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Interactive GPU Active Contours for
Segmenting Inhomogeneous Objects

Chris G. Willcocks, Philip T. G. Jackson, Carl J. Nelson, Amar V. Nasrulloh, Boguslaw Obara

Abstract—We present a segmentation software package targeting medical and biological applications, with a high-level of visual
feedback and several usability enhancements over existing packages. In particular, we provide a new and fast GPU implementation of
the local Gaussian distribution fitting (LGDF) energy model, which can be guided by human experts in a semi-automated framework.
LGDF energy is capable of segmenting inhomogeneous objects with poorly defined boundaries, but existing implementations are
prohibitively slow. While current segmentation methods can optimally minimize certain energy classes, the globally optimal solution is
often not what is desired as image intensity information alone is often insufficient. Instead we provide real-time visual feedback through
a built-in ray tracer of the active contour evolution, allowing users to halt evolution at any timestep to dynamically correct implausible
evolution by painting new blocking regions or new seeds. Quantitive and qualititive validation is presented, demonstrating the practical
efficacy of our interactive elements for a wide variety of real-world datasets.

Index Terms—Segmentation, Image Processing, Medicine, Interactive Systems, Real-time systems, Graphics Processors.
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1 INTRODUCTION

IMAGE segmentation is a large research field with many
practical applications, including but not limited to:
• Biosciences:

– Cellular, developmental & cancer biology.
– Plant biology, including plant-pathogen interactions.
– Animal biology, including virus-host interactions and

bacterial infections.
– Microbiology, including food safety.
– Neuroscience, including connectome projects & de-

velopmental neuroscience.
• Medical:

– Automated differential diagnosis.
– Diagnostic measurements, shape and volume, of:
∗ Macular holes in retinal degeneration.
∗ Aneurysms, clotting & infarction.
∗ Tumors, neoplasia & dermatological moles.
∗ MRI segmentation in dementia & Alzheimer’s.

– Computer Assisted Surgery:
∗ Pre-surgical planning & surgery simulation.
∗ Guided surgical navigation.

The primary problems with current segmentation ap-
proaches are that they are either: (1) too limited, e.g. only
able to segment objects by simple criteria, such as objects
with similar mean intensity [4], [5], (2) using too much
memory or too slow, taking several hours to segment large
2D or 3D objects [6], (3) lacking in interactivity with the
segmentation process in response to visual feedback [7],
(4) requiring too much training data, or (5) difficult to use,
requiring large interfaces and multiple algorithms [8].
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Deep convolutional neural networks are the state-of-the-
art in image segmentation, where millions of parameters
of deeply layered convolutions are learnt using backprop-
agation [9]. These models are capable of learning abstract
features in the data, however their current reliance on
such large datasets makes them unusable for a number
of applications. Similarly there are many algorithms and
publicly available datasets concerned with bottom-up seg-
mentation and semantic segmentation [10] however these
mainly target 2D images or videos with color information
which are significantly different to the 3D medical and
biological datasets. While globally optimal solutions for
certain energy classes can be found, such as with a primal
dual approach [11], current implementations offer little-to-
no visual feedback, which is especially problematic in large
3D images where local edits need to be made frequently.

Amongst the oldest and most widely cited segmentation
approaches are active contours [12]; these are variational
frameworks which allow users to define an initial open
or closed curve that deforms so as to minimize an energy
functional, outlining or surrounding the object of interest.
While active contours have been applied to fully auto-
matic approaches without initial contours [13], their original
foundation as an assisted approach is still important today
as it allows users, such as clinicians, to extract precise
measurements from specific objects of interest within an
complex image. However such interactivity relies on real-
time visual feedback, therefore they must also be computa-
tionally efficient. Graphics processing units (GPUs) provide
energy efficient parallel computing and enable real-time
interactive segmentation for larger 2D or 3D datasets [14],
[15] where existing GPU segmentation methods currently
rely on simple segmentation criteria restricting their usage
and applications. The popular local Gaussian distribution
fitting (LGDF) energy model [6] is much more powerful and
able to segment a wider variety of general objects. How-
ever, it requires several intermediate processing steps that
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(a) Brain & ventricles (b) Dental scan (c) Foot bones & tissues (d) Malaria sporozoite

Fig. 1: A selection of 3D objects segmented by our tool. Our interactive method allows users to efficiently capture specific
objects within the data, such as the teeth in (b), which we have colored separately. Image (a) is a simulated brain MRI [1],
images (b) & (c) are CT scans [2] and (d) shows a malaria sporozoite [3].

must be implemented sequentially, making it challenging
to efficiently implement on graphics hardware. The current
implementations of the LGDF energy model can segment
small 2D images, but require several hours of processing
for larger 2D or 3D images [6], preventing usage in many
practical applications.

In our approach, we: (1) significantly increase the per-
formance of the LGDF energy model through an optimized
GPU implementation, handling much larger 2D images and
even 3D images at interactive performance, (2) introduce a
novel set of interactive brush functions that are integrated
into the GPU kernels such as to modify and constrain the
evolving level set in real-time, (3) provide a ray tracer for
the segmentation results at each update iteration, and (4)
expose a simpler and more intuitive parameter space to the
user, with suggested values and ranges. The combination of
these four enhancements greatly improves the practicality of
what is already considered a state-of-the-art active contour
method of particular relevance to the image processing
communities. Our software is shown to be stable to its input
parameters and robust to noise through a large synthetic
experiment, and it is evaluated through segmenting a wide
variety of real-world images, such as in Figure 1.

