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The Colouring problem is that of deciding, given a graph G and an integer k, whether G
admits a (proper) k-colouring. For all graphs H up to five vertices, we classify the 
computational complexity of Colouring for (diamond, H)-free graphs. Our proof is based 
on combining known results together with proving that the clique-width is bounded for 
(diamond, P1 + 2P2)-free graphs. Our technique for handling this case is to reduce the 
graph under consideration to a k-partite graph that has a very specific decomposition. As a 
by-product of this general technique we are also able to prove boundedness of clique-width 
for four other new classes of (H1, H2)-free graphs. As such, our work also continues a 
recent systematic study into the (un)boundedness of clique-width of (H1, H2)-free graphs, 
and our five new classes of bounded clique-width reduce the number of open cases 
from 13 to 8.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Colouring problem is that of testing whether a given graph can be coloured with at most k colours for some given 
integer k, such that any two adjacent vertices receive different colours. The complexity of Colouring is fully understood 
for general graphs: it is NP-complete even if k = 3 [35]. Therefore it is natural to study its complexity when the input 
is restricted. A classic result in this area is due to Grötschel, Lovász, and Schrijver [26], who proved that Colouring is 
polynomial-time solvable for perfect graphs.

As surveyed in [14,20,25,43], Colouring has been well studied for hereditary graph classes, that is, classes that can 
be defined by a family H of forbidden induced subgraphs. For a family H consisting of one single forbidden induced 
subgraph H , the complexity of Colouring is completely classified: the problem is polynomial-time solvable if H is an in-
duced subgraph of P4 or P1 + P3 and NP-complete otherwise [34]. Hence, many papers (e.g. [13,18,29,34,37,40,41,45]) have 
considered the complexity of Colouring for bigenic hereditary graph classes, that is, graph classes defined by families H
consisting of two forbidden graphs H1 and H2; such classes of graphs are also called (H1, H2)-free. This classification is far 
from complete (see [25] for the state of art). In fact there are still an infinite number of open cases, including cases where 
both H1 and H2 are small. For instance, Lozin and Malyshev [37] determined the computational complexity of Colouring

for (H1, H2)-free graphs for all graphs H1 and H2 up to four vertices except when (H1, H2) ∈ {(K1,3, 4P1), (K1,3, 2P1 + P2),

(C4, 4P1)} (we refer to Section 2 for notation and terminology).
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The diamond is the graph 2P1 + P2, that is, the graph obtained from the complete graph on four vertices by removing 
an edge. Diamond-free graphs are well studied in the literature. For instance, Tucker [46] gave an O (kn2) time algorithm for
Colouring for perfect diamond-free graphs. It is also known that Colouring is polynomial-time solvable for diamond-free 
graphs that contain no induced cycle of even length [32] as well as for diamond-free graphs that contain no induced cycle of 
length at least 5 [8]. Diamond-free graphs also played an important role in proving that the class of P6-free graphs contains 
24 minimal obstructions for 4-Colouring [15] (that is, the Colouring problem for k = 4).

1.1. Our main result

In this paper we focus on Colouring for (diamond, H)-free graphs where H is a graph on at most five vertices. It 
is known that Colouring is NP-complete for (diamond, H)-free graphs when H contains a cycle or a claw [34] and 
polynomial-time solvable for H = sP1 + P2 (s ≥ 0) [18], H = 2P1 + P3 [6], H = P1 + P4 [11], H = P2 + P3 [19] and 
H = P5 [1]. Hence, the only graph H on five vertices that remains is H = P1 + 2P2, for which we prove polynomial-time 
solvability in this paper. This leads to the following result.

Theorem 1. Let H be a graph on at most five vertices. Then Colouring is polynomial-time solvable for (diamond, H)-free graphs if H
is a linear forest and NP-complete otherwise.

To solve the case H = P1 + 2P2, one could try to reduce to a subclass of diamond-free graphs, for which Colouring is 
polynomial-time solvable, such as the aforementioned results of [8,32,46]. This would require us to deal with the presence 
of small cycles up to C7, which may not be straightforward. Instead we aim to identify tractability from an underlying 
property: we show that the class of (diamond, P1 + 2P2)-free graphs has bounded clique-width. This approach has several 
advantages and will lead to a number of additional results, as we will discuss in the remainder of Section 1.

