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Abstract: Erosion drives the export of particulate organic carbon from the terrestrial biosphere 4 

(POCbiosphere) and its delivery to rivers. The carbon transfer is globally significant and can result in 5 

drawdown of atmospheric carbon dioxide (CO2) if the eroded POCbiosphere escapes degradation during 6 

river transfer and sedimentary deposition. Despite this recognition, we lack a global perspective on 7 

how the tectonic and climatic factors which govern physical erosion regulate POCbiosphere discharge, 8 

obscuring linkages between mountain building, climate, and CO2 drawdown. To fill this deficit, 9 

geochemical (δ13C, 14C and C/N), hydrometric (water discharge, suspended sediment concentration) 10 

and geomorphic (slope) measurements are combined from 33 globally-distributed forested mountain 11 

catchments. Radiocarbon activity is used to account for rock-derived organic carbon and reveals that 12 

POCbiosphere eroded from mountain forests is mostly <1300 14C years old. Annual POCbiosphere yields are 13 

positively correlated with suspended sediment yields, confirming results from Taiwan and a recent 14 

global analysis, and are high in catchments with the steepest slopes. Based on these relationships and 15 

the global distribution of slope angles (3-arc-second), it is suggested that topography steeper than 10o 16 

(16% of the continental area) may contribute ~40% of global POCbiosphere erosional flux.  17 

Climate is shown to regulate POCbiosphere discharge by mountain rivers, by controlling 18 

hydrologically-driven erosion processes. In catchments where discharge measurements are available 19 

(8 of the 33) a significant relationship exists between daily runoff (mm day-1) and POCbiosphere 20 

concentration (mg L-1) (r = 0.53 , P < 0.0001). The relationship can be described by a single power 21 

law and suggests a high connectivity between forested hillslopes and mountain river channels. As a 22 

result, annual POCbiosphere yields are significantly correlated with mean annual runoff (r = 0.64, P < 23 

0.0001). A shear-stress POCbiosphere erosion model is proposed which can explain the patterns in the 24 

data. The model allows the climate sensitivity of this carbon flux to be assessed for the first time. For 25 

a 1% increase in annual runoff, POCbiosphere discharge is predicted to increase by ~4%. In steeper 26 

catchments, POCbiosphere discharge increases more rapidly with an increase in annual runoff. For 27 

reference, the same change in annual runoff is predicted to increase carbon transfers by silicate 28 

weathering solute fluxes in mountains by 0.4-0.7%. Depending on the fate of the eroded POCbiosphere, 29 

river export of POCbiosphere from mountains may act as an important negative feedback on rising 30 

atmospheric CO2 and increased global temperature. Erosion of carbon from the terrestrial biosphere 31 

links mountain building and climate to the geological evolution of atmospheric CO2, while the carbon 32 

fluxes are sensitive to predicted changes in runoff over the coming century. 33 
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1. Introduction 35 

Physical erosion can drive the export of carbon from the terrestrial biosphere (Stallard, 1998; Hilton et 36 

al., 2012; Galy et al., 2015) and impacts the carbon cycle across a range of timescales. Soils and 37 

vegetation of the terrestrial biosphere are estimated to contain ~2000-2900x1015 gC at present, >3 38 

times the carbon stock of the pre-industrial atmosphere (Holmén, 2000; Ciais et al., 2013), acting as a 39 

major carbon reservoir over 100-103 years (Sundquist, 1993; Trumbore, 2000). Erosion of particulate 40 

organic carbon (POC) from the biosphere (POCbiosphere) may impact the net size and/or residence time 41 

of carbon in this reservoir (Stallard, 1998; Berhe et al., 2007; Galy and Eglinton, 2011; Hilton et al., 42 

2012; Li et al., 2015) and the relatively small size of the atmosphere carbon pool makes it sensitive to 43 

these changes on land (Sundquist, 1993; Trumbore, 2000; Carvalhais et al,. 2014). Over longer time 44 

periods (104-106 years, or ‘geological’), discharge of POCbiosphere by rivers and its delivery to 45 

sedimentary environments acts as a major pathway of atmospheric CO2 drawdown and source of 46 

atmospheric O2 (Berner, 1982; Derry and France-Lanord, 1996; France-Lanord and Derry, 1997) 47 

together with marine organic carbon burial (Hayes et al., 1999; Schlunz and Schneider, 2000). 48 

Alongside the chemical weathering of silicate minerals by carbonic acid, coupled to calcium 49 

carbonate formed from the dissolved weathering products (e.g. Berner et al., 1983; Gaillardet et al., 50 

1999), these processes act to counter geological sources of CO2 from solid earth degassing via 51 

volcanism (Marty and Tolstikhin, 1998) and metamorphism (Becker et al., 2008) and CO2 release by 52 

the oxidation of organic carbon in sedimentary rocks (Berner and Canfield, 1989; Derry and France-53 

Lanord, 1996; Bolton et al., 2006; Hilton et al., 2014). 54 

The climatic and tectonic factors which govern the rates and patterns of physical erosion (e.g. 55 

Milliman and Farnsworth, 2011) should be expected to regulate POCbiosphere discharge at Earth’s 56 

surface. Erosion and discharge of POCbiosphere by rivers may therefore links mountain building and 57 

changes in climate with the geological evolution of atmospheric CO2. The links between geomorphic 58 

processes (erosion and weathering), climate and the inorganic carbon cycle (i.e. silicate weathering) 59 

have been widely investigated (e.g. Gaillardet et al., 1999; West et al., 2005; Hilley et al., 2010; West, 60 

2012; Maher and Chamberlain, 2014). High erosion rates are thought to alleviate mineral supply, 61 

meaning that silicate weathering rates are controlled by runoff and temperature (West et al., 2005; 62 

Gabet and Mudd, 2009; West, 2012; Maher and Chamberlain, 2014). In other words, steep mountains 63 

act as Earth’s thermostat: they are regions where CO2 drawdown by silicate weathering is most 64 

sensitive to CO2-induced warming (West et al., 2005; West, 2012; Maher and Chamberlain, 2014), 65 

providing a negative feedback which can stabilise long-term climate (Walker et al., 1981; Berner et 66 

al., 1983).  67 

In contrast, CO2 drawdown by the organic carbon cycle and the erosion, riverine transfer of 68 

POCbiosphere and its burial are much less well understood. We still lack a framework to assess how 69 
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mountain building and changes in global denudation (Milliman and Farnsworth, 2011; Herman et al., 70 

2013; Larsen et al., 2014a) may impact this carbon flux. Most importantly, the links between climate 71 

and POCbiosphere discharge by hydrologically-driven erosion processes (e.g. Hilton et al., 2008a; 72 

Dhillon and Inamdar, 2013) have not been considered at the global scale (Galy et al., 2015). There is a 73 

potential analogy to the CO2-drawdown associated with silicate weathering. One might expect 74 

mountains to play an important role because they have high POCbiosphere yields (Hilton et al., 2008b; 75 

Hilton et al., 2012), linking tectonic processes to the carbon cycle (Raymo and Ruddiman, 1992). If 76 

these POCbiosphere yields are regulated by runoff as suggested by a growing number of independent 77 

studies (Hilton et al., 2008a; Clark et al., 2013; Smith et al., 2013; Goñi et al., 2013) then there is the 78 

potential that erosional export of POCbiosphere links climate to the carbon cycle.  79 

Here I fill this research deficit by assessing the global controls and rates of POCbiosphere 80 

discharge from mountain forests, using data from 33 catchments. Geochemical measurements (14C, 81 

δ13C, C/N) are used to account for rock-derived particulate organic carbon (or ‘petrogenic’ POC, 82 

POCpetro) and examine the source of biospheric POC. These measurements are combined with 83 

measurements of suspended sediment concentration, and daily water discharge data is also available 84 

in eight of the catchments. Geomorphic metrics (e.g. slope distributions) are used to help constrain the 85 

catchment-scale processes which control POCbiosphere erosion. Here, data from eight mountain rivers 86 

reveal a remarkably similar positive relationship between POCbiosphere concentration (mg L-1) and daily 87 

runoff (mm day-1), which can be described well by a single power law relationship. A shear-stress 88 

driven POCbiosphere erosion model is proposed, which can explain the data. While physical erosion is an 89 

important control on POCbiosphere yields in mountain catchments (Hilton et al., 2012; Galy et al., 2015) 90 

runoff plays a first order role, with catchment average slope moderating this response. Depending on 91 

the fate of POCbiosphere, its erosion from mountain forests can provide a previously unrecognised 92 

feedback in the global carbon cycle, linking runoff and CO2 drawdown. More widespread steep 93 

topography makes this feedback mechanism more responsive. Based on these findings, and magnitude 94 

of the fluxes involved, it is proposed that the organic carbon cycle may be more important than 95 

silicate weathering for moderating Earth’s geological carbon cycle, long-term atmospheric CO2 96 

concentrations and global climate.  97 

2. Materials and Methods 98 

2.1 General Approach 99 

Part of the challenge of understanding the controls on POCbiosphere discharge by rivers reflects the input 100 

of rock-derived (or ‘petrogenic’) particulate organic carbon, POCpetro, (also referred to as ‘fossil 101 

POC’). Erosion can contribute POCpetro to the solid load of rivers (Kao and Liu, 2000; Blair et al., 102 

2003; Komada et al., 2004; Leithold et al., 2006; Galy et al., 2008a; Hilton et al., 2010), except in 103 
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catchments draining POCpetro poor lithology (e.g. volcanic and plutonic rocks) (Lloret et al., 2013). 104 

While recycling of sedimentary POCpetro and its supply to rivers was recognised by Meybeck (1993), 105 

following earlier quantifications of global organic carbon transfers by rivers (Berner, 1982; Meybeck, 106 

1982; Ittekot, 1988), it wasn’t until relatively recent work on mountain rivers that POCpetro has started 107 

to be systematically accounted for. There is now a global picture, with POCpetro important in mountain 108 

rivers from Taiwan (Kao and Liu 2000; Hilton et al., 2008a; Hilton et al., 2010), the Himalaya (Galy 109 

et al., 2007; Galy et al., 2008a), the Andes (Clark et al., 2013; Bouchez et al., 2014), West Coast of 110 

the USA (Blair et al., 2004; Komada et al., 2004; Leithold et al., 2006; Goñi et al., 2013), European 111 

Alps (Smith et al., 2013) and New Zealand (Leithold et al., 2006; Hilton et al., 2008b). In order to 112 

constrain the modern-day drawdown of atmospheric CO2, it is vital to account for POCpetro inputs in 113 

river loads, and quantify only the component eroded from the terrestrial biosphere, POCbiosphere (Galy 114 

et al., 2007; Hilton et al., 2008a; Galy et al., 2015). While oxidation of POCpetro impacts the modern-115 

day carbon cycle by CO2 release (Hilton et al., 2014), its river transfer and re-burial lengthens its 116 

residence time in the crust (Galy et al., 2008a; Hilton et al., 2011a) and does not drawdown modern-117 

day CO2. Also, without accounting for POCpetro, evaluating the geomorphic processes responsible for 118 

POC erosion and transfer is not possible: POCpetro is closely associated with clastic sediment, whereas 119 

POCbiosphere is eroded from the surface of forested catchments. 120 

The next challenge having accounted for POCpetro, is to measure POCbiosphere transport and 121 

export by rivers over a range of water discharges and suspended sediment loads (Hilton et al., 2012). 122 

These coupled geochemical and hydrometric datasets can estimate POCbiosphere discharge (e.g. Kao and 123 

Liu, 2000; Hilton et al., 2008a) and reveal the controls POCbiosphere discharge (Hilton et al., 2012; Goñi 124 

et al., 2013). There are examples of these datasets from individual mountain rivers (Kao and Liu, 125 

1996; Hilton et al., 2008a; Lloret et al., 2013; Smith et al., 2013), paired river catchments with 126 

contrasting geomorphic and climatic conditions (Hatten et al., 2012; Goñi et al., 2013) and multiple 127 

catchments in Taiwan (Hilton et al., 2012). In addition, recent work has highlighted that catchment-128 

averaged physical erosion rates are a first order control on POCbiosphere export by rivers (Hilton et al., 129 

2012; Galy et al., 2015). However, the hydrological/climatic controls (i.e. runoff) which govern 130 

clastic sediment routing and export (e.g. Dadson et al., 2003; Larsen et al., 2014a) remain to be 131 

assessed at the global scale for POCbiosphere. 132 

2.2 A Global Mountain River Dataset 133 

The study here uses two approaches: i) individual daily measurements to establish how POCbiosphere 134 

and POCpetro vary with water discharge at the time of sample collection; ii) long-term averages of 135 

variables to examine discharges and yields. For (i) there are 33 catchments (Fig. 1a) where the 136 

suspended sediment concentration (SSC, mg L-1), organic carbon content (%OCtotal, weight %), bulk 137 

POC concentration (POC, mg L-1, the product of SSC and %OCtotal) and geochemical measurements 138 
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to account for POCpetro are available (Supplementary Table 1). Out of these, 8 catchments also have 139 

water discharge at the time of sample collection. For (ii), there are data from 38 mountain rivers 140 

(Supplementary Table 2).  141 

The collection of samples from rivers allows for subsequent geochemical analysis to quantify 142 

not only POC concentration, [POC] (mg L-1), but also the petrogenic and biospheric components. I 143 

focus on locations where this has been done alongside measurements of 14C activity, referred to here 144 

as the ‘fraction Modern’ (Fmod) (Stuiver and Polach, 1977) . Fmod values prove an effective means to 145 

quantify POCpetro inputs (see Section 2.3) and isolate the POC eroded from the terrestrial biosphere, 146 

POCbiosphere (Galy et al., 2007; Galy et al., 2008a; Hilton et al., 2008a; Hilton et al., 2010; Clark et al., 147 

2013; Hilton et al., 2015). While addition ‘total’ [POC] measurements (i.e. biospheric + petrogenic) 148 

are available for mountain rivers from the literature (e.g. Stallard, 1998; Gomez et al., 2003; Carey et 149 

al., 2005; Scott et al., 2006; Goldsmith et al., 2008; Bass et al., 2011; Stallard and Murphy, 2014; 150 

Dhillon and Inamdar, 2013) they are not used in this study. The focus is on mountain catchments, 151 

rather than large rivers with catchment areas >100,000 km2 (e.g. Bouchez et al., 2014; Tao et al., 152 

2015), where biological and sedimentary processes within rivers may more strongly modify POC 153 

composition (Hedges et al., 2000; Mayorga et al., 2005; Leithold et al., 2016).  154 

Samples were mostly collected from relatively narrow (<50m), turbulent river channels, from 155 

the surface of rivers (e.g. Hilton et al., 2008a). In larger channels, samples were collected using depth-156 

integrated sampling (e.g. Mayorga et al., 2005) or by discrete river depth-profile sampling (e.g. Galy 157 

and Eglinton, 2011). In total, 32 mountain river catchments have paired SSC, [POC] and Fmod 158 

measurements (Supplementary Table 1), with 181 individual measurements collated from 17 159 

published papers (Masiello and Druffel, 2001; Komada et al., 2004; Mayorga et al., 2005; Leithold et 160 

al., 2006; Alam et al., 2007; Galy et al., 2008a; Galy et al., 2008b; Hilton et al., 2008a; Galy and 161 

Eglinton, 2011; Hatten et al., 2012; Clark et al., 2013; Goñi et al., 2013; Lloret et al., 2013; Smith et 162 

al., 2013; Kao et al., 2014; Galy et al., 2015; Hilton et al., 2015). Sample sets range from n = 1 to n = 163 

