG

µ . (C.7)

Finally, let us mention that momentum along τ gives rises to a real central charge Z(i), in

addition to the three-dimensional real central charge Z(r). One then defines the complex

central charge

Z = Z(r) + iZ(i) , Z̃ = Z(r) − iZ(i) . (C.8)

The covariant derivative that appears on fields of definite charges R,Z(r), Z(i) after dimen-

sional reduction is Dµ = ∇µ − irAµ − iz(r)C
G
µ + iz(i)C

H
µ .

By carefully performing this dimensional reduction, it is straightforward to derive

the supersymmetry algebra (6.1) and the supersymmetry transformations for the general

multiplet from the corresponding formulas in [16].

C.2 Uplift of two-dimensional backgrounds to higher dimensions

Conversely, it is easy to consider the higher-dimensional uplift of generic two-dimensional

backgrounds. Given such a background
(
gΣµν , Aµ, C

H
µ , C

G
µ

)
with

H = −iǫµν∂µCH
ν , G = −iǫµν∂µCG

ν , (C.9)

we can directly write down a three-dimensional background

ds2(M3) = η2 + gΣµν(x) dx
µdxν , η = dτ − CH

µ (x) dxµ ,

H(3d) =
1

2
H , A(3d) = ηG+Aµdx

µ , V(3d) = ηG ,
(C.10)

where M3 is a circle bundle over Σ with coordinates (τ, xµ). The background (C.10)

preserves the same amount of supersymmetry as its two-dimensional reduction.14 Since

the graviphoton CH
µ appears as it does in (C.10), a two-dimensional background must

have a purely imaginary value of H in order to admit an uplift to a three-dimensional

background with real metric.

We can similarly uplift (C.10) to a four dimensional background [16],

ds2(M4) = η2 + κ2 + gΣµν(x) dx
µdxν , κ = dy + CG

µ (x) dxµ ,

A(4d) =
1

2
(κH + ηG) +Aµdx

µ , V(4d) =
1

2
(κH + ηG) ,

(C.11)

with η defined in (C.10). The resulting four-manifold M4 is (locally) a T 2 fibration over

Σ [12], with coordinates τ, y along the fiber. This further uplift is allowed if and only if G

is also purely imaginary.

As a simple example, let us consider the maximally supersymmetric S2 (5.2), which

reads (using coordinates θ, ϕ)

ds2 = R2
S2

(
dθ2 + sin2 θdϕ2

)
, Aµ = 0 , H = i

λ2ax + λ−2
ax

2RS2

, G =
λ2ax − λ−2

ax

2RS2

, (C.12)

14Since (C.10) is a Seifert manifold it preserves at least two supercharges [16].
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with λax ∈ C. To admit an uplift to three dimensions, H should be purely imaginary

and therefore λax should be either real or a pure phase. In the former case we can take

λ2ax = ±eα, α ∈ R, and the three dimensional background (C.10) is

ds2 =
R2

S3

4

(
cosh2 α(dψ − cos θdϕ)2 + dθ2 + sin2 θdϕ2

)
,

H(3d) = ±icoshα
RS3

, A(3d) = V(3d) =
sinh (2α)

2RS3

(dψ − cos θdϕ) ,

(C.13)

where we defined the coordinate ψ = ± 1
R

S2 coshα
τ and the radius RS3

= 2RS2 . This is

the squashed three-sphere S3
b with SU(2)× U(1) isometry [41], with squashing parameter

b = ±eα.15 Note that in this case G in (C.12) is real and therefore (C.13) does not uplift

further to four dimensions. The second possibility is to take λax = ±eiβ , β ∈
[
−π

2 ,
π
2

]
. For

β 6= ±π
2 , the uplift of (C.12) is again to S3

b in three dimensions with squashing parameter

b = ±eiβ ,

ds2 =
R2

S3

4

(
cos2 β(dψ − cos θdϕ)2 + dθ2 + sin2 θdϕ2

)
,

H(3d) = ±icosβ
RS3

, A(3d) = V(3d) = i
sin (2β)

2RS3

(dψ − cos θdϕ) .

