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Abstract— Multiple wave modes often exist in the ultrasonic guided waves simultaneously, and 

these modes are dispersive, so the guided wave signals are very complex, even for the relatively 

simple situation of a narrowband excitation. The guided wave signals are even more difficult to 

analyze for broadband excitations. Time-frequency representations are appropriate for the 

analysis of the guided wave signals considering their non-stationary and transient nature. As a 

post-processing tool, the squeezed wavelet transform is studied for broadband Lamb wave 

mode identification in this work. The influence of the parameters of the Gabor mother wavelet 

on the performance of the transform is analyzed in detail. It is found that the product of the σ 

parameter of the used Gauss function and the center frequency ω0 of the wavelet decides the 

overall time and frequency resolutions, so a proper selection of the value of this product σω0 is 

crucial for the squeezed wavelet transform. The squeezed wavelet transform is first applied to 

the analysis of a synthesized signal for verification. Then it’s applied for mode identification of a 

simulated broadband Lamb wave signal. By traversing the value of σω0, a roughly optimum 

analysis performance is achieved for the squeezed wavelet transform for the case of σω0 = 11, 

where the modes are well separated and the interferences between the modes are minimal. 

It’s proved that as an alternative tool, the squeezed wavelet transform could be used for the 

analysis of a broadband Lamb wave signal. An additional benefit of this transform is that it 

permits reconstruction of the original signal or its components, which is not possible for the 

reassigned scalogram.  

Keywords— Broadband lamb wave, mode identification, time-frequency representation, 

analytic wavelet transform, squeezed wavelet transform. 

 
 

  

Mode Identification of Broadband Lamb Wave Signal with 

Squeezed Wavelet Transform 



 

 

 

2

 

1. Introduction  

Ultrasonic waves propagating along the extension direction of bounded elastic media like the 

plate and the pipe are called guided waves. Accordingly the structures they propagate in are 

waveguides. Guided waves are increasingly used in the inspection of various plate-like and 

pipe-like critical structures in different fields because they can be used to check the whole line 

along the propagation direction in the structure from one single point, thus reducing the time 

consumption unavoidable in the traditional bulk wave-based point-by-point ultrasonic 

inspection. 

Despite the advantages, multiple modes often exist in the guided waves, and these modes are 

dispersive in the sense that the propagating velocities of the wave modes are functions of the 

frequency. Because of this dispersion phenomenon, the guided waves are more complex than 

the bulk waves, speaking of their propagations and interactions with the defects. Even when 

one approximately pure mode is generated with a narrowband excitation, the features of the 

guided waves might be mixed together in the time domain, thus making the interpretation of 

the received guided wave signal difficult. If a broadband excitation is applied, the complexity of 

the signal is even higher. This situation demands an effective analyzing tool for mode 

identification from the guided wave signals. 

Guided wave signals are typical transient and non-stationary signals with time-varying 

frequency components. The common tool for the analysis of the non-stationary signals is the 

time-frequency representations (TFRs). Unlike the original unprocessed pure time domain 

description or the pure frequency domain description provided by the Fourier transform, the 

TFRs map the signal as a 2D function of both time and frequency. A by-product of the TFR is just 

what we’re most interested in, the evolution of the frequencies of the components contained 

in the signal with time. 

With the TFRs at our disposal and taking into account the distance of propagation of the guided 

waves, we can convert the theoretical group velocity dispersion curves of the guided waves 

from the frequency-velocity plane to the time-frequency plane. With this method, we can 

directly tell what modes are present in the received signal, so it helps greatly with the 
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interpretation of the guided wave signals. This process was first seen in the work of Prosser et 

al. [1]. 

There’re mainly two types of TFRs, i.e. the linear TFRs and the bilinear TFRs. In the linear TFRs 

the signal is projected to a group of time-frequency atoms [2], and the results of the TFRs are 

the weights of projection on these atoms. The earliest linear TFR is the short-time Fourier 

transform (STFT), a localized version of the Fourier transform. The STFT and the derived 

spectrogram are relatively easy to comprehend and are used widely. One problem of this TFR is 

that with the restriction imposed by the uncertainty principle, one can’t obtain arbitrarily high 

time and frequency resolutions simultaneously. Another problem is that its time and frequency 

resolutions are fixed, once the window function is selected. 

Another popular linear TFR is the continuous wavelet transform (WT), which is in fact a time-

scale transform. Roughly speaking, the scale parameter is the reciprocal of the frequency. The 

timescale atoms of the WT are generated from a mother wavelet, and the atoms form a time-

scale dictionary with varying time/translation and scale parameters. At a low frequency (high 

scale), a longer time window (which means a narrower frequency window) is used, so the WT 

has lower time resolution and higher frequency resolution. At a high frequency (low scale), a 

shorter time window (which means a broader frequency window) is used, so the WT has higher 

time resolution and lower frequency resolution. The automatic adjustment of the resolutions is 

the main advantage of the WT. As a linear TFR, the WT is also limited by the uncertainty 

principle, so we can’t achieve arbitrarily high time and frequency resolutions simultaneously. 