2 RELATED WORK

The field of active contours first gained mainstream adop-
tion with the ‘active snakes’ model published by [12]. This
seminal work proposes iterative evolution of an initial
spline curve, with the evolution being governed by the
minimization of an energy functional, the local minima of
which correspond to curves that fit along prominent edges
in the image. The functional includes ‘external energy’ terms
which are lower when the curve coincides with salient
image features such as edges, along with ‘internal energy’
terms which penalize lack of smoothness in the contour.
The result is a smooth curve that accurately deforms and
locks on to object boundaries. This approach became hugely
popular to retrieve precise measurements from objects, pro-
ducing many novel energy functionals [24] and applications
to specific domains, such as blood vessel segmentation [25].

Level set methods (the core theory in the book [26])
model contours implicitly as the zero-crossing of a scalar
field. Originally they were proposed in [27] to model the

evolution of inter-region boundaries in physical simula-
tions. [28] applied level sets to active contours, with the
evolution of the contour being governed by its local mean
curvature and the intensity gradient magnitude of the im-
age, in such a way that local curvature is reduced and the
motion of the contour stops as it approaches an image edge.
In [29], the authors develop a level set based active contour
framework in which the energy functional is based on the
Mumford-Shah model, rather than image edges, which in
practice are often faint, blurred or broken. The Mumford-
Shah energy model [30] is minimized by an optimal parti-
tion of an image into piecewise smooth segments, and high-
quality implementations exist on the GPU [16]. The global
optimum can be found using a primal-dual algorithm [11]
resulting in a cartoon-like rendering of the original image.
Local solutions, such as with a trust-region approach [31],
have applications in interactive segmentation.

2.1 GPU Segmentation

Accelerating image segmentation with GPUs is a large
research field with several comprehensive surveys [14],
[15], [32], [33]. The survey by [14] covers a broad range
of algorithms and different imaging modalities, whereas
[15] focuses more on GPU segmentation with a detailed
discussion on the current GPU architecture. We discuss the
literature with a focus on the quality of the GPU segmenta-
tion methods in terms of their ability to precisely segment
a wide variety of complex images, and we qualitatively
summarize each of the main categories in Table 1.

In Table 1, methods are awarded up to 5 stars in ‘Image
Complexity’ if they can handle multiple imaging scenar-
ios such as uneven lighting, severe noise, multiple ob-
jects, intensity inhomogeneity, blurred and/or broken object
boundaries. Methods score 5 stars in ‘Interactivity’ if they
provide an interface or functionality to control the segmen-
tation process. ‘Speed’ measures the overall segmentation
time where less than 3 stars implies that the method can
only segment 2D objects at interactive rates. Methods score
highly for ‘Memory Efficiency’ if they can process large
datasets without storing the full dataset in main memory
or GPU memory.

The GPU level set methods in the literature focus on
limiting the active computational domain to a small region
near the zero-crossing of the level set function, such as the
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GPU Method Representative Paper Image Complexity Interactivity Speed Memory Efficiency
Narrow Band [5] ? ? ? ?? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?

Mumford-Shah [16] ? ? ? ?? ? ? ? ?? ?? ? ? ? ?? ? ? ?

Seed Sketching [17] ?? ? ? ? ? ? ?? ? ? ? ?? ? ? ? ?? ?

Clustering (superpixel) [18] ?? ? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ?

Active Contours (GVF) [19] ? ? ? ?? ? ? ? ?? ?? ? ? ? ?? ? ? ?

Active Contour (interactive) [8] ? ? ? ?? ? ? ? ? ? ? ? ? ?? ? ? ? ??

Region Growing [20] ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ? ??

Watershed [21] ?? ? ? ? ? ? ? ?? ? ? ?? ? ?? ? ? ?

Graph Cuts [22] ? ? ? ? ? ? ? ? ?? ? ? ?? ? ? ? ? ??

Active Shape Model [23] ? ? ? ?? ?? ? ? ? ?? ? ? ? ? ? ? ??

IGAC (single seed) (ours) ? ? ?? ? ? ? ? ?? ? ? ? ?? ?? ? ? ?

IGAC (with brushes) (ours) ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?? ? ? ?

TABLE 1: Compact literature review of current GPU segmention methods. The scores are derived subjectively by testing
available implementations where possible on a variety of 2D and 3D datasets.

traditional narrow band algorithm [34]. More recent exten-
sions classify the active region using simple operations on
the spatial and temporal derivatives of the level set function
[5], and then discard unimportant regions through parallel
stream compaction. While limiting the active computational
domain produces excellent performance with lower mem-
ory usage, the current implementations all use simple speed
functions that attract the level set to make it grow and/or
shrink within a fixed intensity range [4], [5], [35]. In contrast,
the model proposed by [6] is able to segment much more
challenging images, in which objects exhibit intensity inho-
mogeneity or even have the same mean intensity as their
background, being distinguished only by intensity variance.
However, to date the only existing implementation runs
on the CPU, likely due to the sequential dependency of
convolutions in the intermediate steps. Further, their model
is derived from [29] who introduce C∞ regularization of
the Heaviside and Dirac functions which are non-zero ev-
erywhere, unlike the C2 regularized Heaviside (proposed
in [36]) which is non-zero only in the vicinity of the contour.
C∞ regularization restrains the algorithm from converging
on local minima, but precludes traditional narrow band or
sparse field algorithms because it requires the level set to
update at all points on each time step.

GPU active contour methods parallelize the calculation
of the energy forces described in the original snakes paper
[12]. Traditional methods rely on simple gradient energy,
which converges to local minima, however [37] introduced
a diffusion of the gradient vectors called gradient vector
flow (GVF) to address this problem. [19] were one of the
first GPU active contour implementations using GVF, and
more recent optimizations in OpenCL exploit cached texture
memory which has spatial locality in multiple dimensions
[38]. The active contour can also be approximated by a
surface mesh, such as in [39] who use Laplacian smoothing
on local neighborhoods in conjunction with driving mesh
vertices with gradient and intensity forces. However these
approaches still rely on the image gradient being a reliable
indication of object boundaries, which is not the case in
many real-world images [29].