18. In addition, the Capesterre River drains volcanic bedrock for which POCpetro can be assumed to be 164 

absent (Lloret et al., 2013) meaning that Fmod values are not required to quantify POCbiosphere and the 165 

data set is larger (n=65). The upstream drainage areas of catchments range from 0.7 km2 to 205,520 166 

km2, with the majority (n=28) between 50 km2 and 60,000 km2.  167 

While the dataset is still limited in terms of overall number of catchments, they do sample 168 

mountain forests across continents (Fig. 1a) and biomes/latitudes of boreal/arctic (Peel, Arctic Red), 169 

temperate (Erlenbach, Alsea, Siuslaw, Umpqua, Ishikari, Eel, Noyo, Navarro, Waipaoa, Waiapu), 170 

sub-tropical (Santa Clara, Karnali, Narayani, Kosi, Fonshan, Lanyang, Liwu, Choshiu, Tsengwen, 171 

Kaoping) and tropical (Capesterre, Kosnipata, and Amazon River Basin tributaries). They include 172 

mountain rivers which drain ocean islands (e.g. Guadeloupe, Taiwan, New Zealand) and those which 173 
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feed into major rivers (e.g. the Amazon, Mackenzie, Ganges). Data from mountain rivers are still 174 

lacking from high latitudes of South America and from the African continent (Fig. 1a). All rivers 175 

drain (meta-) sedimentary rocks, apart from the Capesterre River which drains volcanic rocks. 176 

Alongside SSC, [POC] and Fmod measurements, the daily water discharge at the time of 177 

sampling, Qw (m3 s-1 or m3 day-1), was sought out wherever possible. 8 of the 33 catchments have 178 

paired SSC, [POC], Fmod and Qw measurements, contributing a total of 107 samples. These catchments 179 

are in temperate zones (Erlenbach, Alsea, Umpqua, Eel), subtropical (Langyang, Liwu, Choshui) and 180 

tropical (Capesterre) settings (Hilton et al., 2008a; Hatten et al., 2012; Goñi et al., 2013; Lloret et al., 181 

2013; Smith et al., 2013; Kao et al., 2014).To compare Qw in catchments of varying drainage area, A 182 

(m2), the daily runoff, R (mm day-1) has been quantified by normalising Qw by A.  183 

In addition to daily measurements, annual to decadal estimates of catchment-average 184 

suspended sediment yield (t km-2 yr-1) and mean annual runoff (mm yr-1) were collated. Finally, 185 

published POCbiosphere and POCpetro yields (tC km-2 yr-1) are available for 38 mountain rivers 186 

(Supplementary Table 2) quantified either using: i) detailed time series sampling and rating curves 187 

between Qw and POC composition and concentration (e.g. Hilton et al., 2011a; Goñi et al., 2013; 188 

Lloret et al., 2013; Smith et al., 2013; Taylor et al., 2015); or ii) where suspended sediment yield has 189 

already been quantified, and POCbiosphere and POCpetro concentrations have been combined with that 190 

suspended sediment flux (e.g. Hilton et al., 2008b; Galy et al., 2015; Hilton et al., 2015). For the latter 191 

method, the relative yields are likely to be accurate (e.g. POCbiosphere versus suspended sediment yield), 192 

but the absolute values may have larger uncertainty than those quantified from time series sampling 193 

(Ferguson, 1986). POCbiosphere and POCpetro yields were estimated by this approach for the 6 rivers 194 

sampled by Leithold et al., (2006) using outputs from the mixing model described below.  195 

2.3 Geochemical Methods, Quantifying POCbiosphere Content and its 14C Age 196 

All samples were subject to broadly comparable techniques, with the general procedure comprising: i) 197 

filtration at 0.2µm or 0.7µm, removal of samples from filters; ii) homogenisation of samples by agate 198 

mill; iii) carbonate removal via acid (HCl) leach (liquid or fumigation); iv) organic carbon 199 

concentration, (%OCtotal) measured by combustion in an Elemental Analyser (EA). For some samples, 200 

nitrogen contents (N, %) were also determined via EA and the stable isotope composition of organic 201 

carbon (δ13Corg, ‰) by continuous flow coupling of EA-Isotope Ratio Mass Spectometry (IRMS). 202 

Radiocarbon activities were quantified following combustion and graphitisation by Accelerator Mass 203 

Spectrometry and are reported here as the ‘fraction Modern’ (Fmod) normalised to 1950 atmosphere 204 

and corrected to –25% δ13CVPDB based on measured stable isotope ratios (Stuiver and Polach, 1977). 205 

Some samples were also analysed for nitrogen isotope composition and biomarker measurements 206 

which quantify abundances of organic compounds and their isotopic composition (e.g. Galy and 207 
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Eglinton, 2011; Goñi et al., 2013). However these datasets remain limited in geographical extent and 208 

are not analysed here.  209 

Previous work has established that in mountain river catchments underlain by sedimentary 210 

bedrock, erosion processes result in a mixture of POCpetro and POCbiosphere (e.g. Kao and Liu, 2000; 211 

Komada et al., 2004; Leithold et al., 2006; Galy et al., 2008a; Hilton et al., 2008a). Fmod values can be 212 

used to quantify the carbon mass fraction of POCbiosphere (fbiosphere) of total POC using a binary mixing 213 

model: 214 

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑝𝑝 = 1        (Eq. 1) 215 

𝐹𝐹𝑚𝑚𝑝𝑝𝑚𝑚 = 𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐹𝐹𝑚𝑚𝑝𝑝𝑚𝑚−𝑏𝑏𝑖𝑖𝑝𝑝 + 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐹𝐹𝑚𝑚𝑝𝑝𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    (Eq. 2) 216 

where fpetro is the fraction of POCpetro in each sample, Fmod-bio is the radiocarbon activity of the 217 

biospheric POC, and Fmod-petro is the radiocarbon activity of the petrogenic POC. It is reasonable to 218 

assume that in sedimentary bedrocks older than 50ka, Fmod-petro ~ 0 (i.e. indistinguishable above 219 

background). Then, assuming the sediment mixture is well homogenised, the binary mixing model 220 

approach of Galy et al., (2008a) predicts the organic carbon content of the total sediment mixture 221 

(%OCtotal):  222 

%𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 =  %𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + %𝑂𝑂𝑂𝑂𝑏𝑏𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑝𝑝     (Eq. 3) 223 

where these are the weight % of the different components in the same sediment mixture. Equations 1-224 

3 can be combined so that: 225 

%𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 × 𝐹𝐹𝑚𝑚𝑝𝑝𝑚𝑚 = %𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 × 𝐹𝐹𝑚𝑚𝑝𝑝𝑚𝑚−𝑏𝑏𝑖𝑖𝑝𝑝 − %𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐹𝐹𝑚𝑚𝑝𝑝𝑚𝑚−𝑏𝑏𝑖𝑖𝑝𝑝  (Eq. 4) 226 

If Fmod-bio and %OCpetro are relatively homogeneous in a sample set, equation 4 predicts that a binary 227 

mixture should result in a strong linear trend between %OCtotal×Fmod (y) and %OCtotal (x). The gradient 228 

of that trend is Fmod-bio, which constrains the mean 14C age of POCbiosphere (Leithold et al., 2006; Galy 229 

and Eglinton, 2011; Bouchez et al., 2014; Tao et al., 2015). The intercept %OCpetro×Fmod-bio constrains 230 

the POCpetro content of rocks undergoing erosion. If the dataset is well described by this formulation 231 

and the assumptions hold, the fbiosphere for each sample can be computed (Eq. 2). The concentration of 232 

POCbiosphere, [POCbiosphere] mg L-1, is the product of SSC, %OCtotal and fbiosphere.  233 

2.4 Geomorphic parameters 234 

For the 8 catchments with paired SSC, [POC]biosphere and daily R measurements, geomorphic 235 

characteristics of the drainage area were quantified to help assess the controls on the erosion and 236 

transfer of POCbiosphere. A 3 arc-second (~90m pixel resolution at the equator) digital elevation model 237 

(DEM) derived from the Shuttle Radar Topography Mission elevation data was used, with coverage 238 
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gaps filled with topographic map data (Larsen et al., 2014a) downloaded from 239 

www.viewfinderpanoramas.org. Catchment areas were delineated from filled-DEMs via flow 240 

accumulation and flow direction algorithms in ArcGIS. Slope angles were calculated, accounting for 241 

the latitudinal dependence on grid cell shape (Z factor). The frequency distribution of elevation and 242 

slope values (binned as integers) were quantified (Fig. 1d), apart from the Erlenbach due to its small 243 

catchment area (0.74 km2) in comparison to the DEM resolution. From these distributions, the 16th, 244 

50th and 84th percentile of elevation (Z16, Z50 and Z84 in meters) and slope angles (θ16, θ50 and θ84 in 245 

degrees) were quantified (Supplementary Table 3).  246 

3. Results 247 

3.1 The Geochemical Composition of POC in Forested Mountain Rivers 248 

The POC samples reveal a large range in Fmod values from 0.04 to 1.09, with a mean Fmod = 0.59±0.29 249 

(n = 181). A large range of δ13Corg values are also evident, from -33.3‰ to -19.7‰, with a mean 250 

δ13Corg = -25.5±1.6‰ (Fig. 2a), similar to a global compilation of all riverine POC samples (Marwick 251 

et al., 2015). The most 14C-enriched samples (highest Fmod values) have δ13Corg values which mostly 252 

range between -28‰ and -24.5‰ (Fig. 2a), indicative of young POC fixed from atmospheric CO2 by 253 

C3 plants (Smith and Epstein, 1971) and surface soil horizons beneath C3 vegetation in mountain 254 

forest (e.g. Bird et al., 1994; Kao and Lui, 2000). The most 14C-depleted (lowest Fmod values) samples 255 

have δ13Corg values which mostly range between -26.5‰ and -21.5‰ (Fig. 2a), which is similar to the 256 

range of values reported for organic matter in Cenozoic sedimentary rocks (Hayes et al., 1999). The 257 

C/N ratios of the eroded particulate organic matter vary from 4.1 to 43 (Fig. 2b), with a mean C/N = 258 

14.0±5.6 (n=140). The C/N values at higher Fmod (C/N between ~10 and ~35) are consistent with a 259 

source from partially degraded C3 biomass and components of recently-derived vegetation. At lower 260 

Fmod values, variability in bedrock organic matter composition has been shown to play an important 261 

role in setting C/N values (Hilton et al., 2010; Clark et al., 2013; Smith et al., 2013). In that context, 262 

the Andean catchments (Kosnipata River) appear distinct from other catchments (e.g. Waipaoa) (Fig. 263 

2b). The range of C/N values at low Fmod (~5 to~12) are toward the lower range of global 264 

compilations of N content in rock-derived organic matter (Holloway and Dahlgren, 2002). 265 

Together, the Fmod, δ13Corg and C/N values are consistent with previous observations in 266 

forested mountain rivers, suggestive of a mixture of POCpetro (Fmod~0) and younger POCbiosphere (Hilton 267 

et al., 2008a; Gomez et al., 2010; Kao et al., 2014). The variable isotopic composition of POCpetro 268 

(Hayes et al., 1999; Hilton et al., 2010) is evident, based on the range of δ13Corg and C/N values at low 269 

Fmod values (Fig. 2). In general, POC from catchments with higher average suspended sediment yields 270 

can have lower Fmod values (Fig. 2a). This has been suggested based on a smaller compilation 271 
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(Leithold et al., 2006). However, it is clear that in any one catchment, POC can have a large range of 272 

Fmod values (Fig. 2a) and a generalisation with catchment-average sediment yield may not be helpful.  273 

The binary mixing model (Eq. 4) describes data from 14 catchments well (Supplementary 274 

Table 4). Based on the outputs of this analysis, the Fmod-bio of POCbiosphere in mountain rivers mostly 275 

ranges between 0.85±0.05 and 1.3±0.3 (Supplementary Table 4). These values correspond to 14C ages 276 

from 1330−450+480 years to ‘modern’ (i.e. formed post 1950). One exception is the Narayani River 277 

draining high elevations in the Himalaya and Tibet (Fmod-bio = 0.40±0.08, 14C age = 7300−1400+1700 yr). 278 

Previous work using similar methods identified aged POCbiosphere, thought to come from high altitude 279 

soils in this catchment (Galy and Eglinton, 2011). In addition, the Fmod-bio value for the Peel River at 280 

high northern latitudes (note that this was derived from a modified end member mixing analysis in 281 

published work) are substantially older (Fmod-bio = 0.49±0.10) due to input of aged-POCbiosphere from 282 

deep, peat soils (Hilton et al., 2015). This is consistent with ramped pyrolysis 14C analysis of river 283 

sediment from the Colville River (Schreiner et al., 2014) and organic compound-specific 14C analyses 284 

in high latitude rivers (Feng et al., 2013). The variability in Fmod-bio is important as it reflects the mean 285 

residence time of POCbiosphere in the landscape (Galy and Eglinton, 2011; Hilton et al., 2015). The 286 

values are much older than estimates of POCbiosphere turnover time in vegetation and soil, with a global 287 

average of 23 years (Carvalhais et al., 2014). However, it is beyond the focus of this manuscript to 288 

analyse these patterns further. To do that requires a larger sample set covering a range of climatic 289 

conditions and lowland rivers. Fmod-bio values and their uncertainties are used to quantify [POCbiosphere] 290 

and [POCpetro] from fbiosphere (Eq. 2).  291 

The variability in %OCtotal values for Taiwan and New Zealand catchments were not well 292 

explained by the binary mixing model outlined in equation 4 (e.g. Liwu River r2 =0.02, P < 0.25). 293 

This is because the assumption that %OCpetro is relatively invariant, does not hold in these locations. 294 

This has been highlighted previously in the Liwu River, Taiwan, where the river drains three major 295 

geological formations of variable metamorphic grade and age (Beyssac et al., 2007), and %OCpetro 296 

varies from ~0.1% to 0.5% (Hilton et al., 2010). Therefore, in these catchments a value of Fmod-297 

bio=1.0±0.1 is used to quantify fbiosphere  following Hilton et al., (2008a), which is similar to the 298 

majority of other catchments. However, it may lead to a conservative estimate of fbiosphere if aged 299 

POCbiosphere is important in the upland (Kao et al., 2014). Future work should seek to quantify the age 300 

of POCbiosphere in mountain river catchments. The analysis of the 14C activity of individual organic 301 

compounds such as the vascular plant-derived biomarkers, provides promise (Galy and Eglinton, 302 

2011; Feng et al., 2014; Tao et al., 2015) as does ramped pyrolysis 14C analysis, which can more fully 303 

interrogate the age distribution of POCbiosphere  (Rosenheim and Galy, 2012; Rosenheim et al., 2013) 304 

3.2 Links Between Suspended Sediment, POCbiosphere and POCpetro Concentrations 305 
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Rock-derived POCpetro is supplied by the erosion of rocks bearing organic matter. As such, the 306 

Capesterre which drains exclusively volcanic bedrock is the only catchment where POCpetro is not 307 

observed at any time (Lloret et al., 2013). Across the whole dataset, measured [POCpetro] was strongly 308 

correlated with SSC (r = 0.92, P < 0.0001, n = 167, Fig. 3a). This confirms the premise that POCpetro 309 

can be part of the clastic sediment load down to low sediment yields of ~53 t km-2 yr-1 (e.g. the Alsea 310 

River). The variability reflects the range in %OCpetro values, which the mixing model predicts varies 311 

from <0.01% to ~0.4% (Supplementary Table 4). The Himalayan river samples have lower [POCpetro] 312 

for a given SSC (Fig. 3a), consistent with their known lower %OCpetro (Galy et al., 2008a; Galy et al., 313 

2008b). In contrast, Taiwan rivers, Andean rivers and those draining the Canadian Rockies (Peel and 314 

Arctic Red) have higher %OCpetro (Clark et al., 2013; Hilton et al., 2015). Oxidation of POCpetro may 315 

play a role in setting variability in %OCpetro (Hilton et al., 2014), but more detailed analysis and 316 

discussion is outside the focus of this manuscript. 317 

For the POCbiosphere, which in these catchments is mainly derived from erosion of surface 318 

vegetation and soil from hillslopes, there is a positive correlation between [POCbiosphere] and SSC (r = 319 