Wavelets were already used in the analysis of ultrasonic guided wave signals. The Mexican Hat 

wavelet is a real wavelet, and it was used to measure the group velocity of the Lamb waves, so 

as to obtain the corrosion thickness in the plate [3]. The Mexican Hat wavelet was also used to 

analyze the signals generated by EMATs to identify the guided wave modes, for the 

tomography of artificial defects in the plate [4]. Besides the real wavelets, the complex 

Morlet/Gabor wavelets are often used. The Morlet wavelet was applied for the transient wave 

analysis in the dispersive media [5], the study of the interactions of the Lamb waves with 

circumferential notch in an aluminum alloyed pipeline [6], the research on the interactions of 

the Lamb waves with hidden corrosion defects in the aircraft aluminum structure [7], and the 
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analysis of the multi-mode guided wave signals in the multi-wire cables [8]. Liu used the Gabor 

wavelet to analyze the signals of the circumferential guided waves to detect axial cracking in 

the pipeline [9]. Lee used the Gabor wavelet for the analysis of the signals of the guided waves 

propagating in the rock bolts [10]. 

Different from the linear TFRs, the bilinear TFRs directly correspond to the energy distributions, 

i.e. they map the energy of the signal as a function of time and frequency. The most important 

bilinear TFR is the Wigner-Ville distribution (WVD). The WVD has perfect concentration for the 

single component linear chirp signal, while because it has the form of a product followed by 

integration, cross terms emerge for the analysis of multi-component signals with the WVD. To 

lower the influences of these cross terms, the complex analytic signal corresponding to the 

original real signal is generally used in the computation of the WVD, and smoothing is 

introduced as in the pseudo WVD (PWVD) and the smoothed PWVD (SPWVD), although the 

smoothing is obtained at the price of lower time-frequency resolutions. The PWVD was used in 

the dispersion analysis of the Lamb waves propagating in the graphite/epoxy plates [1,11]. 

With the limitations imposed by the uncertainty principle, the linear TFRs have constrained 

time-frequency resolutions, while the bilinear TFRs, represented by the WVD, have 

interferences because of the cross terms. To improve the readability of these TFRs, Auger 

‘rediscovered’ the reassigned time-frequency and time-scale representations [12]. With these 

reassigned versions of the original TFRs, better time-frequency concentrations are achieved. 

Niethammer used the reassigned spectrogram to obtain the dispersion curves of laser-

generated multiple Lamb wave modes in the aluminum plate [13,14]. The reassigned 

spectrogram was later used in other applications like locating the defects [15]. 

Besides the normal TFRs, another tool or algorithm for nonstationary and nonlinear signal 

analysis is the empirical mode decomposition (EMD) in time domain combined with the Hilbert 

transform (HT). The EMD method is used to decompose a signal into intrinsic mode functions 

(IMFs). Then HT is applied to the IMFs to obtain instantaneous frequency data. During the 

recent years, the EMD and HT method is increasingly used in mode recognition of Lamb waves. 

Zhang applied the method to analyse both directly arriving and boundary-reflected Lamb wave 

modes of opposite types (S0 and A0) [16]. The EMD and HT method was also used to extract 
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arrival times of Lamb waves for imaging applications [17]. This work only used narrow-banded 

excitations, so we will not explore further the EMD and HT method here. 

In this work, an alternative wavelet post-processing technique called squeezing, proposed by 

Daubechies et al. [18,19], is studied for the analysis of multimode Lamb wave signal. With firstly 

a review of the common TFRs and the reassignment concept, the selection of the parameters of 

the mother wavelet is investigated, and then the squeezing theory is introduced. The squeezed 

wavelet transform is applied first to a synthesized signal, then to the simulated broadband 

Lamb wave signal. The parameters of the mother wavelet are traversed to obtain a roughly 

optimum performance. Although the squeezed wavelet transform provides no better 

performance for the analysis of the broadband Lamb wave signal than the reassigned 

scalogram, it proves to be an alternative tool and has the additional advantage of permitting 

reconstruction of the original signal or its components, which is not possible for the reassigned 

TFRs. 

 

2. Brief review of the time-frequency representations and the reassigned linear 

representations 

2.1 The time-frequency representations 

The basic tool for the frequency domain analysis of a signal f (t) is the Fourier transform (FT), 

 

in which ω is the angular frequency in rad/s. 

