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The Late Ordovician mass extinction (LOME) coincided with dramatic

climate changes, but there are numerous ways in which these changes

could have driven marine extinctions. We use a palaeobiogeographic data-

base of rhynchonelliform brachiopods to examine the selectivity of Late

Ordovician–Early Silurian genus extinctions and evaluate which extinction

drivers are best supported by the data. The first (latest Katian) pulse of

the LOME preferentially affected genera restricted to deeper waters or to

relatively narrow (less than 358) palaeolatitudinal ranges. This pattern is

only observed in the latest Katian, suggesting that it reflects drivers

unique to this interval. Extinction of exclusively deeper-water genera implies

that changes in water mass properties such as dissolved oxygen content

played an important role. Extinction of genera with narrow latitudinal

ranges suggests that interactions between shifting climate zones and palaeo-

biogeography may also have been important. We test the latter hypothesis

by estimating whether each genus would have been able to track habitats

within its thermal tolerance range during the greenhouse–icehouse climate

transition. Models including these estimates are favoured over alternative

models. We argue that the LOME, long regarded as non-selective, is

highly selective along biogeographic and bathymetric axes that are not

closely correlated with taxonomic identity.
1. Introduction
The Late Ordovician mass extinction (LOME) was one of the largest extinctions

of the past 500 million years [1,2], involving the extinction of almost half of

marine invertebrate genera and an estimated approximately 85% of species

[3]. Major extinction pulses occurred at the boundary between the Katian and

Hirnantian stages, and in the mid-Hirnantian (at the base of the Metabolograptus
persculptus graptolite Biozone) [3,4]. Both these boundaries are associated with

major climatic and oceanographic transitions: the former with global cooling,

expansion of south polar ice sheets and falling sea levels, and the latter with

warming, melting of ice sheets and continental flooding [3–9].

Because of the apparent correspondence between climatic transitions and

extinction pulses, the LOME has long been recognized as a climatically

driven event [3–8,10]. However, substantial uncertainty remains regarding

the mechanisms of extinction—there are many ways in which climatic transitions

and associated oceanographic changes could potentially lead to elevated extinc-

tions, particularly through habitat loss [5,8,11]. Previous studies of the LOME

have implicated two major drivers of extinction: (i) loss of species inhabiting

shallow cratonic seaways that drained as Gondwanan glaciers grew; and
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(ii) loss of species with narrow and/or relatively warm

thermal tolerance ranges as the polar front advanced and

the latitudinal temperature gradient steepened [12,13]. Late

Ordovician–Early Silurian climatic events seem also to have

been associated with major changes in oceanographic circula-

tion, productivity and oxygenation of outer shelf and slope

settings [6,14]. Changes in oxygenation, in particular, have

been suggested as a major additional agent of extinction, par-

ticularly for taxa with planktonic life stages [15–17]. Finally,

the fact that the Hirnantian stage is represented by hiatuses,

lacunae or major facies shifts in many regions [6,13,18–20]

and the preponderance of ‘Lazarus’ genera that are missing

from the Hirnantian and earliest Silurian records, but later

reappear [21], suggest that some proportion of apparent

losses during the LOME may be artefacts of record failure.

A recent analysis of sequence stratigraphic architecture in

Upper Ordovician sections in Gondwana and tropical

Laurentia suggested that the first pulse of the LOME does

not in fact coincide with cooling and sea level fall but

rather with the first major interglacial episode of the Hirnan-

tian stage [19]. This interpretation, if supported, would

require a radical reconsideration of the nature of the LOME

and the lessons that can be drawn from it regarding general

relationships between climate change and extinction in the

fossil record.

A comprehensive analysis of latest Ordovician extinction

selectivity patterns and their context in broader Late

Ordovician–Early Silurian selectivity patterns is therefore

needed to evaluate relative support for different causal

models of the LOME. Here we use a large and taxonomi-

cally standardized occurrence database [22–24] to examine

Late Ordovician–Early Silurian extinction patterns within

one of the most diverse and well-preserved Palaeozoic

clades, the rhynchonelliform brachiopods.
2. Material and methods
See the electronic supplementary material for additional details

on data and analyses.
(a) Database
Our dataset was compiled from the literature and from ongoing