Ever since the original snakes paper, active contours
have gained popularity through being able to interactively
edit the contour, or setup constraints to guide its motion
[12]. Region-based active contour methods provide the op-

tion to initialize with a simple primitive shape, or sketch a
starting region [17]. The more advanced approach by [40]
introduces non-Euclidean radial basis functions, which are
weighted by the image features and blended to form an
implicit function whose sign can be fixed at user-defined
control points. The tool by [8] provides an interactive inter-
face with geodesic active contours [41] and region competi-
tion [42]. Region competition favors a well-defined intensity
range, whereas the geodesic approach is better suited for
images with clear edges; by combining both approaches [8]
can segment a broad range of images. However, it requires
significant tuning and can still fail in complex images with
neither a well-defined intensity range nor clear edges.

The influential public datasets with groundtruth seg-
mentations (such as BSDS, MSRC, iCoseg, FlickrMFC, Seg-
Track) include videos or 2D images with color information
such as cars, chairs, and people. Of these, the interactive
approaches take as input a set of scribbles where objects fol-
low similar color distributions [10]. Graph cut segmentation
is popular in this field, where [22], [43] propose GPU imple-
mentations. For interactive segmentation in the biosciences,
we find the main limitations being (1) the initialization of
the foreground-background scribbles in 3D datasets such
as networks and (2) the opaque intermediate steps of the
cutting algorithm making it difficult to obtain a high-level
of visual feedback. While popular and easy to validate,
these approaches address a different problem to grayscale
3D segmentation as with imaging modalities (such as CT,
PET, SPECT, MRI, fMRI, ultrasound, optical imaging and
microscopy) in the biosciences [14]. Unfortunately, there
is still a need for benchmark medical datasets with well-
defined interactive performance evaluation [44].

There are several GPU approaches that produce a seg-
mentation without relying on initialization of a seed region
[13]. Clustering methods join regions of a high-dimensional
feature space [45] and superpixel approaches [18] form clus-
ters that are deliberately over-segmented into more man-
ageable regions. These approaches are good at simplifying
complex images, however they are poor at segmenting a
specific object of interest, or sets of objects, from the back-
ground. In contrast, active shape and appearance methods
fit a model to the data based on prior knowledge, however
this inherently makes assumptions of the overall shape of
the objects, and fails when these assumptions are not met.
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3 METHOD

The LGDF model, originally proposed in [6], builds on
existing active contour literature by introducing a new en-
ergy functional based on the local Gaussian distributions of
image intensity. This functional drives a variational level set
approach which is able to segment objects whose intensity
mean and variance are inhomogeneous. Rather than creat-
ing segments whose intensity is as uniform as possible, this
algorithm allows slow changes in intensity across an object,
penalizing only sudden changes within it; without relying
on a gradient based edge detector [29].

The segmentation is represented by a level set function
φ(~x). The foreground region is the set of points {~x : φ(~x) <
0} and the exterior (or background) is {~x : φ(~x) ≥ 0}. The
contour itself (or surface in 3D) is thus defined implicitly as
the zero level set, {~x : φ(~x) = 0}. Segmentation is achieved
by minimizing a global energy functional:

E = ELGDF(I, φ) + µP(φ) + νL(φ) (1)

where µ, ν > 0 are weighting constants, ELGDF is the LGDF
energy term which drives the contour to fit along salient
image edges, P avoids the need to periodically re-initialize
φ to a signed distance function [46], and L penalizes the
contour length to ensure smoothness. The ELGDF term is the
sum of the individual LGDF energies for each pixel ~x:

ELGDF(I, φ, ~x) =−
∫

Ω

ω(~y − ~x) log(p1,~x(I(~y)))M1(~y) d~y

−
∫

Ω

ω(~y − ~x) log(p2,~x(I(~y)))M2(~y) d~y

(2)

where ω(~y − ~x) is a Gaussian weighting function centered
on ~x, p1,~x is a Gaussian approximation of the intensity
distribution for the part of the neighborhood of ~x lying
outside the contour (and inside for p2,~x), and M1 equals one
outside the contour, zero inside (vice-versa for M2). This
quantity is smaller when the intensity distributions in the
parts of the neighborhood of ~x lying outside and inside the
contour are well approximated as Gaussian distributions,
which can only be achieved by deforming the contour so
that it separates regions of different intensity mean and
variance.

The mean and variance parameters for these local Gaus-
sian distributions are denoted ui(~x), σi(~x) where i ∈ {1, 2}
for regions outside and inside the contour, respectively:

ui(~x) =

∫
ω(~y − ~x)I(~y)Mi(φ(~y)) d~y∫
ω(~y − ~x)Mi(φ(~y)) d~y

(3)

σi(~x)2 =

∫
ω(~y − ~x)(ui(~x)− I(~y))2Mi(φ(~y)) d~y∫

ω(~y − ~x)Mi(φ(~y)) d~y
(4)

Specifically, they express for each pixel the mean and vari-
ance of neighboring grey values that lie outside and inside
the contour (for pixels whose entire neighborhood lies on
one side of the contour, only one pair of these values is de-
fined). The size of each pixel’s neighborhood is determined
by the standard deviation of the Gaussian weighting func-
tion, ω. This is a user-defined parameter, denoted σ. A larger
neighborhood increases the range from which a pixel may
influence the contour. This results in faster evolution, greater

capture range, and a greater tendency to produce segments
whose boundaries separate large regions of different mean
intensity.