(C.14)

In the limit β = ±π
2 , the background (C.12) uplifts instead to the S2 × S1 background

with maximal supersymmetry of [42, 43],

ds2 = R2
S1du

2 +R2
S2

(
dθ2 + sin2 θdϕ2

)
,

H(3d) = 0 , A(3d) = V(3d) = ±iRS1

RS2

du .
(C.15)

In the latter two cases, G is purely imaginary and we can further uplift to four dimensions.

In terms of the coordinates

u =
1

RS1

(cosβ y + sinβ τ) , ψ = ± 1

RS2

(sinβ y − cosβ τ) , (C.16)

the four-dimensional uplift (C.11) of (C.12) with λ2ax = ±eiβ gives

ds2 = R2
S1du

2 +
R2

S3

4

(
(dψ − cos θdϕ)2 + dθ2 + sin2 θdϕ2

)
,

A(4d) = V(4d) = ± i

RS3

du ,

(C.17)

with RS3 = 2RS2 , which is simply S3 × S1 with the round metric. Note that we obtain

the same four-dimensional background for any value of λax = ±eiβ , since β is merely a

rotation of the coordinates (C.16). More generally, two-dimensional backgrounds related

by an axial R-symmetry rotation uplift locally to the same four-dimensional geometry, the

axial R-symmetry being merely a frame rotation of the T 2 fiber. This is because the axial

15One can compare in particular to equation (5.11) of [16].
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R-symmetry of 2d N = (2, 2) supersymmetry originates from the rotation symmetry of the

34 plane when reducing 4d N = 1 supersymmetry down to two dimensions.

Similar uplift formulas apply to the U(1)-isometric squashed S2 background of

section 4.3 and axial R-symmetry rotations thereof (with λax a pure phase or real), leading

generically to metrics with U(1)2 isometry on the 3-sphere.

D Embeddings into the general multiplet

In this appendix, we spell out the embedding of the supersymmetry multiplets discussed

in sections 6.3 and 6.4 into the general multiplet S with components (6.3).

1. Chiral multiplet. For a chiral multiplet Φ of charges r, z, z̃, we have the embedding

C = φ , χ± = −
√
2iψ± , χ̃± = 0 , M = −2iF , M̃ = 0 ,

a1 =−iD1φ , a1 =−iD1φ , σ =
(
z − r

2
H
)
φ , σ̃ =

(
z̃ − r

2
H̃
)
φ ,

λ± = 0 , λ̃± = 0 , D =

[
r

4
R− 1

2

(
H̃z +Hz̃

)]
φ . (D.1)

2. Antichiral multiplet. For an antichiral multiplet Φ̃ of charges −r,−z,−z̃, we have

C = φ̃ , χ± = 0 , χ̃± =
√
2iψ̃± , M = 0 , M̃ = 2iF̃ ,

a1 = iD1φ̃ , a1 = iD1φ̃ , σ =
(
z − r

2
H
)
φ̃ , σ̃ =

(
z̃ − r

2
H̃
)
φ̃ ,

λ± = 0 , λ̃± = 0 , D =

[
r

4
R− 1

2

(
H̃z +Hz̃

)]
φ̃ . (D.2)

3. Twisted chiral multiplet. The twisted chiral multiplet Ω has charges r = z = z̃ = 0

and embedding

C =ω, χ−=0, χ+ = −i
√
2η̃+ , χ̃− = −i

√
2η− , χ̃+ = 0 ,

M = M̃ = 0 , a1 = iD1ω , a1 = −iD1ω , σ = 0, σ̃=2iG,

λ− = 0 , λ+=−2
√
2D1η− , λ̃−=2

√
2D1η̃+ , λ̃+= 0,

D =−4D1D1ω . (D.3)

