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Abstract

This paper presents a new method for prediction of an event involving a
future bivariate observation. The method combines nonparametric predic-
tive inference (NPI) applied to the marginals with a parametric copula to
model and estimate the dependence structure between two random quanti-
ties, as such the method is semi-parametric. In NPI, uncertainty is quantified
through imprecise probabilities. The resulting imprecision in the marginals
provides robustness with regard to the assumed parametric copula. Due to
the specific nature of NPI, the estimation of the copula parameter is also
quite straightforward. The performance of this method is investigated via
simulations, with particular attention to robustness with regard to the as-
sumed copula in case of small data sets. The method is further illustrated
via two examples, using small data sets from the literature.

This paper presents several novel aspects of statistical inference. First,
the link between NPI and copulas is powerful and attractive with regard
to computation. Secondly, statistical methods using imprecise probability
have gained substantial attention in recent years, where typically impreci-
sion is used on aspects for which less information is available. This paper
presents a different approach, namely imprecision mainly being introduced
on the marginals, for which there is typically quite sufficient information, in
order to provide robustness for the harder part of the inference, namely the
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copula assumptions and estimation. Thirdly, the set up of the simulations
to evaluate the performance of the proposed method is novel, key to these
are frequentist comparisons of the success proportion of predictions with the
corresponding data-based lower and upper predictive inferences. All these
novel ideas can be applied far more generally to other inferences and models,
while also many alternatives can be considered. Hence, this paper presents
the starting point of an extensive research programme towards powerful pre-
dictive inference methods for multi-variate data.

Keywords: Bivariate data, copula, lower and upper probability, imprecise
probability, nonparametric predictive inference, robustness,
semi-parametric inference.

1. Introduction

Copulas have become popular tools for modelling dependence between
random quantities in many application areas, including finance [4, 20, 29],
actuarial science [15, 28], risk management [13], hydrology [16], reliability
analysis [34] and pattern recognition [32]. Copulas are attractive due to
their ability to model dependence between random quantities separately from
their marginal distributions [4, 27]. Throughout this paper, attention is
restricted to bivariate data, the proposed method can straightforwardly be
generalized to more dimensional data but its performance would need to
be studied in detail. By the well-known theorem by Sklar [33], every joint
cumulative distribution function F of continuous random quantities (X, Y )
can be written as F (x, y) = C(Fx(x), Fy(y)), for all (x, y) ∈ R2, where Fx and
Fy are the continuous marginal distributions and C : [0, 1]× [0, 1]→ [0, 1] is a
unique copula corresponding to this joint distribution. So, a copula is a joint
cumulative distribution function whose marginals are uniformly distributed
on [0, 1] [4, 27].

Many parametric families of copulas have been presented in the litera-
ture, see e.g. [4, 21, 27]. In this paper, we use four common bivariate one-
parameter copulas, namely the Normal (or Gaussian), Clayton [5], Frank
[14] and Gumbel [17] copulas, these are briefly reviewed below. It should be
emphasized that the semi-parametric method presented in this paper can be
used with any parametric copula. Of course, if one has specific knowledge
in favour of a particular family of copulas for the application considered,
then using this family is most sensible and should lead to best results, if
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indeed this knowledge is correct. The main message of this paper is that the
proposed predictive method provides robustness with regard to the choice
of the parametric copula. This is not an argument for neglecting important
information about the dependence structure, but for many applications it
will enable trustworthy predictive inference with the use of a relatively basic
copula. Semiparametric methods using copulas have been presented in the
literature before [31], but the emphasis has thus far been on estimation while
we explicitly consider predictive inference in this paper.

We use the following four well-known parametric copulas in this paper.
The Normal copula, with parameter θn, has cumulative distribution function
(cdf)

Cn(u, v|θn) = ΦB(Φ−1(u),Φ−1(v)|θn)

where Φ is the cdf of the standard normal distribution, and ΦB is the cdf of
the standard bivariate normal distribution with correlation parameter θn ∈
(−1, 1). The Clayton copula [5] has cdf

Cc(u, v|θc) = max[(u−θc + v−θc − 1)−1/θc , 0]

with dependence parameter θc ∈ [−1, 0) ∪ (0,+∞). The Frank copula [14]
has cdf

Cf (u, v|θf ) = −θ−1
f ln

{
1 +

(e−θfu − 1)(e−θfv − 1)

e−θf − 1

}
with dependence parameter θf ∈ (−∞, 0) ∪ (0,+∞). The Gumbel copula
[17] has cdf

Cg(u, v|θg) = exp(−[(− lnu)θg + (− ln v)θg ]1/θg)

with dependence parameter θg ∈ [1,+∞).
These four commonly used copulas all have their own characteristics, for

example the Gumbel copula models strong right-tail dependence and rela-
tively weak left-tail dependence [35]. There is a one-to-one relationship be-
tween the dependence parameters of these four copulas and the concordance
measure Kendall’s tau, as given below [4]. Note that the Gumbel copula
cannot be used to model negative dependence.

Family Parameter range Kendall’s tau

Normal θn ∈ (−1, 1) 2
π arcsin θn

Clayton θc ∈ [−1, 0) ∪ (0,+∞) θc/(θc + 2)
Frank θf ∈ (−∞, 0) ∪ (0,+∞) 1− 4/θf [1−D1(θf )]
Gumbel θg ∈ [1,+∞) 1− 1/θg
Note: D1(θ) =

∫ θ
0 (x/θ)/(ex − 1)dx is the first Debye function [4].
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Many methods to estimate the parameter of a copula have been presented
in the literature [4, 29, 35]. For the semi-parametric predictive method pre-
sented in this paper, any of the available methods to estimate the copula
parameter can be used, of course advantages and disadvantages of specific
estimation methods are carried over. In the presentation of our method, we
will denote a parameter estimate by θ̂ without the need to specify a particular
estimation method. In our numerical studies to investigate the performance
of the method and to illustrate its use, we will mention the specific estimation
method applied.

Semi-parametric methods using copulas for statistical inference have been
presented before, see e.g. [3, 22, 36]. The main approach presented involves
combining the empirical estimators for the marginals with a parametric cop-
ula, in nature this is very close to the method presented in this paper. Even
more, Chen et al. [3] use a rescaled empirical estimator which, effectively,
deals with the marginals in the same manner as the method used in this
paper. However, these presented methods in the literature all consider esti-
mation, while our approach is explicitly developed for predictive inference.

In this paper, we introduce a semi-parametric predictive model by ap-
plying nonparametric predictive inference (NPI) on the marginals, combined
with the use of a parametric copula for modelling the dependence, where the
parameter value is estimated based on the data. NPI is based on the as-
sumption A(n), proposed by [19], which gives a direct conditional probability
for a future real-valued random quantity, conditional on observed values of
n related random quantities [1, 6]. Effectively, it assumes that the rank of
the future observation among the observed values is equally likely to have
each possible value 1, . . . , n + 1. Hence, this assumption is that the next
observation has probability 1/(n + 1) to be in each interval of the partition
of the real line as created by the n observations. We assume here, for ease of
presentation, that there are no tied observations (these can be dealt with by
assuming that such observations differ by a very small amount, a common
method to break ties in statistics).

