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Abstract 25!

Climate data created from historic climate observations are integral to most 26!

assessments of potential climate change impacts, and frequently comprise the baseline 27!

period used to infer species-climate relationships. They are often also central to 28!

downscaling coarse resolution climate simulations from General Circulation Models 29!

(GCMs) in order to project future climate scenarios at ecologically relevant spatial 30!

scales. Uncertainty in these baseline data can be large, particularly where weather 31!

observations are sparse and climate dynamics are complex (e.g. over mountainous or 32!

coastal regions). Yet, importantly, this uncertainty is almost universally overlooked 33!

when assessing potential responses of species to climate change. Here we assessed the 34!

importance of historic baseline climate uncertainty for projections of species’ 35!

responses to future climate change. We built species distribution models (SDMs) for 36!

895 African bird species of conservation concern, using six different climate 37!

baselines. We projected these models to two future periods (2040-2069, 2070-2099), 38!

using downscaled climate projections, and calculated species turnover and changes in 39!

species-specific climate suitability. We found that the choice of baseline climate data 40!

constituted an important source of uncertainty in projections of both species turnover 41!

and species-specific climate suitability, often comparable with, or more important 42!

than, uncertainty arising from the choice of GCM. Importantly, the relative 43!

contribution of these factors to projection uncertainty varied spatially. Moreover, 44!

when projecting SDMs to sites of biodiversity importance (Important Bird and 45!

Biodiversity Areas), these uncertainties altered site-level impacts, which could affect 46!

conservation prioritisation. Our results highlight that projections of species’ responses 47!

to climate change are sensitive to uncertainty in the baseline climatology. We 48!

recommend that this should be considered routinely in such analyses.49!
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Introduction 50!

The effects of climate change on the distribution and abundance of species are already 51!

being observed (Chen et al., 2011; VanDerWal et al., 2013), with increasing evidence 52!

of long-term climate trends driving changes in populations across a range of 53!

ecological systems (Cahill et al., 2013). Climate change, along with changes in 54!

patterns of land use, is likely to be a major driver of biodiversity loss over the coming 55!

centuries. Species with narrow climate tolerances and low capacity to adapt to novel 56!

conditions are likely to be particularly affected (Foden et al., 2013). Consequently, a 57!

major conservation priority is to develop an understanding of how populations are 58!

affected by climate variability and long-term change (Ockendon et al., 2014; Pearce-59!

Higgins et al., 2015), and to develop modelling frameworks to predict potential 60!

climate change impacts on biodiversity in order to inform conservation management 61!

(e.g. Kearney & Porter, 2009; Dullinger et al., 2012; Foden et al., 2013).  62!

 63!

The dominant methodological approach used to assess potential climate change 64!

impacts on species has been the development of statistical models that aim to describe 65!

a species’ relationship (in terms of, for example, distribution or abundance) to climate 66!

(Pacifici et al., 2015). These correlative species distribution models (SDMs) can be 67!

used in conjunction with simulated future climate data to project likely responses to 68!

climate change (Elith & Leathwick, 2009). Such models are primarily aimed at 69!

assessing likely geographical shifts in climate suitability (Willis et al., 2015) and, in 70!

their simplest form, do not directly consider species-specific traits that might affect 71!

climate change vulnerability (e.g. dispersal ability or demography). As a consequence, 72!

other approaches have been developed that attempt to directly incorporate 73!

demographic processes (Dullinger et al., 2012), physiological limits (Kearney et al., 74!
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2008) and species-specific traits (Foden et al. 2013) into assessments of future climate 75!

change impacts on species. 76!

 77!

When evaluated, uncertainty in projected species responses to climate change (e.g. 78!

range shifts, changes in abundance) tend to be high, with the dominant sources of 79!

uncertainty including variability among future climate projections, modelling 80!

methodologies, choice of climate predictor variables and the underlying biodiversity 81!

data (Dormann et al., 2008; Buisson et al., 2010; Synes & Osborne 2011; Cheaib et 82!

al., 2012; Bagchi et al., 2013). Most studies quantify uncertainty from choices made 83!

during the modelling processes, for example, by using future climate projections 84!

derived from several different General Circulation Models (GCMs) and using 85!

multiple SDM techniques (Araújo et al., 2011; Garcia et al., 2012). The range of 86!

responses that might result from different future greenhouse gas emissions scenarios 87!

is frequently assessed using data from GCMs run under multiple scenarios. These 88!

projection ensembles can then be used to estimate the likely range of species or 89!

community responses to climate change across the range of known uncertainty 90!

(Araújo & New, 2007; Bagchi et al., 2013; Baker et al., 2015). However, much 91!

methodological and data uncertainty remains unaccounted for in such model 92!

ensembles, including biological effects (Willis et al., 2015). The influence of this 93!

uncertainty on projections of species’ responses to climate change and the 94!

effectiveness of conservation planning is itself uncertain (Carvalho et al., 2011; 95!

Kujala et al., 2013). 96!

  97!

Historic gridded climate data, often referred to as ‘observational’ data, are central to 98!

many ecological studies, for example, to assess the importance of climate variability 99!
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on population dynamics (e.g. Gregory et al., 2009) or for building models to project 100!

future impacts (e.g. Bagchi et al., 2013). Historic gridded climate data are also often 101!

central to the process of downscaling coarse resolution climate simulations from 102!

GCMs (typically available at 100-300km resolution) to scales of ecological relevance 103!

(typically 50km resolution or finer). The simplest and most frequently used 104!

downscaling approaches (e.g. statistical downscaling and the change factor method, 105!