research programmes in Durham and Copenhagen. Local strati-

graphic ranges of rhynchonelliform brachiopods were recorded

to the species level where possible. In the literature, though,

only generic lists are often published. Thus, we omitted

species-level data for this study and focused on genera. Stratigra-

phically, all data have been correlated with the British stage

system using Bergström et al. [25] in order to standardize corre-

lation. For this study, we have translated the regional stages

into global units, again using Bergström et al. [25]. Taxonomic

revisions dealing with specific genera have been assessed and

their recommendations implemented wherever possible to

avoid synonyms. Brachiopod species, and genera exhibit strong

depth preferences and benthic assemblage (BA) zones have

long been used as depth indicators in the early Palaeozoic

[26–28]. Each genus in our dataset was assigned to a range of

BAs based on information in the literature, often with reference

to associated fauna or lithology. In cases for which literature

data were not available, assignments were based on the authors’

experience with faunal and facies associations in the field.

Further details regarding the database are available in previous

publications [22–24].
(b) Quantifying extinction and risk predictors
All data manipulations and analyses were carried out in

the R programming environment [29]. For each of 23 Late

Ordovician–Early Silurian timeslices resolvable in our database

(electronic supplementary material), we tallied all genera that

were sampled in at least one locality (i.e. the timeslice falls

within the local stratigraphic range of the genus at least one

locality). To avoid edge effects, we excluded the Sandbian

(early Late Ordovician) and Telychian (late Early Silurian) inter-

vals. In the remaining 19 timeslices, the number of extant genera

ranges from 121 (earliest Rhuddanian) to 238 (earliest Katian).

Within each timeslice, we count genera as survivors if they are

known to occur in younger timeslices and extinctions if they

are not. We further divided survivors into genera that are

sampled in at least one region in the immediately succeeding

timeslice and ‘Lazarus’ genera [21,30] that disappear from the

record for at least one timeslice but subsequently reappear. In

keeping with common palaeobiological practice, we analysed

geographical and stratigraphic ranges at the genus level, because

species are inconsistently identified in the literature. If the deter-

minants of extinction risk differ between the species and genus

levels, then species-poor genera are expected to be at higher

risk than relatively speciose genera. To account for such differ-

ences, we tallied the number of named species assigned to

each genus during each timeslice (species richness). Genera lack-

ing named species (e.g. all occurrences in that timeslice were

recorded as ‘sp.’) were assigned a minimal value of 1.

Within each timeslice, we tabulated several aspects of geo-

graphical distribution for each genus. These included great

circle distance (the maximum distance between any two localities

occupied by a genus during a given timeslice; genera occurring

at only a single locality were assigned a value of 1), grid cell

occupancy (the number of 108 latitude by 308 longitude grid

cells that contain at least one locality occupied by a genus

during a given timeslice) and number of palaeocontinents (the

number of palaeocontinents and terranes occupied by a genus

during a given timeslice). We quantified latitudinal distribution

by tabulating the minimum and maximum absolute palaeolati-

tude at which each genus occurs in each timeslice and its

absolute palaeolatitudinal range (e.g. from 08 to 908). We quanti-

fied bathymetric distribution by tabulating the minimum and

maximum depth (as measured by BA membership) and the

depth range of each genus. To evaluate whether genera entirely

or largely confined to cratonic seaways were harder hit than

open-shelf genera we tabulated % cratonic localities (the percen-

tage of all localities occupied by each genus in each timeslice that

were located in cratonic seaways).

The sharp decline in the amount of preserved sedimentary

rock between the Katian and the Hirnantian [13] raises the possi-

bility that some of the apparent extinction during the first pulse

of the LOME reflects record failure rather than reflecting true

extinction. No existing database captures the global distribution

of sedimentary rock with spatio-temporal resolution sufficient

to compare directly with our database. Instead, in each timeslice,

we categorized each locality in our database as continuous if at

least one brachiopod genus occurred at that locality in the

immediately succeeding timeslice, and discontinuous if no bra-

chiopod genera are documented from that locality in the

succeeding timeslice. A given locality may appear to be discon-

tinuous in the immediately succeeding timeslice for several

reasons, including (i) absence of sedimentary rock owing to

non-deposition and/or subsequent erosion, (ii) lack of exposure,

(iii) lack of expert collecting effort and (iv) lack of appropriate

palaeoenvironments (e.g. rocks are terrestrial, or anoxic marine

black shales), but all of these scenarios represent failures of pres-

ervation and/or collection that have the effect of truncating true

stratigraphic ranges. To determine whether such truncations

were an important predictor of apparent extinction risk, we
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tabulated % discontinuous localities (the percentage of all

localities occupied by a genus during a given timeslice that

have no records in the succeeding timeslice).