Clique-width is a graph decomposition that can be constructed via vertex labels and four specific graph operations, which 
ensure that vertices labelled alike will always keep the same label and thus behave identically. The clique-width of a graph G
is the minimum number of different labels needed to construct G using these four operations (we refer to Section 2 for a 
precise definition). A graph class G has bounded clique-width if there exists a constant c such that every graph from G has 
clique-width at most c.

Clique-width is a well-studied graph parameter (see, for instance, the surveys [27,31]). An important reason for the 
popularity of clique-width is that a number of classes of NP-complete problems, such as those that are definable in Monadic 
Second Order Logic using quantifiers on vertices but not on edges, become polynomial-time solvable on any graph class G
of bounded clique-width (this follows from combining results from [16,23,33,44] with a result from [42]). The Colouring

problem is one of the best-known NP-complete problems that is solvable in polynomial time on graph classes of bounded 
clique-width [33]; another well-known example of such a problem is Hamilton Path [23].

1.2. Methodology

The key technique for proving that (diamond, P1 + 2P2)-free graphs have bounded clique-width is the use of a certain 
graph decomposition of k-partite graphs. We obtain this decomposition by generalizing the so-called canonical decompo-
sition of bipartite graphs, which decomposes a bipartite graph into two smaller bipartite graphs such that edges between 
these two smaller bipartite graphs behave in a very restricted way. Fouquet, Giakoumakis and Vanherpe [24] introduced 
this decomposition and characterized exactly those bipartite graphs that can recursively be canonically decomposed into 
graphs isomorphic to K1. Such bipartite graphs are said to be totally decomposable by canonical decomposition. We say that 
k-partite graphs are totally k-decomposable if they can be, according to our generalized definition, recursively k-decomposed 
into graphs isomorphic to K1. We show that totally k-decomposable graphs have clique-width at most 2k. We prove this 
result in Section 3, where we also give a formal definition of canonical decomposition, along with our generalization.

Our goal is to transform (diamond, P1 + 2P2)-free graphs into graphs in some class for which we already know that 
the clique-width is bounded. Besides the class of totally k-decomposable graphs, we will also reduce to other known graph 
classes of bounded clique-width, such as the class of (diamond, P2 + P3)-free graphs [19] and certain classes of H-free 
bipartite graphs [21]. Of course, our transformations must not change the clique-width by “too much”. We ensure this by 
using certain graph operations (described in Section 2) that are known to preserve (un)boundedness of clique-width [31,38].

1.3. Consequences for Clique-Width

There are numerous papers (as listed in, for instance, [22,27,31]) that determine the (un)boundedness of the clique-width 
or variants of it (see e.g. [4,28]) of special graph classes. Due to the complex nature of clique-width, proofs of these results 
are often long and technical, and there are still many open cases. In particular, gaps exist in a number of dichotomies on the 
(un)boundedness of clique-width for graph classes defined by one or more forbidden induced subgraphs. As such our paper 
also continues a line of research [5,6,19,21,22] in which we focus on these gaps in a systematic way. It is known [22] that 
the class of H-free graphs has bounded clique-width if and only if H is an induced subgraph of P4. Over the years many 
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Fig. 1. The forbidden graphs considered in this paper.

partial results [2,7,9–12,20,39] on the (un)boundedness of clique-width have appeared for classes of (H1, H2)-free graphs, 
but until recently [22] it was not even known whether the number of missing cases was bounded. Combining these older 
results with recent progress [6,18,19,22] reduced the number of open cases to 13 (up to an equivalence relation) [22].

As a by-product of our general methodology, we are able not only to settle the case (H1, H2) = (diamond, P1 + 2P2), 
but in fact we solve five of the remaining 13 open cases by proving that the class of (H1, H2)-free graphs has bounded 
clique-width if

1–4: H1 = K3 and H2 ∈ {P1 + 2P2, P1 + P2 + P3, P1 + P5, S1,2,2} or

5: H1 = diamond and H2 = P1 + 2P2.

The above graphs are displayed in Fig. 1. Note that the (K3, P1 + 2P2)-free graph case is properly contained in all four of 
the other cases. These four other newly solved cases are pairwise incomparable. In Section 4 we use our key technique on 
totally k-decomposable graphs to find a number of sufficient conditions for a graph class to have bounded clique-width. We 
use these conditions in Section 5 to prove Results 1–4 and we then prove Result 5 (which relies on Result 1) in Section 6.