CFM) apply change in a given variable simulated by the GCM, e.g. temperature or 106!

precipitation, to a finer resolution baseline climate (Wilby & Wigley, 1997; Tabor & 107!

Williams, 2010). This results in climate data with a higher spatial resolution than the 108!

GCM, although the underlying simulation of climate change is influenced only by 109!

coarse-scale output from the GCM. Thus, local scale (i.e. sub-GCM grid cell 110!

resolution) climatic characteristics are entirely dependent upon the baseline 111!

climatology used in the downscaling. If uncertainty in the baseline climatology is 112!

high, this can lead to erroneous realisations of the climatic landscape, which could, in 113!

turn, affect assessments of climate change impact on species. Few studies have even 114!

noted the potential importance associated with uncertainty among baseline climate 115!

datasets (Parra & Monahan, 2008; Roubicek et al., 2010; Watling et al., 2014) and no 116!

studies have yet incorporated this source of uncertainty into a regional climate change 117!

impact assessment (although, Baker et al. (2015) used multiple modelled baselines 118!

simulated in a regional climate model). 119!

   120!

The most commonly used baseline climate data are derived from observation records, 121!

usually in a gridded format that represent area-based averages across grid cells, with 122!

the spatial extent of cells typically between 1km2 and 2500km2 (Hijmans et al., 2005; 123!

Haylock et al., 2008). Both ground-based and satellite observation data are used to 124!
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construct these climate baselines, though ground-based observations provide the only 125!

source for long-running (pre-1970s) reconstructions. Converting these observations 126!

into a coherent gridded climate product requires considerable data processing 127!

(Haylock et al., 2008; Hofstra et al., 2009; Isotta et al., 2014). Uncertainty in ground-128!

based observations may arise from differences in the density of observation stations, 129!

interpolation methodology, or simple recording errors (Efthymiadis et al., 2006; 130!

Hofstra et al., 2010). For satellite-derived observations of the climate, uncertainties 131!

may be introduced when converting the retrieved electromagnetic signal to a physical 132!

parameter (e.g. precipitation) or by atmospheric factors that affect the signal retrieved 133!

by the satellite (Tapiador et al., 2012). The methodological choices and assumptions 134!

made during the downscaling process, along with error and bias in the original 135!

observation data, often results in datasets that contain much uncertainty.  136!

 137!

Here, we demonstrate variation among different historic climate baselines and explore 138!

how this uncertainty affects species-climate relationships and, consequently, how this 139!

impacts projections of species’(Nakicenovic et al., 2000) responses to climate change. 140!

We explore climate data and produce models across sub-Saharan Africa, a region with 141!

a large spatial extent, that experiences a range of climate phenomena, and where 142!

uncertainty in the historic climate record is high (Sylla et al., 2013). Within this 143!

region we examine spatial patterns in baseline climate uncertainty, where uncertainty 144!

is a measure of variation among different baseline climate datasets. We evaluate the 145!

consequences of this uncertainty on projections of climate change impacts for birds of 146!

conservation concern (birds being the best-studied class of organisms, with 147!

moderately high resolution distribution maps available for all species across the 148!

region). We evaluate the impact of baseline climate variability on projections of 149!



! 7!

species-climate relationships, and we contrast the resultant uncertainty in model 150!

projections of climate impacts on species with other measures of uncertainties that are 151!

now routinely incorporated into species-climate modelling. These other sources of 152!

model uncertainty arise from the choice of GCMs and SDMs, and the uncertainty 153!

associated with using subsets of data for model fitting (which we term ‘blocks’). 154!

Currently, considerable effort is made to describe uncertainty in species-climate 155!

projections arising from, for example, GCM and SDM choices (Garcia et al., 2012; 156!

Bagchi et al., 2013), but variation in the baseline climate products used to construct 157!

such models has, to date, been overlooked. We contextualise the importance of 158!

baseline climate uncertainty to biodiversity conservation by evaluating projected 159!

changes to avian diversity across the network of Important Bird and Biodiversity 160!

Areas (IBAs; the largest global network of systematically identified sites that are 161!

significant for the persistence of biodiversity;  BirdLife International, 2014) across 162!

sub-Saharan Africa. Finally, we discuss approaches for incorporating uncertainty 163!

associated with historic climate data into assessments of climate change impacts for 164!

biodiversity. 165!

 166!

Materials & methods 167!

General circulation model ensemble 168!

GCMs are not equally capable of representing key regional climate phenomena, such 169!

as the spatial and temporal patterns of precipitation. Here, we select an ensemble of 170!

GCMs for downscaling, based on the assumption that models capable of simulating 171!

past climates with some accuracy are the ‘best candidates’ for predicting future 172!

climates (Stott & Kettleborough, 2002; Rowlands et al., 2012). Thus, we selected a 173!

five-member subset of a 17-member Perturbed Physics Ensemble (PPE) of the Hadley 174!
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Centre GCM (Gordon et al., 2000; Pope et al., 2000). A PPE explores uncertainty in 175!

the parameterisation of the GCM by varying uncertain model parameters 176!

systematically. The five-member ensemble was selected from the PPE based on the 177!

criteria of realistically simulating the main features of the regional climate, and of 178!

capturing a range of plausible climate outcomes (McSweeney et al., 2012; 179!

Buontempo et al., 2014). The models were run over the global domain for the SRES 180!

A1B scenario (Nakicenovic et al., 2000).  181!

 182!

Historic gridded climate baselines (c. 1979-2009) 183!

We selected six ‘observed’ gridded datasets as the historic baselines for SDM fitting 184!

and for the GCM downscaling; these represented products derived from ground 185!

observations, satellite observations and hybrid products (see Table 1 for full details). 186!