Inferences based on A(n) are predictive and nonparametric, and can be
considered suitable if there is hardly any knowledge about the random quan-
tity of interest, other than the n observations, or if one does not want to use
any such further information in order to derive at inferences that are strongly
based on the data. The assumption A(n) is not sufficient to derive precise
probabilities for many events of interest, but it provides bounds for prob-
abilities via the ‘fundamental theorem of probability’ [12], which are lower
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and upper probabilities [1, 2]. Augustin and Coolen [1] proved that NPI has
attractive inferential properties, it is also exactly calibrated from frequentist
statistics perspective [24], which allows interpretation of the NPI lower and
upper probabilities as bounds on the long-term ratio with which the event of
interest occurs upon repeated application of this statistical procedure.

It should be emphasized that such attractive frequentist properties are not
claimed to hold generally for the inferences presented in this paper, due to the
assumption of a parametric copula. If this model assumption would indeed
reflect the true underlying data generating mechanism, then the method
would adopt the attractive properties, including crucially that the resulting
predictive inferences would be exactly calibrated for any sample size; this
is illustrated via simulations in Section 4. However, in practice one would
never know precisely the actual dependence characteristics for the data, so
the use of a parametric copula will affect the inferences which are not fully
nonparametric anymore, and hence do not fully adapt to the data anymore.
This is very natural and indeed the case for all statistical inferences using
parametric models. Our research programme, of which this paper reports
the first stage, aims at providing predictive inference methods which, for
small to medium data sets, are robust to misspecification of the dependence
structure, while for larger data sets a fully nonparametric predictive method
is the aim, such that the method fully adapts to the data and hence maintains
the attractive properties of NPI for univariate (one-dimensional) data.

So far, NPI has only been introduced for univariate data, this is the first
paper introducing a method which attempts to generalize NPI to bivari-
ate data. This generalization is not straightforward as NPI for univariate
data relies on the ordering of observations, and there is no natural (com-
plete) ordering of bivariate data (and beyond this for general multivariate
data). Furthermore, the well-known curse of dimensionality tends to lead to
problems with fully nonparametric methods for multivariate data once the
dimension of the data is not small; for bivariate data this would not normally
be a problem, but attempts to generalize NPI to larger-dimensional data us-
ing alternative data orderings would probably suffer from data scarcity for
realistic data sets. This provides a substantial range of research questions
and opportunities, where for example some suggested bivariate data order-
ings (e.g. using concepts like data-depth [25]) can be explored and utilized.
The approach presented here, however, benefits from the remarkable ease
of the use of copulas combined with NPI for the marginals, leading to a
semi-parametric method. This avoids the need to provide an ordering in
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the two-dimensional space and we expect that the resulting method does
not suffer from the curse of dimensionality when extended to more than two
dimensions.

This paper is organized as follows. In Section 2 we introduce how NPI
can be combined with an estimated parametric copula to provide a semi-
parametric predictive method. Section 3 demonstrates how the proposed
semi-parametric predictive method can be used for inference about different
events of interest. In Section 4 we investigate the performance of this method
via simulations, with particular attention to robustness with regard to the
assumed copula in case of small data sets. This study includes simulations
where we assume to know the underlying family of parametric copulas ex-
actly, with only the parameter value left to be estimated; this is included to
illustrate the good properties of our method for such situations and also to
illustrate and discuss aspects of imprecision in relation to sample size. This
study further includes simulations where the assumed family of parametric
copulas is not in agreement with the data generating model; here we illustrate
the robustness of the presented method with regard to such misspecifications.
In Section 5 two examples are presented to illustrate the application of the
method to real world scenarios, these examples use data from the litera-
ture. This method raises interesting questions for future research, some brief
comments on this are included in Section 6.

2. Combining NPI with an estimated parametric copula

The proposed semi-parametric predictive method consists of two steps.
The first step is to use NPI for the marginals, the second step is to use a
bivariate parametric copula to take the dependence structure in the data into
account. To explain these steps further we introduce some notation. Suppose
that we have n bivariate (real-valued) observations (xi, yi), i = 1, . . . , n, these
can be thought of as observed values of n exchangeable bivariate random
quantities. Henceforth, to simplify notation, we will actually use xi and
yj to denote the ordered observations when considering the marginals, so
x1 < . . . < xi < . . . < xn and y1 < . . . < yj < . . . < yn. So it is important
that, with the plain indices now related to the separately ordered data related
to the marginals, the values xi and yi do not form an observed pair. It should
be emphasized that the information about the actual observation pairs is only
used in the second step, where the parameter value of the assumed copula
is estimated, the first step considers the marginals and hence only uses the
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information consisting of either the n observations xi or the n observations
yi.

We are interested in prediction of one future bivariate observation, de-
noted by (Xn+1, Yn+1). Using the assumption A(n) we can derive a partially
specified predictive probability distribution for Xn+1, given the observations
x1, . . . , xn, and similarly a partially specified predictive probability distribu-
tion for Yn+1, given the observations y1, . . . , yn. These are as follows:

P (Xn+1 ∈ (xi−1, xi)) =
1

n+ 1
and P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1

for i, j = 1, 2, . . . , n+1, where x0 = −∞, xn+1 =∞, y0 = −∞ and yn+1 =∞
are introduced for simplicity of notation. If we are only interested in infer-
ence on events involving either Xn+1 or Yn+1, then these partially specified
predictive probabilities can be used to derive optimal bounds for probabilities
of such events, and these bounds are lower and upper probabilities in theory
of imprecise probability with strong frequentist properties [1, 2]. It should be
emphasized that, in the method presented in this paper where dependence of
Xn+1 and Yn+1 is taken into account through the use of copulas, the marginal
distributions for Xn+1 and Yn+1 remain only partially specified according to
the A(n)-based equal probabilities for all intervals created by the respective
data, as given above.

To link this first step to the second step, where the dependence structure
in the observed data is taken into account in order to provide a partially
specified predictive distribution for the bivariate (Xn+1, Yn+1), we introduce
a natural transformation of these two random quantities individually. Let
X̃n+1 and Ỹn+1 denote transformed versions of the random quantities Xn+1

and Yn+1, respectively, following from the natural transformations related to
the marginal A(n) assumptions,(

X̃n+1 ∈
(
i− 1

n+ 1
,

i

n+ 1

)
, Ỹn+1 ∈

(
j − 1

n+ 1
,

j

n+ 1

))
⇐⇒

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj))

for i, j = 1, 2, . . . , n + 1. This is a transformation from the real plane R2

into [0, 1]2 where, based on n bivariate data, [0, 1]2 is divided into (n + 1)2
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equal-sized squares. The A(n) assumptions for the marginals lead to

P (X̃n+1 ∈
(
i− 1

n+ 1
,

i

n+ 1

)
) = P (Xn+1 ∈ (xi−1, xi)) =

1

n+ 1

P (Ỹn+1 ∈
(
j − 1

n+ 1
,

j

n+ 1

)
) = P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1

Note that, following these transformations of the marginals, we have dis-
cretized uniform marginal distributions on [0, 1], which therefore fully cor-
respond to copulas, as any copula will provide exactly the same discretized
uniform marginal distributions. Hence, this basic transformation shows that
the NPI approach for the marginals can be easily combined with any copula
model to reflect the dependence structure, leading naturally to step 2 of our
method.