4. Twisted antichiral multiplet. The twisted antichiral multiplet Ω̃ has charges r = z =

z̃ = 0 and embedding

C = ω̃ , χ−= i
√
2η̃− , χ+= 0 , χ̃−= 0 , χ̃+= i

√
2η+,

M = M̃ = 0 , a1=−iD1ω̃ , a1 = iD1ω̃, σ = −2iG̃ , σ̃ = 0 ,

λ−= 2
√
2D1η+ , λ+= 0 , λ̃−= 0 , λ̃+=−2

√
2D1η̃−

D =−4D1D1ω̃ . (D.4)
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5. Linear multiplet. The linear multiplet J has charges r = z = z̃ = 0 and embedding

C = J , χ± = j± , χ̃± = j̃± , M = M̃ = 0 ,

a1 = −j1 , a1 = −j1 , σ = −K , σ̃ = −K̃ ,

λ− = −2iD1j̃+ , λ+ = −2iD1j̃− , λ̃− = 2iD1j+ , λ̃+ = 2iD1j− ,

D = −4D1D1J , (D.5)

where jµ is a conserved current, ∇µj
µ = 0.

6. Twisted linear multiplet. The twisted linear multiplet Ĵ has charges r = z = z̃ = 0

and embedding

C = Ĵ , χ± = ĵ± , χ̃± =
˜̂
j± , M = K̂ , M̃ =

˜̂
K ,

a1 = ĵ1 , a1 = −ĵ1 , σ = σ̃ = 0 , λ± = 0 , λ̃± = 0 , D = 0 , (D.6)

where ĵµ is a conserved current, ∇µĵ
µ = 0.

E Semichirals multiplets in curved space

In flat space, a left semi-chiral multipletX and a left semi-antichiral multiplet X̃ are defined

by the superspace constraints [33]

D̃+X = 0 , D+X̃ = 0 . (E.1)

Similarly, a right semi-chiral multiplet Y and a right semi-antichiral multiplet Ỹ satisfy

D̃−Y = 0 , D−Ỹ = 0 . (E.2)

These multiplets have 4+4 components. In this appendix, we briefly discuss the semi-chiral

multiplets in our formalism, which allows to discuss their coupling to curved space. We

will not consider the gauging of these multiplets, which has been investigated in flat space

relatively recently [33, 35, 44, 45].

E.1 Semi-chiral multiplets supersymmetry transformations

A left semi-chiral multiplet X of charges r, z, z̃ is a general multiplet with the single con-

straint χ̃+ = 0. It has components

X =
(
X,ψL

−, ψ
L
+, η̃−, F

L, v21, κ̃
L, ρ̃−

)
, (E.3)

which are embedded into the general multiplet (6.3) as

C = X , χ± = −
√
2iψL

± , χ̃− = −
√
2iη̃− , χ̃+ = 0 ,

M = −2iFL , M̃ = 0 , a1 = v21 , a1 = −iD1X , σ = zHX , σ̃ = κ̃L ,

λ− =
√
2zHη̃− , λ+ = −2

√
2D1η̃− , λ̃− = ρ̃− , λ̃+ = 0 ,

D = 2iD1v21 − 2D1D1X − 1

2
zHκ̃

L

−
(
H̃zH − 1

2
zHz̃H + 2irF11 −

r

4

(
R− 2HH̃

))
X ,

(E.4)
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where we used the notation (6.30). Its susy variations are