0.55, P < 0.0001). However, it is clear from the patterns in the data that POCbiosphere (Fig. 3b) is 320 

behaving very differently to POCpetro (Fig. 3a). Each catchment has its own positive relationship 321 

between [POCbiosphere] and SSC, but these are shifted depending upon the overall catchment average 322 

sediment yield (Fig. 3b). This is expected if increased sediment yield is caused by an increase in 323 

overall “erosion depth” and calls for the importance of bedrock landslides (Larsen and Montgomery, 324 

2012). These will act to increase SSC and POCpetro (Fig. 3a), but not necessary increase the total 325 

surface area undergoing erosion (i.e. the POCbiosphere). It appears that the ratio of POCbiosphere to SSC 326 

may thus be a useful proxy to examine overall “erosion depth”. This is an interesting observation 327 

which warrants more detailed investigation, however lies outside the scope of the current manuscript. 328 

Overall, the erosion and river transport of POCbiosphere and POCpetro are somewhat decoupled in 329 

forested mountain belts (Fig. 3).  330 

3.3 Links Between Daily Runoff, POCbiosphere and POCpetro Concentrations  331 

When daily runoff (R, mm day-1) is plotted against SSC there is a clear separation of the samples (Fig. 332 

4a). For individual catchments, SSC increases with R, which has been widely reported elsewhere (e.g. 333 

Hicks et al., 2004; Milliman and Farnsworth, 2011). However for a given value of daily R, SSC are 334 

several orders of magnitude greater in catchments with higher average suspended sediment yield (Fig. 335 

4a). Mountain catchments undergoing higher rates of physical erosion are capable of transporting 336 

higher quantities of suspended sediment for a given runoff (Milliman and Syvitski, 1992). Taiwan 337 

river catchments experience high rates of tectonic uplift, fluvial incision and bedrock landsliding 338 

(Dadson et al., 2003) which can cause much higher SSC for a given R than rivers on the west coast of 339 

the US (e.g. Eel River) with lower rates of tectonic uplift (Goñi et al., 2013) or the Capesterre River, 340 
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Guadeloupe (Lloret et al., 2013) (Fig. 4a). Because POCpetro is intimately linked to clastic sediment 341 

(Fig. 3a), the same patterns are observed for POCpetro versus daily R (Fig. 4b).  342 

When the biospheric organic carbon is examined, there is a stark contrast (Fig. 5). Daily R is 343 

significantly correlated with the concentration of POCbiosphere, [POCbiosphere] (mg L-1), across the 8 344 

catchments with available hydrometric and geochemical data (r = 0.53, P = 0.0001, n = 107). The 345 

samples are well described by a single power law (r2 = 0.40, Fig. 5). Power law relationships between 346 

water discharge and [POCbiosphere] have been noted before for individual catchments (Hilton et al., 347 

2008a; Hatten et al., 2012; Smith et al., 2013). However, by normalising water discharge by drainage 348 

area to R, it appears there may be a common dynamic in the erosion and river transport of POCbiosphere 349 

from forested mountain rivers. Catchments with the highest median slope angles (Liwu θ50 = 30o and 350 

Choshui θ50 = 26o; Supplementary Table 3) have [POCbiosphere] values which define the upper range for 351 

a given value of R (Fig. 5). In contrast, in the Alsea (θ50 = 17o) and Capesterre (θ50 = 18o) have lower 352 

median slope angles and their [POCbiosphere] values extend the range to lower bounds at a given value 353 

of R. Catchments with moderate to high slope angles (Lanyang θ50 = 23o) lie between this range.  354 

3.4 Controls on POCbiosphere and POCpetro Yields 355 

The POCbiosphere yields from mountain river catchments are positively correlated with the suspended 356 

sediment yield (r = 0.53, P = 0.0006, n = 38, Fig. 6a) as previously reported for Taiwan (Hilton et al., 357 

2012) and in a recent global compilation (Galy et al., 2015). The global power law relationship of 358 

Galy et al., (2015) is consistent with the data compilation here (Fig. 6a) but the trend is different 359 

because of the inclusion of lower sediment yield catchments in that dataset (Galy et al., 2015). In 360 

addition, the θ84 value is positively correlated with suspended sediment yield in this dataset (r = 0.84, 361 

P = 0.0002, n = 9), following reported links between catchment slope and sediment yield in larger 362 

global compilations (Portenga and Bierman, 2011; Larsen et al., 2014a; Willenbring et al., 2015). θ84 363 

is positively correlated with POCbiosphere yield, albeit not at the 95% confidence level (r = 0.62 , P = 364 

0.07, n = 9).  365 

 The global compilation reveals a more significant correlation between mean annual runoff 366 

and POCbiosphere yield (r = 0.64, P <0.0001, n = 32, Fig. 6b) than between POCbiosphere yield and 367 

suspended sediment yield (r = 0.53, P = 0.0006, n = 38). There is weak relationship between 368 

suspended sediment yield and mean annual runoff (r = 0.20, P = 0.27, n = 32) suggesting that auto-369 

correlation between variables does not control this relationship. While Stallard (1998) proposed a link 370 

between mean annual runoff and total POC yield, that dataset contained considerable variability 371 

attributable to the variable input of POCpetro. The results highlight for the first time that annual runoff 372 

is a major control on POCbiosphere yields in mountain river catchments (Fig. 6b). 373 
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In terms of rock-derived POC, the strong link between [POCpetro] and SSC (Fig. 3a) results in 374 

a strong correlation between suspended sediment yield and POCpetro yield (r = 0.96, P < 0.0001, n= 375 

38) similar to that reported previously (Hilton et al., 2011; Galy et al., 2015). The relationship is 376 

expected if POCpetro is an integral part of the clastic sediment (Blair et al., 2003). While high erosion 377 

rates can lead to high oxidative weathering fluxes of POCpetro as fresh material is exposed (Hilton et 378 

al., 2014), overall weathering intensity is low in these settings (Bolton et al., 2006). In other words the 379 

ratio of chemical to physical denudation of POCpetro is low in mountains. This means that both river 380 

POCpetro discharge and POCpetro oxidative weathering rates can increase with increasing erosion rate 381 

(Hilton et al,. 2014). In analogy to suspended sediment yield, POCpetro yield is poorly correlated with 382 

annual runoff in the study catchments (r = 0.13, P = 0.5, n = 32).  383 

4. Discussion 384 

The export of carbon from mountain forests appears to be regulated by runoff in the study catchments. 385 

The global compilation reveals a significant correlation between daily runoff (R) and the 386 

concentration of POCbiosphere ([POCbiosphere]) carried by mountain rivers (Fig. 5). The steepness of the 387 

catchment may play an important role in moderating this relationship. The behaviour of POCbiosphere 388 

with daily runoff contrasts starkly with that of the clastic sediment load and POCpetro (Fig. 4) and is 389 

suggestive of a common set of processes which drive POCbiosphere export from forested mountains. If 390 

these can be better understood, this may help to explain the observed relationships between longer-391 

term estimates of POCbiosphere yield (tC km-2 yr-1) and suspended sediment yield (Fig. 6a) (Hilton et al., 392 

2012; Galy et al., 2015) and mean annual runoff (Fig. 6b). In this discussion, a shear-stress erosion 393 

model is first proposed to explain the global relationships (Fig. 5). Following this, I explore how 394 

climatic factors may regulate POCbiosphere discharge from mountains, and assess the wider implications 395 

for the global carbon cycle.  396 

4.1 A Shear-Stress Driven POCbiosphere Erosion Model 397 

An erosion model is proposed which seeks to explain the data patterns, while providing a framework 398 

to assess how runoff (climate) and slope (linked to tectonics) impact POCbiosphere discharge (cf. West et 399 

al., 2005). The positive relationship between daily R and [POCbiosphere] (Fig. 5) implies that enhanced 400 

flow capacity and/or erosional supply occur with an increase in rainfall intensity. Such erosional 401 

export is analogous to the shear-stress formulation of particle mass transfer down slope by fluids 402 

(Bagnold, 1966). The discharge of mass by a fluid moving over an erodible surface, qPOC [M T-1], can 403 

be described as a power law function of the shear-stress exerted by that fluid, τb [M L-1 T-2]: 404 

𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜅𝜅𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝜏𝜏𝑏𝑏𝛽𝛽        (Eq. 5) 405 
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where κPOC [M-β Lβ+1 T2β -1] and β are positive constants. The formulation assumes that thresholds for 406 

entrainment and export of mass (i.e. a critical shear stress) are negligible. For clastic sediment, there 407 

have been attempts to incorporate thresholds into this shear-stress erosion model (e.g. Govers, 1990, 408 

Tucker and Slingerland, 1997). Here, for simplicity a non-threshold form is used based on the lack of 409 

observed threshold for POCbiosphere transport (Fig. 5).  410 

The parameters of this erosion model (Eq. 5) are analogous to those discussed in the 411 

considerable literature on the stream-power (shear-stress) erosion model (e.g. Howard and Kerby, 412 

1983; Howard et al., 1994; Whipple and Tucker, 1999). The coefficient κPOC can be considered as the 413 

‘erodability’ of POCbiosphere at any given location. Factors which may influence this term include the 414 

grain size and relative mobility of POCbiosphere (Govers, 1990; Hamm et al., 2008; Wohl et al., 2012; 415 

Turowski et al., 2013). Where forest cover is present, the abundance of available POCbiosphere as 416 

biomass and soil may be less important for κPOC. This is because POCbiosphere yields are typically only 417 

~1% of net primary productivity (Hilton et al., 2012; Galy et al., 2015) and so POCbiosphere can be 418 

considered to be abundant and available for erosion. The exponent β is likely to depend on the 419 

specific erosion process operating (Bagnold, 1966; Whipple and Tucker, 1999). 420 

If one assumes the conservation of momentum for a steady and uniform flow, τb can be 421 

described by: 422 

𝜏𝜏𝑏𝑏 = 𝜌𝜌 ∙ 𝑔𝑔 ∙ 𝐷𝐷 ∙ 𝑆𝑆        (Eq. 6) 423 

where ρ is the fluid density [M L-3], g the acceleration due to gravity [L T-2], D the flow depth [L] and 424 

S the surface slope (tanθ). With minimal infiltration, the flow depth can be described a function of 425 

runoff, R [L T-1], delivered over a period of time, t [T]: 426 

 𝜏𝜏𝑏𝑏 = 𝜌𝜌 ∙ 𝑔𝑔 ∙ 𝑅𝑅 ∙ 𝑡𝑡 ∙ 𝑆𝑆        (Eq. 7) 427 

The erosional discharge of POCbiosphere over this time period, qPOC [M T-1], can be quantified using the 428 

POCbiosphere concentration in the fluid, [POCbiosphere] [M L-3], and the R delivered over a unit surface 429 

area, A [L2], and described by combining Eqs. 5 and 7 to provide a shear-stress POCbiosphere erosion 430 

model: 431 

𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 = [𝑃𝑃𝑂𝑂𝑂𝑂𝑏𝑏𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑝𝑝] ∙ 𝑅𝑅 ∙ 𝐴𝐴 = 𝜅𝜅𝑃𝑃𝑃𝑃𝑃𝑃 ∙ (𝜌𝜌 ∙ 𝑔𝑔 ∙ 𝑅𝑅 ∙ 𝑡𝑡 ∙ 𝑆𝑆)𝛽𝛽   (Eq. 8) 432 

Rearranging this equation to describe [POCbiosphere] as a function of R over a set time period relevant to 433 

the dataset (t = 1 day) and unit area (A = 1 km2) gives: 434 

[𝑃𝑃𝑂𝑂𝑂𝑂𝑏𝑏𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑝𝑝] = 𝜅𝜅𝑃𝑃𝑃𝑃𝑃𝑃 ∙ (𝜌𝜌 ∙ 𝑔𝑔 ∙ 𝑆𝑆)𝛽𝛽 ∙ 𝑅𝑅(𝛽𝛽−1)     (Eq. 9) 435 
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Working from first principles, a shear-stress erosion model predicts a power law relationship between 436 

[POCbiosphere] and R for a given value of κPOC and S: 437 

 [𝑃𝑃𝑂𝑂𝑂𝑂𝑏𝑏𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑝𝑝] = 𝛼𝛼 ∙ 𝑅𝑅𝛾𝛾       (Eq. 10) 438 

The coefficient α includes two variables: i) κPOC, the ‘erodability’ of POCbiosphere; and ii) S raised to the 439 

power β = (γ +1). κPOC cannot be examined further with the available data here. One might imagine 440 

there could be variability in κPOC which reflects important attributes of the biosphere and soil (for 441 

instance, the grain size distribution of organic matter, or the thickness of surface organic-matter rich 442 

horizons). Future research should seek to understand whether this is a meaningful (and useful) 443 

parameter. S certainly does vary across the landscape (e.g. Fig. 1d) and a single value for a catchment 444 

can only ever represent this variability. Nevertheless, equation 9 offers an explanation for the power 445 

law relationship between R and [POCbiosphere] in the global dataset (Fig. 5). Parametrising the model 446 

based on the data from global mountain rivers (Fig. 5) gives α = 0.052 ± 0.046 (units a function of M, 447 

L and T raised to powers modified by β) and γ = 1.37 ± 0.17.  448 

4.1.1 Sensitivity of the Shear-Stress POCbiosphere Erosion Model to Slope and Runoff 449 

To assess how the parameters in the model may reflect reality, first the role of slope angle in the 450 

sampled catchments is considered. Differences in slope angle change α (Eqs. 9 and 10), thus modify 451 

the power law function between [POCbiosphere] and R (Fig. 5). The Capesterre and Liwu rivers are used 452 

to explore an upper and lower bound on the slope angle distributions (Fig. 1, Supplementary Table 3) 453 

from 9o (θ16 for Capesterre) to 39o (θ84 for the Liwu), with a mid-value of 24o. These correspond to S 454 

values (tanθ) from 0.16-0.81, with a mid-value S = 0.45. This range of values is used to modify α, 455 

remembering α is proportional to S(γ+1) (Eqs. 9 and 10) and in the case of the global dataset (γ+1) = 456 

2.37. At high slope (θ = 39o  and S = 0.81), α is 3.4 times larger than α at a mid-value of S (θ = 24o  457 

and S = 0.45). At low slope (θ = 9o  and S = 0.16), α is 0.07 times the mid-value of S.  458 

A 3.4x increase in α, and a 0.07x decrease in α, by changing slope angles from 24o to 39o and 459 

24o to 9o respectively, can explain the range in the empirical data (Fig. 5). In the Capesterre 460 

catchment,  [POCbiosphere] values are generally low for a given daily R value compared to other 461 

catchments. However, the Capesterre does have steep slopes in the catchment (Fig. 1f), as indicated 462 

by its θ84 = 31o (Supplementary Table 3), and [POCbiosphere] values in this catchment do reach some of 463 

the highest measured values for a given R (Fig. 5). The distribution of slope angles can explain the 464 

spread in the data for that catchment. The same is true for the Liwu River where slopes are steeper.  465 

The role of annual runoff and annual runoff variability for POCbiosphere discharge can be 466 

examined using the model (Eq. 8). When historical daily R records are used for the Eel River (1959-467 

1980) and Liwu River (1970-1999), the model predicts variability in annual POCbiosphere yields which 468 
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are a function of the annual runoff (Fig. 7a), and the mean annual runoff variability (Fig. 7b). The 469 

differences between these catchments reflect the very different magnitude frequency distributions for 470 

runoff (Fig. 7c), due to intense runoff events during tropical cyclones which impact the island of 471 

Taiwan and the Liwu River (Dadson et al., 2003; Hilton et al., 2008a). Overall, the model outputs 472 

explain the positive relationship between POCbiosphere yield and mean annual runoff (Fig. 6b).  473 