The second step of the proposed method deals with the information, in
the observed data, with regard to dependence of the two random quantities
Xn+1 and Yn+1. A bivariate parametric copula is assumed, with parameter θ.
Using the data, the parameter can be estimated by any statistical method,
e.g. maximum likelihood or a convenient (for computation) variation to it,
resulting in a point estimate denoted by θ̂. In order to correspond to the
transformation method for the marginals, and to avoid having to consider the
marginals whilst estimating the copula parameter, to estimate θ we use also
transformed data, where each observed pair (xi, yi), i = 1, . . . , n, is replaced
by (rxi /(n + 1), ryi /(n + 1)), with rxi the rank of the observation xi among
the n x-observations (where the smallest value has rank 1), and similarly ryi
the rank of yi among the n y-observations. It should be noticed that, as
this estimation process does not involve any estimation of the marginals, it
can be performed in a computationally efficient manner, as it is often the
simultaneous estimation of the copula and related marginals that may cause
computational difficulties.

NPI on the marginals can now be combined with the estimated copula
by defining the following probability for the event that the transformed pair
(X̃n+1, Ỹn+1) belongs to a specific square from the (n+1)2 squares into which
the space [0, 1]2 has been partitioned,

hij(θ̂) = PC(X̃n+1 ∈
(
i− 1

n+ 1
,

i

n+ 1

)
, Ỹn+1 ∈

(
j − 1

n+ 1
,

j

n+ 1

)
|θ̂) (1)

for i, j = 1, 2, . . . , n+1, with PC(·|θ̂) representing the copula-based probabil-
ity with estimated parameter value θ̂. The fact that all copulas have uniform
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marginal distributions leads to

n+1∑
j=1

hij(θ̂) =
n+1∑
i=1

hij(θ̂) =
1

n+ 1

for all i, j = 1, . . . , n+1, which indeed corresponds to the use of the standard
NPI approach for the marginals.

These (n + 1)2 values hij(θ̂), which sum up to 1, provide the complete
discretized probability distribution for the transformed future observation
(X̃n+1, (Ỹn+1), which can be used for statistical inference on the actual fu-
ture observation (Xn+1, Yn+1) or an event of interest involving this bivariate
random quantity, as explained in the next section. Note that, although a
completely specified copula is used initially, for our inferences we only use
the discretized version on the (n+ 1)2 equal-sized squares with probabilities
hij(θ̂). In this discretized setting, hij(θ̂) = 1

(n+1)2
for all i, j = 1, . . . , n + 1

would indicate complete independence of X̃n+1 and Ỹn+1, and hence of Xn+1

and Yn+1. Furthermore, hij(θ̂) = 1
(n+1)

for all j = i = 1, . . . , n + 1, so

hij(θ̂) = 0 for all other i, j, would reflect correlation 1 between these ran-
dom quantities (both for the transformed and the actual future observations),
while correlation −1 would be reflected by hij(θ̂) = 1

(n+1)
for all j = (n+2)−i

with i = 1, . . . , n+ 1, and hij(θ̂) = 0 for all other i, j.

3. Semi-parametric predictive inference

In this section, the semi-parametric predictive method presented in Sec-
tion 2 is used for inference about an event which involves the next bivariate
observation (Xn+1, Yn+1). Let E(Xn+1, Yn+1) denote the event of interest and
let P (E(Xn+1, Yn+1)) and P (E(Xn+1, Yn+1)) be the lower and upper proba-
bilities, based on our semi-parametric method, for this event to be true. As
explained in the previous section, the observed data (xi, yi), i = 1, . . . , n, di-
vide R2 into (n+1)2 blocks Bij = (xi−1, xi)× (yj−1, yj), for i, j = 1, . . . , n+1
(with, as before, x0 = −∞, xn+1 = ∞, y0 = −∞, yn+1 = ∞ defined for ease
of notation). We further define

E(x, y) =

{
1 if E(Xn+1, Yn+1) is true for Xn+1 = x and Yn+1 = y
0 else

The fact that we work with a discretized probability distribution leads
to imprecise probabilities as follows [2]. We define Eij = max

(x,y)∈Bij
E(x, y), so
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Eij = 1 if there is at least one (x, y) ∈ Bij for which E(x, y) = 1, else Eij = 0.
Furthermore, we define Eij = min

(x,y)∈Bij
E(x, y), so Eij = 1 if E(x, y) = 1 for

all (x, y) ∈ Bij, else Eij = 0. Then the semi-parametric method presented in
the previous section leads to the following lower and upper probabilities for
the event E(Xn+1, Yn+1),

P (E(Xn+1, Yn+1)) =
∑
i,j

Eij hij(θ̂) (2)

P (E(Xn+1, Yn+1)) =
∑
i,j

Eij hij(θ̂) (3)

Many events of interest can be considered with the new inference method
presented in this paper. Suppose, for example, that we are interested in
the sum of the next observations, say Tn+1 = Xn+1 + Yn+1. Then the lower
probability for the event that the sum of the next observations will exceed a
particular value t is

P (Tn+1 > t) =
∑

(i,j)∈Lt

hij(θ̂) (4)

with Lt = {(i, j) : xi−1 + yj−1 > t}, and the corresponding upper probability
is

P (Tn+1 > t) =
∑

(i,j)∈Ut

hij(θ̂) (5)

with Ut = {(i, j) : xi + yj > t}. Equations (4) and (5) also represent the
lower and upper survival functions for the future observation Tn+1, based
on our newly presented semi-parametric method, we denote these by S(t) =
P (Tn+1 > t) and S(t) = P (Tn+1 > t) and will use them in our analysis of the
predictive performance of our method in the next section.

Before analysing the performance of this new semi-parametric method,
it is useful to explain the idea behind it. NPI has been developed over the
last two decades, with many applications in statistics, reliability, risk and
operations research (see www.npi-statistics.com). It has excellent frequen-
tist properties, but relies on the natural ordering of the observed data or
of a reasonable underlying latent variable representation with a natural or-
dering (e.g. used for Bernoulli and categorical observations [7]). Moving to
multivariate observations, however, causes problems due to the absence of a
natural ordering. At the same time, copulas have proved to be powerful tools
to model dependence, and as shown in this paper they can be linked in an
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attractive manner to NPI on the marginals, via discretization after a straight-
forward transformation. The resulting semi-parametric method is, however,
a heuristic approach, in that it lacks the theoretical properties which make
NPI for real-valued (one-dimensional) observations an attractive frequentist
statistics method.

In the final section of the paper, we will discuss some further research
topics, but the main idea of the larger research project to which this paper
presents the first step is as follows. To take dependence into account, and
ideally based only on the observed data, would require a substantial amount
of data in the bivariate setting discussed in this paper (and this is of course far
worse in higher dimensional scenarios). If one has much data available, it may
be possible to use nonparametric copula methods in combination with NPI for
the marginals, in order to arrive at good predictive inference. This is the topic
of ongoing research, where the fact that prediction differs substantially from
estimation provides many questions that require attention, for example on
criteria for selecting good bandwidths to use for kernel-based nonparametric
copulas. For smaller data sets, however, it is unlikely that the data reveal
much information about the dependence between the random quantitiesXn+1

and Yn+1. The method proposed in this paper aims at being robust in light
of such absence of detailed information, by using the imprecision in NPI on
the marginals, together with the discretization of the estimated copula, with
the hope that for many scenarios of interest the resulting heuristic method
will have a good performance. Of course, if even small or medium sized
data sets already reveal a particular (likely) dependence structure, then this
should be taken into account in the selection of the copula in our method.
But if the data do not strongly indicate a specific dependence structure, then
we propose to use a family of parametric copulas which is quite flexible and
convenient for computation. In addition, the method used for estimation of
the parameter will normally not be that relevant due to the robustness that
is implicit in our approach, although of course there are situations where
care will be needed (e.g. if the likelihood function has multiple modes one
may wish to find an alternative to maximum likelihood estimation; these are
well-known general considerations that do not require detailed attention in
this paper but which provide interesting topics for future research).