δX =
√
2(ζ+ψ

L
− − ζ−ψ

L
+) +

√
2ζ̃+η̃− ,

δψL
− =

√
2ζ−F

L − i
√
2ζ̃−zHX + i

√
2ζ̃+ (D1X + iv21) ,

δψL
+ =

√
2ζ+F

L − i√
2
ζ̃+

(
κ̃L + z̃HX

)
+ 2i

√
2ζ̃−D1X ,

δη̃− = − i√
2
ζ−

(
κ̃L − z̃HX

)
+ i

√
2ζ+ (D1X − iv21) ,

δFL = −iζ̃+ρ̃− + i
√
2z̃Hζ̃+ψ

L
− − i

√
2zHζ̃−ψ

L
+ + 2i

√
2ζ̃+D1ψ

L
+ − 2i

√
2ζ̃−D1ψ

L
− ,

δv21 = −iζ−ρ̃− − i
√
2ζ̃−zHη− − i

√
2D1

(
ζ+ψ

L
− − ζ−ψ

L
+ − ζ̃+η̃−

)
,

δκ̃L = 4
√
2ζ̃−D1η̃− − 2ζ+ρ̃− +

√
2z̃H

(
ζ+ψ

L
− − ζ−ψ

L
+ − ζ̃+η̃−

)
,

δρ̃− = −iζ̃−
(
4iD1v21 − 4D1D1X +Hκ̃L − zHκ̃

L
)

+ iζ̃−

(
H̃zH − zHz̃H + 2irF11 −

r

4

(
R− 2HH̃

))
X − 2iζ̃+

(
D1κ̃

L − iz̃Hv21
)
.

(E.5)

Note that, in the present formalism, these multiplet would be best called semi-ugly mul-

tiplets. Similarly, a left semi-antichiral multiplet X of charges −r,−z,−z̃ corresponds to

χ+ = 0 in the general multiplet. It has components

X̃ =
(
X̃, η−, ψ̃

L
−, ψ̃

L
+, F̃

L, v11, κ
L, ρ−

)
, (E.6)

with embedding into the general multiplet

C = X̃ , χ− =
√
2iη− , χ+ = 0 , χ̃± =

√
2iψ̃L

±

M = 0 , M̃ = 2iF̃L , a1 = v11 , a1 = iD1X̃ , σ = κL , σ̃ = z̃HX̃ ,

λ− = ρ− , λ+ = 0 , λ̃− =
√
2z̃Hη− , λ̃+ = −2

√
2D1η− ,

D = −2iD1v11−2D1D1X̃− 1

2
z̃Hκ

L−
(
Hz̃H− 1

2
zHz̃H−2irF11−

r

4

(
R−2HH̃

))
X̃ .

(E.7)

Its supersymmetry transformations are

δX̃ = −
√
2ζ+η− −

√
2
(
ζ̃+ψ̃

L
− − ζ̃−ψ̃

L
+

)
,

δη− =
i√
2
ζ̃−

(
κL − zHX̃

)
− i

√
2ζ̃+

(
D1X̃ + iv11

)
,

δψ̃L
− =

√
2ζ̃−F̃

L + i
√
2ζ−z̃HX̃ − i

√
2ζ+

(
D1X̃ − iv11

)
,

δψ̃L
+ =

√
2ζ̃+F̃

L +
i√
2
ζ+

(
κL + zHX̃

)
+−2i

√
2ζ−D1X̃ ,

δF̃L = −iζ+ρ− + i
√
2zHζ+ψ̃

L
− − i

√
2z̃Hζ−ψ̃

L
+ + 2i

√
2ζ+D1ψ̃

L
+ − 2i

√
2ζ−D1ψ̃

L
− ,

δv11 = −iζ̃−ρ− − i
√
2ζ−z̃Hη̃− − i

√
2D1

(
ζ̃+ψ̃

L
− − ζ̃−ψ̃

L
+ − ζ+η−

)
,

δκL = −4
√
2ζ−D1η− + 2ζ̃+ρ− −

√
2zH

(
ζ̃+ψ̃

L
− − ζ̃−ψ̃

L
+ − ζ+η−

)
,

δρ− = iζ−

(
−4iD1v11 − 4D1D1X̃ + H̃κL − z̃Hκ

L
)

− iζ−

(
Hz̃H − zHz̃H − 2irF11 −

r

4

(
R−2HH̃

))
X̃+2iζ+

(
D1κ

L + izHv11
)
.