The inverse Fourier transform, or the reconstruction formula from the known Fourier transform 

coefficients, is 

 

The time information is completely lost in the Fourier transform (1), and the frequency 

information is absent from the original time-domain representation as in (2). The Fourier 

transform is only satisfactory for the representation of stationary signals whose frequency 

contents don’t change with time. While in reality we’re more often confronted with non-
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stationary signals with time-evolving frequency contents. One example is the recorded music 

signal, and all the rhythms, beautiful or not, rely on the changing frequency contents. The 

guided wave signal that we’re interested in is another non-stationary signal, considering its 

dispersive and transient nature. For proper handling of the non-stationary signals, analysis tools 

other than the Fourier transform are necessary. 

One possible solution is the time-frequency representations expressed as two dimensional 

functions of the time variable t and the frequency variable ω. The first type of the time 

frequency representations is the linear representations [2]. A prototype function Ø(t) is used to 

generate a dictionary of waveforms � =	 �∅�(�)
��Γ  in which � is the index of the waveforms 

in the dictionary, and possibly has multiple components. The linear TFRs correlate the signal x(t) 

with the waveforms in � as: 

��� (�) = 	 〈�(�), ��(�)〉�
�

                                  (3) 

〈. , . 〉 is the inner product defined as 〈�(�), �(�)〉 =� �(�)� ∗ (�)����
 �  means complex conjugate. 

If we express the time and frequency widths as ∆��	and ∆"#	respectively, the Heisenberg 

uncertainty principle states that the area defined by ∆�� ∆"# 	is lower bounded, 

∆�� ∆"# 	≥
%
&
                            (4) 

The important fact revealed by (4) is that we can’t obtain a perfect concentration both in time 

and in frequency simultaneously for any time-frequency atom Ø(t) generated from the 

prototype function Ø(t). So for the linear TFRs, the time and the frequency resolutions are 

limited. 

One of the most widely used linear TFRs is the short-time Fourier transform (STFT) defined as, 

 

in which g(t) is some window function, and the generated time-frequency atoms have the form 

of g t,ω (τ) = g(τ-t)'()* . 

The STFT is often used to generate another representation called the spectrogram, defined as, 
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The unavoidable problems of the STFT and the derived spectrogram are the selection of a 

proper window function g(t) and the selection of the length of this window function. Another 

problem is that the time width and the frequency width of the timefrequency atoms don’t 

change with the index components t or ω, so they have fixed time and frequency resolutions 

once the prototype or the window function g(t) and its time length are selected. This 

characteristic of fixed time and frequency resolutions is often not preferable. 

The variable resolution analysis could be implemented by another linear TFR called the wavelet 

transform, defined using a prototype function (mother wavelet) Ѱ(t). The atoms have the form 

of Ѱ u,s (t) = + 
,
-Ѱ(/ 0

1
) in which t is the independent variable, s is the scale parameter and µ is 

the translation in time. The wavelet transform applied to the signal x(t) is 

 

The wavelet transform has the unique advantage over the STFT as it has variable time-

frequency resolutions. Roughly speaking, the time-frequency box has a bigger time width and a 

smaller frequency width (better frequency resolution) at a lower frequency, and has a smaller 

time width and a bigger frequency width (better time resolution) at a higher frequency. 

The wavelet transform is often used to generate a related TFR called the scalogram, as 

 

Besides the linear TFRs, we also have the bilinear TFRs. The most important bilinear TFR is the 

Wigner-Ville distribution (WVD) defined as 

 

Without relying on a prototype function, the time and frequency resolutions of the WVD are 

not limited by the uncertainty principle, and it has many good properties. It can achieve perfect 

concentration for a single component linear chirp signal, while the disadvantages include that it 
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has cross terms for signals with multiple frequency components and that this distribution is not 

always positive so as to invalidate its interpretation as a real energy distribution. 

2.2 Concept of time-frequency reassignment 

The time-frequency reassignment method is a tool for postprocessing the time-frequency 

representations. This method improves the readability of the original TFR. The theory starts 

from an alternative expression of the spectrogram [20], 

 

in which WVDx(2, 3)	is the WVD of the signal x(t), and WVDg(2, 3)	is the WVD of the window 

function g(t). The spectrogram at the point (t, ω) is thus the average of WVDx(2, 3)	weighted by 

WVDg (2 − �, 3 − "), in the region of support of WVDg (2 − �, 3 − "). WVDg (2 − �, 3 − ") is 

just a time shift t and frequency shift ω version of WVDg(2, 3) VDgðs; which is generally 

concentrated at the origin. 

The averaging process from the double integral assigns the result to the geometry center (t, ω)  

of the region decided by the support of WVDg (2 − �, 3 − "). A better solution is to assign the 

averaging result or the calculated spectrogram value at (t, ω) to the gravity center of the region, 

and this process is called reassignment. Detailed expressions of the reassignment operators are 

not given here. Besides the reassigned spectrogram, a similar reassigned algorithm for the 

scalogram also exists [20]. 