The purpose of this erosion model is not for quantitative prediction at present, however it is 474 

useful to reflect on the POCbiosphere discharge predicted from the historical runoff data. For the Liwu 475 

River, the POCbiosphere erosion model (Eq. 8) predicts a decadal average POCbiosphere yield of 36 tC km-2 476 

yr-1 using the historic R records. This is higher than estimates made by Hilton et al., (2012) of 6.8±2.7 477 

tC km-2 yr-1 for the same catchment from 2003-2004. That study noted that the calculated yields were 478 

probably conservative based on outputs of POCbiosphere content from a δ13Corg and N/C mixing model 479 

and a yield quantified by a flux-weighted method (Ferguson, 1987). The model does not seem to 480 

produce unrealistically high values of [POCbiosphere], with the three highest daily runoffs in the 30 year 481 

record having [POCbiosphere] = 178 mgC L-1, 217 mgC L-1 and 440 mgC L-1. The available data show 482 

that values >100 mgC L-1 have been measured during lower flow events (Fig. 5) (Hilton et al., 2008a; 483 

Smith et al., 2013; Kao et al., 2014). It is possible, that the model can provide robust estimates of 484 

POCbiosphere yield and suggests that global datasets (Galy et al., 2015) may need to be revised upwards.  485 

4.1.2 Geomorphic Processes which Erode POCbiosphere from Mountains  486 

Previous work has discussion the processes which act to erode and transport POCbiosphere (and POCpetro) 487 

in mountain rivers (Leithold et al., 2006; Hilton et al., 2008a; Hilton et al., 2012; Clark et al., 2013; 488 

Smith et al., 2013). In light of the observed relationship between daily R and [POCbiosphere] across the 489 

sampled mountain catchments (Fig. 5) and the proposed shear-stress driven erosion mode (Eq. 8) is it 490 

useful to summarise some of the key themes here. The key processes are thought to be: i) erosion of 491 

POCbiosphere from forested hillslopes by runoff-driven processes; ii) erosion of POCbiosphere from 492 

hillslopes by mass wasting processes, such as shallow and bedrock landslides; and iii) production of 493 

fine grained POCbiosphere by mechanical attrition of coarser POCbiosphere. Erosion of POCbiosphere from in-494 

channel sources is not thought to be a major source of POCbiosphere in mountain rivers, especially at 495 

high runoff (Hilton et al., 2008a; Clark et al., 2013). The global dataset can provide new insight as to 496 

the commonality of these processes. 497 

Erosion of POCbiosphere by runoff-driven processes (i.e. overland flow) can explain the global 498 

relationship (Fig. 5) and provides a clear link to a shear-stress driven erosion model. Steep slopes 499 

often develop limited regolith (Roering et al., 1999; Calmels et al., 2011; West, 2012; Larsen et al., 500 

2014b) and it is common to find bedrock mantled by thin (<1m) colluvium and soil litter, with plants 501 

anchored directly to bedrock exposures. In these locations, bedrock is likely to promote overland flow 502 
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by its minimal infiltration capacity, rather than by saturation (Horton, 1945). In addition, steep slopes 503 

should have a high potential for effective hydrological connectivity, promoting the formation of 504 

surface flows (Bracken and Croke, 2007; Gomi et al., 2008). These processes are consistent with the 505 

relatively young age of POCbiosphere quantified in most of the study catchments (Supplementary Table 506 

4), with surface litter material contributing to erosional fluxes. However, fractures and pathways for 507 

fluids to contribute to shallow and deep groundwater are also known to be important in steep 508 

mountain catchments (Calmels et al., 2011; Clark et al., 2014) which are unlikely to directly  erode 509 

POCbiosphere from hillslopes.  510 

If the trend between [POCbiosphere] and R was solely attributed to runoff-driven processes, one 511 

would have to invoke that thresholds for overland flow are reached across the full range of sampled R 512 

values from 1-100 mm day-1 (Fig. 5). While this might seem difficult to justify, it is important to note 513 

that the annual POCbiosphere yields measured across mountain river catchments typically only equate to 514 

~1% of the available POCbiosphere produced by photosynthesis over the same time period (Hilton et al., 515 

2012; Galy et al., 2015). Thus not all sections of hillslopes are required to have passed erosion 516 

thresholds. At lower runoff intensity overland flow-driven erosion of POCbiosphere may occur only in 517 

locations with the steepest slopes. Even in the catchments with moderate θ50 (e.g. the Capesterre 518 

River, θ50= 18o, Fig. 1f), 17% of the catchment area has slope angles >30o. It is important to note that 519 

the lack of apparent runoff threshold for POCbiosphere erosion (Fig. 5) may not hold for coarser 520 

POCbiosphere not sampled here (Turowski et al., 2016). POCbiosphere larger than 1 mm may require 521 

thresholds to initiate motion, entrain woody debris and clear log-jams from mountain rivers (Wohl, et 522 

al., 2009; Wohl and Ogden, 2013; Jochner et al., 2015). 523 

In addition to overland flow, mass wasting processes have the potential to erode POCbiosphere 524 

(Hilton et al., 2011b; West et al., 2011; Ramos-Scharron et al., 2012; Clark et al., 2016). They are 525 

consistent with the link between daily R and [POCbiosphere] (Fig. 5). Shallow landslide rates may 526 

increase under saturated conditions (Roering et al., 2015) and move POCbiosphere downslope. Large 527 

precipitation events can also trigger numerous landslides (Page et al., 2004; Hilton et al., 2008a) 528 

which can be very tightly connected to the river network (West et al., 2011; Clark et al., 2016). Even 529 

in the Capesterre River where θ50 = 18o, in comparison to θ50 = 30o in the Liwu River (Supplementary 530 

Table 3), field observations demonstrate that mass wasting events erode POCbiosphere from mountain 531 

forest (Fig. 1f). The landslide process can also explain the input of older POCbiosphere into rivers (Galy 532 

and Eglinton, 2011) by eroding into deeper soils or mobilising the entire soil POCbiosphere stock. 533 

Bedrock landslides harvest POCbiosphere across a large range of grain sizes, and completely remove 534 

whole tracks of forest (Restrepo et al., 2009). These events are likely to be central for the transfer of 535 

coarse POCbiosphere and larger woody debris (Wohl et al., 2009; Wohl, 2011; Turowski et al., 2013; 536 

Jochner et al., 2015). Coarse POCbiosphere fluxes are not often measured, but where they have been 537 
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measured they can represent a significant component (e.g. West et al., 2011; Turowski et al., 2016). In 538 

parallel with this, the production of fine grained (<1mm) POCbiosphere through mechanical attrition, 539 

akin to abrasion of gravel and pebble bedload clasts (Attal and Lave, 2009) could be important, but 540 

remains poorly constrained.  541 

The power law dependence of [POCbiosphere] and R (Fig. 5), in addition to the lack of an 542 

apparent threshold in its transport, point to a high degree of connectivity in the hydrological-driven 543 

erosion of POCbiosphere. Steep slopes permit this response and processes which erode and transfer 544 

POCbiosphere may be very different in catchments with lower slopes (θ50 < 10o). In those locations, the 545 

nature of runoff generation during rainfall events will be important (Bracken and Croke, 2007) and 546 

one may expect that the runoff control on [POCbiosphere] may not hold for less steep catchments. In 547 

addition, catchments with significant anthropogenic modification may experience a different 548 

response. Deforestation may manifest itself in a higher POCbiosphere at a given runoff if bare soil is 549 

exposed (Bruijnzeel, 2004). The runoff response for agricultural soils, which tend to be <10o slope, 550 

may also enhance POCbiosphere transfer and any associated nutrients (Quinton et al., 2010). These issues 551 

are outside the current study, but remain significant challenges to understanding the impact of 552 

anthropogenic activities on riverine carbon fluxes (Hoffman et al., 2013). 553 

4.2 The Role of Mountains for Global POCbiosphere Discharge  554 

A recent compilation of suspended load POC source and flux measurements (i.e. POC finer than ~500 555 

µm), estimated the global POCbiosphere discharge by rivers to the oceans as 157−50+74 Mt C yr-1, with 556 

POCpetro discharge of 43−25+61 Mt C yr-1 (Galy et al., 2015). These estimates go beyond previous 557 

estimates of riverine POC discharge (Meybeck, 1993; Ludwig et al., 1996) because they account for 558 

both POC from the modern biosphere and that derived from rock. Galy et al., (2015)’s estimates are 559 

probably the best we can do at present for POCbiosphere smaller than ~500 µm (cf. Wohl and Ogden, 560 

2013; Turowski et al., 2016) based on the available Fmod measurements. There are three mountain 561 

rivers in the present study which do not contribute to the Galy et al., (2015) compilation (Lanyang, 562 

Capesterre, Quebrada, Supplementary Table 2). However, they will not significantly modify the 563 

global estimates based on 70 river basins. Therefore, it is not the intention to revise this global 564 

discharge estimate, nor apply the shear stress model (Eq. 8), but instead to better constrain how 565 

important mountains are globally to POCbiosphere and POCpetro discharge. 566 

 Erosion rate is a first order control on POCbiosphere  and POCpetro discharge (Hilton et al., 2012; 567 

Galy et al., 2015) and as sediment production hotspots (Milliman and Syvitski, 1992; Milliman and 568 

Farnsworth, 2011) mountain rivers should play an important role in POCbiosphere discharge to the 569 

oceans. Indeed, mountain rivers of Oceania are estimated to discharge 48 Mt Cyr-1 of POCtotal 570 

(biosphere + petrogenic) to the oceans (Lyons et al., 2002). Kao et al., (2014) used geochemical 571 
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methods similar to those described here to estimate the river POCbiosphere discharge for this region (up-572 

scaled from Taiwan) to be 10-40 Mt Cyr-1. To provide new insight founded on the improved 573 

understanding of the processes operating (Section 4.1, Fig. 5), the global distribution of topographic 574 

slope derived from 3-arc-second DEM is used. A recent analysis has used an empirical relationship 575 

between catchment-average slope and denudation rate (derived from detrital cosmogenic 576 

radionuclides) and applied it to a global DEM at the same spatial scale (Larsen et al., 2014a; 577 

Willenbring et al., 2015). The outputs of this analysis suggest a global physical denudation of 21 Gt 578 

yr-1, 19 Gt yr-1 corrected for internal drainage networks (Larsen et al., 2014), similar to the estimates 579 

of riverine sediment discharge to the oceans (Milliman and Farnsworth, 2011). Regardless of the 580 

absolute values, the approach confirms that mountains dominate global physical denudation 581 

(Milliman and Syviski, 1992). The outputs of Larsen et al., (2014a) suggest that 66% of physical 582 

denudation occurs in landscapes steeper than 10o (3-arc-second DEM), which cover only 15.5% 583 

(20.9x106 km2) of the land surface.   584 

 To consider POC transfers, global relationships between suspended sediment yield and 585 

POCbiosphere and POCpetro yields (Fig. 6a) are used which have been modelled as power-law 586 

relationships (Galy et al., 2015): 587 

POCbiosphere yield = 0.081×(Suspended sediment yield)0.56 (r2 = 0.78, P < 0.001)   (Eq. 11) 588 

POCpetro yield = 0.0007×(Suspended sediment yield)1.11 (r2 = 0.82, P < 0.001)   (Eq. 12) 589 

These relationships are used to convert sediment yield outputs from Larsen et al., (2014a) to quantify 590 

POCbiosphere yields per 3 arc-second grid cell globally. Larsen et al., (2014a) place an upper bound on 591 

total denudation rates at high slope angles (>46o) at 10 mm yr-1. This is due to the observed 592 

divergence of catchment-average slope as a control on physical denudation rate at high slopes 593 

(Roering et al., 2000; Ouimet et al., 2009; Portenga and Bierman, 2011; Larsen et al., 2014). The 594 

consequence is that the physical denudation rates from Larsen et al., (2014) produce a maximum 595 

POCbiosphere yield of 30 tC km-2 yr-1 and POCpetro yield of 85 tC km-2 yr-1 at slopes >46o (which cover 596 

<0.001% of the continental area). These values are similar those measured in Taiwan (Hilton et al., 597 

2012) where erosion rates are high globally (Hovius et al., 2000; Dadson et al., 2003) and thus 598 

provide a sensible upper bound.  599 

 The primary assumption of this approach is that catchment-average slope plays the major role 600 

in setting not only suspended sediment discharge (Larsen et al., 2014a), but also POCbiosphere and 601 

POCpetro discharge. This assumption is somewhat justified by the observed link between S84 and 602 

POCbiosphere yield from the mountain catchments compiled here (Section 3.4). Slope also plays an 603 

important role in moderating the transport of POCbiosphere, with steeper catchments transporting more 604 

POCbiosphere at similar runoff (Fig. 5). Finally, the shear-stress erosion model (Eq. 8) supports the 605 
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important role of slope for POCbiosphere discharge (Section 4.1). However, using only slope to predict 606 

POCbiosphere discharge will only ever deliver a first order estimate because it does not account for the 607 

importance of runoff (Figs. 5 and 6b), nor spatial changes in POCbiosphere stocks in biomass and 608 

POCpetro in rocks. While this may not be important for POCbiosphere discharge from forested catchments, 609 

where only ~1% of the net primary productivity is typically exported (Hilton et al., 2012; Galy et al., 610 

2015), at high elevations and/or latitudes where POCbiosphere stocks are minimal or absent this is 611 

relevant. With these caveats in mind, the absolute values returned from this an analysis should be 612 

treated with caution. POCbiosphere yields may be underestimated in steep, tropical catchments with high 613 

runoff (Hilton et al., 2008b), and overestimated in semi-arid/cold settings where POCbiosphere stocks are 614 

substantially lower. POCpetro yields may be overestimated because igneous rocks may contain no 615 

organic matter.  616 

 Based on the distribution of physical denudation with slope from Larsen et al., (2014a) and 617 

the empirical relationships defined by Galy et al., (2015), erosion drives a global POCbiosphere discharge 618 

of ~140 Mt C yr-1 and POCpetro discharge ~20 Mt C yr-1. These values are similar but at the lower 619 

range of recent estimates (Galy et al., 2015), albeit within the large uncertainty associated with any 620 

global extrapolation (Milliman and Farnsworth, 2011). More importantly, the approach suggests that 621 

~40% of the global POCbiosphere discharge (~50 Mt C yr-1) and ~70% of the global POCpetro discharge 622 

(~20 Mt C yr-1) originates from topography steeper than 10o (3-arc-second DEM), which represents 623 

16% of the Earth’s continental surface. The analysis quantitatively confirms the role of steep 624 

mountains not only in the erosion and supply of clastic sediment (Milliman and Syviski, 1992) and 625 

solutes (Larsen et al., 2014a), but also for the discharge of POCbiosphere and POCpetro. They demonstrate 626 

an important link between mountain building and the carbon cycle by the export of POCbiosphere. 627 

4.2.1. Fate of eroded POCbiosphere  628 

The role of mountains in the long-term carbon cycle is more pronounced when the fate of eroded 629 

POCbiosphere is considered. While the transport of sediment and organic matter through fluvial 630 

sedimentary systems can be complex (Leithold et al., 2016; Romans et al., 2016), the preservation of 631 

organic carbon in marine sediments is strongly linked to the clastic sediment accumulation rate 632 

(Berner, 1982; Canfield, 1994; Burdige, 2005; Blair and Aller, 2012). In source-to-sink systems fed 633 

by rivers draining mountains, POCbiosphere burial efficiencies (quoted as % of the input preserved) have 634 

been shown to be very high. In the Bay of Bengal, high sediment loads help promote very efficient 635 

POCbiosphere burial (close to 100%), delivered by the Ganges and Brahmaputra rivers which drain the 636 

Himalaya (Galy et al., 2007). Offshore the mountain island of Taiwan, POCbiosphere burial efficiencies 637 

have been estimated to be >70% (Kao et al., 2014). The Mackenzie River draining the Canadian 638 