Interestingly, one could consider the way in which imprecision is used in
this paper as being somewhat different to the usual statistical approaches
based on imprecise probabilities [2]. Traditionally, it is advocated to add
imprecision to parts of a problem where one has less information, indeed to
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reflect the absence of detailed information. Yet in our presented method, the
imprecision is mainly a result from using NPI for the marginals, while the
information shortage is most likely to be about the dependence structure. Of
course, the discretisation of the copula also provides some imprecision, but
the main idea is that the imprecise predictive method used for the marginals,
which is straightforward, provides robustness with regard to taking the de-
pendence structure into account, which is normally the harder part of such
inferences. Furthermore, it turns out that, with NPI used for the marginals,
the resulting second step involving the copula estimation can be kept conve-
niently simple. This is an important advantage of this method, in particular
if one would consider implementing it in (more or less) automated inference
situations which require fast computation. In the following section we show
how the predictive performance of this method can be analysed, focussing on
a case where interest is in the sum of Xn+1 and Yn+1. This will also illustrate
aspects of the imprecision in relation to the number of data observations and
the dependence structure in the data.

4. Predictive performance

To investigate the predictive performance of the semi-parametric method
presented in this paper, we conduct a simulation study. In each run of the
simulation N = 10, 000 bivariate samples are generated, each of size n + 1,
where we have used n = 10, 50, 100. For each simulated sample, the first
n pairs are used as the data for the proposed semi-parametric predictive
model, with the additional simulated pair to be used to test the predictive
performance of this model.

In this analysis, we focus on the sum of of the next observations, so Tn+1 =
Xn+1 + Yn+1, as presented in Section 3. Let (xji , y

j
i ) be the jth simulated

sample, consisting of n pairs, so with subscript i = 1, 2, . . . , n indicating
the pair within one sample, and superscript j = 1, 2, . . . , N indicating the
specific simulated sample. Let (xjf , y

j
f ) be the additional simulated pair for

sample j, and let the corresponding sum be denoted by tjf = xjf + yjf , for
j = 1, 2, . . . , N . For q ∈ (0, 1), the inverse values of the lower and upper
survival functions of Tn+1 in (4) and (5), can be defined as

tq = S−1(q) = inf
t∈R
{S(t) 6 q}

tq = S
−1

(q) = inf
t∈R
{S(t) 6 q}
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Figure 1: Illustration lower and upper survival functions

where tq ≤ tq obviously holds as is illustrated in Figure 1.
It is reasonable to claim that the proposed semi-parametric predictive

method performs well if the two following inequalities hold,

p1 =
1

N

N∑
j=1

1(tjf > t
j
q) ≤ q

p2 =
1

N

N∑
j=1

1(tjf > tjq) ≥ q

We will investigate the performance in this manner by considering q =
0.25, 0.50, 0.75. One could of course investigate different quantiles but these
values will provide a reasonably general picture of the performance of the
method, together with some particular aspects which are important to il-
lustrate. If one was specifically interested in, e.g., the performance of this
method for extreme values, one could consider the corresponding quantile(s)
to evaluate the performance of our method, detailed investigation of the per-
formance for a wider range of inferences is left as a topic for future research.
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To perform the simulation, we consider different values of Kendall’s τ .
For each value of τ we simulate from an assumed parametric copula with
the parameter set equal to the value which corresponds to τ . We consider
two main scenarios: first that, in our semi-parametric method, we actually
assume a copula from the same parametric family as used for simulation, and
secondly that the assumed parametric copula belongs to a different family.
For the first case, we expect the method to perform well. Of course, this
scenario is highly unlikely in practice, but it is important to study the per-
formance of the method in this case, and the simulations will also reveal some
interesting facts about the level of imprecision in the predictive inferences.
The second scenario is of more importance, as it represents a more likely
practical situation, namely where a parametric copula is assumed but this
is actually not fully in line with the data generating mechanism. This can
be considered as misspecification, and it is in such scenarios that we hope
our method will provide sufficient robustness to still provide relatively good
quality predictive inference.

Given the simulated data in a run, we estimate the parameter of the
assumed parametric copula using the pseudo maximum likelihood method
which is included in the R package VineCopula [30]. As mentioned before,
alternative estimation methods can be used; of course these may lead to
slightly different results, but the overall performance of the method is unlikely
to be affected much by minor differences in the estimation method. With
the estimate θ̂ for the copula parameter, we obtain the probabilities hij(θ̂)
as given in Equation (1), and these form the basis for any possible inferences
of interest.

We have run N = 10, 000 simulations with sample sizes n = 10, 50, 100,
and with q = 0.25, 0.50, 0.75 and τ = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75.
We restricted attention to the four parametric copulas discussed in Section 1,
noting that the Frank copula does not allow τ = 0. Due to space limitations
we only report a small subset of the simulations we ran; for each reported
case we report the results of the first simulation we performed, later ones
gave very similar results which led to identical conclusions.

First, we applied our semi-parametric method with the assumed copula
actually belonging to the same parametric family used for the data genera-
tion. Tables 1 and 2 present the results for the Normal and Frank copula,
respectively (for the Clayton and Gumbel copulas results were very similar
and led to the same conclusions). These tables report the values p1 and p2

for the different values of τ and n, as described above, for q = 0.25, 0.50, 0.75.
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For good performance of our method, we require p1 ≤ q ≤ p2. Furthermore,
these tables also present a value θ̂, this is the average of the 10,000 estimates
of the parameter, so for these two tables this value is expected to be close to
the value for θ which corresponds directly to the τ used, and which is given
in the second column of each table. However, we will not focus on these
estimated values as it is really the predictive performance that is important
to consider, due to the predictive nature of our approach. It is clear though
that the parameter estimates tend to be closer to the real value for larger
values of n, which is of course fully as expected. It may be of interest to
implement other estimation methods for the copula parameter, which may
provide a slightly better performance, detailed study of this is left as a topic
for future research.

All cases in Tables 1 and 2 have q ∈ [p1, p2], which shows an overall good
performance of our semi-parametric predictive method, which is fully in line
with expectations due to the use of the same parametric copula family in our
method as the one that was actually used to simulate the data.

These tables illustrate two important aspects of the imprecision in our
method. First, for corresponding cases with increasing n, the imprecision,
reflected through the difference p2 − p1, decreases. This is logical from the
perspective that more data allow more precise inferences, which is common in
statistical methods using imprecise probabilities [2]. Indeed, if one increases
the value of n further, imprecision will decrease to 0 in the limit, where,
informally, limit arguments are based on NPI for the marginals converging
to the empirical marginal distributions, which in turn will converge to the
underlying distributions, and with the assumed copula actually belonging to
the same family as the one used to generate the data, this also will ensure
an increasingly good performance of the method for increasing n.