Updating the classification (see [22]) with our five new results gives the following theorem. Here, S is the class of graphs 
each connected component of which is either a subdivided claw or a path, and we write H ⊆i G if H is an induced subgraph 
of G; see Section 2 for notation that we have not formally defined yet.

Theorem 2. Let G be a class of graphs defined by two forbidden induced subgraphs. Then:

(i) G has bounded clique-width if it is equivalent1 to a class of (H1, H2)-free graphs such that one of the following holds:
1. H1 or H2 ⊆i P4;
2. H1 = sP1 and H2 = Kt for some s, t;
3. H1 ⊆i P1 + P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5, P1 + S1,1,2, P6, S1,1,3 or S1,2,2;
4. H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 2P1 + P3, 3P1 + P2 or P2 + P3;
5. H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;
6. H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3;
7. H1, H2 ⊆i K1,3 .

(ii) G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free graphs such that one of the following holds:
1. H1 /∈ S and H2 /∈ S ;
2. H1 /∈ S and H2 /∈ S ;
3. H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;
4. H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4 or P6;
5. H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3;
6. H1 ⊇i 4P1 and H2 ⊇i P1 + P4 or 3P1 + P2 .

1.4. Future work

Naturally we would like to extend Theorem 1 and solve the following open problem.

Open Problem 1. What is the computational complexity of the Colouring problem for (diamond, H)-free graphs when H is a graph 
on at least six vertices?

Solving Open Problem 1 is highly non-trivial. It is known that 4-Colouring is NP-complete for (C3, P22)-free graphs [30]. 
Hence, the polynomial-time results in Theorem 1 cannot be extended to all linear forests. The first open case to consider 
would be H = P6, for which only partial results are known. Indeed, Colouring is polynomial-time solvable for (C3, P6)-free 

1 Given four graphs H1, H2, H3, H4, the class of (H1, H2)-free graphs and the class of (H3, H4)-free graphs are equivalent if the unordered pair H3, H4

can be obtained from the unordered pair H1, H2 by some combination of the operations (i) complementing both graphs in the pair and (ii) if one of the 
graphs in the pair is K3, replacing it with P1 + P3 or vice versa. If two classes are equivalent, then one of them has bounded clique-width if and only if 
the other one does (see [22]).
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graphs [9], but its complexity is unknown for (C3, P7)-free graphs (on a side note, a recent result for the latter graph class 
is that 3-Colouring is polynomial-time solvable [3]).

We observe that boundedness of the clique-width of (diamond, P1 +2P2)-free graphs implies boundedness of the clique-
width of (2P1 + P2, P1 + 2P2)-free graphs (recall that the diamond is the complement of the graph 2P1 + P2). Hence our 
results imply that Colouring can also be solved in polynomial time for graphs in this class. After incorporating the conse-
quences of our new results and this additional observation, there are 13 classes of (H1, H2)-free graphs for which Colouring

could potentially still be solved in polynomial time by showing that their clique-width is bounded (see also [25]):

Open Problem 2. Is Colouring polynomial-time solvable for (H1, H2)-free graphs when:

1. H1 ∈ {3P1, P1 + P3} and H2 ∈ {P1 + S1,1,3, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
3. H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5};
4. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
5. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
6. H1 = H2 = 2P1 + P3 .

As mentioned in Section 1.3, after updating the list of remaining open cases for clique-width from [22], we find that 
eight non-equivalent open cases remain for clique-width. These are the following cases.

Open Problem 3. Does the class of (H1, H2)-free graphs have bounded or unbounded clique-width when:

1. H1 = 3P1 and H2 ∈ {P1 + S1,1,3, P2 + P4, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
3. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3} or
4. H1 = H2 = 2P1 + P3 .

Bonomo, Grippo, Milanič and Safe [4] determined all pairs of connected graphs H1, H2 for which the class of 
(H1, H2)-free graphs has power-bounded clique-width. In order to compare their result with our results for clique-width, 
we would only need to solve the single open case (H1, H2) = (K3, S1,2,3), which is equivalent to the (open) case (H1, H2) =
(3P1, S1,2,3) mentioned in Open Problem 3. This follows because our new result for the case (H1, H2) = (K3, S1,2,2) has 
reduced the number of open cases (H1, H2) with H1, H2 both connected from two to one.

