
ar
X

iv
:1

70
2.

01
93

0v
1 

 [
he

p-
ph

] 
 7

 F
eb

 2
01

7

Prepared for submission to JHEP

VBS W
±
W

±
H production at the HL-LHC and a 100

TeV pp-collider

Christoph Englerta, Qiang Lib,c, Michael Spannowskyd, Mengmeng Wangb, Lei Wangb

aSUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
bDepartment of Physics and State Key Laboratory of Nuclear Physics and Technology,

Peking University, Beijing, 100871, China
cCAS Center for Excellence in Particle Physics, Beijing 100049, China
dInstitute for Particle Physics Phenomenlogy, Department of Physics,

Durham University, DH1 3LE, UK

E-mail: christoph.englert@glasgow.ac.uk, mengmeng.wang@cern.ch,

qliphy0@pku.edu.cn, michael.spannowsky@durham.ac.uk,

melodyphysics@gmail.com

Abstract: W±W±H production at hadron colliders through vector boson scattering is

a so far unconsidered process, which leads to a clean signature of two same-sign charged

leptons and two widely separated jets. This process is sensitive to the HHH and WWHH

couplings and any deviation of these couplings from their SM predictions serves as direct

evidence of new physics beyond the SM. In this paper we perform a Monte Carlo study of

this process for the
√
s = 14 TeV LHC and a 100 TeV pp-collider, and provide projections

of the constraints on the triple-Higgs and WWHH quartic couplings for these environments.

In particular, we consider the impact of pileup on the expected sensitivity in this channel.

Our analysis demonstrates that although the sensitivity to the HHH coupling is rather

low, the WWHH coupling can be constrained in this channel within ∼ 100% and ∼ 20% at

95% confidence level around the SM prediction at the HL-LHC and a 100 TeV pp-collider,

respectively.
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1 Introduction

After the discovery of the 125 GeV Higgs-like boson [1–4], one of the primary goals

of present collider phenomenology is to formulate ways to pave the way to a better under-

standing of the mechanism of electroweak symmetry breaking (EWSB). In particular, the

trilinear Higgs HHH and the quartic VVHH vertices (with V representing the W and Z

vector bosons) are key parameters, which are also directly linked to radiative instability of

the TeV scale [5], as well as to a potential radiative nature of EWSB [6–8].

In the Standard Model (SM), the WWHH coupling is determined by electroweak gauge

invariance, which enforces gWWHH = e2/(2s2w), with sw denoting the sine of the Weinberg

angle and e the electric charge, respectively. Any deviation from this value indicates the

necessary existence of new physics beyond the SM, as a departure from the gauge-relations

directly induces (perturbative) unitarity violation [9], unless new resonant states mend

the dangerous growth of the WW → HH amplitude. Models with extra dimensions and

their holographic interpretation in terms of composite theories are well-known examples

of how such coupling modifications can appear in the low energy formulation of strongly

interacting scenarios (for a recent review see [10]). Modifications of unitarity sum rules can

be used to predict some properties of new composite states [11–13]. In such scenarios, only

measuring the trilinear gauge couplings is not necessarily indicative of the quartic gauge

couplings in the low energy effective field theory (EFT), as new states are crucial to enforce

d > 4 gauge invariance in the dual holographic picture. Bearing scenarios like this in mind,

there is motivation to isolate the sensitivity to the quartic couplings in collider processes.1

1Integrating out extra states leads to a plethora of modified couplings that can be investigated in a

global non-linear SM EFT fits [14–18]; the focus of our work is to discuss the sensitivity of a particular

process that could be exploited in this direction as well.
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Aiming to probe the VVHH couplings at hadron colliders, one usually thinks of ex-

ploiting processes with two final state Higgs bosons. This final state has been investigated

in Refs. [19, 20] (see also [21]), which have shown that focussing on the vector boson scat-

tering (VBS) component of HH+2 jets production can in principle constrain the quartic

gauge-Higgs coupling within ∼ 50% around the SM prediction. One of the shortcomings of

such an analysis is that all VVHH couplings contribute coherently. Systematically distin-

guishing between the contributing couplings as would be required to phenomenologically

reverse-engineer, e.g., the Veltman condition is not possible, in particular given the low

statistical yield.