For each dataset we obtained the mean monthly temperature (Tmean) and the total 187!

monthly precipitation (Ptotal). In addition to readily available datasets, we also 188!

combined TRMM, a satellite precipitation product, with the Tmean from CRU TS3.1, to 189!

create a hybrid dataset, here named CRU.TRMM. We extracted baseline climate data 190!

for the period 1979-2009, where available, in observed datasets; this permitted the 191!

inclusion of satellite products. WorldClim data was only available for the period 192!

1950-2000 (as a pre-processed product) and TRMM satellite data only for the period 193!

1998-present. However, it was important to include these data in this analysis despite 194!

the temporal mismatch due to the popularity of WorldClim and the importance of 195!

TRMM for tropical precipitation monitoring. WorldClim shows very similar trends 196!

and magnitudes across different regions to CRU, WFDEI.CRU and WFDEI.GPCC 197!

data (Fig. 1). The magnitude of TRMM Ptotal tends to be lower than the other datasets, 198!

but this is consistent with prior evaluation (e.g. comparision with CRU, Mariotti et al., 199!
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2014) and unlikely to be due to the temporal mismatch. Each gridded climate baseline 200!

was resampled onto the same grid; African CORDEX domain (longitude range = -201!

24.64, 60.28; latitude range = -45.76, 42.24; Giorgi et al., 2009) at a 0.44o spatial 202!

resolution (c. 50km resolution). 203!

 204!

Figure 2 shows the spatial patterns of the uncertainty in climate observation datasets 205!

for each season, for precipitation and temperature. Temperature uncertainty is shown 206!

by the range of values (degrees Celsius) across the climate observations. Precipitation 207!

uncertainty is shown by the coefficient of variation, calculated on the observed 208!

climate datasets. For the latter, we excluded areas where the total seasonal 209!

precipitation was less than 30mm. The 30mm threshold was intended to remove very 210!

arid areas, which may have only 1 or 2 short duration, but intense, rain events per 211!

year. In these locations, the 3-hourly repeat cycle of TRMM may be insufficient to 212!

identify the rainfall event. This means that there is a greater chance of the satellite not 213!

capturing the climate correctly in comparison with rain gauge measurements that 214!

capture the accumulated precipitation over one hour. Such a discrepancy creates an 215!

unrealistically high standard deviation in the mean, which no longer reflects 216!

differences in the observed quantities. 217!

 218!

For modelling species distributions, we derived four bioclimate variables that showed 219!

low colinearity (correlation coefficients <0.7) and that have been related previously to 220!

species distributions (Barbet-Massin & Jetz, 2014). Bioclimatic variables are widely 221!

used in SDM analyses, and aim to describe biologically important aspects of climatic 222!

variation (Busby, 1991). We calculated the mean of Tmean and Ptotal for each month 223!

across the 30-year baseline time period, and used these to calculate the four 224!
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bioclimate variables: annual total precipitation (annual sum of Ptotal); annual mean 225!

temperature (annual mean of Tmean); precipitation seasonality (coefficient of variation 226!

of Ptotal); and temperature seasonality (standard deviation of Tmean x 100).  From this 227!

point, we refer to these climate baseline datasets as CLIM. 228!

 229!

Downscaling GCM simulations 230!

The five GCM simulations were each downscaled using the CFM following the 231!

method of Tabor & Williams (2010), in which the monthly absolute anomaly for each 232!

variable (from GCMs) was calculated between the baseline period (c. 1979-2009) and 233!

the two future focal periods (2040-2069; 2070-2099). This anomaly was then 234!

regridded to 0.44 degrees spatial resolution using cubic spline interpolation, and 235!

added to the observed Tmean and Ptotal for the baseline period to produce projections of 236!

future climate. This process was carried out using each of the six gridded CLIM 237!

datasets, to produce 30 climate projections (5 GCMs x 6 CLIM) of future climates for 238!

each time period. The bioclimate variables described above were then calculated for 239!

each future time period and projection.  240!

 241!

Species distribution modelling 242!

For the analysis, we selected bird species of conservation concern (BirdLife 243!

International, 2015) that have their entire breeding range within the African CORDEX 244!

domain (n = 925). The latter criterion ensured that we could model the entire species-245!

climate response. Species of conservation concern include those classified as 246!

threatened, restricted-range, biome-restricted or congregatory species (those that 247!

trigger criteria for identifying IBAs; BirdLife International, 2014). These species were 248!

included in order to be representative of those typical of impact assessments (e.g. 249!
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Hole et al., 2009; Bagchi et al., 2013). Species distribution data were derived from 250!

refined species distribution maps from BirdLife International & NatureServe (2013). 251!

These distributions were gridded onto a regular grid across Africa, to match the 252!

resolution of the climate data (0.44 degree resolution). A species was considered to 253!

occur in a cell if the distribution polygon overlapped ≥10% of the cell, which is a 254!

liberal threshold that helps ensure that species with restricted ranges are represented. 255!

Due to a lack of true absence data, and because all areas beyond the range extent are 256!

extremely unlikely to contain false absences, for modelling we consider all cells 257!

beyond the range to be true absences.  258!

 259!

We used a jack-knife approach to model the distribution of each species, that aimed to 260!

capture the contribution of several sources of uncertainty in projected species’ 261!

responses to future climate conditions, and closely follows Bagchi et al. (2013) and 262!

Baker et al. (2015). The principle of the approach is to build a model using different 263!

combinations of data and modelling techniques (i.e. potential sources of uncertainty), 264!

and to use the variability in the resulting models to identify the contribution of each 265!

potential source of uncertainty to assessments of species’ responses to climate change.   266!

 267!