For the latest Katian timeslice (Katian 5), we undertook a

further set of analyses to evaluate whether extinction risk was

influenced by interactions between biogeographic distribution

and shifting climate zones (see the electronic supplementary

material). Using published climate simulations [31], palaeogeo-

graphic reconstructions [32,33] and observed palaeogeographic

distributions, we estimated minimal thermal tolerance ranges

for all genera extant during Katian 5. We then determined

whether each regional population in a given genus would have

been able to access habitat within this thermal range by shifting

its range equatorward during the greenhouse–icehouse tran-

sition (electronic supplementary material, figure S1). Genera

with at least one population that should have been able to

remain within its thermal tolerance range without crossing an

ocean basin were counted as predicted survivors. Those for

which no suitable habit would have been available without

dispersing across open oceans were counted as predicted extinc-

tions. For comparison, we also made predictions based on the

opposite scenario: an assumed icehouse state in the latest

Katian transitioning to a Hirnantian greenhouse state.

(c) Modelling relationships between predictors
and extinction risk

We examined relationships between the predictors described above

and extinction patterns in the nine timeslices (out of 19 total) that

had at least 10 observed genus extinctions. We used generalized

boosted regression models (GBMs) [34,35] to determine which pre-

dictors were most strongly associated with extinction risk in each

interval and the marginal effect (the effect with all other variables

held constant) of varying each predictor on extinction risk. GBM

models are useful for delineating extinction selectivity patterns

throughout the study interval, but ensemble-based models of this

kind cannot easily be compared in a maximum-likelihood frame-

work. To make explicit models comparisons for the Katian 5

timeslice, we constructed multivariate binomial logistic regression

models [36] using the subset of predictors that were included in

75% or more of the top-ranked models (those that had AICc

scores within four points of the ‘best’ model). These predictors

were palaeolatitude range, minimum depth, % cratonic and %

discontinuous. We then evaluated relative support for a model

including only these predictors and the intercept, these predictors

and the intercept plus predicted extinctions and survivors

in a greenhouse–icehouse transition, and these predictors and

the intercept plus predicted extinctions and survivors in an

icehouse–greenhouse transition. We used a classification tree to

illustrate how the predictors in the best-supported model partition

Katian 5 genera into extinctions and survivors.
3. Results and discussion
The performance of GBM models in accurately classifying

genera as extinctions or survivors varied across intervals

(figure 1), with the Katian 1, Katian 3 and Hirnantian models

being notably poor. The marginal effects of predictors on

extinction risk in each interval, and their relative influence on

predicting extinction risk/survival, are shown as partial

dependence plots in figure 1. Relative influence of predictors

varied among intervals, but compared with other timeslices,

the timeslice coinciding with the major pulse of the LOME

(Katian 5) stands out for the unusual relative influence and

marginal effects of palaeolatitude range, minimum depth, %

discontinuous and % cratonic. Great circle distance is also an
important predictor of extinction risk during Katian 5, but simi-

lar relationships between great circle distance and marginal

risk are apparent in several other timeslices. In contrast,

although palaeolatitudinal range is an important predictor of

extinction risk in some other timeslices, no other timeslices

show a similar relationship between palaeolatitudinal range

and marginal risk: genera with extremely restricted palaeolati-

tudinal ranges (often those restricted to a single locality or

region) exhibit elevated marginal risk in some timeslices, but

only Katian 5 exhibits a broad plateau of elevated marginal

risk among genera with palaeolatitudinal ranges less than

about 358.
Katian 5 brachiopod extinctions are also strikingly selec-

tive with respect to bathymetric distribution. Genera that

ranged into shallower waters (BA 1–2) experienced much

lower extinction rates than those restricted to deeper waters

(BA 3–6). The pattern is not limited to a single region but

is apparent across a broad palaeolatitudinal range

(figure 2), implying that it reflects the operation of a global-

scale environmental driver and that the previously noted

demise of the widespread deep water (BA 5–6) Foliomena
fauna [14,22] is only the most extreme manifestation of a

broader selective sweep. Interpretation of this pattern is com-

plicated by uncertainty regarding the actual depth ranges

represented by BAs (which are restricted to shelf and slope

settings) [26], but the sign of the depth signal is informative.