The internal energy term P penalizes the contour’s
deviation from a signed distance function [46] to ensure
numerical stability [47]:

P(φ) =

∫
Ω

1

2

(∣∣∇φ(~x)
∣∣− 1

)2

d~x (5)

and L penalizes the contour length to ensure smoothness:

L(φ) =

∫
Ω

∣∣∇H(φ(~x))
∣∣d~x (6)

where H is the C∞ regularized Heaviside function, dis-
cretized to operate on a regular grid, first proposed by [29]:

H(x) =
1

2

[
1 +

2

π
arctan (x)

]
(7)

The total energy functional (Equation 1) can be mini-
mized by applying the calculus of variations [6] yielding
the following PDE:

∂φ

∂t
= −δ(φ)(λ1e1 − λ2e2) + µ

(
∇2φ− κ

)
+ νδ(φ)κ (8)

where δ is the regularized Dirac function δ(x) = H ′(x) [29],
λ1, λ2, ν and µ are parameters controlling the weight of the
terms, and κ is the contour’s local curvature [27]:

κ = div
(
∇φ
|∇φ|

)
(9)

and −δ(φ)(λ1e1 − λ2e2) is the force due to ELGDF:

ei(~x) =

∫
Ω

ω(~y − ~x)

[
log(σi(~y)) +

(ui(~y)− I(~x))2

2σi(~y)2

]
d~y

(10)
The data fitting term e1(~x) quantifies how badly the

pixel ~x would fit with the outside-contour parts of its
neighbors’ neighborhoods. When e1 is high and ~x does not
belong outside, ∂φ

∂t is made more negative, so φ lowers at
that point and the contour grows outwards, swallowing ~x.
The same applies in reverse for e2.

Due to the smooth form of theC∞ regularized Heaviside
(Equation 7), δ(φ) = H ′(φ) is non-zero everywhere. This
allows φ some freedom to change at any point in the image,
not just in a narrow band around the contour. This helps
prevent convergence on local energy minima [29].

3.1 GPU Implementation

The goal of the implementation is to iteratively solve Equa-
tion 8 for φ(~x, t), visualizing the results at each iteration.
This is done by discretizing φ with respect to time and
applying numerical integration: starting with φ(~x, t = 0)
(which is specified by the user), an update loop computes
φ(~x, t + ∆t) by computing ∂φ

∂t according to Equation 8
and assuming this quantity stays constant during the short
time step ∆t. Existing GPU level set methods implement
their update rule inside a single kernel function, however
ELGDF is more challenging to port as relies on intermediate
stages with neighborhood operations, such as convolutions
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and derivatives, whose sequential dependencies must be
considered such as to avoid race conditions.

The update rule in Equation 8 requires convolutions
(Equation 10) of intermediate variables that themselves rely
on other convolutions (Equations 3-4). The relationships of
these variables are shown in Figure 2, where an arrow from
A to B indicates that A is required in the computation of
B. Wherever they appear, I denotes the input image and
H the smooth Heaviside function (Equation 7). All vari-
ables of the form GX represent the n-dimensional Gaussian
convolution of X , where X must be computed and stored
as a texture before GX can be computed. This is because
we wish to use GPU texture memory, which has spatial
locality in multiple dimensions, however texture memory
must either be read-only or write-only within a given kernel
function and therefore results computed from data in a
texture buffer must be written to a different buffer.

φ

H I

GI GI2

∇φ
|∇φ|

κ

GH

IH I2H

µ

µ(∇2φ−κ)

νδκ

ν

GIH GI2H

u1 u2σ2
1 σ2

2

λ

E0 E1 E2

GE0 GE1 GE2

−δ(φ)(e1−e2)

∆t

∆φ

Fig. 2: Dependency graph between variables in the update
process. The red variables require neighborhood computa-
tions whereas the blue variables represent constants. All
variables except for the parameters ν, µ, λ and ∆t are
spatially varying fields. The green variables are quantities
that are computed ‘on the fly’ and never stored in a texture.

We compute the means and variances (Equations 3-4)
from GIH , GH , GI2H , GI and GI2 using the following
formulas:

u1 =
GIH

GH
σ2

1 =
GI2H

GH
− u2

1 (11)

u2 =
GI −GIH

1−GH
σ2

2 =
GI2 −GI2H

1−GH
− u2

2 (12)

For σ2
i we have used the alternative variance formula

Var[X] = E[X2] − E[X]2, and for u2 and σ2 we have used
Gσ ∗ (1−H) = 1−Gσ ∗H in the denominators, where Gσ∗
denotes convolution with a Gaussian kernel of standard
deviation σ. This is not to be confused with σ1 and σ2, the
local intensity standard deviations outside and inside the
contour. By exploiting these tricks we are able to compute
the above using only three convolutions per update cycle

(sinceGI andGI2 are constant). To compute the image force
term e1 − e2, we expand the brackets in Equation 10 to get:

ei(~x) =

∫
Ω

ω(~y − ~x)

[
log(σi(~y)) +

ui(~y)2

2σi(~y)2

]
d~y

− I(~x)

∫
Ω

ω(~y − ~x)
ui(~y)

σi(~y)2
d~y

+ I(~x)2

∫
Ω

ω(~y − ~x)
1

2σi(~y)2
d~y (13)

= Gσ ∗

[
log(σi(~y)) +

ui(~y)2

2σi(~y)2

]

− I(~x)

[
Gσ ∗

ui(~y)

σi(~y)2

]
+ I(~x)2

[
Gσ ∗

1

2σi(~y)2

]
(14)

To compute the three terms in Equation 14, we first pre-
compute the operands of the Gaussian convolutions (E0, E1

and E2 in Figure 2), storing them as textures, then convolve
them (GE0, GE1 and GE2 in Figure 2), then weight them
by 1, I and I2 and sum them. Note that e1 and e2 are not
computed separately; the variables E0, E1 and E2 are the
three corresponding parts of e1 − e2. The memory layout of
our kernels is shown in Figure 3, which lists our kernels in
the order they are called and shows their inputs and outputs
(corresponding to the nodes in Figure 2) within the available
4×32-bit channels per GPU texture buffer.