Firstly, the region was divided into six spatially disaggregated blocks for model 268!

building/testing (see Bagchi et al. 2013 for full description of blocking method). In 269!

brief, the blocking approach involves dividing the region into small subunits and then 270!

grouping these into six spatially disaggregated blocks, such that the mean and 271!

variance of each bioclimatic variable was approximately equal across the blocks 272!

(using Blocktools package in R). In model building/testing, models were built on each 273!

combination of five blocks and tested on the omitted block. This protocol: (1) reduces 274!
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the potential confounding effect of spatial autocorrelation in both cross-validation and 275!

the assessment of model performance (unlike random k-fold partitioning); (2) 276!

maintains similar parameter space (e.g. the numeric range of climatic variables) in all 277!

model building and testing procedures; and (3) can be used to assess the effect of 278!

spatial autocorrelation on projected impacts.  279!

 280!

For each species, we modelled the statistical relationship between the species’ 281!

distribution and the four bioclimate variables, calculated for each of the six CLIM 282!

datasets, using each of four SDM techniques (Generalised Linear Models, GLMs; 283!

Generalised Additive Models, GAMs; Generalised Boosted Models, GBMs; Random 284!

Forests, RFs) for each of the six combinations of five blocks. For each species, a 285!

maximum of 144 models could be built, with each jack-knife combination of GCM, 286!

SDM, CLIM and block. The median area under the receiver operating characteristic 287!

curve (Area Under Curve; AUC) from across the six blocks was used to assess final 288!

model accuracy for each species, SDM, GCM and CLIM combination. The median 289!

AUC was consistently high (0.98; 95% quantiles = 0.84, 1.00). The model cross-290!

validation procedures used to optimise each model follows Bagchi et al. (2013). 291!

Models were not run for a species where an excluded block contained no presences, 292!

which meant this block could not be used for cross-validation (see Bagchi et al. 293!

2013). All species with breeding ranges occupying fewer than 10 cells were also 294!

omitted from the analysis due to difficulties in modelling such sparse data. From the 295!

925 species of conservation concern, 895 had sufficiently large range extents to be 296!

included in the final analysis. 297!

 298!
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Projections of contemporary climate suitability across the entire region were made for 299!

each species and each model, by applying models to the same CLIM dataset as used 300!

for training. Projections were made to the baseline period, so that future suitability 301!

could be assessed relative to the modelled baseline suitability for consistency. Each 302!

model was used to project future suitability for a species, applying the model to the 303!

future climate projection downscaled using the same baseline climate data used in 304!

model building. For each species and time period, this resulted in a maximum of 720 305!

future projections (CLIM [6] x GCM [5] x SDM [4] x block [6]).  306!

 307!

The importance of baseline climate uncertainty to projected impacts 308!

We assessed the importance of baseline climate (CLIM) uncertainty to overall 309!

uncertainty in the context of two commonly employed metrics of climate change 310!

impacts on species: species turnover and change in species-specific climate 311!

suitability. We calculated the projected species turnover in each cell for each 312!

projection combination using the Bray-Curtis index, a measure of dissimilarity 313!

between two communities. Species turnover is commonly used in climate change 314!

impact studies as a way of representing projected change in community composition 315!

through time (Hole et al. 2009; Buisson et al. 2010; Bagchi et al. 2013). Species 316!

turnover (Tj[tf]) for each cell j was calculated between the t0 = baseline (c. 1979-2009) 317!

and tf = future (2040-69 or 2070-2099) from projected climate suitabilities as: 318!

 319!

!! !! = |!!"[!!]!
!!! !!!"[!!]|
!!" !! !!

!!! !!"[!!]!
!!!

       Eq. 1 320!

 321!

where, Pjk = suitability of species k in cell j, and s is the total number of species. This 322!

resulted in 720 projections of species turnover for each cell and time period.  323!
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 324!

The variability in projected turnover was partitioned out between the potential sources 325!

of uncertainty (GCM, SDM, CLIM and block) by modelling projected species 326!

turnover (values bounded between 0 and 1) within each cell as a function of the four 327!

potential sources of uncertainty, using generalised linear models with binomial error 328!

distribution and logistic link function. We then dropped each factor in turn from the 329!

full model and assessed the contribution of each factor to overall uncertainty (Buisson 330!

et al., 2010) as: 331!

 332!

!! =
!!!!!
!!

×100         Eq. 2 333!

 334!

where, Pf = percentage of deviance explained by factor f, D1 = deviance of full model, 335!

Df = deviance of full model minus factor f, and D0 = deviance of null model (intercept 336!

only). Deviance is approximately equivalent to sums of squares for generalised linear 337!

models. The percentage of deviance explained by each factor in each cell was mapped 338!

and the results presented in Fig. 3. 339!

 340!

The change in the summed climate suitability (!!) for each species (k) between the 341!

baseline period and each future period, which provides an index of overall change in 342!

suitability for a species, was calculated separately for each of the (max.) 720 species-343!

specific future projections. The change in climate suitability for each of these 344!

projections is simply the summed climate suitability across all cells for the future 345!

period, minus the summed climate suitability across all cells for the appropriate 346!

baseline projection. The variability in projected !! was partitioned following the 347!
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above approach, but using a general linear model, assuming Gaussian errors, and with 348!

an identity link (Fig. 4). 349!

 350!

Baseline climate uncertainty in a conservation context 351!

To contextualise the contribution of baseline climate (CLIM) uncertainty to climate 352!

change impact assessments, we projected species turnover within African sub-Saharan 353!

IBAs for the 2070-2099 period. We used an approach that aims to avoid the high 354!

uncertainty that occurs when climate data is downscaled to very high resolutions for 355!

assessment of climate change impact in small spatial areas, such as protected areas 356!