A perhaps somewhat less expected feature of our method is seen by com-
paring corresponding cases with the same absolute value of τ , but negative
τ compared to positive τ . For such cases, the imprecision p2 − p1 is always
greater with the negative correlation than with the positive correlation, and
this effect is stronger the larger the absolute value of the correlation. This
feature occurs due to the fact that we are considering events that the sum
Tn+1 = Xn+1 + Yn+1 exceeds values t, and can be explained by considering
the probabilities hij(θ̂) which are the key ingredients of our method for infer-

ence. In case of positive correlation, the hij(θ̂) tend to be largest for values
of i and j close to each other, while for negative correlation this is the case
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for values of i and j with sum near to n + 2, and this effect is stronger the
larger the absolute value of the correlation. Calculating the lower and upper
probabilities (4) and (5) tends to include several more hij(θ̂) values in the

latter than in the former, and for events Tn+1 > t these extra hij(θ̂) included
in the upper probability tend to have the sum of their subscripts i and j
about constant. Hence, for positive correlation these extra hij(θ̂) tend to
include a few larger values for most values of t. For negative correlation the
effect is quite different, as then these extra hij(θ̂) tend to include relatively
small values for small and for large values of t, in relation to the observed
data, but when t is closer to the center of the empirical distribution of the
values xi + yi, corresponding to the n data pairs (xi, yi), then many of the
extra hij(θ̂) are quite large, resulting in large imprecision. This effect can
also be seen from plots of the lower and upper survival functions for Tn+1,
where positive correlation leads to imprecision being fairly similar over the
whole range, while for negative correlation there is little imprecision in the
tails but much imprecision near the center of the empirical distribution of the
xi + yi. As these lower and upper survival functions do not illustrate further
relevant aspects for the discussion, we have not included a figure here, but we
do include such a figure in an example in Section 5, where we will emphasize
this issue again.

As mentioned before, the main idea of the new method presented in this
paper is to provide a quite straightforward method for prediction of a bivari-
ate random quantity, where imprecision in the marginals provides robustness
with regard to the assumed copula. This is attractive in practice, because
one often has less knowledge about the dependence structure than about
the marginals, in particular if one has a relatively small data set available.
The practical usefulness of the method is therefore dependent on its ability
to provide reasonable quality predictive inference in case one does not as-
sume to know exactly the parametric family of copulas which generated the
data. To study the performance of our semi-parametric predictive inference
method, we perform simulations as before, but now we generate the data
from one of the four mentioned copula families, while we assume a different
parametric copula for the second step of our method. The simulations are
further performed in the same manner as those above, with attention again
on prediction of Tn+1 = Xn+1 + Yn+1.

We report again first simulation results for just a few scenarios, the other
combinations of real and assumed copulas, out of the four parametric cop-
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n = 10 n = 50 n = 100

τ θn q θ̂n p1 p2 θ̂n p1 p2 θ̂n p1 p2

-0.75 -0.9239 0.25 -0.9181 0.0854 0.5099 -0.9212 0.2002 0.3015 -0.9228 0.2202 0.2761
0.50 0.2477 0.7533 0.4187 0.5871 0.4566 0.5544
0.75 0.4911 0.9153 0.7045 0.8026 0.7311 0.7810

-0.50 -0.7071 0.25 -0.7462 0.1534 0.4002 -0.7235 0.2355 0.2919 -0.7169 0.2465 0.2691
0.50 0.3342 0.6466 0.4641 0.5529 0.4848 0.5292
0.75 0.5798 0.8355 0.7252 0.7797 0.7344 0.7604

-0.25 -0.3827 0.25 -0.4473 0.1942 0.3672 -0.4128 0.2406 0.2767 -0.3827 0.2477 0.2660
0.50 0.3943 0.6121 0.4728 0.5296 0.4863 0.5173
0.75 0.6386 0.8084 0.7303 0.7639 0.7370 0.7541

0.00 0 0.25 -0.0010 0.1877 0.3139 -0.0008 0.2362 0.2635 0.0000 0.2431 0.2566
0.50 0.4102 0.5723 0.4711 0.5105 0.4933 0.5141
0.75 0.6665 0.7971 0.7323 0.7626 0.7466 0.7598

0.25 0.3827 0.25 0.4478 0.1847 0.2956 0.4113 0.2279 0.2505 0.4004 0.2454 0.2556
0.50 0.4286 0.5538 0.4766 0.5074 0.4908 0.5026
0.75 0.6968 0.8057 0.7369 0.7580 0.7437 0.7540

0.50 0.7071 0.25 0.7469 0.2011 0.2931 0.7224 0.2394 0.2595 0.7164 0.2440 0.2525
0.50 0.4500 0.5554 0.4788 0.5033 0.4898 0.5026
0.75 0.7021 0.7978 0.7326 0.7537 0.7489 0.7602

0.75 0.9239 0.25 0.9174 0.2009 0.2865 0.9211 0.2430 0.2629 0.9224 0.2417 0.2524
0.50 0.4465 0.5441 0.4980 0.5168 0.4933 0.5039
0.75 0.6986 0.7961 0.7411 0.7607 0.7430 0.7527

Table 1: Predictive performance, Normal copula

n = 10 n = 50 n = 100

τ θf q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

-0.75 -14.1385 0.25 -15.5793 0.0675 0.4846 -13.9428 0.1927 0.2960 -14.0058 0.2084 0.2677
0.50 0.2364 0.7453 0.4232 0.5663 0.4467 0.5270
0.75 0.4924 0.9249 0.6934 0.8006 0.7204 0.7784

-0.50 -5.7363 0.25 -6.9835 0.1578 0.4040 -5.8859 0.2263 0.2817 -5.7992 0.2320 0.2624
0.50 0.3494 0.6661 0.4635 0.5480 0.4725 0.5144
0.75 0.6092 0.8569 0.7282 0.7838 0.7259 0.7552

-0.25 -2.3719 0.25 -3.0634 0.1769 0.3533 -2.4751 0.2340 0.2727 -2.4138 0.2377 0.2572
0.50 0.3941 0.6099 0.4797 0.5323 0.4787 0.5088
0.75 0.6482 0.8207 0.7349 0.7688 0.7375 0.7580

0.25 2.3719 0.25 3.0129 0.2045 0.3026 2.4784 0.2364 0.2604 2.4088 0.2452 0.2549
0.50 0.4376 0.5583 0.4854 0.5135 0.4889 0.5048
0.75 0.6980 0.8052 0.7345 0.7583 0.7447 0.7580

0.50 5.7363 0.25 6.9335 0.1962 0.2989 5.8935 0.2382 0.2578 5.7972 0.2401 0.2526
0.50 0.4498 0.5517 0.4843 0.5075 0.4922 0.5025
0.75 0.7065 0.8052 0.7370 0.7568 0.7432 0.7554

0.75 14.1385 0.25 15.6739 0.1960 0.2898 13.8912 0.2429 0.2643 14.0050 0.2443 0.2551
0.50 0.4541 0.5487 0.4927 0.5127 0.4943 0.5053
0.75 0.7135 0.7998 0.7398 0.7607 0.7481 0.7557

Table 2: Predictive performance, Frank copula
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ula families discussed before, provided very similar results, as did repeated
simulations of the same scenarios. Table 3 presents the results with data
generated from the Frank copula whilst assuming the Normal copula in our
method. While we mostly focus on the predictive performance, it is impor-
tant to briefly consider the parameter estimate θ̂n. Of course, this is not an
estimate of the parameter θf as used in the Frank copula for generating the
data, the values θn corresponding to the respective values for τ are given in
Table 1. These estimated values for θn are now a bit further from the values
given in Table 1, which results from the fact that the data are not generated
from the Normal copula but from the Frank copula.