In this paper, we focus on a so far unconsidered process, pp → W±W±H+2 jets,

with W± decaying to leptons, which is predominantly sensitive to the WWHH coupling

exclusively as it does not involve the ZZHH coupling at leading order. This way, a success-

ful analysis of this final state at present or future hadron colliders will not only provide

additional information to a κ-framework analysis [37] (which we will limit ourselves to

in this first study), but is also likely to provide complementary information for a more

comprehensive SM-EFT analysis (in particular by accessing different kinematical regimes

than final states with on-shell Higgs bosons [19, 20]). Furthermore, it provides a relatively

clean signal of two same-sign leptons and two VBS jets, analogous to the standard VBS

paradigm [22]. However, due to the small production rates of this process at the current

energy frontier of the LHC, as well as relatively large expected backgrounds, one must go

beyond the current LHC scope to Higher Luminosity (HL) and increased collision energy.

The so called HL-LHC is designed to reach the LHC design energy of 14 TeV and

will include upgrades to the LHC accelerator and detector environments, allowing the

machine to eventually take around 3000 fb−1 of data [24]. Another option, which has

received considerable interest, is a 100 TeV pp-collider [25–27]. The large statistics that

both options can accumulate will allow us to also access rare processes (including the one

we are interested in) and set constraints on their potential deviations from the SM.

In this work we provide a first detailed MC feasibility study of measuring VBSW±W±H

production, and probing the quartic coupling of WWHH, at the HL-LHC and 100 TeV

pp-collider. Our work takes into account the effects from parton showering, detector simu-

lation, as well as pileup; we also comment on the sensitivity of this process to the trilinear

Higgs coupling. The work is organised as follows: We describe the framework of our simu-

lation studies in Secs. 2.1 and 3.1, and present the numerical results in Secs. 2.2 and 3.2,

for the 14 TeV HL-LHC and 100 TeV pp-collider, respectively. We present our conclusions

in Sec. 4.

2 VBS W±W±H production at the 14 TeV LHC

2.1 Event Simulation and Selection

The characteristic signal that we are interested in contains two well-identified leptons

(electrons e, or muons µ) with same charge, in association with 2 VBS jets and 2 b-

tagged jets. In Fig. 1, we show representative Feynman diagrams contributing to the VBS

W±W±H + jj production at the LHC. We plot the VBS jets’ invariant mass Mjj and
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Figure 1. Representative Feynman diagrams for VBS same-sign W±W±H productions at the

LHC, which involve the HHH and WWHH vertices.

pseudo-rapidity separation |∆ηjj| at parton level, in the SM and also the cases of varied

gWWHH in Fig. 2. As expected [22], the VBS-type topology leads to a sizable rapidity gap

between the forward tagging jets with all weak boson-associated decay products focussed in

the central region of the detector. This can be used to suppress the expected backgrounds.

As can be seen from Fig. 2, not only the total normalization of signal depends on the value

of the quartic coupling, but also VBS W±W±H production tends to have harder Mjj and,

consequently, more separated |∆ηjj| distributions.
We follow the Snowmass Energy Frontier studies [28–30] for our signal and back-

ground simulations. We take existing samples directly from Snowmass [28–30], including

tt̄, tt̄ + B (B = γ,W,Z or H), B+jets and single top. These MC samples are generated

with MadGraph/MadEvent [31], interfaced with Pythia 6 [32] for parton showering

and hadronization, and Delphes version 3 [33] for detector simulation with the so-called

‘Combined Snowmass Detector’ configuration [28]. In Delphes, we consider no pileup (No-

PU) and mean 50 pileup (PU50) scenarios at the 14 TeV LHC, and no pileup (No-PU) and

140 pileup (PU140) for the future 100 TeV pp-collider option, owing to the larger expected
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Figure 2. Mjj and |∆ηjj | distributions for W±W±H productions at the 14 TeV LHC, in the SM

or varied gWWHH cases, at parton level, with default parton level setting.
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pileup contribution when moving from 14 to 100 TeV collisions.