(Hole et al., 2009; Bagchi et al., 2013). Thus, we use species-specific climate 357!

suitabilities at the resolution of the climate projections, here 50km, and assume that 358!

the suitability within an IBA is broadly characterised by the suitability of the cell(s) in 359!

which the IBA is embedded. The methodology follows that of Baker et al. (2015). 360!

Thus, species turnover was calculated (using Eq. 1, but redefining j = IBA) for each 361!

IBA using a weighted mean of the species-specific climate suitability for the cell(s) 362!

that are intersected by the IBA, with weights equal to the percentage of the IBA’s 363!

extent that overlaps the cell(s). Turnover was calculated separately for each of the 720 364!

jack-knifed combinations, and then the ensemble mean species turnover for each IBA 365!

was calculated for each set of projections built using the same CLIM. This is similar 366!

to Hole et al. (2009), where the mean across climate projections was calculated. 367!

 368!

We use the ensemble mean projected turnover for models built using CRU climate 369!

data as a reference projection with which to compare turnover from the other 370!

ensemble projections made using different CLIM datasets. To visualise the impact of 371!

using different CLIM datasets to create a projected ensemble turnover estimate, for all 372!
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six CLIM ensembles we assign turnover values for IBAs to one of five percentile 373!

categories (0-20%, 21-40%, 41-60%, 61-80%, 81-100%).  We then summarise 374!

turnover differences between projections based on the CRU baseline dataset and those 375!

based on each of the other CLIM datasets, in terms of shifts between turnover 376!

categories. This is important because climate change impacts are often presented in 377!

such a categorical or absolute fashion (i.e. without a measure of uncertainty), but 378!

shifts between categories due to underlying uncertainty could drastically alter 379!

perceptions of climate change vulnerability. 380!

 381!

Results 382!

Variability among historic gridded baseline climate datasets 383!

The observed annual cycle for the period c. 1979-2009 varied considerably between 384!

observational datasets for Ptotal (Fig. 1); however, similar variations were not found 385!

for Tmean. For precipitation, all observational datasets in all regions showed agreement 386!

on the timing of precipitation peaks, but the Ptotal varied considerably between 387!

datasets. This difference was most pronounced for the TRMM and UDEL datasets in 388!

the West Sahel, West Tropical and Southern Africa regions, although Ptotal for the 389!

CRU, WorldClim and WFDEI datasets were very similar. The spatial distribution of 390!

disagreement between precipitation datasets (Fig. 2a), shown by the coefficient of 391!

variation, revealed that the main locations of disagreement between precipitation 392!

datasets are in the Sahel between September and November, and southern and eastern 393!

Africa in March to May and September to November.  394!

 395!

The spatial distribution of disagreement between temperature observations (Fig. 2b), 396!

shown by the Tmean range between observations, did not show large differences 397!



! 17!

between seasons. In this case, the locations of large disagreement tended to be 398!

confined to small areas in the Namib Desert, semi-arid savannahs, or East African 399!

montane environments.  This highlights the potential for considerable variability 400!

between baseline climatologies.  401!

 402!

The importance of baseline climatology in climate change impacts assessments 403!

Uncertainty in species turnover attributable to choice of baseline climate data (CLIM) 404!

was high for both time periods (Fig. 3; median 2040-2069 = 15.9%; 2070-2099 = 405!

16.5%), and was comparable in magnitude and importance to GCM choice (19.1%; 406!

22.2%). The largest source of uncertainty in species turnover across the region was 407!

attributable to SDM choice (37.5%; 31.4%), the importance of which decreased by 408!

2070-2099, but remained dominant. In both time periods all three main sources of 409!

uncertainty (SDM, CLIM, GCM) affected species turnover estimates. Uncertainty in 410!

projected turnover attributed to variability associated with using different data subsets 411!

(blocks) was consistently low.  412!

 413!
Across the region, the dominant source of uncertainty in species turnover was highly 414!

spatially variable, and in many areas multiple sources were simultaneously important 415!

(Fig. 3). By the end-of-century, uncertainty associated with CLIM was highest in 416!

southern Africa, and in parts of the western Sahel (e.g. Senegal and Gambia). GCM 417!

uncertainty dominated across parts of Eastern Africa, and became more important in 418!

parts of the Sahel and montane areas by the end-of-century. Uncertainty in turnover 419!

associated with SDM choice was spatially distributed across much of the region in 420!

both time periods, and showed several areas where this source of uncertainty was 421!

overwhelmingly dominant. 422!
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 423!

Uncertainty in the change in climate suitability (!!) for individual species attributable 424!

to the use of different CLIM datasets was, on average, almost twice as important as 425!

variation due to GCM choice (Fig. 4; median 2040-2069=12.1% vs. 6.5%; 2070-426!

2099=10.4% vs. 4.6%), although there was considerable variation across species. The 427!

uncertainty attributed to SDM methodology was almost double that attributable to 428!

CLIM, and four times that attributable to GCM, in both time periods (median 2040-429!

2069=22.4%; 2070-2099=24%), but CLIM remained a much more important source 430!

of uncertainty than GCM, or that associated with using different data subsets (block). 431!

The species for which CLIM is a dominant source of uncertainty (Fig. 5) occur 432!

principally in areas of where CLIM variability was indicated to be high (e.g. Atlantic 433!

coastal regions in the sub-tropical zone) and also areas that are remote and have few 434!

weather stations (e.g. Sahel; see Fig. 2). 435!

 436!

The importance of baseline climatology in a conservation context 437!