Cooling alone would be expected to steepen bathymetric

temperature profiles and preferentially cause the extinction

of genera restricted to warmer surface waters rather than

those restricted to cooler deeper water. It is more likely, there-

fore, that the bathymetric extinction gradient reflects some

other change in water mass characteristics.

Several lines of evidence, including biomarkers [37], nitro-

gen isotopes [38,39], molybdenum isotopes [14,40], iron

speciation [14] and black shale distributions [39], suggest that

the onset of the Hirnantian icehouse climate state was

accompanied by increased oxygenation of shelf environments.

Many of the species found in deeper-water environments

during the late Katian were small and thin-shelled [41], like

modern low-oxygen specialists [42]. Benthic species that had

adapted to relatively low-oxygen conditions prevailing in

deeper waters during the Katian greenhouse climate state

may have been driven extinct by expansion of more oxygen-

ated waters with their incumbent shallow-water faunas. This

scenario is consistent with the contemporaneous extinction of

multiple graptolite lineages thought to have inhabited denitri-

fying waters on the margins of oxygen minimum zones

[16,39,43,44], including many older and previously extinc-

tion-resistant lineages [45]. An alternative interpretation is

that the extinction of deeper-water genera reflects expansion

of oxygen minimum zones and associated sulfidic conditions

[14], but recent studies [46] do not support this hypothesis.

Changes in oxygenation would not necessarily affect all taxa

similarly, and whether such changes can explain other selective

patterns such as the disproportionate extinction of trilobites

with planktonic life stages [17] is not clear.

Both the first (end Katian) and second (late Hirnantian)

pulses of the LOME exhibit slightly elevated extinction risk

for genera occurring primarily in cratonic seaways relative to

those occurring primarily in open-shelf settings (figure 1).

Although this effect is weak, it is notable because it is opposite

to that observed in most other intervals, during which genera

restricted to open-shelf environments exhibit slightly greater

http://rspb.royalsocietypublishing.org/
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risk than cratonic genera. Preferential extinction of cratonic

genera contrasts with preferential survival of such taxa

during Meso-Caenozoic mass extinctions [47], but is consistent

with previous suggestions that some latest Katian extinctions

were driven by eustatically forced regression and draining of

cratonic seaways [7,48]. It should be noted, however, that % dis-

continuous is also weakly predictive of extinction risk in both

Katian 5 and (to a lesser extent) the Hirnantian. Moreover, in

Katian 5, the marginal risks associated with % discontinuous

and % cratonic are rather similar (figure 1).

The positive association between % discontinuous

and extinction risk, though weak, raises the possibility that

some proportion of the extinctions that appear to occur at

the Katian–Hirnantian boundary represent artificial range

truncations resulting from reduced preservation probability.

Such truncations would not be expected to affect all genera
equally. The draining of cratonic seaways may have led to genuine

extinctions of genera with dominantly cratonic distributions, but

these genera might also be expected to have experienced dispro-

portionate decline in preservation potential. In shelf areas most

preserved sequences record substantial shoaling [3,6,19,49,50],

raising the possibility that deeper-water genera may also have

experienced a disproportionate decline in preservation potential

owing to reduced sampling of appropriate environments.

We evaluated the likelihood that observed extinction selec-

tivity patterns are driven by stratigraphic range truncations by

comparing mean predictor values in genera that appear to go

extinct in Katian 5, ‘range-through’ genera that survive but

have a post-Katian 5 sampling gap, and genera that survive

and occur in the subsequent (early Hirnantian) timeslice.