Rockies has a moderate erosion rate, but an estimated POCbiosphere burial efficiency offshore of ~65% 639 

(Hilton et al., 2015).  640 
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Available data from global source-to-sink studies compiled by Galy et al., (2015) suggest that 641 

POCbiosphere burial efficiencies increase from ~20% to close to 100% as suspended sediment yields 642 

increase from 10 t km-2 yr-1 to 10,000 t km-2 yr-1. Thus, erosion in steep mountain topography with 643 

high sediment yields promotes efficient burial of POCbiosphere. The potential importance of mountains 644 

for terrestrial POCbiosphere burial can be assessed if one considers low burial efficiencies of 20% for 645 

POCbiosphere exported from topography with low slope angles <10o (i.e. 20% of the POCbiosphere 646 

discharge of 90 Mt C yr-1 preserved), and higher burial efficiencies of >70% for landscapes with 647 

slopes angles >10o (i.e. 70% of the POCbiosphere discharge of 50 Mt C yr-1 preserved). Much uncertainty 648 

remains, primarily in the fate of POCbiosphere in the oceans. Nevertheless, this analysis suggests that 649 

catchments with steep topography may account for ~70% of the global CO2 drawdown by 650 

sedimentary burial of terrestrial POCbiosphere. Future work needs to better constrain both global 651 

POCbiosphere discharge from mountains and quantify its long-term fate in sedimentary environments. 652 

4.3 Climatic Regulation of POCbiosphere Discharge and a Stabilising Feedback in the Earth 653 

System 654 

The data from forested mountain rivers suggest runoff regulates POCbiosphere discharge over days to 655 

years (Figs. 5 & 6b). The formulation of the shear-stress erosion model (Eq. 8) fits with these 656 

observations. A link between POCbiosphere discharge and runoff is important, as this carbon transfer 657 

may be modified by changes in the global patterns and amount of runoff, for which temperature is an 658 

important driver (Manabe et al., 2004). To explore this is in a quantitative framework, I use the shear-659 

stress model fit to empirical data (Eq. 10; Fig. 5) which allows the role of climatic factors (e.g. mean 660 

annual runoff and runoff variability) to be assessed separately from geomorphic/tectonic factors 661 

(slope) . A normalised R dataset from one of the study catchments is used (the Liwu River), i.e. 662 

keeping the catchment annual variability of R the same for this analysis (Fig. 7c). 663 

The analysis predicts that POCbiosphere discharge by forested mountain rivers is highly sensitive 664 

to mean annual runoff. With a constant α = 0.519 defined by the empirical data (Fig. 5), an increase in 665 

mean annual runoff from 1500 to 2500 mm yr-1 (66% increase) raises the model POCbiosphere yield 666 

from 11 tC km-2 yr-1 to 38 tC km-2 yr-1 (~250% increase) (Fig. 8). In other words, POCbiosphere yields 667 

increase by ~4% per 1% change in annual runoff. The response of POCbiosphere discharge to runoff will 668 

also be sensitive to the magnitude-frequency distribution of daily runoff values (Fig. 7b), which can 669 

differ markedly amongst mountain catchments (Fig. 7c). 670 

 These predictions are important when compared to the silicate weathering CO2 drawdown 671 

mechanism (Gaillardet et al., 1999), which is thought to provide the main feedback which acts to 672 

buffer atmospheric CO2 concentrations over geological time (Walker et al., 1981; Berner et al., 1983). 673 

Silicate weathering fluxes from mountain catchments have been proposed to have a climate sensitivity 674 

which is higher than less steep parts of Earth’s surface (West, 2012; Maher and Chamberlain, 2014). 675 
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High rates of physical denudation provide an abundant supply of minerals to soils (Larsen et al., 676 

2014b) and in landslide deposits (Emberson et al., 2016) and chemical weathering rates are set by 677 

runoff and temperature which control the reaction kinetics (West et al., 2005). Based on these models 678 

(West, 2012; Maher and Chamberlain, 2014), at high denudation rates typical of steep mountains 679 

(>1000 t km-2 yr-1), a 1% increase in runoff would increase silicate weathering solute fluxes (and CO2 680 

drawdown) by ~0.4-0.7%. POCbiosphere discharge from mountains is much more strongly regulated by 681 

runoff (Fig. 8). For the same change in runoff, the shear-tress erosion model (Fig. 8) predicts that 682 

POCbiosphere discharge increases ~6x to 10x more than silicate weathering solute fluxes.  683 

The fate of the eroded POCbiosphere must be considered (Blair and Aller, 2012), but even with a 684 

low burial efficiency of 20%, the runoff sensitivity of POCbiosphere discharge is still higher than that of 685 

silicate weathering in mountains (West, 2012; Maher and Chamberlain, 2014). Erosion of POCbiosphere 686 

from mountain forest therefore offers a strong feedback to climate via runoff. If runoff and global 687 

temperature are linked, this is a mechanisms by which atmospheric CO2 concentrations may be 688 

moderated over geological timescales. The carbon fluxes involved (~50 MtC yr-1) are equivalent to 689 

silicate weathering (Gaillardet et al., 1999; Galy et al., 2015). Nevertheless, direct feedbacks between 690 

organic carbon burial and climate are not presently considered in Earth System Models which seek to 691 

quantify the geological carbon cycle (Berner, 2006; Colbourn et al., 2015). 692 

The stabilising feedback which links POCbiosphere discharge to mean annual runoff (and thus 693 

GMT) operates most efficiently in the steepest parts of the continents. This can be illustrated by 694 

varying α (Eq. 10) to represent different slope angles undergoing erosion (Eq. 8). The absolute size of 695 

these fluxes remains very uncertain, but the model predicts that for the same change in annual runoff, 696 

POCbiosphere discharge from steep catchments (higher α = 0.062, which is a 20% increase in α) will 697 

increase much more than compared to less steep catchments (lower α = 0.041, a 20% decrease in α) 698 

(Fig. 8). The process-based model suggests that steep mountain catchments play a critical role in 699 

governing carbon transfers from the atmosphere. They are locations where the climate sensitivity of 700 

carbon transfers are most pronounced (Fig. 8).  701 

The sensitivity of POCbiosphere discharge in mountain catchments to runoff is also important in 702 

the context of anthropogenic warming. Projected warming of GMTs by ~2.6-4.8oC by the years 2081-703 

2100 (high emission scenario RCP8.5) (Collins et al., 2013) may increase the transfer of POCbiosphere 704 

from land to rivers, lakes, reservoirs and the oceans if this comes with an increase in runoff. Climate 705 

model predictions are still uncertain, but provide an indication that runoff in rivers may increase by 706 

2.3-6.8% per 1oC of GMT change (Manabe et al., 2004; Maher and Chamberlain, 2014). Therefore, 707 

based on the runoff sensitivity from the shear-stress erosion model (Fig. 8), 2oC of warming could 708 

increase POCbiosphere discharge from steep mountain forest by >20%. While these increases are capable 709 

of being sustained by net primary productivity in the majority of river basins (Hilton et al., 2012; Galy 710 
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et al., 2015), it is unknown whether increased erosional fluxes may lead to enhanced terrestrial carbon 711 

storage (e.g. Berhe et al., 2007; Hoffmann et al., 2013; Li et al., 2015), or whether degradation and 712 

respiration of POCbiosphere may contribute to CO2 degassing by rivers (Raymond et al., 2013). These 713 

remain important directions for future research which require expanded spatial and temporal sampling 714 

of rivers and new approaches to model POCbiosphere discharge and its fate in river networks. 715 

5. Conclusions  716 

Erosion of mountain forest results in an export of carbon from the terrestrial biosphere. The global 717 

fluxes are thought to be significant, but it is not known how climatic factors which govern erosion 718 

may regulate this carbon transfer. To provide new insight, I use global measurements of particulate 719 

organic carbon (POC) concentration from 33 mountain river catchments, where geochemical analyses 720 

of POC (14C, δ13C, C/N) are available alongside hydrometric measurements (daily runoff, suspended 721 

sediment concentration, suspended sediment yield) and geomorphic metrics (slope angle 722 

distributions). The 14C activity is used to account for inputs of rock-derived, or ‘petrogenic’, POCpetro, 723 

and isolate the POC eroded from the terrestrial biosphere (POCbiosphere). The elemental and stable 724 

isotopic compositions of POCbiosphere and POCpetro vary amongst the sample set, and reflect a mixture 725 

of C3 vegetation, partially degraded POCbiosphere in soil, and POCpetro of variable composition. An end 726 

member mixing model is used to quantify POCbiosphere and its 14C age. The findings suggest that 727 

POCbiosphere eroded from mountain forest is generally <1300 14C years old, with older POCbiosphere 728 

important in catchments draining very high altitudes and high-latitudes. POCbiosphere yields are 729 

positively correlated with suspended sediment yield, supporting previous observations and weakly 730 

correlated with angle of the steepest slopes in catchments. Based on these relationships, a global 3 731 

arc-second DEM was used to estimate how steep mountain topography contributes to POCbiosphere 732 

discharge. Topography steeper than 10o (16% of the continental area) may be responsible for >40% of 733 

the global POCbiosphere erosion (>70% of the global POCpetro erosion). These global flux estimates need 734 

to be refined by accounting for climate variability which controls POCbiosphere erosion. 735 

The global dataset shows for the first time that a single power law relationship between daily 736 

runoff (R, mm day-1), and the concentration of POCbiosphere ([POCbiosphere], mg L-1) can describe the 737 

available data from 8 distinct catchments (where [POCbiosphere] = α·Rγ and α = 0.052 ± 0.046  and γ 738 

=1.37±0.17; n = 107). The pre-factor α appears to be linked to the slope angles of the sampled 739 

catchments (Fig. 5). Together the data suggest the combined role of overland-flow driven processes 740 

and mass wasting events at high runoff, in addition to high connectivity between hillslopes and 741 

channels in these steep landscapes, with abundant POCbiosphere available for erosion. A result of this 742 

correlation at the daily timescale, is that annual POCbiosphere yields (tC km-2 yr-1) are positively 743 

correlated with annual runoff (Fig. 6b). A shear-stress POCbiosphere erosion model can explain the data 744 

(Eq. 9) and the model is used to explore how climate regulates POCbiosphere discharge. A 1% increase 745 
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in mean annual runoff results in a model increase of POCbiosphere discharge by ~4%. POCbiosphere 746 

discharge appears to be 6x to10x more responsive to increased runoff than silicate weathering solute 747 

fluxes in mountains.  748 

The fate of eroded POCbiosphere from mountain catchments remains poorly constrained in most 749 

cases, as does the rate of CO2 release by oxidation of POCpetro. Nevertheless, the findings here 750 

demonstrate the central role of the organic carbon cycle in linking mountain building and climate to 751 

the evolution of atmospheric CO2 levels over geological timescales. Increased global temperature and 752 

runoff is predicted to increase POCbiosphere discharge by rivers from mountains (Fig. 8). When coupled 753 

to enhanced productivity by the biosphere and replacement of the eroded POC in mountain forest, this 754 

represents a stabilising feedback to a warming climate, alongside the silicate weathering feedback 755 

which is not as responsive to changing runoff as POCbiosphere discharge. The POCbiosphere climate-CO2 756 

feedback may operate most efficiently in the steepest topography, where model outputs show changes 757 

in runoff lead to the largest responses in POCbiosphere discharge (Fig. 8). Having demonstrated these 758 

links for the first time, the major challenge is to now adequately describe these processes in Earth 759 

System Models which link environmental change and the carbon cycle and understand how they play 760 

a role in the long-term evolution of atmospheric CO2 concentrations.  761 
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8. Figure Captions 1054 

Figure 1: Mountain river catchments used in this study. A) Datasets from forested mountain river 1055 

catchments used in this study (Supplementary Tables 1 and 2). B) and C) Examples of the 1056 

quantification of catchment geomorphic characteristics (Supplementary Table 3) for the Liwu River, 1057 

Taiwan (B), and Capesterre River, Guadeloupe (C), with sampling points and gauging stations shown 1058 

as a white star, and the catchment elevation given. D) Examples of slope angle distribution 1059 

determined from 3 arc-second Digital Elevation Model (Supplementary Table 3). E) Mountain forest 1060 

and steep landscape of the Liwu River showing evidence for recent bedrock landslides. F) Tropical 1061 

forest in the Capesterre River (photo used with permission of François Beauducel, IPG, Paris), with 1062 

patchwork of regrowth on steep hillslopes evidence of recent mass wasting events.  1063 

Figure 2: Geochemistry of particulate organic carbon (POC) carried by forested mountain 1064 

rivers. A) Fraction Modern (Fmod, from 14C activity) versus the stable isotopic composition of POC 1065 

(δ13Corg, permil), with individual catchments labelled and coloured based on their suspended sediment 1066 

yield (t km-2 yr-1) (light grey = no published estimate) (Supplementary Table 1), where: P = Peel, AR 1067 

= Arctic Red, Er = Erlenbach, Al = Alsea, Si = Siuslaw, Um = Umpqua, Ish = Ishikari, Ee = Eel, No = 1068 
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Noyo, Na = Navarro, SC = Santa Clara, Ka = Karnali, Ny = Narayani, Ko = Kosi, F = Fonshan, La = 1069 

Langyang, Li = Liwu, W = Wu, Ch = Choshui, T = Tsengwen, G = Gaoping, Uc = Ucayali, Ur = 1070 

Urubamna, T= Tambo, KSP = Kosnipata – San Pedro, KW = Kosnipata – Wayqecha, Ap = 1071 

Apurimac, Sa = Salcca, V = Vilcanota, Z = Zongo, Wa = Waiapu, Wp = Waipaoa. B) As part A, but 1072 

for the organic carbon to nitrogen ratio (C/N) of the particulate organic matter. Regions corresponding 1073 

to the expected compositions of biospheric POC and rock-derived, ‘petrogenic’ POC for forested 1074 

mountain river catchments are shown as rectangles and are discussed in the main text. Analytical 1075 

uncertainties are smaller than the point size. 1076 

Figure 3: POCbiosphere and POCpetro versus suspended sediment concentration. A) Rock-derived 1077 

POC concentration, [POCpetro] (mg L-1) versus daily runoff (mm day-1) as a function of suspended 1078 

sediment concentration, [SSC] (mg L-1), with points labelled by catchment and coloured based on 1079 

their catchment average suspended sediment yield (as per Fig. 2) (Supplementary Table 1). Note, the 1080 

Capesterre catchment has volcanic bedrock bearing no POCpetro and so does not appear on this plot. B) 1081 

Concentration of POC eroded from the terrestrial biosphere, [POCbiosphere] (mg L-1) versus [SSC], 1082 

labelled the same way as part A. Grey filled symbols are catchments with no yield information. 1083 

Uncertainties are derived from the mixing model outputs (Supplementary Table 4) and shown as grey 1084 

whiskers if larger than the point size.  1085 

Figure 4: Daily runoff versus suspended sediment and POCpetro concentration. A) Suspended 1086 

sediment concentration ([SSC], mg L-1) as a function of the daily runoff (mm day-1), with points 1087 

labelled by catchment and coloured based on their catchment average suspended sediment yield 1088 

(Supplementary Table 1). Eight catchments have available daily runoff measurements, all shown here 1089 

(Al = Alsea, Ca = Capesterre, Ch = Choshui, Ee = Eel, Er = Erlenbach, La = Langyang, Li = Liwu, 1090 

Um = Umpqua). B) Rock-derived POC concentration, [POCpetro] (mg L-1) versus daily runoff (mm 1091 

day-1), labelled the same as part A. Note, the Capesterre catchment has volcanic bedrock bearing no 1092 

POCpetro and so does not appear on this plot, as do a number of points from the Umpqua River were 1093 