2. Preliminaries

Throughout our paper we only consider finite, undirected graphs without multiple edges or self-loops. Below we define 
further graph terminology.

The disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)) of two vertex-disjoint graphs G and H is denoted by G + H and the disjoint 
union of r copies of a graph G is denoted by rG . The complement of a graph G , denoted by G , has vertex set V (G) = V (G)

and an edge between two distinct vertices if and only if these vertices are not adjacent in G . For a subset S ⊆ V (G), 
we let G[S] denote the subgraph of G induced by S , which has vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}. If 
S = {s1, . . . , sr} then, to simplify notation, we may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We use G \ S to denote 
the graph obtained from G by deleting every vertex in S , i.e. G \ S = G[V (G) \ S]. We write H ⊆i G to indicate that H is an 
induced subgraph of G .

The graphs Cr, Kr, K1,r−1 and Pr denote the cycle, complete graph, star and path on r vertices, respectively. The 
graph K1,3 is also called the claw. The graph Sh,i, j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is, the tree that 
has only one vertex x of degree 3 and exactly three leaves, which are of distance h, i and j from x, respectively. Observe 
that S1,1,1 = K1,3. The graph S1,2,2 is also known as the E, since it can be drawn like a capital letter E (see Fig. 1). Recall 
that the graph 2P1 + P2 is known as the diamond. The graphs K3 and P1 + 2P2 are also known as the triangle and the 
5-vertex wheel, respectively. For a set of graphs {H1, . . . , H p}, a graph G is (H1, . . . , H p)-free if it has no induced subgraph 
isomorphic to a graph in {H1, . . . , H p}; if p = 1, we may write H1-free instead of (H1)-free.

Let X be a set of vertices in a graph G = (V , E). A vertex y ∈ V \ X is complete to X if it is adjacent to every vertex 
of X and anti-complete to X if it is non-adjacent to every vertex of X . Similarly, a set of vertices Y ⊆ V \ X is complete
(anti-complete) to X if every vertex in Y is complete (anti-complete) to X . A vertex y or a set Y is trivial to X if it is either 
complete or anti-complete to X . Note that if Y contains both vertices complete to X and vertices not complete to X , we 
may have a situation in which every vertex in Y is trivial to X , but Y itself is not trivial to X .

For a graph G = (V , E), the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbourhood of u ∈ V . Let X and Y be disjoint 
sets of vertices in a graph G = (V , E). If every vertex of X has at most one neighbour in Y and vice versa then we say that 
the edges between X and Y form a matching. If every vertex of X has exactly one neighbour in Y and vice versa then we 
say that the edges between X and Y form a perfect matching.
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A graph is k-partite if its vertex set can be partitioned into k independent sets (some of which may be empty). A graph 
is bipartite if it is 2-partite. A graph is complete bipartite if its vertex set can be partitioned into two independent sets that 
are complete to each other. For integers r, s ≥ 0, the biclique Kr,s is the complete bipartite graph with sets in the partition 
of size r and s respectively. The bipartite complement of a bipartite graph G with bipartition (X, Y ) is the graph obtained 
from G by replacing every edge from a vertex in X to a vertex in Y by a non-edge and vice versa.

Clique-Width. The clique-width of a graph G , denoted cw(G), is the minimum number of labels needed to construct G by 
using the following four operations:

1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labelled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 	= j);
4. renaming label i to j.

An algebraic term that represents such a construction of G and uses at most k labels is said to be a k-expression of G (i.e. 
the clique-width of G is the minimum k for which G has a k-expression). Recall that a class of graphs G has bounded 
clique-width if there is a constant c such that the clique-width of every graph in G is at most c; otherwise the clique-width 
of G is unbounded.

Let G be a graph. We define the following operations. For an induced subgraph G ′ ⊆i G , the subgraph complementation
operation (acting on G with respect to G ′) replaces every edge present in G ′ by a non-edge, and vice versa. Similarly, for 
two disjoint vertex subsets S and T in G , the bipartite complementation operation with respect to S and T acts on G by 
replacing every edge with one end-vertex in S and the other one in T by a non-edge and vice versa.