Gaussian convolutions require a large number of sam-
ples from texture memory, however an n-dimensional Gaus-
sian filter can be separated into the matrix product of n
vectors allowing us to convolve with n 1-dimensional filters
instead of one very large n-dimensional filter. This reduces
l2 texture samples to 2l in 2D or l3 texture samples to 3l in
3D, for a truncated Gaussian kernel of length l. This is why

Fig. 3: Memory layout of our GPU kernels for the 3D case.
Each row represents a kernel operating on 4-channel texture
objects A, B, C . The kernels read variables from one or two
of the textures (blue) and write into a single texture (red).
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we have separate kernels for the X Gaussian, Y Gaussian,
and Z Gaussian convolutions in Figure 3 accordingly. The
three Gaussian convolutions of the image and Heaviside
(GIH , GH , GI2H , Figure 2) are the result of neighborhood
operations, but are not dependent on each other. This is
also the case with the three Gaussian convolutions GE0,
GE1, GE2. We therefore create kernels shown in Figure 3
to perform each set of three Gaussian convolutions simulta-
neously, and two more kernels to prepare for them (called
‘Prep Conv 1’ to compute H , IH , I2H , and ‘Prep Conv 2’
to compute E0, E1, E2). The curvature field κ (Equation 9)
requires all two (three in 3D) gradient components to be first
stored in texture memory in order to avoid race conditions,
since all differential operations are computed by central
finite differences, a neighborhood operation. This is why
we compute κ early on and pass it through the Gaussian
convolution kernels in the conveniently available w chan-
nel of the texture buffer; computing κ immediately before
‘Update φ’ would require an extra texture buffer since there
is only one unused channel at that point. After updating,
we force the partial derivatives of φ to be zero at their
corresponding image boundaries (in the ‘Neumann/Copy’
kernel) to prevent numerical instability, and copy the result
back into buffer A for the next iteration.

3.2 Interactive Brushes

There are many applications in the biosciences, computer
vision, medical, and pattern recognition communities where
guidance by human experts is required [8], [12], [17], [40],
[48]. The current interactive GPU level set methods, such
as [5], provide interfaces to (1) initialize φ inside/outside
the object, (2) dynamically adjust parameters, and in some
cases (3) allow φ to be edited (a union operator on new
objects/regions, followed by rerunning of the algorithm),
however it is difficult to refine evolution such as to prevent
contour leaking or constrain the evolution. The graph-cuts
and radial-basis function approaches [40], [43] allow users
to sketch lines or define control points which are tagged
to both the desired object and the undesired regions, but
we find the process difficult to refine where the segmented
boundary lies somewhere between the input locations,
where there may not be discernible image intensity features
(see Figure 4 top-left and in the accompanying video).

To address these issues, we follow the strategies outlined
in the survey [49] with similar functions to the model-
ing/graphics literature [50], however we closely integrate
brush functions with our segmentation kernels with the goal
of editing and constraining φ during the iterative evolution
process itself. Specifically, we provide functions to initialize,
append, erase, and constrain (locally stop evolution of φ)
after each iteration of the update step (Equation 8), and
visualize the results after each iteration. Note: for simplicity
we define our functions with circular (2D) or spherical (3D)
regions, but there is nothing to prevent implementing more
bespoke functions, such as surface pulling [50].

All brush functions are centered at the mouse position ~p
with radius r, and are implemented in the ‘Compose’ kernel
(Figure 3). We have deliberately arranged the read buffer B
to link to φ from the previous update iteration. To complete
a brush action, we reluanch the ‘Compose’ kernel with the

brush parameters followed by the ‘Neumann/Copy’ kernel
between each update iteration.

The initialization brush sets φ to a binary step function
with a small positive constant (we choose 2 empirically):

φ(~x) := 2 · sgn(‖~x− ~p‖ − r) (15)

where := denotes assignment. The user can continue to
‘paint’ new foreground regions using the additive brush:

φ(~x) :=

{
φ(~x)
min(‖~x− ~p‖ − r, φ(~x))

if‖~x− ~p‖ − r > 0
otherwise

(16)
To erase a foreground region, we simply reassign any values
inside the brush region with a small positive constant:

φ(~x) :=

{
φ(~x) if‖~x− ~p ‖ − r > 0
2 otherwise (17)

However, while the erase brush is useful for undoing unde-
sired strokes, it will not stop the contour from leaking into
undesired regions, as φ will continually update and burst
through the previously erased region again. Therefore, we
introduce a ‘barrier’ brush to persistently block the level set
from growing into a fixed region. Rather than define this
region in another buffer, we set φ to ∞ and check for ∞
values when computing ∆φ in the ‘Update φ’ kernel:

φ(~x) :=

{
φ(~x) if‖~x− ~p‖ − r > 0
∞ otherwise (compose kernel)

(18)

∆φ(~x) :=

{
0 ifφ(~x) =∞
∆φ(~x) otherwise (update φ kernel)

(19)
In our implementation, we found it useful to allow users to
pause and unpause evolution with ∆t = 0 and ∆t = 0.1,
while still allowing users to commit brush strokes. This
makes it easier to guide the contour without having to
compete against its growth. Furthermore, by using the
previous value of φ stored in the B buffer z-channel in
combination with the rendered value of φ stored in the A
buffer z-channel, we can display the currently brush size
and position without committing the stroke.