POCpetro inputs were negligible. Grey filled symbols are catchments with no yield information. 1094 

Uncertainties are derived from the mixing model outputs (Supplementary Table 4) and shown as grey 1095 

whiskers if larger than the point size.  1096 

Figure 5: Daily runoff versus POCbiosphere in forested mountain rivers. Concentration of POC 1097 

eroded from the terrestrial biosphere, [POCbiosphere] (mg L-1), as a function of daily runoff, R (mm day-1098 
1), with points labelled by catchment (as per Fig. 4) and coloured based on their median slope angle. 1099 

The variables are significantly correlated (r = 0.53, P < 0.0001, n = 107). Solid black line shows 1100 

power law best fit to the data ([POCbiosphere] = α·Rγ, where α = 0.052 ± 0.046, γ = 1.37 ± 0.17 , r2 = 1101 

0.40) with grey lines indicating the 95% confidence intervals. Solid lines show power law fits with 1102 

modified α values, where red line has α x 3.4, and the orange line has α x 0.07, following the 1103 
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discussion in the main text (Section 4.1.1). Uncertainties are derived from the mixing model outputs 1104 

and shown as grey whiskers if larger than the point size. 1105 

Figure 6: Controls on annual POCbiosphere yields. A) POCbiosphere yield (tC km-2 yr-1) as a function of 1106 

suspended sediment yield (t km-2 yr-1), with points labelled by catchment (as per previous figures, 1107 

with additional data from He = Heping, Hu = Hualien, Cy = Chenyoulan, Hs = Hsiukuluan, Wu = 1108 

Wulu, Ln = Laonung, Y = Yenping, Pn = Peinan, Lp = Linpien, Q = Quebrada, Ho = Hokitika, Ha = 1109 

Haast, Wg = Wanganui, Po = Poerua, Wt = Waitangitaona, Wh = Whataroa, Wo = Waiho, F = Fox) 1110 

and coloured based on annual runoff (grey when not available). Solid black line and grey lines show a 1111 

power law fit to the data and 95% confidence interval. Dashed black line shows the global 1112 

relationship following Galy et al., (2015). B) POCbiosphere yield (tC km-2 yr-1) as a function of mean 1113 

annual runoff (m yr-1), labelled by catchment and coloured by suspended sediment yield where 1114 

available (grey where not). Power law fit to the data and 95% confidence bands are shown 1115 

(POCbiosphere yield = 7.6±3.0 x (Annual Runoff)0.8±0.2, r2 = 0.31, n = 37).  1116 

Figure 7: Shear-stress POCbiosphere erosion model outputs. A) Mean annual POCbiosphere yield (tC 1117 

km-2 yr-1) as a function of mean annual runoff (m yr-1) with the catchment data shown as grey circles 1118 

(from Fig. 6b). Model (Eq. 8) outputs for each year of historical data from the Liwu River (diamonds) 1119 

and Eel River (squares) are shown. B) As part A), but with the annual runoff variability (as relative 1120 

standard deviation) for each year of the historical dataset used with the model outputs. C) The 1121 

normalised distribution of daily runoff values in the historical datasets. 1122 

Figure 8: Modelled climate regulation of POCbiosphere discharge. Outputs of shear-stress erosion 1123 

model (Eq. 8) parameterised by the global dataset (Fig. 4). POCbiosphere yield (tC km-2 yr-1) is 1124 

quantified as a function of annual runoff (mm yr-1), keeping the variability of daily runoff values 1125 

constant as defined by the Liwu River (Fig. 7c), while changing α (Eq. 10), ∆α , relative change from 1126 

the value α = 0.052 (∆α  = 1) defined by the global dataset (Fig. 5). α is a non-linear function of 1127 

catchment-average slope (Eqs. 9 and 10).  1128 
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Supplementary Table 1: Suspended sediment samples from global forested mountain rivers, with geochemical measurements of organic carbon 1129 

concentration ([OCtotal]), stable carbon isotope composition (δ13C), organic carbon to nitrogen ratio (C/N), fraction modern from radiocarbon (Fmod), daily 1130 

runoff at the time of sample collection, suspended sediment concentration (SSC) and total POC concentration ([POC]). The biospheric POC concentration 1131 

([POCbiosphere]) and petrogenic POC concentration ([POCpetro]) and associated uncertainties are the result of mixing analyses described in the main text (and 1132 

reported in Supplementary Table 4).  1133 

River Lat. Long. Area [OCtotal] δ13C C/N Fmod Daily Runoff SSC [POC] [POCbiosphere] Error [POCbiosphere] [POCpetro] Error [POCpetro] Reference 
      km2 % permil %/%   mm day-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1   

Peel 67.331 -134.866 70600 2.00 -26.8 
 

0.38 
 

250 5.0 3.5 0.7 1.54 0.74 Hilton et al., 2015 
Peel 67.331 -134.866 70600 2.24 -26.8 

 
0.28 

 
101 2.3 1.6 0.3 0.62 0.30 Hilton et al., 2015 

Peel 67.331 -134.866 70600 2.27 -26.8 
 

0.48 
 

325 7.4 5.4 1.0 2.01 0.97 Hilton et al., 2015 
Peel 67.331 -134.866 70600 1.85 -26.6 

 
0.31 

 
146 2.7 1.8 0.4 0.90 0.43 Hilton et al., 2015 

Arctic Red 67.439 -133.753 18600 2.17 -26.8 
 

0.30 
 

123 2.7 1.9 0.4 0.76 0.37 Hilton et al., 2015 
Arctic Red 67.439 -133.753 18600 1.95 -26.8 

 
0.29 

 
123 2.4 1.6 0.4 0.76 0.37 Hilton et al., 2015 

Erlenbach 47.045 8.709 0.74 2.04 -27.5 11.1 0.68 9.0 508 10.4 7.9 1.0 2.48 0.09 Smith et al., 2013 
Erlenbach 47.045 8.709 0.74 1.14 -26.5 8.5 0.67 46.0 4128 47.2 35.4 4.3 11.81 0.09 Smith et al., 2013 
Erlenbach 47.045 8.709 0.74 1.19 -26.2 8.7 0.47 60.3 1570 18.7 9.8 1.2 8.86 0.06 Smith et al., 2013 
Erlenbach 47.045 8.709 0.74 2.08 -26.7 13.3 0.74 136.3 10344 214.8 177.9 21.8 36.97 0.10 Smith et al., 2013 
Erlenbach 47.045 8.709 0.74 1.71 -26.7 12.0 0.69 240.8 8499 145.2 112.1 13.7 33.12 0.09 Smith et al., 2013 
Erlenbach 47.045 8.709 0.74 1.62 -26.3 10.9 0.67 267.4 14063 228.5 171.3 21.0 57.22 0.09 Smith et al., 2013 

Alsea 44.386 -123.831 1220 9.20 -25.1 9.3 1.01 4.5 4 0.4 0.4 0.0 0.01 0.01 Hatten et al., 2012 
Alsea 44.386 -123.831 1220 2.60 -25.6 11.8 0.97 16.0 51 1.3 1.3 0.0 0.08 0.01 Hatten et al., 2012 
Alsea 44.386 -123.831 1220 2.60 -25.3 13.0 1.00 29.7 71 1.8 1.8 0.0 0.06 0.01 Hatten et al., 2012 
Alsea 44.386 -123.831 1220 5.20 -25.9 13.7 1.04 38.2 247 12.8 12.8 0.1 0.00 0.01 Hatten et al., 2012 
Alsea 44.386 -123.831 1220 15.60 -26.5 16.1 1.03 4.5 1 0.2 0.2 0.0 0.00 0.01 Hatten et al., 2012 
Alsea 44.386 -123.831 1220 3.80 -26.6 19.0 1.03 16.0 30 1.1 1.1 0.0 0.00 0.01 Hatten et al., 2012 
Alsea 44.386 -123.831 1220 6.20 -26.5 19.4 1.03 29.7 156 9.7 9.6 0.1 0.03 0.01 Hatten et al., 2012 
Alsea 44.386 -123.831 1220 7.60 -26.9 20.0 1.04 38.2 150 11.4 11.5 0.1 0.00 0.01 Hatten et al., 2012 

Siuslaw 44.004 -124.006 
 

6.74 -27.1 21.1 1.01 
       

Leithold et al., 2006 
Siuslaw 44.004 -124.006 

 
4.86 -26.8 19.9 1.03 

       
Leithold et al., 2006 

Siuslaw 44.004 -124.006 
 

5.43 -26.8 17.8 1.05 
       

Leithold et al., 2006 
Siuslaw 44.004 -124.006 

 
7.11 -27.0 19.4 1.03 

       
Leithold et al., 2006 

Umpqua 43.586 -123.554 13000 8.11 -23.1 8.6 0.97 0.8 7 0.6 0.6 0.0 0.00 0.01 Goñi et al., 2013 
Umpqua  43.586 -123.554 13000 4.76 -26.3 11.7 0.95 2.7 15 0.7 0.7 0.0 0.01 0.01 Goñi et al., 2013 
Umpqua  43.586 -123.554 13000 3.34 -25.3 11.4 0.96 5.3 75 2.5 2.5 0.0 0.03 0.01 Goñi et al., 2013 
Umpqua  43.586 -123.554 13000 2.62 -26.4 16.0 0.98 12.2 245 6.4 6.4 0.1 0.00 0.01 Goñi et al., 2013 
Umpqua  43.586 -123.554 13000 2.63 -26.4 14.0 0.96 21.6 385 10.1 10.0 0.1 0.05 0.01 Goñi et al., 2013 
Ishikari  43.219 141.660 14330 1.81 -30.6 

 
0.64 

 
369 6.7 4.3 0.3 2.40 0.04 Alam et al., 2007 

Ishikari  43.219 141.660 14330 2.23 -26.4 
 

0.83 
 

88 2.0 1.6 0.0 0.32 0.02 Alam et al., 2007 
Ishikari  43.219 141.660 14330 5.41 -27.8 

 
0.90 

 
6 0.3 0.3 0.0 0.03 0.03 Alam et al., 2007 

Ishikari  43.219 141.660 14330 3.81 -28.5 
 

0.84 
 

11 0.4 0.3 0.0 0.07 0.03 Alam et al., 2007 
Ishikari  43.219 141.660 14330 3.02 -25.9 

 
0.83 

 
22 0.7 0.6 0.0 0.11 0.03 Alam et al., 2007 

Ishikari  43.219 141.660 14330 2.51 -30.6 
 

0.78 
 

22 0.6 0.4 0.0 0.12 0.03 Alam et al., 2007 
Eel 40.492 -124.099 9537 0.90 -25.0 13.3 0.37 

       
Leithold et al., 2006 

Eel 40.492 -124.099 9537 1.00 -25.1 13.3 0.45 
       

Leithold et al., 2006 
Eel 40.492 -124.099 9537 1.09 -25.6 14.2 0.53 

       
Leithold et al., 2006 
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Eel 40.492 -124.099 9537 0.76 -25.5 16.0 0.60 
       

Leithold et al., 2006 
Eel 40.492 -124.099 9537 1.06 -25.0 11.5 0.47 

       
Leithold et al., 2006 

Eel 40.492 -124.099 9537 
 

-25.0 
 

0.47 
       

Leithold et al., 2006 
Eel 40.492 -124.099 9537 0.99 -25.1 10.0 0.49 2.2 81 0.8 0.4 0.1 0.37 0.09 Goñi et al., 2013 
Eel 40.492 -124.099 9537 0.83 -26.0 13.3 0.39 12.9 1072 8.9 3.8 0.7 5.13 0.07 Goñi et al., 2013 
Eel 40.492 -124.099 9537 1.09 -26.4 12.2 0.56 19.6 3253 35.3 21.3 3.7 13.95 0.11 Goñi et al., 2013 
Eel 40.492 -124.099 9537 0.81 -25.7 12.6 0.46 21.8 1909 15.4 7.7 1.3 7.72 0.09 Goñi et al., 2013 

Noyo 39.426 -123.801 
 

2.14 -26.2 21.9 0.78 
       

Leithold et al., 2006 
Noyo 39.426 -123.801 

 
2.61 -26.1 15.3 1.00 

       
Leithold et al., 2006 

Noyo 39.426 -123.801 
 

2.53 -26.4 16.2 0.98 
       

Leithold et al., 2006 
Noyo 39.426 -123.801 

 
2.68 -26.5 20.0 0.98 

       
Leithold et al., 2006 

Noyo 39.426 -123.801 
 

1.97 -26.2 19.9 0.95 
       

Leithold et al., 2006 
Navarro 39.197 -123.747 

 
1.01 -25.5 15.4 0.74 

       
Leithold et al., 2006 

Navarro 39.197 -123.747 
 

1.28 -25.5 10.8 0.72 
       

Leithold et al., 2006 
Navarro 39.197 -123.747 

 
1.48 -25.8 14.3 0.83 

       
Leithold et al., 2006 

Navarro 39.197 -123.747 
 

1.54 -26.2 14.0 0.84 
       

Leithold et al., 2006 
Navarro 39.197 -123.747 

 
1.44 -26.0 14.9 0.88 

       
Leithold et al., 2006 

Navarro 39.197 -123.747 
 

1.28 -25.9 16.4 0.81 
       

Leithold et al., 2006 
Navarro 39.197 -123.747 

 
0.99 -25.8 15.1 0.76 

       
Leithold et al., 2006 

Santa Clara 34.235 -119.216 4210 0.94 -25.1 
 

0.73 
       

Komada et al., 2004 
Santa Clara 34.235 -119.216 4210 1.11 -24.2 

 
0.57 

       
Komada et al., 2004 

Santa Clara 34.235 -119.216 4210 3.44 -25.2 
 

0.77 
       

Komada et al., 2004 
Santa Clara 34.235 -119.216 4210 1.76 -25.2 

 
0.73 

       
Komada et al., 2004 

Santa Clara 34.235 -119.216 4210 1.01 -24.4 
 

0.46 
       

Komada et al., 2004 
Santa Clara 34.235 -119.216 4210 1.37 -24.8 

 
0.67 

       
Komada et al., 2004 

Santa Clara 34.235 -119.216 4210 
 

-33.3 
 

1.02 
       

Masiello et al., 2001 
Santa Clara 34.235 -119.216 4210 3.56 -25.3 

 
0.87 

       
Masiello et al., 2001 

Santa Clara 34.235 -119.216 4210 1.60 -24.0 
 

0.74 
       

Masiello et al., 2001 
Santa Clara 34.235 -119.216 4210 0.74 -19.7 

 
0.35 

       
Masiello et al., 2001 

Santa Clara 34.235 -119.216 4210 1.15 -22.3 
 

0.59 
       

Masiello et al., 2001 
Santa Clara 34.235 -119.216 4210 1.22 -20.6 

 
0.47 

       
Masiello et al., 2001 

Karnali 28.642 81.283 57600 0.41 -25.6 
 

0.83 
 

1300 5.4 4.5 0.4 0.90 0.07 Galy and Eglinton, 2011 
Karnali 28.642 81.283 57600 0.38 -25.4 

 
0.78 

       
Galy and Eglinton, 2011 

Karnali 28.642 81.283 57600 0.33 -25.8 
 

0.73 
       

Galy and Eglinton, 2011 
Karnali 28.642 81.283 57600 0.27 -25.9 

 
0.70 

       
Galy and Eglinton, 2011 

Karnali 28.642 81.283 57600 0.28 -26.5 
 

0.76 
       

Galy and Eglinton, 2011 
Narayani 27.703 84.427 31800 0.34 -24.5 

 
0.39 

       
Galy and Eglinton, 2011 

Narayani 27.703 84.427 31800 0.33 -24.7 
 

0.39 
 

2900 9.5 9.2 1.8 0.38 0.19 Galy and Eglinton, 2011 
Narayani 27.703 84.427 31800 0.21 -24.3 