It is more important to consider the predictive performance of our method.
The values of p1 and p2 in Table 3 are mostly pretty similar to those in Ta-
bles 1 and 2, although there are now a few cases for which q is not contained
in the interval [p1, p2]. These are high-lighted by bold font numbers in the
table. For n = 10 there are no such cases, indeed the imprecision in the
method provides sufficient robustness to still have q ∈ [p1, p2]. For n = 50
this is also mostly the case, although there is one case here, for τ = 0.5 and
q = 0.75, where p2 < q, albeit only just. For n = 100 there are substantially
more cases where the interval [p1, p2] does not contain the corresponding q,
although in these cases q tends to be only just outside the interval. This
is in line with expectation, because for larger n the method has only small
imprecision on the marginals, hence these provide less robustness against the
misspecification of the dependence structure, so assuming the wrong para-
metric copula starts to have a stronger effect. Table 4 presents the results
of a similar simulation with the data generated from the Normal copula and
the Frank copula assumed in our method. The results for this case are very
similar to those just described.

For larger numbers of data, such as n = 100 or more, one could add
methods for model selection to our method, to try to find a parametric copula
that fits well with the data. While this will be of interest, we intend to focus
future research in a different direction, namely by applying nonparametric
copula methods combined with NPI for the marginals for larger data sets, in
order to arrive at predictive inference which is fully flexible to adapt to the
data.

Tables 5 and 6 present the results of similar simulation studies with data
generated from the Clayton and Gumbel copulas, respectively. For both these
cases the Frank copula was assumed for our method; in further simulations
with the Normal copula assumed instead the results were very similar. For
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n = 10 n = 50 n = 100

τ θf q θ̂n p1 p2 θ̂n p1 p2 θ̂n p1 p2

-0.75 -14.1385 0.25 -0.9137 0.0737 0.4991 -0.9020 0.1757 0.2774 -0.8967 0.1967 0.2506
0.50 0.2391 0.7566 0.4242 0.5738 0.4639 0.5449
0.75 0.4932 0.9228 0.7203 0.8272 0.7514 0.8018

-0.50 -5.7363 0.25 -0.7424 0.1580 0.4120 -0.6964 0.2203 0.2726 -0.6840 0.2237 0.2525
0.50 0.3447 0.6599 0.4603 0.5429 0.4794 0.5221
0.75 0.5899 0.8458 0.7326 0.7851 0.7517 0.7803

-0.25 -2.3719 0.25 -0.4323 0.1847 0.3525 -0.3900 0.2383 0.2756 -0.3756 0.2272 0.2450
0.50 0.3845 0.6100 0.4798 0.5365 0.4853 0.5145
0.75 0.6380 0.8085 0.7424 0.7800 0.7394 0.7574

0.25 2.3719 0.25 0.4307 0.1906 0.3024 0.3901 0.2403 0.2644 0.3762 0.2508 0.2633
0.50 0.4340 0.5569 0.4886 0.5158 0.4918 0.5066
0.75 0.6939 0.8047 0.7355 0.7594 0.7367 0.7489

0.50 5.7363 0.25 0.7432 0.2035 0.2987 0.6966 0.2416 0.2643 0.6837 0.2585 0.2703
0.50 0.4452 0.5407 0.4815 0.5010 0.4950 0.5052
0.75 0.6949 0.7965 0.7269 0.7490 0.7346 0.7442

0.75 14.1385 0.25 0.9142 0.2048 0.2974 0.9019 0.2478 0.2668 0.8969 0.2602 0.2725
0.50 0.4511 0.5450 0.4938 0.5141 0.5034 0.5119
0.75 0.7016 0.7936 0.7320 0.7501 0.7368 0.7458

Table 3: Simulations from Frank copula; Normal copula assumed for inference

n = 10 the robustness is again sufficient to always get q ∈ [p1, p2], indeed
we have not encountered any simulation, for any combination of these four
copulas, where this was not the case. For n = 50 and n = 100 the results
are now slightly worse than before, but where q is outside the interval [p1, p2]
it is always close to it. This reflects that the Clayton and Gumbel copulas
differ more from the Frank copula than the Normal copula does. We also
included the case n = 30 here, for which the results were all fine.

This simulation study has illustrated our new semi-parametric method
and revealed some interesting aspects, as discussed above. The main conclu-
sion we draw from it, is that for small values of n the imprecision provides
sufficient robustness for the predictive inferences to have good frequentist
properties. This depends on the copulas used, the random quantity con-
sidered, and also the percentiles considered. Differences would show more
strongly if one considers quite extreme percentiles. If data were generated
with a very different dependence structure than can be modelled through
the assumed parametric copula, then the method would also perform worse.
However, we would hope that in such cases, either there is background knowl-
edge about the dependence structure, which can be used to select a more
suitable copula, or that the data already show a certain pattern to make
us aware of the unlikely success of the proposed method with a basic cop-
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n = 10 n = 50 n = 100

τ θn q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

-0.75 -0.9239 0.25 -15.7767 0.0739 0.4897 -13.6590 0.1907 0.2933 -13.6472 0.2201 0.2690
0.50 0.2331 0.7605 0.4177 0.5873 0.4552 0.5457
0.75 0.5088 0.9203 0.7176 0.8110 0.7330 0.7856

-0.50 -0.7071 0.25 -6.9087 0.1566 0.3969 -5.8457 0.2382 0.2894 -5.7489 0.2332 0.2599
0.50 0.3451 0.6580 0.4607 0.5449 0.4673 0.5162
0.75 0.6087 0.8464 0.7200 0.7732 0.7270 0.7534

-0.25 -0.3827 0.25 -3.0572 0.1902 0.3622 -2.4593 0.2393 0.2746 -2.4218 0.2530 0.2715
0.50 0.3971 0.6135 0.4677 0.5198 0.4951 0.5256
0.75 0.6523 0.8201 0.7235 0.7620 0.7484 0.7662

0 0 0.25 -0.0383 0.1924 0.3195 -0.0032 0.2399 0.2662 -0.0031 0.2456 0.2595
0.50 0.4199 0.5844 0.4803 0.5200 0.4933 0.5136
0.75 0.6773 0.8054 0.7422 0.7704 0.7476 0.7607

0.25 0.3827 0.25 2.9621 0.2011 0.3089 2.4619 0.2297 0.2516 2.4183 0.2404 0.2523
0.50 0.4490 0.5743 0.4848 0.5113 0.4967 0.5109
0.75 0.7050 0.8118 0.7404 0.7640 0.7504 0.7612

0.50 0.7071 0.25 7.0106 0.1993 0.2933 5.8423 0.2298 0.2522 5.7466 0.2299 0.2396
0.50 0.4478 0.5535 0.4922 0.5132 0.4868 0.4990
0.75 0.7080 0.8095 0.7514 0.7716 0.7490 0.7596

0.75 0.9239 0.25 15.7494 0.1991 0.2951 13.6822 0.2430 0.2615 13.6889 0.2357 0.2460
0.50 0.4640 0.5504 0.4898 0.5101 0.4951 0.5070
0.75 0.7150 0.8034 0.7493 0.7689 0.7538 0.7634