The choice of CLIM dataset can impact upon projected species turnover across areas 438!

of conservation value, substantially altering projected climate change impacts (Fig. 6). 439!

For example, changing the source of precipitation data from ground observations to 440!

satellite derived products (e.g. CRU [Fig. 6a] vs. CRU.TRMM [Fig. 6b]), but using 441!

the same temperature data, increases the severity of projected turnover across most of 442!

the continent. Conversely, species turnover derived from models built on 443!

WFDEI.CRU baseline data projected similar (or lower) species turnover than those 444!

made using CRU climate data. Comparing models derived from CRU versus UDEL 445!

data, less severe turnover was projected for some montane IBAs (e.g. Ethiopian 446!

Highlands) using UDEL data, but higher turnover was projected elsewhere. Thus, the 447!
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choice of baseline climate data had a notable impact on projections of climate change 448!

impact for sites of conservation relevance. 449!

 450!

Discussion 451!

Here we have demonstrated that the choice of historic baseline climate data can have 452!

substantial and important impacts on projected responses of species and communities 453!

to future climate change. This is an almost universally overlooked source of 454!

uncertainty, but could severely affect projected responses of species to climate 455!

change, with significant consequences for conservation prioritisation and 456!

management. We found that the choice of baseline climate data affects the overall 457!

uncertainty in climate change impacts (measured as species turnover and change in 458!

species-specific climate suitability) to a degree comparable with the choice of GCM 459!

data. The literature on projecting species’ responses to climate change is dominated 460!

by calls to consider uncertainty arising from the choices of GCMs, SDMs and climate 461!

predictors (Elith & Graham, 2009; Synes & Osborne, 2011; Garcia et al., 2012), as 462!

well as spatial autocorrelation (Dormann et al., 2008; Bagchi et al., 2013). This has 463!

resulted in the widespread use of ensemble models to average across, or more 464!

recently, to quantify uncertainty (Bagchi et al., 2013; Baker et al., 2015). Yet here we 465!

provide evidence that the choice of baseline climate data (CLIM) is at least as 466!

important as previously identified sources of uncertainty. Importantly, the three 467!

dominant sources of uncertainty tested here show idiosyncratic spatial patterning in 468!

their importance. For example, uncertainty associated with CLIM was consistently 469!

highest in Southern Africa and parts of Western Africa.  470!

 471!
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In agreement with previous studies (e.g. Buisson et al., 2010; Garcia et al., 2012; 472!

Bagchi et al., 2013), choices in SDM methodology and GCM data contribute 473!

substantially to the uncertainty in projected species turnover, dominating in many 474!

regions. Uncertainty due to differences in the modelled species-climate response 475!

using different SDM methodologies is a well-established source of uncertainty in 476!

SDM analyses (Elith & Graham, 2009), and is one of the primary reasons for using 477!

ensembles of models (Araújo & New, 2007). Without truly independent data for 478!

evaluating the predictive performance of these different modelling algorithms it is 479!

difficult to select a single best approach, and this makes it highly important that the 480!

uncertainty associated with these methodological choices is explored and quantified 481!

(Baker et al., 2015). It should also be noted that overall uncertainty in projected 482!

impacts based on correlative models is likely to be overly narrow. In a meta-analysis 483!

of projected extinction risk, Urban (2015) found that mechanistic and correlative 484!

models projected the lowest extinction risk, while species-area relationship models 485!

and expert opinion had substantially higher extinction risks.  486!

 487!

Figure 1 shows important differences between the observational datasets, especially 488!

with regard to precipitation. While the month of seasonal minima and maxima are 489!

generally in agreement across all datasets, there are considerable discrepancies 490!

between monthly precipitation totals – differences that are also supported by Nikulin 491!

et al. (2012). These differences are most evident between the TRMM, UDEL and 492!

other synoptically derived datasets (CRU, WFDEI.CRU, WFDEI.GPCC and 493!

WorldClim), and can be mostly explained by variations in sources of synoptic 494!

observations and methodological differences. To some extent these differences should 495!

not come as a surprise, as CRU, GPCC and WorldClim datasets have provenance 496!
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from synoptic weather reports by National Meteorological and/or Hydrological 497!

Services (NMHSs) to the World Meteorological Organisation (WMO) Global 498!

Telecommunication System (GTS). While the UDEL dataset is also derived from 499!

synoptic observations, it has provenance from different databases (National Oceanic 500!

and Atmospheric Administration’s (NOAA) Global Historical Climatology Network 501!

(GHCN) version 2, and the National Climate Data Center’s (NCDC) Global Surface 502!

Summary of the Day (GSOD), as well as other national level data). The quality 503!

control, processing steps, interpolation methods and evaluation methods are all 504!

potentially additional factors that could explain the differences found between UDEL 505!

and the other synoptically derived datasets.  506!

 507!

Variation in turnover projections associated with GCM uncertainty was important in 508!

some regions, particularly in the East Africa. However, it is surprising that the relative 509!

importance of GCM uncertainty was not higher, given the considerable variability in 510!

climate anomalies among these GCMs (Buontempo et al., 2014), and the range of 511!

uncertainty associated with GCMs used in other assessments (e.g. Garcia et al., 2012). 512!

The GCM ensemble used in this study was composed of a subset of models that were 513!

able to simulate well observed climate phenomena across the region, but was also 514!

selected to represent the range of responses to climate forcing, as found in a larger 515!

multi-model ensemble. Thus, despite the considerable uncertainty across this 516!

ensemble, the uncertainty is likely to be narrower than ensembles used in many 517!

studies, due to the omission here of regionally implausible GCMs (McSweeney et al., 518!