We now state some useful facts about how the above operations (and some other ones) influence the clique-width of a 
graph. We will use these facts throughout the paper. Let k ≥ 0 be a constant and let γ be some graph operation. We say 
that a graph class G′ is (k, γ )-obtained from a graph class G if the following two conditions hold:

(i) every graph in G′ is obtained from a graph in G by performing γ at most k times, and
(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k and any graph class G , any graph class G′
that is (k, γ )-obtained from G has bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [38].
Fact 2. Subgraph complementation preserves boundedness of clique-width [31].
Fact 3. Bipartite complementation preserves boundedness of clique-width [31].

The following lemma is easy to show.

Lemma 1. The clique-width of a graph of maximum degree at most 2 is at most 4.

Two vertices are false twins if they have the same neighbourhood (note that such vertices must be non-adjacent). The 
following lemma follows immediately from the definition of clique-width.

Lemma 2. If a vertex x in a graph G has a false twin then cw(G) = cw(G \ {x}).

We will also make use of the following two results.

Lemma 3 ([19]). The class of (diamond, P2 + P3)-free graphs has bounded clique-width.

Lemma 4 ([21]). Let H be a graph. The class of H-free bipartite graphs has bounded clique-width if and only if

• H = sP1 for some s ≥ 1;
• H ⊆i K1,3 + 3P1;
• H ⊆i K1,3 + P2;
• H ⊆i P1 + S1,1,3 or
• H ⊆i S1,2,3 .

In some of our proofs we will use the fact that S1,2,3-free bipartite graphs have bounded clique-width, which follows 
from Lemma 4. Alternatively we could have used the result of Lozin [36], who showed that S1,2,3-free bipartite graphs have 
clique-width at most 5.



K.K. Dabrowski et al. / Journal of Computer and System Sciences 89 (2017) 410–431 415
Fig. 2. The forbidden graphs from Lemma 5.

3. Totally k-decomposable graphs

In this section we describe our key technique, which is based on a decomposition of bipartite graphs introduced by 
Fouquet, Giakoumakis and Vanherpe [24], which is defined as follows.

Let G be a bipartite graph with a vertex bipartition (V 1, V 2). A 2-decomposition of G with respect to (V 1, V 2) consists of 
two non-empty graphs G[V ′

1 ∪ V ′
2] and G[V ′′

1 ∪ V ′′
2 ] such that:

(i) for i ∈ {1, 2}, V ′
i ∪ V ′′

i = V i and V ′
i ∩ V ′′

i = ∅;
(ii) V ′

1 is either complete or anti-complete to V ′′
2 in G;

(iii) V ′
2 is either complete or anti-complete to V ′′

1 in G .

Note that V ′
1 ∪ V ′′

1 and V ′
2 ∪ V ′′

2 are independent sets in G and that the last two conditions imply that each of G[V ′
1 ∪ V ′′

2 ]
and G[V ′′

1 ∪ V ′
2] is either an independent set or a biclique. Observe that we do not impose restrictions on the bipartite 

graphs G ′ = G[V ′
1 ∪ V ′

2] and G ′′ = G[V ′′
1 ∪ V ′′

2 ]. If G has a 2-decomposition G ′, G ′′ with respect to some bipartition, we 
say that G can be 2-decomposed into G ′ and G ′′ . A graph G is totally decomposable by canonical decomposition if it can be 
recursively 2-decomposed into graphs isomorphic to K1. Note that if G has a 2-decomposition G ′, G ′′ with respect to some 
bipartition (V 1, V 2), this does not force us to decompose G ′ and G ′′ with respect to a sub-partition of (V 1, V 2). As we will 
see, this distinction does not make a difference for bipartite graphs, but it will become an issue when we extend the notion 
to k-partite graphs when k ≥ 3.

Fouquet, Giakoumakis and Vanherpe proved the following characterization, which we will need for our proofs (see Fig. 2
for pictures of P7 and S1,2,3).

Lemma 5 ([24]). A bipartite graph is totally decomposable by canonical decomposition if and only if it is (P7, S1,2,3)-free.