It is worth mentioning that the b-tagging efficiency is rather low in the Snowmass con-

figuration, around 20%−30%, when the b jets’ transverse momentum is around 30 GeV [28].

However, the b-tagging efficiency could reach 70% when the b jets’ PT extends to 100 GeV.

Consequently, to enlarge the signal selection efficiency, both 2 b-tagged and 1 b-tagged jet

categories should be considered, see below.

For the samples not included in the Snowmass studies, i.e. our signal VBS W±W±H+2

jets and background W±W± + QCD jets and VBS W±W± (or WZ) + jets, we produce

them exactly following the description above. Finally, the analysis is based on the ExRoot-

Analysis [34] and ROOT [35] packages.

The Snowmass samples have associated NLO QCD weight factors at event level and

thus are normalized beyond LO [28]. For tt̄ process, we further apply a reweighting factor

related to the most accurate prediction of Ref. [36]. The theoretical uncertainties at the

14 TeV LHC, are at around 5%, 15% and 5% level, for tt̄ [36], tt̄H [37] and single top pro-

cesses [38], respectively. We therefore assume a 20% overall uncertainty on the background

yields to compare with the nominal results without such systematic included, as will be

shown below.

In our selection we require exactly 2 isolated leptons with identical charge, in addition

to 2 VBS jets as well as 2 jets with a “b-tag” as defined below. We apply the following

cuts:

1.) require exactly 2 leptons with same-sign charge with PT l ≥ 20 GeV, |ηl| < 2.5 and

Rll =
√

∆η2ll +∆φ2
ll > 0.4,

2.) require at least 4 jets. Among those we require that there is at least 1 b-tagged jet

with PT b ≥ 25 GeV, |ηb| < 2.5, and at least 2 non b-tagged jets, with PT j ≥ 25 GeV,

|ηj | < 4.7.

a.) If there are 2 b-tagged jets, we choose 2 VBS jets as the leading 2 non-b jets,

b.) if there is only 1 b-tagged jet, we loop over the leading 3 non b-tagged jets, select

the 2 VBS jets on the basis of the largest invariant mass Mjj, and then choose the

remaining jet (with additional selection |η| < 2.5) to be combined with the b-tagged

jet to reconstruct Higgs (we will label this with “b” in the following although there

might not be a positive tag).

3.) We furthermore impose Rbb,bj,bl > 0.4, and Rjj,jl > 0.4,

4.) and require a significant amount of missing energy /ET> 30 GeV,

5.) require |Mll − MZ| > 15 GeV for same flavor lepton category, to suppress Drell-Yan

backgrounds,

6.) require Mll > 50 GeV to suppress soft lepton contributions from heavy flavor decays

in W+jets and top-quark backgrounds,

7.) and impose compatibility with the Higgs mass |Mbb −MH| < 20 GeV,
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Cut Flow Table 1.) 2.) 3.) 4.) 5.) 6.) 7.) 8. A) 8. B)

tt̄ 0.02% 26.1% 99.9% 81.1% 92.8% 65.5% 19.5% 0.01% 0.01%

tt̄+B 0.49% 48% 99.9% 91.8% 90.3% 87.5% 22.1% 0.3% 0.02%

Single Top 0.01% 12.4% 99.9% 88.8% 87.3% 81.4% 23.5% 0.8% 0.48%

B/BB+ jets 0.03% 0.9% 100% 86.4% 91.3% 88.8% 16.9% 0.03% 0.01%

Signal 2.83% 25.2% 100% 87.4% 92% 89.6% 39.8% 34.1% 17.1%

Signal (2× gWWHH) 4.11% 20% 100% 92.7% 96.7% 97.3% 46.5% 40.3% 25.4%

Signal (3× gWWHH) 4.38% 23.4% 100% 98% 99% 98% 40.5% 32.9% 20.3%

Signal (5× λHHH) 2.91% 24.6% 100% 93.7% 91% 90.1% 34.5% 34.2% 23.7%

Table 1. Cut chain table for backgrounds and signals at the LHC with
√
s = 14 TeV in the 50

pileup scenario.