The time-frequency reassignment method can greatly improve the readability of the TFRs so as 

to help with the mode identification and separation of the guided wave signals. 

3. The analytic wavelet transform and the overall resolutions controlled by the parameters of 

the mother wavelet 

 

A function f(t) is said to be analytic if it only has positive frequency components [2], 

 

in which F(ω) is the Fourier tranform of f(t). 



 

 

 

9

A complex value wavelet function is called an analytic wavelet, if it’s an analytic function, i.e. it 

satisfies (11). The benefit of using an analytic wavelet is at least that it permits an easy and 

meaningful conversion between the scale parameters and the pseudo angular frequency ω, 

 

With ωc as the center angular frequency of the frequency spectrum Ѱ(ω) of the mother 

wavelet Ѱ (t). If Ѱ(ω) concentrates around ωc it reaches its maximum at ωc. 

One widely used construction of an analytic wavelet is a window function g(t) modulated with a 

frequency component '()5/ , 

 

The Fourier transform of the constructed mother wavelet is Ѱ (ω) = G(ω –ω0), and it’s just the 

frequency shift of G(ω) to a new frequency point ω0. If G(ω ) has a compact support and the 

frequency shift ω0 is big enough, we can make sure that Ѱ (ω) is almost zero for negative 

frequencies, thus obtaining an ‘almost analytic’ mother wavelet. 

We obtain a Gabor wavelet if the Gauss function is used as the window function g(t)(13), 

 

With 6> 0. 

The Fourier transform of g(t) is 

 

Obviously the 6 parameter could be used to adjust the time and frequency widths of the Gauss 

function and hence the Gabor mother wavelet. Now we can draw the waveforms of the Gabor 

mother wavelet Ѱ (t) (real part only) and its Fourier transform Ѱ (ω) , as in Fig. 1. Two 

combinations of 6 and ω0 parameters are used. The first one is 6  = 1, ω0 = 6 and the second 

one is 6  = 2, ω0 = 4. It could be seen that 6 decides the time and frequency spread and ω0 is 

just the frequency center. 
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The Gauss function used in the definition of a Gabor mother wavelet has many good properties 

and makes it possible to obtain the following simple results. 

 

 

 

Fig.1 Gabor mother wavelet Ѱ (t) (real part) and its Fourier transform Ѱ (ω) for 6  = 1, ω0 = 6 and 6  = 2, ω0 = 4. 

Firstly, we have an approximate lower bound for 6 ω0 to make sure the constructed wavelet is 

‘almost’ analytic, 

 

This lower bound of 6 just corresponds to the common selection of 6  = 1, ω0 = 6. Note that a 

lower bound a little smaller than 6 is also acceptable (for example 6  = 1, ω0 =  7	82/ ln2	 	≈

5.3364, so 6ω0  ≈ 5.3364 [21], so this bound is not mathematically strict. 

Secondly, for some interested pseudo frequency fint in Hz, the corresponding time width of the 

time-frequency box or the time-frequency atom is 

 

and the frequency width of the time-frequency box or the time-frequency atom is 

 

then the area of the time-frequency box is ∆�	(BCD/)	�	∆"	(BCD/) = 1/2,	so for the Gabor 

mother wavelet the lower bound of 1/2 in (4) is achieved. Eqs. (17) and (18) hold for every 

interested frequency fint in the time-frequency plane.  Since the time and frequency widths of 
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the time-frequency box directly correspond to the time and frequency resolutions, we can say 

that the overall time and frequency resolutions are adjustable from the 6 and ω0 parameters of 

the original mother wavelet Ѱ (t) without scaling (by s) and translation (by u). If the product 

6ω0 is fixed, the time and frequency resolutions for the interested frequency fint are also 

‘almost’ fixed. If we want higher frequency resolutions (smaller ∆"	(BCD/) ) and lower time 

resolutions (bigger ∆�	(BCD/)), we can increase the value of 6ω0. On the contrary, If we want 

lower frequency resolutions (bigger ∆"	(BCD/) ) and higher time resolutions (smaller ∆�	(BCD/)	), 

we can decrease the value of 6ω0, while this time we have a lower bound of 6 (or some value a 

little smaller than 6) for	6ω0 as in (16) to ensure that the mother wavelet is analytic. This 

adjustment of the time and frequency resolutions is global, i.e. for all the frequencies in one 

TFR figure, and we can’t increase the frequency resolution (increasing	6ω0) at one frequency 

point and at the same moment decrease the frequency resolution (decreasing 6ω0) at another 

frequency point. In fact, this situation is just like selecting a proper window length for the STFT 

and the spectrogram. To achieve acceptable overall time and frequency resolutions for the 

analyzed signal, the initial shape (decided by the 6	and ω0 parameters for the Gabor mother 

wavelet) of the mother wavelet must be chosen carefully. Note that the product 6ω0 decides 

the overall resolutions instead of 6 or ω0 alone. This adjustment of the overall resolutions by 

the value of	6ω0 is applicable not only to the WT and the corresponding scalogram, but also to 

the reassigned scalogram, because the reassigned version is based on the scalogram. This is 

also true for the squeezed WT to be introduced in the next section. 