Table 4: Simulations from Normal copula; Frank copula assumed for inference

n = 10 n = 30 n = 50 n = 100

τ θc q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

0.25 0.6667 0.25 3.0639 0.1809 0.2959 2.5553 0.2214 0.2637 2.5017 0.2313 0.2567 2.4415 0.2375 0.2493
0.50 0.4424 0.5745 0.4970 0.5457 0.5058 0.5338 0.5181 0.5329
0.75 0.7001 0.7985 0.7401 0.7762 0.7498 0.7733 0.7545 0.7645

0.50 2.0000 0.25 7.1205 0.1866 0.2968 6.0366 0.2177 0.2572 5.8780 0.2254 0.2505 5.7896 0.2284 0.2416
0.50 0.4630 0.5732 0.4958 0.5354 0.5081 0.5321 0.5144 0.5259
0.75 0.7095 0.7975 0.7305 0.7612 0.7433 0.7618 0.7534 0.7636

0.75 6.0000 0.25 16.3807 0.1904 0.2908 13.9919 0.2298 0.2642 13.8441 0.2355 0.2580 13.7415 0.2458 0.2575
0.50 0.4670 0.5626 0.4915 0.5248 0.4962 0.5149 0.5031 0.5134
0.75 0.7107 0.7953 0.7387 0.7686 0.7412 0.7583 0.7531 0.7619

Table 5: Simulations from Clayton copula; Frank copula assumed for inference
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n = 10 n = 30 n = 50 n = 100

τ θg q θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2 θ̂f p1 p2

0 1 0.25 0.0116 0.1937 0.3130 -0.0031 0.2283 0.2730 -0.0019 0.2369 0.2659 0.0079 0.2370 0.2501
0.50 0.4143 0.5813 0.4652 0.5247 0.4824 0.5195 0.4885 0.5076
0.75 0.6793 0.8088 0.7253 0.7699 0.7367 0.7656 0.7349 0.7484

0.25 1.3333 0.25 3.0423 0.1974 0.2958 2.5644 0.2165 0.2507 2.5089 0.2225 0.2419 2.4531 0.2372 0.2478
0.50 0.4270 0.5586 0.4610 0.5092 0.4703 0.4993 0.4817 0.4957
0.75 0.7030 0.8074 0.7336 0.7770 0.7441 0.7698 0.7516 0.7645

0.50 2.0000 0.25 7.0647 0.1976 0.2858 6.0249 0.2274 0.2572 5.8939 0.2245 0.2444 5.8077 0.2308 0.2410
0.50 0.4275 0.5379 0.4733 0.5141 0.4734 0.4941 0.4689 0.4814
0.75 0.7085 0.8177 0.7477 0.7835 0.7446 0.7686 0.7525 0.7626

0.75 4.0000 0.25 16.2068 0.2035 0.2946 13.8853 0.2286 0.2580 13.8537 0.2290 0.2460 13.7948 0.2502 0.2594
0.50 0.4480 0.5417 0.4732 0.5070 0.4860 0.5062 0.5023 0.5118
0.75 0.7119 0.8092 0.7348 0.7688 0.7460 0.7678 0.7630 0.7738

Table 6: Simulations from Gumbel copula; Frank copula assumed for inference

ula. Overall, this work fits in a larger project where the idea is that, for
larger sample sizes, the parametric copula in our method can be replaced by
a nonparametric copula. We expect that this would be of benefit for larger
sample sizes. Hence, the idea is that a combination of the use of a convenient
parametric copula for smaller sample sizes, and a nonparametric copula for
larger sample sizes, provides a suitable predictive inference method for bivari-
ate data. This raises substantial questions, which are considered in ongoing
research.

5. Examples

In this section, two examples are presented to illustrate application of
the proposed semi-parametric predictive method. The data sets are quite
small, for which the study in Section 4 showed that our method provides
good robustness with regard to choice of copula due to quite substantial
imprecision resulting mostly from the use of NPI for the marginals. We
only present results using one family of parametric copulas in each example.
When we applied the other parametric copulas used in this paper we got
results that were very close to those reported here. More details of these
further investigations, and also of additional simulation studies, are reported
in the PhD thesis of the third-named author [26].

Example 5.1. Consider the data set in Table 7 on casuality insurance [23, p.
403], which record both the loss and the expenses that are directly related to
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Loss ALAE Loss ALAE
1,500 301 10,000 1,174
2,000 3,043 11,750 2,530
2,500 415 12,500 165
2,501 4,940 14,000 175
4,500 395 15,000 2,072
5,000 25 17,500 6,328
7,000 50 19,833 212
7,001 10,593 30,000 2,172
7,500 51 33,033 7,845
9,000 406 44,887 2,178

Table 7: Losses and corresponding ALAE values, Example 5.1

the payment of the loss (the ‘allocated loss adjustment expenses’, ALAE) for
an insurance company on twenty claims. The loss and the ALAE are usually
positively correlated [23], there is some suggestion that this is also the case
in these data as can be seen from Figure 2. The original data consist of 24
bivariate data observations, to illustrate our approach we have removed four
‘outliers’ and we have adjusted the data to avoid tied observations (namely
2501, 7001, 51 are used instead of 2500, 7000, 50). There is no strong need to
exclude outlying data from the analysis when our semi-parametric method
is used, but the effect of data which influence the copula estimation very
strongly requires further study, for example into the use of copulas with
multiple parameters that can separate different dependence relations over the
ranges of the data considered. This is left as an important topic for future
research, in particular to compare when it is better to use more complicated
parametric copulas and when it is better to use nonparametric copulas.

In line with the earlier presentation in this paper, Loss will be the X
variable and ALEA the Y variable. Suppose that we are interested in
the event that the sum of the next Loss and ALAE will exceed t, that is
Tn+1 = Xn+1 +Yn+1 > t, based on the available data (xi, yi), i = 1, 2, . . . , 20.
We apply the new semi-parametric method presented in Section 3, where we
assume a Normal copula and again use pseudo maximum likelihood estima-
tion as available in the R package VineCopula [30]. The probabilities hij(θ̂)
in our method, resulting from the parameter estimation with the Normal cop-
ula, are presented in Figure 3, which clearly shows the positive correlation
between X̃n+1 and Ỹn+1, and hence between Xn+1 and Yn+1, in this example.