8.) We then focus on two different final cut scenarios for comparison, to further enhance

the VBS signal:

(A) |∆ηjj| > 5 and Mjj > 1.5 TeV, or,

(B) |∆ηjj| > 6 and Mjj > 2 TeV.

Fig. 3 shows the Mbb distributions of signal and background after cuts 1.)-6.) have

been applied for the HL-LHC 14 TeV and 100 TeV pp collider including pileup. One can

see that although the Higgs peak can be reconstructed around 120-125 GeV for the signal,

it is considerably washed out due to pileup and mistag effects. Thus we decide to choose

a wide mass window in 7.) as listed above.

A cut flow for our analysis can be found in Tab. 1, which gives results for
√
s = 14 TeV

PU50. Each number represents the efficiency passing that single step’s selection. One can

clearly see the power of VBF selections which can suppress backgrounds by more than two

orders of magnitudes than signal.
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Figure 3. Mbb distributions of signal and background for the HL-LHC at 14 TeV with 50 pileup

scenario and 100 TeV with 140 pileup scenario.
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2.2 Numerical Results at HL-LHC

In Tab. 2, we show the signal and background yields at the HL-LHC with
√
s =

14 TeV and integrated luminosity of 3000 fb−1, after the selection cuts as listed in Sec. 2.1.

Numbers are provided for both no pileup and mean 50 pileup scenarios. The largest

background contribution results from tt̄+B. The remaining contributions are all found to

be small. This applies to the Snowmass B+jets, our produced W±W± + QCD jets, and

the VBS W±W± (or WZ) + jets contributions.

Processes
∆ηjj > 5 and Mjj > 1.5 TeV ∆ηjj > 6 and Mjj > 2 TeV

(A) No-PU (B) PU50 (A) No-PU (B) PU50

tt̄ 0.0 0.86 0.0 0.86

tt̄+ B 10.38 13.5 2.79 1.13

Single Top 0.156 7.2 0.06 4.4

B/BB+ jets 0.89 0.07 0.0 0.03

total bkg 11.43 21.6 2.85 6.42

Signal 0.52 0.73 0.1 0.37

Signal (2× gWWHH) 5.61 6.89 3.8 4.3

Signal (3× gWWHH) 22.04 22.03 11.87 13.56

Signal (5× λHHH) 1.1 0.8 0.5 0.8

Table 2. Yields for backgrounds and signals at the LHC with
√
s = 14 TeV and integrated

luminosity of 3000 fb−1.

One can see that our signal is not sensitive to the rescalings of trilinear Higgs coupling

λHHH, while there is sensitivity to gWWHH. With an integrated luminosity of 3000 fb−1

at the 14 TeV LHC, we expect that the gauge-Higgs quartic coupling gWWHH can be

constrained to be smaller than ∼ 2 – 2.5 times of SM value at 95% confidence level (CL)

κWWHH =
gWWHH

gSMWWHH

= 1
+1.2(1.4)
−1 , (2.1)

without (with) pileup effects included.

The significance distribution that underpins this result is shown in Fig. 4 (see also [39]),

and calculated using

σ =
√

2 ln(Q) , Q = (1 +Ns/Nb)
Nobs exp(−Ns) , (2.2)

which corresponds to
√

2 ln[L(S +B)/L(B)]. L symbolizes the Poisson likelihood: Nb is

the total background yield including also the SM VBS W±W±H prediction, while Ns is

the signal yield defined as the excess of the signal with non-SM gWWHH over the SM one.

σ is related to log likelihood ratio, and a value of 1.96 corresponds to the 95% confidence

level exclusion limit in the case of only one degree of freedom.

We have also compared scenarios with cuts 9.) (A) and 9.) (B), with and without

pileup. For the No-PU case, the more stringent cut of 9.) (B) yields a better performance.

However, pileup significantly impacts both options. As mentioned above, we include an
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Figure 4. Dependence of the significance of Eq. (2.2) on gWWHH, at the 14 TeV HL-LHC with an

integrated luminosity of 3000 fb−1.

additional sensitivity projection to Fig. 4 to be compared to 9.) (B), which includes the

effect of 20% systematics on background yields (we follow the procedure as suggested

in [40]). The sensitivities do change only slightly, as the results are dominated by statistical

errors.