Besides the fact that the overall resolutions are decided by the value of 6ω0, we can prove 

further that if 6ω0 is fixed, then the WT (and the derived scalogram) will be identical for various 

specific values of 6 and ω0. This is also true for the reassigned scalogram. The proofs are 

omitted here for simplicity. 

The reason of including the detailed explanation of the underlying analytic wavelet transform 

and the overall resolutions controlled by the value of 6ω0 is that in some earlier investigations 
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of the wavelet transform as used in the analysis of the guided wave signals (as in [14]), it was 

believed that the wavelet transform was not acceptable because of poor resolutions, failing to 

perceive that in fact the resolutions are adjustable as explained above. 

4. The squeezed wavelet transform 

The idea of squeezing starts from the analysis of a pure harmonic signal, 

 

with " as a parameter, and its wavelet transform calculated in the frequency domain is 

 

If the Fourier transform of the mother wavelet W has a compact support and is concentrated at 

a positive center frequency ω0 (for example, an analytic wavelet), then the interval of the 

support and the center frequency are scaled by the parameter ω in (20). Note that s is now the 

independent variable. On the s direction, the peak of the WT appears at the scale s = ω0 / ω 

corresponding to a pseudo angular frequency of ω0 / S, just as expected, while the energy is 

spread along the frequency direction on the time-frequency plane, or the s direction on the 

time-scale plane, instead of concentrating on the angular frequency point ω , or the scale 

point s = ω0 / ω. 

So this leads to the idea of reallocating the wavelet coefficients to the true instantaneous 

frequency, i.e. ω for the pure  harmonic signal in (19). A possible solution is [21], 

 

ω(u,s) is the desired instantaneous angular frequency corresponding to the original time-scale 

point (u,s) for the WT. Eq. (21) could be easily verified for the pure harmonic signal. Just like in 

the computation of the reassigned scalogram, because FG (H, I)�
J

 appears in the denominator, 

the calculation of the new frequency must be limited by a threshold value to not too small 

absolute WT values. 
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In the next step called squeezing, the WT coefficient for (u,s) on the time-scale plane should be 

reallocated to (u, ω(u,s)) on the time-angular frequency plane in some manner, and this 

reallocating should be applied to all the WT coefficients at the time instant u, 

 

P is a function of the WT and the scale s. The K function restricts the scale variable s to those 

that together with u map to ω, then the WT coefficients for these (u, s) points are transformed 

with P and summed (integrated) to include all their contributions to the squeezed transform for 

angular frequency ω. P(a,b) = |M||N|-α was suggested in [18] for re-normalizing the fine-scale 

regions. For the identification of frequency components, various expressions for the function P 

are acceptable because we’re mainly interested not in the amplitudes of the distribution but in 

the evolution of frequency with time. 

The synchrosqueezed WT is one special case of the squeezed WT that can be used to 

reconstruct the original signal, with the function P defined as P(a,b) = a.b-3/2,  

 

The reconstruction formula for the original time domain signal x(u) is 

 

 

In which CѰ =
%
&
� O∗�
P (3) QR

R
. 

From above the ω (u, s) function is obtained for the pure harmonic signal, and the concepts of 

the SWT and the SSWT are given. Next it could be shown that the functions containing well 

separated intrinsic mode type functions (IMTs) could be characterized by synchrosqueezing. 

The main definitions and results from [19] are given here, without proofs. 

A continuous function f is said to be of intrinsic mode type (IMT) with accuracy � > 0 if f(t) = A 

(t)'(�(/) with A and � having the following properties, 
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This definition shows that the function has a positive and limited instantaneous frequency, and 

the envelope and the instantaneous frequency change relatively more slowly compared with 

the phase. 

A function f is said to be a superposition of, or to consist of, well separated intrinsic mode 

components, up to accuracy �, and with separation d, if there exists a finite K, such that 

 

where all the fk are IMTs, and their phase functions �k satisfy 

 

This condition shows that the components are well separated without intersections, and the 

separations of the components depend on the sum of the adjacent instantaneous frequencies. 