2014). Few studies justify the selection of GCMs and provide an assessment of their 519!

ability to capture the historic climatology of the focal region (Baker et al. 2015). More 520!
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careful consideration of the GCMs selected might reduce unwarranted uncertainty 521!

(McSweeney et al., 2012, 2014).   522!

 523!

Here we demonstrate spatial heterogeneity in the importance of potential sources of 524!

uncertainty, and that no one source consistently dominates. This has important 525!

consequences for regionally focused impact studies, where regional characteristics 526!

associated with baseline climate data availability could alter the importance of 527!

different sources of uncertainty. Differences in baseline climatologies could arise 528!

from differences in the selection of climate data (e.g. difference subsets of stations, 529!

use of satellite data, different interpolation algorithms) and the spatial variability of 530!

climatic conditions (e.g. high variability over mountainous or coastal areas). The 531!

importance of this uncertainty for individual species might be dependent on the 532!

characteristics of their range (see Fig. 2 and Fig. 5). Species with ranges that 533!

encompass high orographic variation, and span areas with low densities of climate 534!

observation data, are likely to be particularly affected by baseline uncertainty (e.g. 535!

Hofstra et al., 2010). Such regions in Africa might include topographically diverse 536!

regions such as the Albertine Rift Valley, and montane ecosystems such as the 537!

Ethiopian and Cameroon Highlands. Additionally, sparsely populated regions, such as 538!

the Saharan and Sahelian biomes, have low densities of weather observation records 539!

and are likely to be particularly affected by climate baseline uncertainty (e.g. Sylla et 540!

al., 2013).  541!

 542!

Several other sources of uncertainty that are not explored in this study are likely to be 543!

important for projecting species’ responses to climate change. Most notably, the 544!

choice of climate predictor variables has been shown previously to have a large effect 545!
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on the projected distribution (Synes & Osborne, 2011; Braunisch et al., 2013). The 546!

relative importance of the choice of predictor variables is likely to be high, and in 547!

future should be assessed in the context of the wider uncertainty, as has been done 548!

here for baseline climate uncertainty. However, it is important to make sure that the 549!

range of uncertainty is realistic by including only biologically plausible combinations 550!

of climate predictors (Synes & Osborne, 2011).  551!

 552!

This study has focused on a region that, overall, has a low density of weather 553!

observations (Sylla et al., 2013), especially when compared to parts of, for example, 554!

Europe and North America (for example, Hijmans et al. 2005). However, weather 555!

stations across the globe are patchily distributed, and typically reach the highest 556!

densities in areas of importance for human populations. Thus, in more remote 557!

locations, many of which are likely to be of higher importance for biodiversity, 558!

weather observations densities are likely to be low. Even where high densities of 559!

weather stations occur, careful consideration should be given to the variation in local 560!

climate. Factors that are likely to reduce the correlation in observations between 561!

neighbouring weather stations, such as topographically complex terrain or coastal 562!

features, might suggest that baseline uncertainty should be considered. The 563!

conclusions of this study are likely to apply broadly to most ecological studies 564!

involving climate data, but will be most problematic in areas where the density of 565!

observation data is low compared to the spatial variability of the local climate.  566!

 567!

Correlative species distribution models are frequently used to assess the potential 568!

impacts of climate change in networks of protected areas or sites of biodiversity 569!

importance (Hole et al., 2009; Araújo et al., 2011; Bagchi et al., 2013; Baker et al., 570!
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2015). Adaptation plans are informed by such projections and, consequently, it is 571!

important to understand the sensitivity of projected impacts to choices made during 572!

the modelling process. As we have shown, projected impacts across IBAs can be 573!

altered considerably by simply choosing different baseline climatology to correlate 574!

with a species’ distribution. Rather than simply mapping impacts based on the 575!

ensemble average (which is common practice: e.g. Hole et al., 2009; Araújo et al., 576!

2011; Bagchi et al., 2013), we advocate representing the degree of uncertainty in 577!

spatial maps to better communicate the degree of confidence in projected impacts 578!

(Baker et al., 2015). 579!

 580!

Uncertainty in baseline climate data has relevance beyond species distribution 581!

modelling. It will be important in any situations where uncertainty in the historic 582!

record has the potential to undermine inferences, such as studies analysing ecological 583!

responses to inter-annual climate variability (VanDerWal et al., 2013), phenological 584!

studies (Phillimore et al., 2012) and climate impact indicators (Gregory et al., 2009). 585!

There are several ways to incorporate uncertainty in baseline climate into models of 586!

species-climate responses. Uncertainty can be explored, as here, by using multiple 587!

historic baselines, or alternatively, exploring the impact of uncertainty within a 588!

historic climate dataset using stochastic simulations that assume each variable has an 589!

associated random error (Folland et al., 2001; Brohan et al., 2006). Estimates of these 590!

error distributions are often generated along with the estimated climatology by, for 591!

example, leaving single observations out of the interpolation and assessing the 592!

difference between observed and predicted values (e.g. Hijmans et al. 2005). Some 593!

climate products consider a broad range of climate uncertainty, including 594!

measurement errors, homogenisation uncertainty and sampling errors (e.g. Brohan et 595!
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al. 2006). Recent advances in modelling allow for the explicit inclusion of uncertainty 596!

associated with environmental predictor variables, and these approaches could be 597!

used to incorporate uncertainty in the climate data into modelled species-climate 598!

responses (Stoklosa et al., 2015). Our findings should encourage greater consideration 599!

of uncertainty associated with historic baselines when assessing potential responses of 600!

species to climate change. Indeed, considerations of uncertainty in historic baseline 601!

data should become routine for all research incorporating such data (Parra & 602!

Monahan, 2008). 603!

 604!