Fig. 4: Figure illustrating interactive use of our brush func-
tions. The blue region represents the barrier brush φ = ∞
and red regions are where φ < 0 and otherwise φ > 0.

In Figure 4 we illustrate two simple use-cases of our
interactive brushes. In the top row, the user paints using
the ‘barrier’ brush to cover the full image region, shown in
blue. This is followed by the ‘erase’ brush (Equation 17),
to cut a permissible region in which a new seed region is
placed (Equation 16), which evolves to segment the macular
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hole without leaking into the opening (we show this in 3D
in the accompanying video). Similarly, in the lower row, the
vessels are segmented without leaking into the heart (see
also results in Table 6 2b-c).

3.3 Real-time Rendering

To render the zero-crossing of the level set function φ in 3D
we launch a render kernel after the Neumann/Copy step
in the update loop (Figure 3). We send a camera matrix to
initialize each pixel with a ray origin ~o and direction unit
vector d̂. We parameterize the ray’s position by ~r = ~o + d̂s
and, assuming φ to be the signed distance to the zero-
crossing, advance the ray in steps by si+1 = si+φ(~r). How-
ever φ is not a perfect signed distance function, therefore
we must divide our step size by the maximum derivative
of φ; this value is not known precisely but in practice we
find we can obtain sufficiently small visual artifacts at good
performance by choosing a constant step size ∆s = 0.3φ(~r).
Further, given that φ is not defined outside of the image
boundaries, we initially advance s0 to the start of the image
axis-aligned bounding box (where the s0 is calculated using
an analytical ray-box intersection function [51]). To increase
visual quality, we implement 3D ambient occlusion and
soft-shadows by marching the ray in the directional of the
normal and light source once it has hit a surface [52].

The output of our real-time rendering implementation,
using hardware trilinear interpolation to sample φ and with
∆s = 0.3φ(~r), is shown in Figure 5 (the render kernel has
negligible impact on performance):

(a) 3D segmented Brain (b) 3D segmented Macular Hole

Fig. 5: 3D views during segmentation rendered in real-time.

4 RESULTS & VALIDATION

In this section we provide quantitative results validating
our algorithm’s performance, parameter insensitivity, and
robustness to noise. We also provide qualitative results to
justify the utility of our interactive brushes and assess the
segmentation of real-world images from various domains.

To confirm that our algorithm implements the LGDF en-
ergy model correctly, we measure the Jaccard index between
the segmentation of the original CPU implementation and
the result from our GPU kernels in 6 image types, and show
the results in Table 2.

These results show the GPU to be near-identical to the
CPU implementation; we find small discrepancies caused by
different implementations of low-level math library func-
tions and different (mathematically equivalent) algebra in
the intermediate steps (Equations 11 and 12).

Image Jaccard index
Synthetic Objects 2D 1

Tumour (small) 2D 1
Tumour (large) 2D 0.981

Macular Hole 3D 0.990
Brain 3D 0.984

Tumour 3D 0.993

TABLE 2: Comparing the Jaccard index of our GPU algo-
rithm with the original LGDF energy model.

4.1 Noise & Parameter Insensitivity

We conducted a large number of noise experiments on a
synthetic 2D object, which has sharp and smooth features,
and plot the mean and standard deviation of the results in
Figure 6. These experiments all use the same parameters and
initialize φ to a small circle inside the synthetic object. We
also qualitatively show a subset of the experiments in Table
3 from the same synthetic 2D object, and for a 3D macular
hole [53].

100.8 101 101.2 101.4
0

0.5

1

PSNR [dB]

Ja
cc

ar
d
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de

x

Noise Types:
Gaussian
Salt & Pepper
Speckle
Clouds

Fig. 6: The Jaccard index of a synthetic ground-truth seg-
mentation and our segmentation result using the same
parameters on 4 different types of noise. The standard devi-
ation is shown by the error envelopes (transparent shaded
regions); our method is robust to several noise types heavily
corrupting the object to a PSNR of about 101.05.

The results in Figure 6 show that the method can seg-
ment severely noisy images, corrupted with a PSNR of
about 101.05, under a constant parameter assignment. While
the results in Figure 6 show the method is more robust
to Gaussian noise than speckle noise, it is important to
understand that this is only within the parameters chosen;
improvements can generally be made by adjusting the pa-
rameters for individual scenarios. In addition to Gaussian,
salt & pepper, and speckle noise, we implemented a multi-
frequency ‘cloud’ noise at a target PSNR, which simulates
intensity inhomogeneity. In Figure 6, it appears that the
cloud noise improves under a PSNR of 100.81, however
this is caused by the cloud-like objects inside the synthetic
object being captured. In such cases, we can still segment the
underlying object, but only through decreasing σ or using
the interactive brushes.