(E.8)
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A right semi-chiral multiplet Y of charges r, z, z̃ is a general multiplet with the con-

straint χ̃− = 0. It has components

Y =
(
Y, ψR

−, ψ
R
+, η̃+, F

R, v21, κ
R, ρ̃+

)
, (E.9)

and embedding

C = Y , χ± = −
√
2iψR

± , χ̃− = 0 , χ̃+ = −
√
2iη̃+ ,

M = −2iFR , M̃ = 0 , a1 = −iD1Y , a1 = v21 , σ = κR , σ̃ = z̃HY ,

λ− = −2
√
2D1η̃+ , λ+ =

√
2z̃Hη̃+ , λ̃− = 0 , λ̃+ = ρ̃+ ,

D = 2iD1v21 − 2D1D1Y − 1

2
z̃Hκ

R

−
(
Hz̃H − 1

2
zHz̃H − 2irF11 −

r

4
(R− 2HH̃)

)
Y . (E.10)

Its supersymmetry transformations are

δY =
√
2
(
ζ+ψ

R
− − ζ−ψ

R
+

)
−
√
2ζ̃−η̃+ ,

δψR
− =

√
2ζ−F

R − i√
2
ζ̃−

(
κR + zHY

)
+ 2i

√
2ζ̃+D1Y ,

δψR
+ =

√
2ζ+F

R − i
√
2ζ̃+z̃HY + i

√
2ζ̃−(D1Y + iv21) ,

δη̃+ = − i√
2
ζ+

(
κ̃R − zHY

)
+ i

√
2ζ− (D1Y − iv21) ,

δFR = iζ̃−ρ̃+ + i
√
2z̃Hζ̃+ψ

R
− − i

√
2zHζ̃−ψ

R
+ + 2i

√
2ζ̃+D1ψ

R
+ − 2i

√
2ζ̃−D1ψ

R
− ,

δv21 = iζ+ρ̃+ + i
√
2ζ̃+z̃Hη̃+ − i

√
2D1

(
ζ+ψ

R
− − ζ−ψ

R
+ + ζ̃−η̃+

)
,

δκ̃R = −4
√
2ζ̃+D1η̃+ + 2ζ−ρ̃+ +

√
2zH

(
ζ+ψ

R
− − ζ−ψ

R
+ + ζ̃−η̃+

)
,

δρ̃+ = −iζ̃+
(
4iD1v21 − 4D1D1Y + H̃κR − z̃Hκ

R
)

+ iζ̃+

(
Hz̃H−zHz̃H−2irF11 −

r

4

(
R−2HH̃

))
Y −2iζ̃−

(
D1κ

R − izHv21
)
.

(E.11)

Similarly, the right semi-antichiral of charge −r,−z,−z̃ corresponds to the constraint χ− =

0. It has components

Ỹ =
(
Ỹ , η+, ψ̃

R
−, ψ̃

R
+, F̃

R, v11, κ̃
R, ρ+

)
, (E.12)

with embedding

C = Ỹ , χ− = 0 , χ̃+ =
√
2iη+ , χ̃± =

√
2iψ̃R

±

M = 0 , M̃ = 2iF̃R , a1 = iD1Ỹ , a1 = v11 , σ = zHỸ , σ̃ = κ̃R ,

λ− = 0 , λ+ = ρ+ , λ̃− = −2
√
2D1η+ , λ̃+ =

√
2zHη+ ,

D = −2iD1v11 − 2D1D1Ỹ − 1

2
zHκ̃

R

−
(
H̃zH − 1

2
zHz̃H + 2irF11 −

r

4

(
R− 2HH̃

))
Ỹ .

(E.13)

Its supersymmetry transformations are left as an exercise.
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E.2 Supersymmetric Lagrangians

Kinetic Lagrangians for the semi-chiral multiplets are easily obtained by extracting the

D-term of

X̃X+ ỸY +
1

α

(
X̃Y + ỸX

)
, (E.14)

with α ≥ 1 a free parameter. The resulting expressions are a bit long and we leave them

as an exercise for the interested reader. (One just needs the product formula (6.28).)

Note that we need to consider both left and right semi-chiral multiplets simultaneously.

The theory of a single left semi-chiral multiplet with Lagrangian X̃X
∣∣
D

has no interesting

dynamics.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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