To conclude, we have shown that projected responses of species to climate change 605!

can be highly affected by uncertainty in the historic climate baseline data used to 606!

model species-climate relationship in SDM analyses and to downscale GCM data 607!

from coarse resolutions to ecologically relevant spatial scales. From our results it is 608!

evident that ecological studies should begin to routinely account for this source of 609!

uncertainty. Within a conservation context, this will facilitate better planning for 610!

targeting monitoring and adaptation interventions, and help strengthen conservation 611!

efforts in the face of a rapidly changing climate. 612!
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Table 1. Historic gridded climate datasets (CLIM) used in SDM fitting and downscaling GCM simulations of future climates using the change 808!

factor method (CFA). The TRMM precipitation dataset was combined with the temperature variables from CRU TS3.1 to create CRU.TRMM 809!

used in the analysis.  810!

811! Dataset Variables Time period Spatial 
resolution 

Description References 

CRU TS3.1 Tmean 
Ptotal 

1900-2012 0.50
 Time series of spatially interpolated monthly 

observations from meteorological stations 
(Harris et al., 2014) 

TRMM 
 

Ptotal 1998-present 0.250 Satellite observations, calibrated using rain gauge 
data 

(Huffman et al., 2007) 
 

WFDEI.CRU 
 

Tmean 

Ptotal 
1979-2012 0.50 ERA-Interim reanalysis data elevation and bias 

corrected using CRU TS3.1 
(Weedon et al., 2014) 
 

WFDEI.GPCC Tmean 
Ptotal 

1979-2012 0.50 ERA-Interim reanalysis data elevation and bias 
corrected using GPCC 

(Schneider et al., 2014; 
Weedon et al., 2014) 

WorldClim Tmean 
Ptotal 

1950-2000 0.1670 Spatially interpolated monthly mean observations 
from meteorological stations for 1950-2000 

(Hijmans et al., 2005) 

UDEL Tmean 
Ptotal 

1900-2012 0.50 Time series of spatially interpolated monthly 
observations from meteorological stations 

(Legates & Willmott, 1990; 
Willmott & Robeson, 1995) 



! 33!

Figure 1. Summary of mean monthly total precipitation (Ptotal, mm/month) and 812!

monthly mean temperature (Tmean, oC) for the period c. 1979-2009 for six regions of 813!

sub-Saharan Africa (demarcated by solid lines) derived from six baseline climate 814!

products (see legend and Table 1). The mean climate for each focal region is 815!

calculated from the mean monthly 30-year (although see methods for details on 816!

temporal periods) average of the variables in each of the cells across the region. The 817!

x-axis tick marks represent the twelve months of the year, ordered from January to 818!

December.  819!

 820!
Figure 2. Spatial patterns of the uncertainty in climate observation datasets for 821!

precipitation (a) and temperature (b), shown for each season (DJF: December, 822!

January, February; MAM: March, April, May; JJA: June, July, August; SON: 823!

September, October, November). Precipitation uncertainty is shown by the coefficient 824!

of variation, calculated on the observed climate datasets (n=6). Areas of total seasonal 825!

precipitation less than 30mm were removed from the analysis in order to exclude 826!

areas where the standard deviation was much greater than the mean (see Methods for 827!

full details). Temperature uncertainty is shown by the range of values in degrees 828!

Celsius, across the climate observations (n=4). 829!

 830!

Figure 3. The percentage of the total variability (deviance) in species turnover 831!

explained by each uncertainty factor - a measure of the relative importance of each 832!

factor to the overall uncertainty in projected climate change impacts across the region. 833!

Changes are measured between the baseline period of c. 1979-2009 and each of two 834!

focal time periods, 2040-2069 (top) and 2070-2099 (bottom). SDM = species 835!

distribution model; CLIM = climate baseline data; GCM = general circulation model; 836!
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block = uncertainty due to using different data subsets. Note: block was included in 837!

the analyses but its uncertainty was not mapped due to its minimal effect. 838!

 839!

Figure 4.  The percentage of the total variability (sums of squares) in species-specific 840!

change in climate suitability, measured between the baseline period of c. 1979-2009 841!

and each of two focal time periods, 2040-2069 (top) and 2070-2099 (bottom), 842!

explained by each uncertainty factor (the latter as in Figure 3). The boxplots 843!

summarise the importance of each sources of uncertainty across all species included 844!

in the analysis (n = 895). 845!

 846!
Figure 5.  The pattern of species richness for species where climate baseline data 847!

uncertainty (CLIM) was a dominant source of uncertainty (upper 5th percentile of 848!

CLIM affected species, n = 48). The patterns reflect known areas of climatic 849!

complexity (see Fig. 2). 850!

 851!

Figure 6. The ensemble mean projected species turnover (by 2070-2099) for the 852!

region’s Important Bird and Biodiversity Areas (IBAs) for: (a) projections derived 853!

from models built using CRU climate baseline data; and (b-f) the number of turnover 854!

categories (percentage species turnover: 0-20%, 21-40%, 41-60%, 61-80%, 81-100%) 855!

by which the projections are shifted when projections are derived from models built 856!

on one of the other five climate baseline (CLIM) datasets. Thus, IBAs in plots b-f that 857!

are coloured green decrease one category, and are therefore projected to have lower 858!

species turnover in comparision to CRU-based projections.  Similarly, IBAs in plot b-859!

f coloured red or dark red increase one or two categories, respectively, and are 860!
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therefore projected to have higher species turnover in comparision to CRU-based 861!

projections.  862!
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Figure 1863!
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Figure 2866!
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Figure 3 869!
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Figure 4 872!
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Figure 5 874!
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Figure 6 877!
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