 
0.37 

 
5600 12.0 11.0 2.1 1.02 0.18 Galy and Eglinton, 2011 

Narayani 27.703 84.427 31800 0.18 -24.2 
 

0.33 
 

10200 18.4 15.0 2.9 3.46 0.16 Galy and Eglinton, 2011 
Nayayani 27.703 84.427 31800 0.39 -23.9 

 
0.31 

       
Galy and Eglinton, 2011 

Nayayani 27.703 84.427 31800 0.28 -24.4 
 

0.49 
       

Galy and Eglinton, 2011 
Nayayani 27.703 84.427 31800 0.21 -24.0 

 
0.45 

       
Galy and Eglinton, 2011 

Nayayani 27.703 84.427 31800 0.22 -23.9 
 

0.43 
       

Galy and Eglinton, 2011 
Nayayani 27.703 84.427 31800 0.30 -24.0 

 
0.48 

       
Galy and Eglinton, 2011 

Nayayani 27.703 84.427 31800 0.10 -23.7 
 

0.15 
       

Galy and Eglinton, 2011 
Narayani 27.690 84.395 31800 0.22 -24.4 

 
0.49 

       
Galy and Eglinton, 2011 

Kosi 26.847 87.152 51400 0.35 -25.1 
 

0.84 
       

Galy and Eglinton, 2011 
Kosi 26.847 87.152 51400 0.32 -25.2 

 
0.77 

 
5700 18.2 16.5 1.0 1.72 0.05 Galy and Eglinton, 2011 

Kosi 26.847 87.152 51400 0.42 -25.5 
 

0.81 
 

2600 10.8 10.4 0.6 0.42 0.06 Galy and Eglinton, 2011 
Kosi 26.847 87.152 51400 0.05 -21.4 

 
0.39 

       
Galy and Eglinton, 2011 

Kosi 26.847 87.152 51400 0.34 -26.0 
 

0.81 
       

Galy and Eglinton, 2011 
Kosi 26.847 87.152 51400 0.42 -25.5 

 
0.71 

       
Galy and Eglinton, 2011 
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Kosi 26.847 87.152 51400 0.05 -23.7 
 

0.25 
       

Galy and Eglinton, 2011 
Fonshan 24.851 121.015 

 
0.67 -25.3 

 
0.60 

 
500 3.4 2.0 0.2 1.35 0.06 Kao et al., 2014 

Langyang 24.715 121.772 820 0.68 -25.1 
 

0.20 125.9 7700 52.4 10.4 1.1 41.93 0.02 Kao et al., 2014 
Langyang 24.715 121.772 820 0.71 -25.4 

 
0.29 268.7 24500 174.0 50.1 5.0 123.90 0.03 Kao et al., 2014 

Langyang 24.715 121.772 820 0.58 -25.0 
 

0.57 47.7 11400 66.1 37.7 3.8 28.47 0.06 Kao et al., 2014 
Langyang 24.715 121.772 820 0.62 -25.3 

 
0.71 164.4 6700 41.5 29.4 2.9 12.16 0.07 Kao et al., 2014 

Langyang 24.715 121.772 820 0.58 -25.6 
 

0.76 46.8 9800 56.8 43.4 4.3 13.44 0.08 Kao et al., 2014 
Langyang 24.715 121.772 820 0.58 -25.7 

 
0.78 67.6 5300 30.7 23.9 2.4 6.83 0.08 Kao et al., 2014 

Langyang 24.715 121.772 820 1.03 -26.1 
 

1.06 6.2 400 4.1 4.1 0.4 0.00 0.10 Kao et al., 2014 
Liwu 24.179 121.492 435 0.41 -23.0 

 
0.41 7.3 2500 10.3 4.2 0.4 6.08 0.04 Hilton et al., 2008a 

Liwu 24.179 121.492 435 0.27 -21.8 
 

0.10 25.0 13100 35.4 3.6 0.4 31.73 0.01 Hilton et al., 2008a 
Liwu 24.179 121.492 435 0.38 -23.2 

 
0.43 80.0 64200 244.0 104.4 10.5 139.55 0.04 Hilton et al., 2008a 

Liwu 24.179 121.492 435 0.34 -23.7 
 

0.08 38.7 24400 83.0 6.9 0.7 76.07 0.01 Hilton et al., 2008a 
Liwu 24.179 121.492 435 0.39 -24.1 

 
0.07 34.4 17600 68.6 5.1 0.5 63.56 0.01 Hilton et al., 2008a 

Liwu 24.179 121.492 435 0.42 -24.4 
 

0.05 8.7 7700 32.3 1.7 0.2 30.66 0.01 Hilton et al., 2008a 
Liwu 24.179 121.492 435 0.37 -24.3 

 
0.04 7.0 5800 21.5 0.9 0.1 20.52 0.01 Hilton et al., 2008a 

Liwu 24.179 121.492 435 0.16 -22.5 
 

0.17 17.3 30600 49.0 8.5 0.9 40.44 0.02 Hilton et al., 2008a 
Liwu 24.179 121.492 435 0.28 -23.2 

 
0.13 14.3 17700 49.6 6.3 0.7 43.22 0.01 Hilton et al., 2008a 

Liwu 24.156 121.622 435 0.17 -24.1 
 

0.40 
 

59500 101.2 40.4 4.0 60.80 0.04 Kao et al., 2014 
Liwu 24.156 121.622 435 0.12 

  
0.30 

     
0.00 0.03 Kao et al., 2014 

Liwu 24.156 121.622 435 0.19 -23.8 
 

0.36 
 

83600 158.8 57.0 5.7 101.87 0.04 Kao et al., 2014 
Liwu 24.156 121.622 435 0.15 -24.0 

 
0.26 

 
65100 97.7 25.0 2.5 72.66 0.03 Kao et al., 2014 

Liwu 24.156 121.622 435 0.13 -24.0 
 

0.30 
 

43600 56.7 17.2 1.7 39.44 0.03 Kao et al., 2014 
Liwu 24.156 121.622 435 0.20 -23.5 

 
0.27 

 
53000 106.0 28.9 2.9 77.06 0.03 Kao et al., 2014 

Liwu 24.156 121.622 435 0.20 -23.9 
 

0.11 
 

34300 68.6 7.7 0.8 60.86 0.01 Kao et al., 2014 
Liwu 24.156 121.622 435 0.30 -24.7 

 
0.14 

 
39600 118.8 16.6 1.7 102.16 0.01 Kao et al., 2014 

Liwu 24.156 121.622 435 0.30 -24.7 
 

0.09 
 

30300 90.9 7.9 0.8 83.02 0.01 Kao et al., 2014 
Wu 24.154 120.522 

 
0.68 -24.7 

 
0.56 

 
3900 26.5 14.9 1.5 11.61 0.06 Kao et al., 2014 

Choshui 23.810 120.469 2906 0.66 -24.5 
 

0.24 
 

6500 42.9 10.4 1.0 32.55 0.02 Kao et al., 2014 
Choshui 23.785 120.636 2906 0.23 -26.6 

 
0.19 95.1 199000 457.7 88.5 9.0 369.19 0.02 Kao et al., 2014 

Choshui 23.785 120.636 2906 0.25 -25.4 
 

0.33 74.9 87900 219.8 72.2 7.2 147.60 0.03 Kao et al., 2014 
Choshui 23.785 120.636 2906 0.45 -25.6 

 
0.52 190.0 11600 52.2 27.0 2.7 25.23 0.05 Kao et al., 2014 

Choshui 23.784 120.885 
 

0.63 -26.2 
 

0.15 
 

62800 395.6 60.2 6.1 335.47 0.02 Kao et al., 2014 
Choshui 23.784 120.885 

 
0.37 -26.0 

 
0.13 

 
41400 153.2 20.2 2.1 132.97 0.01 Kao et al., 2014 

Choshui 23.784 120.885 
 

0.32 -25.6 
 

0.25 
 

36600 117.1 28.8 2.9 88.34 0.02 Kao et al., 2014 
Choshui 23.772 120.652 

 
0.30 -26.2 

 
0.31 

 
133900 401.7 122.6 12.3 279.11 0.03 Kao et al., 2014 

Choshui 23.772 120.652 
 

0.25 -26.7 
 

0.13 
 

134200 335.5 43.3 4.4 292.25 0.01 Kao et al., 2014 
Choshui 23.772 120.652 

 
0.20 -26.4 

 
0.12 

 
132300 264.6 32.2 3.3 232.35 0.01 Kao et al., 2014 

Choshui 23.695 120.852 
 

0.32 -24.3 
 

0.25 
 

800 2.6 0.7 0.1 1.91 0.03 Kao et al., 2014 
Choshui 23.695 120.852 

 
0.29 -24.4 

 
0.24 

 
67500 195.8 47.5 4.8 148.24 0.02 Kao et al., 2014 

Choshui 23.695 120.852 
 

0.35 -25.1 
 

0.67 
 

83600 292.6 195.1 19.5 97.51 0.07 Kao et al., 2014 
Tsengwen 23.108 120.205 

 
0.49 -24.9 

 
0.38 

 
12900 63.2 24.0 2.4 39.19 0.04 Kao et al., 2014 

Gaoping 22.770 120.454 
 

0.58 -25.4 
 

1.00 
 

3600 20.9 20.8 2.1 0.07 0.10 Kao et al., 2014 
Capesterre 16.072 -61.609 16.6 3.55 

 
22.7 

 
5.6 11 0.4 0.4 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 11.60 
 

15.0 
 

50.3 12 1.3 1.3 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 13.04 

 
17.5 

 
38.9 10 1.3 1.3 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 10.68 
 

17.0 
 

10.4 10 1.1 1.1 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 10.32 

 
14.5 

 
66.5 64 6.6 6.6 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 11.38 
 

15.1 
 

51.2 36 4.0 4.0 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 17.18 

 
11.3 

 
46.8 19 3.3 3.3 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 15.54 
 

18.7 
 

52.3 18 2.8 2.8 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 9.60 

 
12.7 

 
34.5 81 7.7 7.7 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 8.29 
 

12.6 
 

23.9 74 6.1 6.1 
   

Lloret et al., 2013 
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Capesterre 16.072 -61.609 16.6 12.34 
 

16.3 
 

19.1 55 6.8 6.8 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 10.57 

 
14.8 

 
15.8 36 3.8 3.8 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 12.12 
 

16.9 
 

11.6 25 3.1 3.1 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 12.96 

 
16.4 

 
10.8 21 2.7 2.7 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 18.01 
 

26.7 
 

17.4 10 1.8 1.8 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 14.15 

 
16.1 

 
31.5 25 3.5 3.5 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 22.92 
 

31.2 
 

19.1 6 1.3 1.3 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 10.65 

 
16.4 

 
103.4 63 6.7 6.7 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 15.17 
 

22.9 
 

38.1 14 2.1 2.1 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 11.39 

 
16.0 

 
109.8 105 11.9 11.9 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 12.79 
 

14.3 
 

90.1 154 19.7 19.7 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 12.82 

 
14.0 

 
73.8 87 11.2 11.2 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 13.37 
 

13.1 
 

54.8 56 7.4 7.4 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 15.79 

 
12.6 

 
46.6 34 5.4 5.4 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 13.26 
 

13.3 
 

41.1 28 3.8 3.8 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 23.51 

 
9.0 

 
19.4 7 1.5 1.5 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 8.72 
 

19.8 
 

49.4 44 3.8 3.8 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 12.36 

 
14.5 

 
45.3 50 6.2 6.2 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 11.20 
 

16.1 
 

39.9 54 6.0 6.0 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 11.17 

 
16.8 

 
32.7 41 4.6 4.6 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 10.48 
 

13.1 
 

29.4 34 3.6 3.6 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 11.12 

 
15.3 

 
27.6 25 2.8 2.8 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 9.82 
 

17.0 
 

63.2 42 4.2 4.2 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 11.47 

 
15.4 

 
32.2 21 2.4 2.4 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 7.62 
 

18.5 
 

98.6 36 2.7 2.7 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 7.43 

 
15.9 

 
101.1 52 3.9 3.9 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 6.36 
 

12.5 
 

104.6 46 2.9 2.9 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 5.94 

 
12.8 

 
107.6 49 2.9 2.9 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 9.99 
 

18.4 
 

110.7 55 5.5 5.5 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 7.35 

 
27.2 

 
77.4 45 3.3 3.3 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 8.53 
 

17.7 
 

325.6 
  

0.0 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 10.83 

 
24.0 

 
104.3 61 6.6 6.6 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 3.81 
 

43.0 
 

51.1 31 1.2 1.2 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 12.75 

 
14.1 

 
57.7 38 4.9 4.9 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 12.11 
 

13.7 
 

54.6 43 5.2 5.2 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 11.08 

 
12.6 

 
51.5 41 4.6 4.6 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 11.45 
 

13.6 
 

48.4 43 4.9 4.9 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 10.76 

 
15.0 

 
45.3 38 4.0 4.0 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 9.96 
 

14.3 
 

42.2 23 2.3 2.3 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 10.99 

 
13.3 

 
128.0 94 10.4 10.4 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 13.41 
 

13.4 
 

77.0 81 10.9 10.9 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 13.35 

 
14.1 

 
63.4 67 8.9 8.9 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 10.57 
 

13.4 
 

47.9 54 5.7 5.7 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 9.97 

 
13.2 

 
41.9 47 4.7 4.7 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 9.26 
 

14.1 
 

36.7 34 3.1 3.1 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 8.58 

 
14.7 

 
30.2 30 2.6 2.6 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 7.35 
 

12.6 
 

28.0 34 2.5 2.5 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 7.34 

 
12.6 

 
33.2 22 1.6 1.6 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 15.71 
 

15.2 
 

103.9 476 74.8 74.8 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 10.17 

 
13.6 

 
85.7 248 25.2 25.2 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 13.19 
 

13.4 
 

70.8 161 21.2 21.2 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 12.53 

 
13.4 

 
59.7 132 16.5 16.5 

   
Lloret et al., 2013 

Capesterre 16.072 -61.609 16.6 14.94 
 

13.8 
 

50.8 61 9.1 9.1 
   

Lloret et al., 2013 
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Capesterre 16.072 -61.609 16.6 12.84 
 

12.8 
 

44.6 70 9.0 9.0 
   

Lloret et al., 2013 
Capesterre 16.072 -61.609 16.6 13.23 

 
13.7 

 
37.1 191 26.0 26.0 

   
Lloret et al., 2013 

Ucayali -8.783 -74.553 205520 1.24 -28.1 
 

0.93 
 

289 3.6 3.3 0.3 0.27 0.09 Mayorga et al., 2005 
Ucayali -8.783 -74.553 205520 

 
-28.6 

 
1.04 

  
0.7 0.7 0.1 0.00 0.10 Mayorga et al., 2005 

Urubamba -10.757 -73.712 61070 1.67 -27.1 
 

0.70 
 

269 4.5 3.2 0.3 1.34 0.07 Mayorga et al., 2005 
Urubamba -10.757 -73.712 61070 

 
-28.5 

 
1.08 

  
1.0 1.0 0.1 0.00 0.10 Mayorga et al., 2005 

Tambo -10.787 -73.773 121290 1.47 -27.6 
 

0.93 
 

251 3.7 3.4 0.3 0.25 0.09 Mayorga et al., 2005 
Tambo -10.787 -73.773 121290 

 
-28.3 

 
1.09 

  
0.1 0.1 0.0 0.00 0.10 Mayorga et al., 2005 

Urubamba -12.867 -72.682 12640 2.73 -24.3 
 

0.92 
 

55 1.5 1.4 0.1 0.13 0.09 Mayorga et al., 2005 
Urubamba -12.867 -72.682 12640 

 
-26.2 

 
1.02 

  
0.0 0.0 0.0 0.00 0.10 Mayorga et al., 2005 

Kosnipata (San Pedro) -13.058 -71.544 161 0.86 -26.3 6.1 0.51 
 

299 2.6 1.3 0.1 1.28 0.06 Clark et al., 2013 
Kosnipata (San Pedro) -13.058 -71.544 161 0.64 -24.6 4.6 0.38 