The lower and upper probabilities for the event Tn+1 > t are presented in
Figure 4 and, for selected values of t, in Table 8. These results can be used
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Figure 2: Losses and corresponding ALAE values, Example 5.1

Figure 3: Probabilities hij(θ̂), Example 5.1
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Figure 4: Lower and upper probabilities for Tn+1 > t, Example 5.1

in a variety of ways, depending on the actual question of interest. Figure 4
shows that the imprecision, reflected through the difference between corre-
sponding upper and lower probabilities, is pretty similar through the main
range of empirical values for xi + yi. This is due to the effect discussed for
the simulations in Section 4, namely the positive correlation between Loss
and ALEA combined with interest in the sum of these quantities. If the data
would have indicated a negative correlation, then imprecision would vary
more substantially when interested in the sum of the two quantities; simi-
larly, with positive correlation in the data, imprecision would also vary more
substantially if one is interested in the difference of the two random quanti-
ties. Such effects on our method can be studied in detail by considering the
probabilities hij(θ̂).

t in 1000s P (Tn+1 > t) P (Tn+1 > t) t in 1000s P (Tn+1 > t) P (Tn+1 > t)
0 0.9936 1.0000 45 0.0446 0.1290
5 0.7619 0.8145 50 0.0150 0.0994
10 0.5452 0.6071 55 0.0064 0.0582
15 0.3571 0.4257 60 0.0000 0.0386
20 0.2264 0.2990 65 0.0000 0.0245
25 0.1617 0.2366 70 0.0000 0.0185
30 0.1455 0.2226 75 0.0000 0.0185
35 0.0869 0.1664 80 0.0000 0.0150
40 0.0600 0.1418 85 0.0000 0.0110

Table 8: Lower and upper probabilities for Tn+1 > t, Example 5.1
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Height (cm) Weight (kg) BMI Height (cm) Weight (kg) BMI
135 26 14.27 133 31 17.53
146 33 15.48 149 34 15.31
153 55 23.50 141 32 16.10
154 50 21.08 164 47 17.47
139 32 16.56 146 37 17.36
131 25 14.57 149 46 20.72
149 44 19.82 147 36 16.66
137 31 16.52 152 47 20.34
143 36 17.60 140 33 16.84
146 35 16.42 143 42 20.54
141 28 14.08 148 32 14.61
136 28 15.14 149 32 14.41
154 36 15.18 141 29 14.59
151 48 21.05 137 34 18.11
155 36 14.98 135 30 16.46

Table 9: The heights (cm), weights (kg) and BMI of 30 eleven-year-old girls, Example 5.2

Example 5.2. Thus far, we have illustrated our method by considering the
sum of the two values in the next bivariate observation, Xn+1 + Yn+1. In
order to illustrate application to scenarios where interest is in a different
function of (Xn+1, Yn+1), consider the data presented in Table 9 and Figure
5 [18]. These present the heights (cm) and weights (kg) of n = 30 eleven-
year-old girls attending Heaton Middle School in Bradford. Suppose that
one is interested in the body-mass index (BMI) of a further girl, where one
can imagine there having been 31 girls with one selected randomly to not
be included in the data set, and whose BMI one would wish to predict after
learning the heights and weights of the other 30 girls. Interest in the BMI may
be in order to investigate whether they have healthy weight, are underweight
or overweight, or even obese, so we derive the lower and upper probabilities
for the thirty-first girl to be in each of these categories, based on our semi-
parametric method. The BMI is calculated using the well-known formula,

BMI =
Weight (kg)

[Height (m)]2

For this illustrative example, we use the classification of BMI values pro-
vided by the Center for Disease Control and Prevention (www.cdc.gov), ac-
cording to which an eleven-year-old girl is considered underweight if her BMI
is less than 14.08, has healthy weight if the BMI is between 14.08 and 19.50,
is overweight if the BMI is between 19.50 and 24.14, and obese if the BMI is
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Figure 5: The heights (cm) and weights (kg) of 30 eleven-year-old girls, Example 5.2

BMI∈ P P
Underweight [6.92,14.08) 0.0303 0.1010
Healthy weight [14.08,19.50) 0.6521 0.8107
Overweight [19.50, 24.14) 0.1368 0.2456
Obese [24.14, 38.40) 0.0013 0.0222

Table 10: NPI lower and upper probabilities, Example 5.2

at least 24.14. The lower and upper probabilities for these events of interest,
calculated using Equations (2) and (3) and using again the Normal copula
with the same estimation method as before, are given in Table 10. To avoid
difficulties due to the functional form of the BMI, we restricted the range of
‘possible’ values for the height and weight quantities by setting finite end-
points for the ranges used in NPI for the marginals. We set these values at
x0 = 125, x31 = 170, y0 = 20 and y31 = 60, which seem quite realistic and
lead to corresponding minimum BMI 6.92 and maximum BMI 38.40, which
are included in the ranges in Table 10. Choosing different values for x0, x31,
y0 and y31 will have some impact on the lower and upper probabilities re-
sulting from our method, but the effect of minor differences to these values
is neglectable.

6. Concluding remarks

This paper presents a new semi-parametric method for predictive infer-
ence about a future bivariate observation, which can be used to consider any
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function of interest involving the two quantities in such an observation. It
combines NPI on the marginals, which is predictive by nature, with the use
of a parametric copula to take dependence into account, where the parame-
ter of the copula is estimated based on available data. This method can be
used with a wide variety of estimation methods because only a single point
estimator is used. A possible generalization of the method is by introduc-
ing some further robustness, or imprecision, in the copula, either by using
a range of parameter values (e.g. related to a confidence interval) or a set
of copulas. Implementing these straightforward ideas would require further
research, as they would lead to imprecise probabilities instead of the precise
probabilities hij(θ̂) which are central to our method.

By combining NPI with an estimated copula, the proposed method does
not fully adopt the strong frequentist properties of NPI, and hence has a
heuristic nature. We have investigated its performance via simulation studies,
more detailed research of its performance in a wider range of applications will
be of benefit. The main thesis of this research, going beyond this paper, is
that the robustness provided by our method, with the use of a quite basic
copula, will often lead to satisfactory inferences for small to medium sized
data sets. For large data sets, it is expected that the method can be applied
with a nonparametric copula, this is the topic of ongoing research.

Throughout this work, we restricted attention to a single future obser-
vation. In practice, one may be interested in multiple future observations,
in NPI the inter-dependence of such multiple future observations is taken
into account [7]. It will be of interest to develop this bivariate method for
multiple future observations. NPI has recently been presented for a num-
ber of inferential problems, including accuracy of diagnostic tests [10, 11],
inferences with right-censored observations [9] and reproducibility of basic
nonparametric tests [8]. For all such applications, it is of interest to develop
predictive methodology for bivariate, and more generally multivariate data.
The approach presented in this paper may be a suitable starting point for
research on these topics.

A major advantage of the presented method is its relatively easy com-
putations, as the use of NPI on the marginals combines naturally with the
discretization of the copula. Hence, the computational complexity is only
with regard to the estimation of the copula parameter, which for the copulas
considered in this paper is a routine procedure for which standard software
is available. It may be attractive to use copulas with multi-dimensional pa-
rameters, which would provide better opportunities to take more information
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about dependence in the data into account. As long as suitable estimation
methods are available, this can be implemented in our method without any
difficulties.

The bivariate method presented here can straightforwardly be general-
ized to multivariate data, where the curse of dimensionality implies that the
number of data required to get meaningful inferences grows exponentially
with the dimension of the data. We restricted attention to the bivariate
case in order to illustrate and investigate the method, application to higher
dimensional situations is an important topic for future research.

Finally, it is important to emphasize that the method presented in this
paper has a novel aspect within statistical theory using imprecise probabili-
ties. Traditionally, imprecision is used particularly on aspects for which one
has relatively little information. Here, however, we use imprecision on the
marginals but not on the copula, while the data tend to contain less informa-
tion about the dependence structure than about the marginals. This is done
as the imprecision on the marginals provides robustness with regard to the
copula choice, with the added benefit that the imprecise probability method
used on the marginals is easy to implement and fits naturally to discretiza-
tion of the copula. This idea, to add imprecision to the easier part of an
inference in order to provide robustness for the harder part, and all together
simplifying computation, promises to have wider applicability, for example
in big data scenarios where fast computation is crucial. We will explore this
idea in other settings in future research.
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