Assume STQ  is the set of all superposition of well separated IMTs, up to accuracy � and with 

separation d. Let f be a function in STQ  and set �̃ = �%/V. Pick a function h with �ℎ(�)�� = 1, and 

pick a wavelet Ѱ in Schwartz class such that its Fourier transform	Ѱ is supported in [1-∆, 1 +

∆], with ∆ < d/ (1+d); set  ℛ� = √27 �O	(3)3 %�3.	 Consider the wavelet transform WG[
J(H, I) 

with respect to the wavelet, as well as the function ++FG[
J(H, ")	obtained by 

synchrosqueezing  WG[
J(H, I), with threshold �̃ and accuracy K, i.e. 

 

where  +T\[(H) = ]+	�	ℝ�; 	`FG[
J(H, I)` > �̃b. Note that the expression 

%
c
ℎ( .
c
) (with K	as its 

parameter) plays the role of the function	K in(23). Then, provided � (thus also �̃) is sufficiently 

small, the following hold, 

`FG[
J(H, I)`>�̃ only when for some k � {1, …, k}, (u,s)� de = {(u,s)|I�ef (H) − 1| < 	∆}, 
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For each k	� {1, …, k}, and for each pair (u,s) � de for which `FG[
J(H, I)`>�̃ holds, we have 

`"[	(H, I) − �ef (H)	` ≤ �̃ 

Moreover, for each k � {1, …, k}, there exists a constant C such that, for any u	�	ℝ 

 

The first point of previous results shows that the WT concentrates around the scale 1 /�ef (H) 

on the time-scale plane (and around the frequency �ef (H) on the time-frequency plane) with 1 

as the centre frequency of the mother wavelet. The second point states that the new frequency 

from squeezing is close to the instantaneous frequency of the component. The final one 

indicates that the synchrosqueezed WT is concentrated around the instantaneous frequency of 

the component and can be used to reconstruct the component if the WT is restricted to a 

narrow band around the instantaneous frequency. 

For the Gabor mother wavelet, the overall time and frequency resolutions of the squeezed 

wavelet transform are also decided by the product 6ω0, since it’s derived from the original WT. 

Furthermore, from various numerical computations, it is found that if the value of 6ω0 is fixed, 

then the synchrosqueezed wavelet transform as in (23) is identical for different combinations of 

6 and ω0 values, just like the WT, the scalogram and the reassigned scalogram. 

The synchrosqueezed WT is then applied to a synthesized signal s consisting of a sinusoidal 

frequency modulation s1 and a quadratic frequency modulation s2, 

 

The instantaneous frequencies of s1 and s2 in HZ are, 
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Fig. 2 shows the scalogram (2(b)) and the synchrosqueezed WT (2(d)) for the synthesized signal 

with an ideal TFR in Fig. 2(a), and the reassigned scalogram is also provided in Fig. 2(c) for 

comparison. The transforms are shown in contour plots. All the transforms are implemented in 

MATLAB code. A common combination of the parameters 6  = 1, ω0 = 6 is used for the non-

ideal TFRs. The thresholds of the WT coefficients for the computation of the reassigned 

scalogram and the synchrosqueezed WT are defined in the same way for comparison, 

 

 

with x (n) as the sample of the signal x(t) and N is the total number of the samples. 

 

Fig.2 Ideal TFR, scalogram, reassigned scalogram and synchrosqueezed WT of a synthesized signal, with 6  = 1, ω0 = 

6 for the non-ideal TFRs. 

 

From Fig. 2, it could be observed that just like the reassigned scalogram, the synchrosqueezed 

WT has better time-frequency concentration compared with the original scalogram. On the 
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frequency direction, the reassigned scalogram has slightly better concentration than the 

synchrosqueezed WT. In fact, the synchrosqueezed WT is regarded as a special case of the 

reassignment of the wavelet transform [22]. The extra benefit of the synchrosqueezing 

algorithm is that it allows further signal manipulation such as reconstruction. 

5. Background of Lamb waves 

Lamb waves are widely used guided waves propagating in the elastic plate. Lamb waves could 

be decoupled into two types, the symmetric type and the antisymmetric type, according to the 

symmetry of the displacement components with respect to the middle plane of the plate. The 

dispersion equation for the symmetric modes is [23], 

 

In which k is the wave number, h is half of the plate thickness, and  

 

where ω is the angular frequency. Cl is the longitudinal bulk wave velocity, and Ct is the 

transverse bulk wave velocity. Similarly, the dispersion equation for the antisymmetric modes is

, 

The dispersion equations of Lamb waves can only be solved using numerical methods. With 

phase velocity defined as Cp =ω/k, the results are plotted in the frequency - phase velocity 

plane as the phase velocity dispersion curves. The symmetric modes are often labeled as the Sn 

modes with n =0; 1; 2; . . ., and the antisymmetric modes are labeled as the An modes. 