By systematically adjusting the parameters to maximize
the mean Jaccard index over all noise types, we found the
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PSNR PSNR
15 12.5 10 7.5 15 12.5 10 7.5

Gauss

Salt &
Pepper

Speckle

Clouds

TABLE 3: Segmentation without interactive brushes attained from a single circular seed region inside the object.

following defaults: σ = 3, ν = 50, λ1 = 1, λ2 = 1.05, ∆t =
0.1, µ = 1 (these are the parameters used in Figure 6 and
Table 3). We also found, through our synthetic experiments
and in segmenting real-world images, that across all of the
encountered images we only need to adjust σ, ν, and λ,
where λ1 = 1+max(0,−λ) and λ2 = 1+max(0, λ). To make
these parameters more intuitive, we assign more meaningful
descriptions to them in Table 4:

Description Symbol Suggested Range Default
Capture Range σ [1.01, 10] 3

Smoothing Weight ν [10, 90] 50

Shrink or Grow λ [−0.1, 0.1] 0.05

TABLE 4: Our proposed parameters for controlling the
method. All images in this paper are generated using these
three parameters within their suggested range and constants
∆t = 0.1 and µ = 1.0.

We call σ a ‘capture range’ parameter as it describes
the range from which a pixel’s energy may be affected by
the contour (see Equations 2-4), and therefore determines
the capture range. The parameter ν penalizes the length of
the contour (Equation 6 and 8); a larger ν value results in
a smoother contour which is less likely to burst through
small gaps or capture small/sharp features. Traditionally
many active contour methods have been designed to grow
or shrink until they reach the object boundary and then
stop; the parameter λ optionally enables this behaviour by
weighting the image terms e1 and e2 by λ1 and λ2 respec-
tively (Equation 8), biasing the contour towards shrinking
or growing. By adjusting these parameters in real-time,
inexperienced users quickly learn to intuitively manipulate
them in combination with our interactive brushes. In most
cases, we set λ = 0.05 to prefer contour growth, and adjust
only σ and ν.

To further justify the importance of our interactive
brushes, we construct 6 extreme synthetic scenarios in Table
5. Images 1-3 show Gaussian, salt & pepper, and cloud noise
corrupted to a severe PSNR of 5 (fail cases in Figure 6).
By adjusting the parameters and constraining the contour
with our brushes, we can easily (3-5 seconds per image)

segment the underlying object. Images 4-5 show that the
LGDF energy can segment noisy objects with intensity in-
homogeneity and weak/blurred edges. Image 6 shows an
object whose intensity mean is the same as its background,
with the only difference being in intensity variance.

Segmentation Using Interactive Brushes

1 2 3 4 5 6

TABLE 5: The following challenging scenarios are quickly &
easily segmented with our interactive brushes. Images 1-5
have a PSNR of 5 for Gaussian, salt & pepper, and multi-
frequency noise accordingly, and images 4-6 show extreme
scenarios of poorly defined and/or blurred boundaries.

4.2 Segmenting Real-world Images
We evaluate our software against several different imaging
modalities on real-world data and show the results in Table
6. In all our results, we only adjust the parameters σ, ν, and
λ as described in Table 4. By initializing φ(~x) = 2 uniformly,
we are able to automatically segment some objects without
an initial seed region, such as the cells in Table 6 1c, and
some of the small objects in 1a. This works because δ(2) is
large enough that φ can still be deformed by image forces,
allowing new segments to appear anywhere in the image;
this is not possible with a narrow band approach. Similarly,
we segmented the bronchioles inside the lungs in 2b without
a seed region, however this also captured some other small
objects in the image which we erased using the interactive
brushes. The remaining images were segmented by painting
a simple region inside the object of interest, and using
the default grow parameter λ = 0.05. We found, as with
our synthetic experiment, that the proposed parameters
are insensitive to the different levels and types of noise
encountered in the different imaging modalities. In general
the default parameters suggested in Table 4 work well for
most object segmentations, however in challenging cases
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a b c

1

2

3

4

5

TABLE 6: Segmentation results of multiple objects displayed in different colors. 1a shows a segmented image of HaCaT
human cell culture cells using confocal microscopy, 1b shows the interdigitation of segmented layers of eisosome proteins
from cryo-EM tomography data [54], 1c shows selective plane illumination microscopy (SPIM) of zebrafish eye lens cells
[55]. Row 2 shows medical CT scans of the abdomen, body, and thorax [2]. 3a shows an MRI of a cerebral aneurysm, and
3b an XA angiogram [2]. 3c shows the structure of the Sec13/31 COPII coat cage from cryo-EM data [56]. Row 4 shows the
herpes simplex virus capsid [57], phi procapsid [58], and the mumps virus [59], all from cryo-EM data. 5a shows a CT scan
of an engine block [60], 5b sintered alumina [3], and 5c shows a selection of objects from a CT scan of a backpack [60].
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(such as multiple objects or thin objects) the parameters σ
and ν can be dynamically adjusted in real-time where the
user can ‘slide’ the parameter within the suggested range
until the motion of the contour is satisfactory to achieve the
desired result. In the baggage data in 5c there are many
other objects with the same intensity touching the rope
and inside the box. For the purpose of demonstration, we
used the barrier brush to prevent segmenting these other
objects despite them strongly touching or overlapping the
segmented rope and box with the same intensity.

Many of these segmentations, such as in Table 6 1a,
1c, 3a-b, and 5b-c are not possible with the current GPU
level set segmentation approaches, which use simple speed
functions to attract and/or shrink the contour within a fixed
intensity range [4], [5], [35]. For example, when painting an
initial seed region at the base of the aneurysm image in 3b,
the active contour will not grow beyond approximately 100
voxels in the y-axis due to intensity inhomogeneity along
the vessel. In contrast, the adopted LGDF energy model
proposed by [6] allows us to paint a simple initial sphere
anywhere on the object which then spreads through the
network of vessels. In cases where the contour evolution
misses a vessel or oversegments part of the object, evolution
is temporarily halted ∆t = 0, local amendments are made,
and then evolution is resumed ∆t = 0.1. By restricting to a
local solution with a high-level of visual feedback, we can
spot such issues and make ammendments immediately.