For our purposes we need to generalize the notion of totally decomposable bipartite graphs to k-partite graphs for k ≥ 2, 
and we will also need to partially classify graphs with this modified notion, in effect generalizing Lemma 5.

Let G be a k-partite graph with a fixed vertex k-partition (V 1, . . . , Vk). A k-decomposition of G with respect to the par-
tition (V 1, . . . , Vk) consists of two non-empty graphs, each with their own partition: G ′ = G[V ′

1 ∪ · · · ∪ V ′
k] with partition 

(V ′
1, V

′
2, . . . , V

′
k) and G ′′ = G[V ′′

1 ∪ · · · ∪ V ′′
k ] with partition (V ′′

1 , V ′′
2 , . . . , V ′′

k ), such that:

(i) for i ∈ {1, . . . , k}, V ′
i ∪ V ′′

i = V i and V ′
i ∩ V ′′

i = ∅;
(ii) for all i, j ∈ {1, . . . , k}, V ′

i is either complete or anti-complete to V ′′
j in G .

Note that the last condition holds for i = j by definition, since V i = V ′
i ∪ V ′′

i is an independent set in G . Also note that in 
the above definition, (V ′

1, V
′
2, . . . , V

′
k) and (V ′′

1 , V ′′
2 , . . . , V ′′

k ) are sub-partitions of (V 1, V 2, . . . , Vk), in the sense that V ′
i =

V i ∩ V (G ′) and V ′′
i = V i ∩ V (G) for i ∈ {1, . . . , k}, so the original partition on G uniquely specifies the partitions on G ′

and G ′′ .
If a graph G with a fixed k-partition has a k-decomposition with respect to this partition into two graphs G ′ and G ′′

(with their associated sub-partitions), we say that G can be k-decomposed into G ′ and G ′′ (with each of these subgraphs 
getting the appropriate sub-partition). We say that G is totally k-decomposable with respect to some fixed partition if G can 
be recursively k-decomposed with respect to this fixed partition into graphs isomorphic to K1. Note that by definition, if a 
graph H appears in a total k-decomposition of G with respect to some fixed partition (V 1, . . . , Vk), then the k-partition 
(V H

1 , V H
2 , . . . , V H

k ) of H used to partition H satisfies V H
i = V i ∩ V (H) for i = 1, . . . , k. This property will be necessary for us 

to be able to use inductive arguments “safely.”
To compare graphs that are totally decomposable by canonical decomposition and graphs that are totally 2-decomposable, 

we observe that every connected bipartite graph G has a unique bipartition (up to isomorphism and swapping the two in-
dependent sets in the bipartition). Also, if G is totally decomposable by canonical decomposition, then this decomposition 
can recursively be done component-wise. Hence, in each step of the recursion, we may decompose with respect to an ar-
bitrary bipartition of the graph under consideration. This means that the definitions of total canonical decomposability and 
total 2-decomposability are equivalent. However, for k > 2, a connected graph can have multiple k-partitions, even up to 
isomorphism and permuting the independent sets of the partition. Therefore, unlike for k = 2, we need to fix the partition 
of the subgraphs G ′ and G ′′ in the definition of total k-decomposability.

As mentioned, for our proofs we need to generalize Lemma 5. It seems difficult to give a full characterization of totally 
k-decomposable graphs for k ≥ 3. However, the following lemma is sufficient for our purposes.
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Lemma 6. A 3-partite graph G is totally 3-decomposable with respect to a 3-partition (V 1, V 2, V 3) if the following two conditions are 
both satisfied:

– G[V 1 ∪ V 2], G[V 1 ∪ V 3] and G[V 2 ∪ V 3] are all (P7, S1,2,3)-free, and
– for every v1 ∈ V 1 , every v2 ∈ V 2 and every v3 ∈ V 3 , the graph G[v1, v2, v3] is isomorphic neither to K3 nor to 3P1 .

Proof. Let G be a 3-partite graph with a 3-partition (V 1, V 2, V 3) such that both conditions are satisfied. Note that any 
induced subgraph H of G (with partition (V (H) ∩ V 1, V (H) ∩ V 2, V (H) ∩ V 3)) also satisfies the hypotheses of the lemma. 
This enables us to apply induction. It is therefore sufficient to show that G has a 3-decomposition with respect to the given 
3-partition.