Group velocity (defined as Cg = dω/dk) can be calculated from the phase velocity, so from the 

phase velocity dispersion curves, we can obtain the group velocity dispersion curves. Group 

velocity corresponds to the speed of the energy propagation, so in guided wave applications we 

normally observe wave packets traveling with some group velocity. After proper conversion, 

the group velocity dispersion curves will be drawn on the time-frequency representation for 

easy recognition of the Lamb wave modes. 
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Fig. 3 shows the dispersion curves for Lamb waves propagating in a steel plate with the 

thickness d =0:001 m. The material properties are as follows, Young’s modulus E is 207x 109 Pa, 

Poisson’s ratio i is 0.3, and the mass density j is 7800 kg/m3. These material properties will 

also be used for the simulation. The dispersion curves are generated with a Matlab program 

developed by the authors. 

 

 

 

Fig.3 Dispersion curves of the Lamb waves in a steel palte, (a) phase velocity, (b) group velocity. 

 

6. Broadband simulation of Lamb waves 

For this work, the FEM package Abaqus is used to simulate the propagation of broadband Lamb 

waves in the steel plate free of any defect. A Python script using the Abaqus Scripting Interface 

is written to ease the modeling process. The 2D simulation model is depicted in Fig. 4. l= 0:2 m 

is the length of the plate, and d = 0:001 m is the thickness, just as in the calculation of the 

dispersion curves. 

A plane strain Quad element with the code name of CPE4R is used as the type of these 

elements. The sizes of the elements in the x direction (lex) and the y direction (ley) must be 

chosen carefully to ensure sufficient accuracy of the simulation. ley should be small enough to 

make sure the number of the elements in the y direction is big enough to describe the wave 
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structures, i.e. the distributions of the displacement, stress or any other physical variable along 

the thickness of the plate waveguide, accurately. 50 is adopted as the element number in the y 

direction for the simulation. lex must also be small enough to ensure that there exists a 

sufficient number of elements in one wave length of the Lamb waves, which means that if 

k = lm/B is the wave length and 

 

then N should be at least 10 for a good spatial resolution, and the value of 20 is recommended 

[24]. Unlike the normal situation where a narrowband tone burst signal is used to generate an 

almost pure wave mode, in this work a broadband triangle impulse of displacement boundary 

conditions (Fig. 4) is applied as the excitation to generate a broadband signal containing 

multiple modes, and every mode will also occupy a wide frequency band. The expressions for 

the triangle impulse and its spectrum are 

 

in which A is the amplitude and K is the time width of the impulse. 

 

Fig.4 Numerical model used in the FEM simulation. 

In Fig. 5, the spectrums of the impulses with 3 different K values of 50, 500 and 5000 ns are 

depicted. Obviously, the narrower the impulse, the broader is its spectrum. The impulse and 

corresponding spectrum are ideal in this work because in reality the excitation and the received 

signal are generally filtered with the characteristics of the transmitting and receiving 

transducers and also limited by the instrumentation. Specially designed broadband transducers 

and instrumentation are possible, although probably with a bandwidth much narrower than the 

ideal case studied here. From the view of exploratory theoretical study, the impulse waveform 

applied here is still meaningful. 
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Firstly we consider the narrowest impulse with a time width of K = 50 ns. As in Fig. 5, the 

magnitude spectrum has significant frequency components in the whole frequency range 

explored (0– 10 MHz). 

 

Fig.5 Normalized spectrum of triangle impulse, with K = 50, 500 and 5000 ns. 

Considering the broadband nature of the excitation signal, the wave length used to decide a 

proper lex should be the minimum of the wave lengths of all the excited Lamb modes contained 

in the signal. An estimation is used, that the minimum phase velocity is 800 m/s, and the 

highest frequency is 12 MHz. N is selected to be 30. This coarse estimation could be adjusted 

further to generate relatively accurate simulation results. 

Fig. 6(a) shows the waveform of the received broadband Lamb wave signal of the displacement 

component n, with an excitation impulse width of 50 ns. This signal is recorded at the 

coordinate (
o
p
 , 

Q
&
) in Fig. 4. The total time of simulation is 6x 105 s, and this time length is 

selected carefully to avoid any edge reflections in the signal. 

Since the impulse waveform is given as in Fig. 4 and Eq. (37), we are in a position to describe 

the process of converting the group velocity dispersion curves to the time-frequency plane. 