4.3 Performance and memory usage

In our cross-platform C++/OpenCL application, we mea-
sure the mean kernel timings over 100 frames for different
sized images on a GTX TITAN X and show the results in
Figure 7. We can see that the overall algorithm performance
is approximately linear in the number of pixels/voxels,
since we process the full dataset as the C∞ Heaviside and
Dirac functions are non-zero everywhere.

0 10 20 30 40 50 60

Time [ms] / iteration 

Tumour 3D
256×256×160

Brain 3D
187×217×181

Macular Hole 3D
183×139×49

Tumour 2D
1024×1024

Small tumour 2D
256×256

Synthetic 2D
79×75

Norm Grad Prep Conv X Gaus Y Gaus Z Gaus Prep Conv 2
X Gaus Y Gaus Z Gaus Update Phi Copy To A

Fig. 7: Mean kernel timings over 100 frames for different
images of different sizes. σ = 3 in all cases. Despite using
texture memory, which is cached and has spatial locality in
multiple dimensions [15], and fast constant memory to store
the 1D separable Gaussian coefficients, convolution in the
z-axis is significantly slower than the y and x axes.

Figure 8 shows how the overall running time increases
with larger σ, and that the performance in the z-axis be-
comes more similar to the y and x axes with larger σ. In the
practical and suggested range of σ [1.01, 10] (Table 4), it can
be seen that the running time increases in small steps (zoom
to the lower-left of the graph). This is because running time
is primarily influenced by the size of the 1D Gaussian filter
buffer, whose size is b4σ + 1c to approximate the Gaussian
function with reasonable support.
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Fig. 8: Mean kernel timings over 100 frames with increasing
σ for 3D macular hole. In practice we rarely require σ > 10.

We also investigated other optimizations given that the
Gaussian convolution is the primary bottleneck of our
approach. We implemented Gaussian convolution in the
Fourier domain using MATLAB GPU arrays. While Fourier
convolution allows for a lower order of growth, the benefits
are outweighed by the large constant factor due to the
algorithm complexity; this takes 400ms per frame using a
GTX TITAN X, which is off the scale in Figure 8.

The mean time of 100 iterations with our C++/OpenCL
implementation is evaluated across different hardware, and
compared to our GPU Fourier implementation and the
original CPU MATLAB version (which is vectorized and
calls code written in C for the Gaussian convolution). These
results are shown in Figure 9.

In Figure 9, our algorithm substantially outperforms the
original implementation in all images. Given that we pro-
cess the entire dataset with compact kernels and separable
convolutions, we can fully utilize high-end GPU hardware
to obtain a substantial speedup of up to three orders of
magnitude from the original version, and 1-2 orders of
magnitude from our GPU Fourier convolution version.

With high-end GPU hardware, our algorithm is limited
by memory consumption. We require 48 bytes of texture
memory per pixel or voxel for the entire image (4 bytes per
channel in Figure 3). In cases where the image does not fit
into the available GPU memory, we must either downsam-
ple or crop the region of interest before segmentation.

5 DISCUSSION

The primary limitation of our implementation is that we
require storing the full dataset at the original resolution
in GPU texture memory, as the C∞ Heaviside and Dirac
functions are non-zero everywhere to reduce convergence
on local minima [29]. This also limits the algorithm’s speed.
In future work, we will investigate dynamically adjusting
the resolution away from the zero-crossing of the C∞
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Fig. 9: Mean time [ms] over 100 iterations on different GPU
hardware, compared to the original MATLAB implementa-
tion and our implementation using fast Fourier convolution
on the GPU. Our OpenCL implementation with separable
convolutions achieves over a ×1,000 speedup over the orig-
inal vectorized MATLAB version in larger images.

Heaviside, to reduce the memory requirements and improve
performance, and evaluate the impact of this approach on
segmentation quality.

While there are some excellent publicly available
datasets for interactive segmentation of real-world 2D color
images and videos [10], the problem of segmenting a human
or plant, e.g. with a graph cut approach on distributions of
color information, is fundamentally different to segmenting
a tissue or organ. In the latter case, the challenge is more
often due to inhomogeneity, or poorly defined edges rather
than texture information or differing backgrounds. As with,
[44] we would like to see benchmark 3D biological and
medical datasets for evaluating interactive performance.

In the future, we hope to use our software in the creation
of such datasets with groundtruth segmentations, multiple
initializations, and a collection of interactive metrics for
comparative studies.

6 CONCLUSION

In conclusion, we have shown that sophisticated level set
segmentation energy models, with sequential dependencies
amongst intermediate processing steps, can be implemented
efficiently on the GPU through careful structuring of the
GPU kernels within the constraints of the GPU memory
architecture. While active contours are used in unsuper-
vised algorithms, they continue to benefit from interactive
approaches that enable users to guide and constrain the
contour to capture specific parts of more challenging objects.
We have shown that the LGDF energy model proposed
by [6] requires little parameter tuning, is robust against
different types of noise, and can be generalized to a broad
range of real-world 3D images from biological, medical, and
engineering scenarios. Segmenting many of these images
was not possible with existing GPU level set algorithms
due to their simple energy functionals. We have greatly en-
hanced the LGDF model’s performance, making it practical
in many more use-cases than before (including 3D images).
We also extended its functionality through interactive brush

functions that give direct influence over the dynamic con-
tour evolution. In the future, we believe GPU adaptations
of advanced segmentation algorithms will continue to pro-
liferate, using similar design processes to ours.

7 AVAILABILITY

We release our C++/OpenCL software and source code un-
der the GNU General Public License Version 3 (Github link
will be included), alongside an optional MATLAB wrapper.
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