In the extreme case that all apparent extinctions actually

represented stratigraphic range truncations, the factors

http://rspb.royalsocietypublishing.org/
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important in predicting extinction risk would instead be inter-

pretable as predictors of going unsampled in the early

Hirnantian, and we would expect range-through genera and

‘extinct’ genera to exhibit similar mean predictor values. Of

the four Katian 5 predictors included in at least 75% of the

top multiple logistic regression models, % discontinuous and

(to a lesser extent) % cratonic exhibit such a pattern (electronic

supplementary material, figure S2). Mean palaeolatitudinal

range and minimum depth values of range-through genera

are intermediate between those of extinct genera and genera

that survive with no sampling gap. This suggests that,

although apparent extinctions in Katian 5 may represent a mix-

ture of genuine extinctions and range truncations, observed

palaeolatitudinal and bathymetric extinction selectivity

patterns are unlikely to be artefacts of record bias.

The unusual importance of palaeolatitudinal range in the

latest Katian implies that changing sea surface temperatures

played a major role in driving extinctions. Latitudinal ranges

are closely linked to thermal tolerance ranges among extant

aquatic ectotherms [51–53], and sea surface temperatures are

the single most important determinant of biogeographic
structure in the coastal oceans [54,55]. The thermal tolerance

ranges of some extant marine invertebrate species have been

conserved on million-year time scales [56], and many species

shifted their ranges in response to Caenozoic and Quaternary

climate changes [55,57,58].

Preferential survival of genera with wide palaeolatitudinal

ranges does not necessarily implicate cooling; broad thermal

tolerance range would be expected to buffer against extinction

during any rapid climate change, and the Latest Ordovician

world likely experienced glacial–interglacial oscillations analo-

gous to those of the Caenozoic. It has been argued that the first

pulse of the LOME corresponds not to the greenhouse–ice-

house transition but rather to the first interglacial within the

icehouse state [19], and the selective extinction of narrow-

ranging genera is also consistent with this hypothesis. How-

ever, a multivariate logistic regression model that includes

the four selected predictors plus predictions about which

genera would be expected to go extinct owing to habitat loss

during a greenhouse–icehouse transition strongly outper-

forms both the model including only the four original

predictors and the model including predictions about which

http://rspb.royalsocietypublishing.org/
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Table 1. Comparison of three different multiple logistic regression models using the modified Akaike information criterion (AICc): ‘no prediction’ (extinction �
palaeolatitudinal range þ minimum depth þ % cratonic þ % discontinuous), ‘greenhouse – icehouse prediction’ (extinction � palaeolatitudinal range þ minimum
depth þ % cratonic þ % discontinuous þ predicted extinction/survival in a greenhouse – icehouse transition) and ‘icehouse – greenhouse prediction’ (extinction �
palaeolatitudinal range þ minimum depth þ % cratonic þ % discontinuous þ predicted extinction/survival in an icehouse – greenhouse transition). The
‘greenhouse – icehouse prediction’ model, in which the expected survival or extinction of a genus in an icehouse climate state is predicted based on its distribution in
an assumed greenhouse climate state, is favoured over the other models by evidence ratios .10 : 1. K ¼ number of estimated parameters for each model (including
intercept), DAICc ¼ AICc difference between model and ‘best’ model, AICc Wt¼ proportional support for model, LL¼ log likelihood.

model name K AICc DAICc AICcWt LL

greenhouse – icehouse prediction 6 221.06 0 0.99 2104.32

no prediction 5 230.75 9.68 0.01 2110.22

icehouse – greenhouse prediction 6 232.51 11.45 0.00 2110.05
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genera would be expected to go extinct in a hypothetical ice-

house–greenhouse transition (table 1). Consequently, we

conclude that cooling and equatorward shift of climate zones

led to the extinction of many species (and thus genera) that

had narrow thermal tolerance ranges and inhabited coastlines

or cratonic seaways of limited latitudinal extent.

Extinction selectivity patterns during Katian 5 can be visual-

ized with a classification tree (figure 3). Unsurprisingly, given

that our predictions for extinction versus survival in a green-

house–icehouse transition are necessarily crude estimates,

palaeolatitudinal range remains an important predictor of

extinction risk even in models that include these predictions.