 
371 2.4 0.9 0.1 1.48 0.04 Clark et al., 2013 

Kosnipata (San Pedro) -13.058 -71.544 161 0.80 -25.9 5.7 0.41 
 

340 2.7 1.1 0.1 1.62 0.05 Clark et al., 2013 
Kosnipata (San Pedro) -13.058 -71.544 161 0.86 -25.6 5.7 0.59 

 
7594 65.3 37.6 4.2 27.70 0.06 Clark et al., 2013 

Kosnipata (San Pedro) -13.058 -71.544 161 0.81 -25.5 5.1 0.50 
 

1531 12.4 6.1 0.7 6.34 0.05 Clark et al., 2013 
Kosnipata (San Pedro) -13.058 -71.544 161 0.80 -25.2 5.0 0.53 

 
1212 9.7 5.0 0.6 4.67 0.06 Clark et al., 2013 

Kosnipata (San Pedro) -13.058 -71.544 161 0.57 -24.5 4.1 0.29 
 

938 5.3 1.5 0.2 3.82 0.03 Clark et al., 2013 
Kosnipata (San Pedro) -13.058 -71.544 161 0.59 -24.6 4.2 0.30 

 
636 3.8 1.1 0.1 2.65 0.03 Clark et al., 2013 

Kosnipata (San Pedro) -13.058 -71.544 161 0.67 -25.1 5.2 0.58 
 

226 1.5 0.9 0.1 0.65 0.06 Clark et al., 2013 
Kosnipata (San Pedro) -13.058 -71.544 161 6.83 -30.3 34.2 0.99 

 
105 7.2 7.0 0.8 0.17 0.11 Clark et al., 2013 

Kosnipata (San Pedro) -13.058 -71.544 161 1.09 -26.3 6.8 0.88 
 

180 2.0 1.7 0.2 0.26 0.10 Clark et al., 2013 
Kosnipata (San Pedro) -13.058 -71.544 161 0.52 -24.9 4.3 0.31 

 
889 4.6 1.4 0.2 3.22 0.03 Clark et al., 2013 

Kosnipata (Wayqecha) -13.163 -71.589 50 0.74 -25.9 5.7 0.55 
 

137 1.0 0.6 0.1 0.43 0.07 Clark et al., 2013 
Kosnipata (Wayqecha) -13.163 -71.589 50 1.18 -27.0 7.9 0.67 

 
113 1.3 0.9 0.1 0.40 0.08 Clark et al., 2013 

Kosnipata (Wayqecha) -13.163 -71.589 50 1.03 -26.2 5.4 0.79 
 

1891 19.5 16.2 1.9 3.26 0.10 Clark et al., 2013 
Kosnipata (Wayqecha) -13.163 -71.589 50 1.30 -26.1 6.5 0.81 

 
1696 22.0 18.8 2.2 3.22 0.10 Clark et al., 2013 

Kosnipata (Wayqecha) -13.163 -71.589 50 0.76 -26.1 5.4 0.71 
 

2869 21.8 16.4 1.9 5.40 0.09 Clark et al., 2013 
Kosnipata (Wayqecha) -13.163 -71.589 50 0.62 -25.6 4.8 0.60 

 
737 4.6 2.9 0.3 1.68 0.07 Clark et al., 2013 

Kosnipata (Wayqecha) -13.163 -71.589 50 0.85 -26.7 5.7 0.65 
 

136 1.2 0.8 0.1 0.36 0.08 Clark et al., 2013 
Kosnipata (Wayqecha) -13.163 -71.589 50 0.94 -26.2 6.7 0.67 

 
78 0.7 0.5 0.1 0.21 0.08 Clark et al., 2013 

Apurimac -13.567 -72.589 22760 8.84 -23.7 
 

1.03 
 

7 0.6 0.6 0.1 0.00 0.10 Mayorga et al., 2005 
Apurimac -13.567 -72.589 22760 

 
-23.8 

 
0.99 

  
0.0 0.0 0.0 

 
0.10 Mayorga et al., 2005 

Salcca -14.102 -71.422 3190 1.15 -24.6 
 

0.39 
 

290 3.3 1.3 0.1 2.03 0.04 Mayorga et al., 2005 
Salcca -14.102 -71.422 3190 

 
-25.9 

 
0.80 

  
6.6 5.3 0.5 1.35 0.08 Mayorga et al., 2005 

Vilcanota -14.166 -71.402 1610 16.16 -24.6 
 

0.75 
 

5 0.7 0.5 0.1 0.18 0.07 Mayorga et al., 2005 
Vilcanota -14.166 -71.402 1610 

 
-26.4 

 
0.65 

  
0.0 0.0 0.0 

 
0.07 Mayorga et al., 2005 

Zongo -16.253 -68.118 260 0.73 -25.6 
 

0.78 
 

95 0.7 0.5 0.1 0.15 0.08 Mayorga et al., 2005 
Zongo -16.253 -68.118 260 

 
-27.6 

 
1.06 

       
Mayorga et al., 2005 

Waiapu -37.894 178.295 1378 0.71 -25.3 11.8 0.18 
       

Leithold et al., 2006 
Waiapu -37.894 178.295 1378 0.54 -25.4 13.1 0.26 

       
Leithold et al., 2006 

Waiapu -37.894 178.295 1378 0.50 -25.2 12.7 0.30 
       

Leithold et al., 2006 
Waiapu -37.894 178.295 1378 0.72 -25.2 12.0 0.19 

       
Leithold et al., 2006 

Waiapu -37.894 178.295 1378 0.55 -25.4 11.6 0.24 
       

Leithold et al., 2006 
Waiapu -37.894 178.295 1378 0.59 -25.6 12.0 0.28 

       
Leithold et al., 2006 

Waiapu -37.894 178.295 1378 0.60 -25.4 12.4 0.28 
       

Leithold et al., 2006 
Waipaoa -38.462 177.876 1580 0.44 -26.4 12.7 0.40 

       
Leithold et al., 2006 

Waipaoa -38.462 177.876 1580 0.64 -26.1 12.3 0.48 
       

Leithold et al., 2006 
Waipaoa -38.462 177.876 1580 0.72 -26.3 11.8 0.51 

       
Leithold et al., 2006 

Waipaoa -38.462 177.876 1580 0.82 -26.7 11.8 0.74               Leithold et al., 2006 
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Supplementary Table 2: Global forested mountain river catchments with estimates of suspended sediment and POCbiosphere, and POCpetro yields, and annual 1135 

runoff.  1136 

River 
Catchment Label Lat. Long. Area  Yield method POC 

methoda Years Annual 
Runoff 

Suspended 
sediment yield 

POCbiosphere 
yield POCpetro yield Reference 

        km2       m yr-1 t km-2 yr-1 tC km-2 yr-1 tC km-2 yr-1   
Arctic Red AR 67.439 -133.753 18600 Spot samples 1 N/A 0.3 392 5.7 2.4 Hilton et al., 2015 

Peel  Pe 67.331 -134.866 70600 Spot samples 1 N/A 0.3 295 4.3 1.8 Hilton et al., 2015 
Erlenbach Er 47.045 8.709 0.74 Frequent sampling 2 1983-2011 2.2 1648 14.0 10.1 Smith et al., 2013 

Alsea  Al 44.386 -123.831 1220 Frequent sampling 1 2008 1.5 53 3.8 0.0 Hatten et al. 2012 
Siuslaw  Si 44.004 -124.006 1523 Spot samples 1 N/A 1.4 128 7.7 0.0 Leithold et al. 2006 
Umpqua  Um 43.586 -123.554 13000 Frequent sampling 1 2008-2009 0.7 31 1.0 0.0 Goñi et al., 2013 

Eel Ee 40.492 -124.099 9537 Frequent sampling 1 2008-2009 0.8 224 1.0 1.0 Goñi et al., 2013 
Eel  Ee 40.492 -124.099 8063 Spot samples 1 N/A 1.5 1720 8.6 7.9 Leithold et al. 2006 

Noyo  No 39.426 -123.801 293 Spot samples 1 N/A 1.6 234 5.3 0.2 Leithold et al. 2006 
Navarro Na 39.197 -123.747 816 Spot samples 1 N/A 1.1 683 6.7 2.1 Leithold et al. 2006 

Santa Clara  SC 34.235 -119.216 4210 Spot samples 1 1998 0.4 1621 14.9 6.1 Hatten et al. 2012 
Karnali Ka 28.642 81.283 57600 Spot samples 1 2002-2011  2257 5.9 1.2 Galy et al., 2015 

Narayani Ny 27.703 84.427 31800 Spot samples 1 2002-2011 1.6 3459 5.5 2.5 Galy et al., 2015 
Kosi Ko 26.847 87.152 51400 Spot samples 1 2002-2011  2529 5.1 0.8 Galy et al., 2015 

Langyang La 24.715 121.772 820 Frequent sampling 2 1993-1994 2.2 7800 4.9 18.1 Kao and Liu, 2000 
Heping He 24.326 121.735 553 Frequent sampling 3 2005-2006 2.9 18704 9.3 79.6 Hilton et al. 2011a 
LiWu Li 24.179 121.492 435 Frequent sampling 3 2004 2.2 18571 6.8 47.6 Hilton et al. 2011a 

Hualien Hu 23.924 121.591 1506 Frequent sampling 3 2005-2006 3.8 25292 13.8 69.5 Hilton et al. 2011a 
Choshui Ch 23.789 120.628 2906 Frequent sampling 3 2005-2006 2.3 22798 20.8 101.3 Hilton et al. 2011a 

Chenyoulan Cy 23.715 120.838 367 Frequent sampling 3 2005-2006 2.7 21064 19.6 58.3 Hilton et al. 2011a 
Hsiukuluan Hs 23.487 121.397 1539 Frequent sampling 3 2005-2006 2.2 4061 1.2 19.2 Hilton et al. 2011a 

Wulu Wu 23.124 121.157 639 Frequent sampling 3 2005-2006 2.5 10344 13.8 22.9 Hilton et al. 2011a 
Laonung Ln 23.050 120.661 812 Frequent sampling 3 2005-2006 4.1 4399 4.3 11.6 Hilton et al. 2011a 
Yenping Y 22.900 121.077 476 Frequent sampling 3 2005-2006 4.6 58897 23.4 245.6 Hilton et al. 2011a 
Peinan Pn 22.793 121.134 1584 Frequent sampling 3 2005-2006 2.5 72993 74.4 227.9 Hilton et al. 2011a 
Linpien Lp 22.464 120.542 310 Frequent sampling 3 2005-2006 3.1 2909 2.8 13.4 Hilton et al. 2011a 

Capesterre Ca 16.072 -61.609 16.6 Frequent sampling 4 2007-2010 4.0 153 18.3 0.0 Lloret et al., 2013 
Quebrada 
Mariposa Q 8.717 -83.617 0.094 Frequent sampling 4 2009 1.1 151 17.8 0.0 Taylor et al., 2015 

Waiapu  Wa -37.894 178.295 1734 Spot samples 1 N/A 2.3 20000 29.7 90.6 Leithold et al. 2006 
Waipaoa  Wp -38.462 177.876 2205 Spot samples 1 N/A 2.0 6800 23.7 20.8 Leithold et al. 2006 
Hokitika Ho -42.746 170.999 352 Spot samples 2 N/A 8.9 6313 38.0 9.0 Hilton et al., 2008b 

Haast Ha -42.855 169.054 1020 Spot samples 2 N/A 5.8 4500 9.0 6.0 Hilton et al., 2008b 
Wanganui Wg -43.155 170.625 344 Spot samples 2 N/A  12500 37.0 19.0 Hilton et al., 2008b 

Poerua Po -43.157 170.504 136 Spot samples 2 N/A  26200 52.0 39.0 Hilton et al., 2008b 
Waitangitaona Wt -43.283 170.307 72 Spot samples 2 N/A 5.9 12500 64.0 19.0 Hilton et al., 2008b 

Whataroa Wh -43.285 170.403 453 Spot samples 2 N/A 9.5 10325 87.0 15.0 Hilton et al., 2008b 
Waiho Wo -43.393 170.181 164 Spot samples 2 N/A  10325 12.0 15.0 Hilton et al., 2008b 

Fox F -43.478 170.008 92 Spot samples 2 N/A   12500 18.0 19.0 Hilton et al., 2008b 
aMethod used to quantify POCbiosphere and POCpetro contributions: 1 = 14C; 2 = δ13C; 3 = δ13C, N/C and 14C; 4 = not applicable, volcanic bedrock 1137 

  1138 

36 
 



Hilton RG, Accepted version for Geomorphology, 23rd March 2016 
Please see publishers website for final proofed version – doi:10.1016/j.geomorph.2016.03.028 
 
Supplementary Table 3: Geomorphic characteristics of mountain river catchments from 3 arc-1139 

second digital elevation model to quantify 16th, 50th and 84th percentiles of slope angle (θ, degrees) 1140 

and elevation (Z, meters) in catchments where daily runoff measurements are available.   1141 

River Catchment Label Lat. Long. Area  θ16 θ50 θ84 Z16 Z50 Z84 

        km2 o o o m m m 

Alsea  Al 44.386 -123.831 1220 8 17 26 145 289 491 

Umpqua  Um 43.586 -123.554 13000 7 16 26 292 675 1200 

Eel Ee 40.492 -124.099 9537 9 17 24 403 707 1201 

Langyang La 24.715 121.772 820 5 23 33 204 838 1664 

LiWu Li 24.179 121.492 435 20 30 39 1348 2042 2707 

Choshui Ch 23.789 120.628 2906 12 26 37 655 1542 2473 

Chenyoulan Cy 23.715 120.838 367 17 30 38 967 1634 2376 

Capesterre Ca 16.072 -61.609 16.6 9 18 31 450 770 1035 

           
 1142 
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Supplementary Table 4: Outputs of binary mixing model (Eq. 1-4), with the fraction modern of the 1144 

biosphere-derived POC (Fmod-bio) and petrogenic content ([OCpetro]) and associated propagated 1145 

uncertainty. The r2 describes the goodness of fit between the binary mixing model (Eq. 4) and the 1146 

data, and the P value the significance of the fit. 1147 

River Lat. Long. Fmod-bio Error Fmod-bio [OCpetro] Error [OCpetro] r2 P 

          % %    

Erlenbach 47.045 8.709 0.89 0.11 0.42 0.21 0.93 0.0012 

Alsea 44.386 -123.831 1.03 0.01 0.06 0.07 0.99 <0.0001 

Siuslaw 44.004 -124.006 0.98 0.06 0.28 0.36 0.99 0.0034 

Umpqua 43.586 -123.554 0.97 0.01 0.00 0.06 0.99 <0.0001 

Ishikari  43.219 141.660 1.00 0.04 0.54 0.13 0.99 <0.0001 

Eel 40.492 -124.099 0.93 0.16 0.44 0.18 0.91 0.0168 

Noyo 39.426 -123.801 1.34 0.29 0.71 0.55 0.83 0.0194 

Navarro 39.197 -123.747 1.04 0.11 0.30 0.14 0.94 0.0002 

Santa Clara 34.235 -119.216 0.94 0.04 0.42 0.08 0.98 <0.0001 

Karnali 28.642 81.283 0.99 0.09 0.08 0.03 0.97 0.0013 

Narayani 27.703 84.427 0.40 0.08 0.00 0.05 0.72 0.0006 

Kosi 26.847 87.152 0.85 0.05 0.03 0.02 0.98 <0.0001 

Kosnipata (San Pedro) -13.058 -71.544 1.02 0.11 0.41 0.10 0.92 0.0001 

Kosnipata (Wayqecha) -13.163 -71.589 0.95 0.11 0.25 0.11 0.92 0.0001 
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