Because the impulse is very narrow, we can assume time 0 as the starting time instant of all the 

frequency components. Then a point (f, Cg) on the group velocity dispersion curves plane could 

be converted to the corresponding point (t, f) on the time-frequency plane 
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where 

 

 

Fig.6 The simulated broadband Lamb wave signal and its scalogram, reassigned scalogram and synchrosqueezed 

WT, impulse width 50ns 

7. Application of the squeezed wavelet transform to Lamb wave signal analysis 

Fig. 6 shows the scalogram (6(b)), the reassigned scalogram (6 (c)) and the synchrosqueezed WT 

(6(d)) for the simulated broadband Lamb wave signal (6(a)). The combination of parameters for 

the Gabor mother wavelet is 6  = 1, ω0 = 11. The selection of the parameters is accomplished 

through traversing the ω0 parameter (integer only) with fixed 6  = 1. The traversing is coarse 

initially then finer, until the performance of the transform is optimum in the sense that the 

modes are well separated and the interferences are minimal globally. Note the traversing is 

only applied for the ω0 parameter. Just as described above, the scalogram, its reassigned 

version and the synchrosqueezed WT all have 6ω0 as their parameter, so for a fixed value of 

6ω0, different combinations of 6 and ω0 parameters will lead to identical results, then the 

traversing of one parameter (ω0) is enough. 
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Also note that the converted group velocity dispersion curves of different wave modes intersect 

with each other in the time-frequency plane, so they are not well separated as expected in the 

definition of the (synchro)squeezed WT, but this transform could be still used for the analysis of 

the broadband Lamb wave signals. 

From Fig. 6, it could be observed that, just like the synthesized signal, the synchrosqueezed WT 

has much better time-frequency concentration than the original scalogram. While compared 

with the reassigned scalogram, the performance of the synchrosqueezed WT is no better. At 

low frequencies below 0.2x107 Hz, the S0 and A0 modes couldn’t be resolved clearly and there 

exist interferences between them. The performance for the low frequency region could be 

adjusted by a different 6ω0 value if necessary. For example, the A0 mode is clearer in the low 

frequency region for the combination of 6  = 1, ω0 = 6. From Fig. 6(d), the advantage of the 

synchrosqueezed WT is that energy for the time later than 3x10-5 s could be observed for the S1 

and S4 modes, while these are missing in the reassigned scalogram. 

Similar simulation and time-frequency processing were also done for the impulse width of K = 

500 ns, as in Fig. 7. Obviously the frequency components are now concentrated at lower 

frequency range, compared with the results in Fig. 6. Through careful investigation, it could be 

observed that the converted group velocity curves present a small offset, because the 

evaluation of the propagation time duration (t in Eq. (38)) is not as accurate now, considering 

that the impulse width is bigger. 
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Fig.7 The simulated broadband Lamb wave signal and its scalogram, reassigned scalogram and synchrosqueezed 

WT, impulse width 500ns 

From these observations, the synchrosqueezed WT can be used as an alternative time-

frequency tool for the analysis and mode identification of guided wave signals. Even though the 

overall performance of the squeezed wavelet transform is no better than that of the reassigned 

scalogram, the synchrosqueezed WT has the additional benefit that it permits reconstruction of 

the original signal or its components. This advantage over the reassigned TFRs will be helpful in 

the detailed analysis of a broadband system. The exploration of synchrosqueezed WT-based 

guided wave modes extraction and signal or signal components reconstruction will be reserved 

for the future. 

One final thing to note is that in all the simulations and calculations of the TFRs, the signals are 

noise-free. This should be acceptable with theoretical exploration of the underlying principles, 

since the practical experimental signal contaminated with noise can always be filtered 

beforehand. 

8. Conclusion 

Time-frequency analysis is crucial for the processing of ultrasonic guided wave signals because 

multiple modes often exist in the guided waves and these modes are dispersive. After a brief 
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review of common time-frequency representations and the postprocessing technique of the 

time-frequency reassignment for the linear TFRs, the analysis of an alternative TFR – the 

(synchro) squeezed wavelet transform - is given in this work. Specifically, an analytic Gabor 

wavelet constructed from the Gauss function is used. It is found that the product 6ω0 (not 6 or 

ω0 alone) decides the overall time and frequency resolutions of the transform. A proper 

selection of the product 6ω0 should help to improve the performance of the (synchro)squeezed 

WT, just like the scalogram and its reassigned version. 

After a study of the squeezed wavelet transform, it is applied first to the analysis of a 

synthesized signal for verification, then on a simulated broadband Lamb wave signal. By 

traversing the value of the parameter	ω0 (integer only) for fixed 6 = 1, the overall time and 

frequency resolutions can be adjusted. ω0 =11 (6ω0 = 11 ) seems to provide an approximately 

optimum selection of mother wavelet parameters, for the given Lamb wave signal. As expected, 

the synchrosqueezed WT could achieve much better time-frequency concentration than the 

original WT and the derived scalogram. Even though the performance of the low frequency 

region is no better than the reassigned scalogram, more information is observed for the later 

part of the signal. If better performance is needed for the low frequency region, the value of 

6ω0 could be adjusted further. 
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