Only 17% of genera with palaeolatitudinal ranges more than
358 go extinct (figure 3), but of those with ranges less than 358,
extinction is substantially higher in genera confined to depths

of BA3 or deeper than in genera that ranged into shallower

waters. Predicted extinction in a greenhouse–icehouse transition

is selected as a further split in both the exclusively deep water

and shallower subsets of the narrow-ranging genera, with

further splits on % cratonic and % discontinuous among

narrow-ranging deep-water genera that are not otherwise pre-

dicted to go extinct (figure 3). This analysis thus confirms that

aspects of thermal tolerance range and bathymetric distribution

seem to have been more important than occupying cratonic sea-

ways and/or regions with widespread stratigraphic truncations

in determining which genera went extinct and which survived.
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The poor performance of the Hirnantian GBM model

(figure 1) indicates that none of the variables considered here

are particularly effective predictors of extinction risk during

the smaller second pulse of the LOME in the mid- to late

Hirnantian. A previous analysis of the Laurentian record also

failed to find effective predictors of extinction risk for the

second LOME pulse [13]. It has been suggested that extinctions

during this interval are related to warming and shoaling of

oxygen-poor waters during partial deglaciation [14,39], but

we observe no strong depth or palaeolatitudinal signal in the

distribution of extinction risk. Future analyses incorporating

additional environmental factors (e.g. the percentage of sites

occupied by a given genus in the late Hirnantian that are over-

lain by laminated black shales in the Rhuddanian) may be able

to resolve a clearer selective signal.

Our results suggest an explanation for one of the

enduring questions about the LOME: why did the Late Ordo-

vician greenhouse–icehouse transition cause a major mass

extinction when subsequent greenhouse–icehouse transitions

did not? In fact, both the late Eocene–Oligocene transition

and the Plio–Pleistocene descent into full icehouse conditions

were associated with significant extinction pulses [59–63],

but these pulses were predominantly focused on tropical

and subtropical regions and were not of comparable magni-

tude. The contrast may reflect three important differences

in starting state between Late Ordovician and Caenozoic

greenhouse–icehouse transitions.

(1) Early Palaeozoic dissolved oxygen levels may have

been substantially below typical modern levels, especially

in outer shelf and slope settings [64]. Whereas the Late Ordo-

vician greenhouse–icehouse transition seems to have been

accompanied by a substantial increase in shelf oxygenation

[37–39,43], there is little evidence for a comparable increase

during the Caenozoic transition. There are many potential

explanations for this contrast, but one key factor may be

Phanerozoic evolutionary trends that have acted to deepen

the e-folding depth of organic remineralization [65]. Such

a shift would deepen oxygen minimum zones and reduce

the exposure of shallow benthic habitats to substantial

fluctuations in dissolved oxygen content.

(2) The late Katian world was an extreme highstand with

extensive flooding of continents, but cratonic seaways were

of limited extent in the Caenozoic and almost entirely gone

by the Pliocene [66] (electronic supplementary material,

figure S3). Loss of cratonic faunas, many of which probably

experienced substantial oxygen fluctuations [67] and would

have had difficulty dispersing into open-shelf settings [68],

was almost certainly a more important driver of extinctions
during Late Ordovician cooling and sea level fall than

during Caenozoic cooling episodes.

(3) Except for the supercontinent of Gondwana, the Late

Ordovician world was characterized by widely dispersed

island continents and an abundance of isolated terranes

[24,33], whereas the Caenozoic world was generally charac-

terized by extensive continuous north–south coastlines [69]

(electronic supplementary material, figure S3). Caenozoic

continental configurations would thus have allowed many

marine species to shift their ranges equatorward in response

to shifting climate zones without having to disperse across

open ocean basins. The Late Ordovician configuration may

have had a greater tendency to ‘trap’ species on coastlines

from which they could not easily shift their ranges equator-

ward, accounting for the selective extinction of genera with

narrow palaeolatitudinal ranges.

Our finding may also help to explain the observation that

the LOME was taxonomically relatively non-selective and

seems to have had far less long-term impact on the taxonomic

and ecological structure of marine ecosystems than other

major mass extinction events [70,71]. Whereas both the

Permian–Triassic and Cretaceous–Palaeogene events removed

groups that had previously been diverse and ecologically domi-

nant, very few higher taxa disappeared during the LOME. Our

analyses show that among rhynchonelliform brachiopods

extinction was in fact strongly selective, but along bathymetric

and biogeographic gradients that would have affected most

major taxa. Consequently, although taxonomic losses were

very high, these losses were relatively evenly distributed

across ecospace. With the re-establishment of background

environmental conditions surviving lineages rapidly diversified

[72] into similar regions of ecospace, giving rise to ecosystems

structurally similar to those that preceded the LOME.
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