3 VBS W±W±H production at a at 100 TeV pp-collider

3.1 Event Simulation and Selection

For the 100 TeV analysis we largely follow the cut scenario described in the above Sec. 2.1.

However, we include some modifications which optimize the cut flow for the more energetic

final states compared to the HL-LHC: (1) the lepton requirement is tightened to PT l ≥
50 GeV, and (2) selection cuts 8.) are changed to

(A∗) |∆ηjj| > 6, and Mjj > 2 TeV ,

(B∗) |∆ηjj| > 7, and Mjj > 2 TeV .

As for 14 TeV, we again include the impact of pileup to our discussion of results. As pileup

will increase at 100 TeV compared to the 14 TeV collisions, we concentrate on the No-PU

and PU140 scenarios.

3.2 Numerical Results

In Fig. 5, we show the VBS jets’ invariant mass Mjj and their pseudo-rapidity gap |∆ηjj|
at parton level for three different gWWHH values. One can see that both distributions

are shifted to higher values compared with the HL-LHC case. Tab. 3 provides signal

and background yields after the full selection at a 100 TeV pp-collider for an integrated

luminosity of 3000 fb−1. Note that for the 100 TeV center-of-mass energy, tt̄ becomes the

most dominating background, as non-prompt leptons from hadron decays can be energetic

now and pass respective selections.
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Processes
∆ηjj > 6 and Mjj > 2 TeV ∆ηjj > 7 and Mjj > 2 TeV

(A∗) No-PU (B∗) PU140 (A∗) No-PU (B∗) PU140

tt̄ 121 17240 0 975

tt̄+ B 618 1432 207 314

Single Top 113 6157 0 270

B/BB+jets 0.96 239 0 0

total bkg 853 25068 207 1559

Signal 15.2 13.4 8.94 8.05

Signal (2× gWWHH) 927 948 625 689

Signal (3× gWWHH) 3457 3553 2785 2881

Signal (5× λHHH) 0.75 0.69 0.27 0.48

Table 3. Signal and background yields at the 100 TeV pp-collider with an integrated luminosity

of 3000 fb−1.
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Figure 5. Mjj and ∆ηjj distributions for W±W±H productions at the 100 TeV pp-collider, in the

SM and for varied gWWHH cases.

The projected sensitivity to gWWHH is shown in Fig. 6, from which one can see that

gWWHH can now be further constrained to be

κWWHH =
gWWHH

gSMWWHH

= 1
+0.2(0.4)
−0.1(0.3) , (3.1)

without (with) pileup effects included, i.e. within ∼ 20−30% around SM prediction at 95%

CL. This is a significant improvement over the LHC projection. We have also compared

scenarios with cuts 8.) (A∗) and 8.) (B∗), and with or without pileup. For both these cases,

the more stringent option 8.) (B∗) gives better performance than 8.) (A∗), owing to the

high energetic final states that can be accessed at the 100 TeV machine.

4 Summary and Conclusions

VBS W±W±H+2 jet production is a so far unconsidered process with the potential

to add sensitivity to the current Higgs characterization program. The same-sign leptonic
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Figure 6. Significance dependence on gWWHH, at the 100 TeV pp-collider with an integrated

luminosity of 3000 fb−1. Again the significance follows Eq. (2.2).

final state is particularly clean on top of good additional background suppression handles

motivated from VBS Higgs+2 jet production. Our results show that at the high luminosity

LHC with a target of 3000 fb−1 we can expect a similar sensitivity to the quartic WWHH

coupling as provided by VBS HH production, for which we expect κV V HH ≃ 1.6 [20].2

Therefore, VBS W±W±H+2 jet can assist in disentangling the individual contributions of

the quartic gauge-Higgs vertices. In the search region selected by a maximum background

rejection, modifications of the trilinear Higgs coupling have no significant impact on the

signal yield. Adapting our study to the 100 TeV pp-collider we find that the gWWHH

coupling can be constrained significantly better within ∼ 20% around SM prediction at

95% CL for a comparable luminosity as the HL-LHC. Therefore, this process and its impact

can be considered as another motivation to push the high energy frontier.
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