If V 1 is empty then G is a (P7, S1,2,3)-free bipartite graph and is therefore totally 2-decomposable with respect to the 
partition (V 2, V 3) by Lemma 5 (and is thus totally 3-decomposable with respect to the partition (V 1, V 2, V 3)). By symmetry, 
we may therefore assume that every set V i is non-empty.

Now G[V 1, V 2] is a bipartite (P7, S1,2,3)-free graph, so by Lemma 5, G[V 1 ∪ V 2] is totally 2-decomposable. Since V 1
and V 2 are both non-empty, it follows that V 1 can be partitioned into two sets V ′

1 and V ′′
1 and V 2 can be partitioned into 

two sets V ′
2 and V ′′

2 , such that V ′
1 is either complete or anti-complete to V ′′

2 , and V ′
2 is either complete or anti-complete 

to V ′′
1 . Since the graphs G[V ′

1 ∪ V ′
2] and G[V ′′

1 ∪ V ′′
2 ] in this decomposition must be non-empty, it follows that V ′

1 ∪ V ′
2 and 

V ′′
1 ∪ V ′′

2 must be non-empty. Since for i ∈ {1, 2} we know that V i = V ′
i ∪ V ′′

i is non-empty, at least one of V ′
i and V ′′

i is non-
empty. Hence, combining these two observations, we may assume without loss of generality that V ′

1 and V ′′
2 are non-empty. 

Assume that these sets are maximal, that is, no vertex of V ′′
1 (respectively V ′

2) can be moved to V ′
1 (respectively V ′′

2 ). Note 
that V ′′

1 or V ′
2 may be empty.

We will prove that we can partition V 3 into sets V ′
3 and V ′′

3 , such that for all i, j ∈ {1, 2, 3}, V ′
i is complete or anti-

complete to V ′′
j . Note that we already know that V ′

1 (respectively V ′
2) is complete or anti-complete to V ′′

2 (respectively V ′′
1 ). 

Also note that for i ∈ {1, 2, 3}, V ′
i is automatically anti-complete to V ′′

i , since V i is an independent set.
First suppose that V ′

1 is complete to V ′′
2 . If a vertex of V 3 has a neighbour in both V ′

1 and V ′′
2 then these three vertices 

would form a forbidden K3, so every vertex in V 3 is anti-complete to V ′
1 or V ′′

2 . Let V ′
3 be the set of vertices in V 3 that 

are anti-complete to V ′′
2 and let V ′′

3 = V 3 \ V ′
3. Note that V ′′

3 must be anti-complete to V ′
1. Suppose, for contradiction, that 

z ∈ V ′
3 has a non-neighbour v ∈ V ′′

1 . Since V ′
1 is maximal, v must have a non-neighbour w ∈ V ′′

2 . This means that G[v, w, z]
is a 3P1. This contradiction means that V ′′

1 is complete to V ′
3. Similarly, V ′

2 is complete to V ′′
3 . Therefore G[V ′

1 ∪ V ′
2 ∪ V ′

3]
and G[V ′′

1 ∪ V ′′
2 ∪ V ′′

3 ] form the required 3-decomposition of G .
Now suppose that V ′

1 is anti-complete to V ′′
2 . If a vertex of V 3 has a non-neighbour in both V ′

1 and V ′′
2 then these three 

vertices would induce a forbidden 3P1, so every vertex in V 3 is complete to V ′
1 or V ′′

2 . Let V ′
3 be the set of vertices in V 3

that are complete to V ′′
2 and let V ′′

3 = V 3 \ V ′
3. Note that V ′′

3 must be complete to V ′
1. By using similar arguments to those 

in the previous case, we find that V ′′
1 is anti-complete to V ′

3 and V ′
2 is anti-complete to V ′′

3 . Hence, G[V ′
1 ∪ V ′

2 ∪ V ′
3] and 

G[V ′′
1 ∪ V ′′

2 ∪ V ′′
3 ] form the required 3-decomposition of G . This completes the proof. �

We also need the following lemma.

Lemma 7. Let G be a k-partite graph with vertex partition (V 1, . . . , Vk). If G is totally k-decomposable with respect to this partition, 
then the clique-width of G is at most 2k. Moreover, there is a 2k-expression for G that assigns, for i ∈ {1, . . . , k}, label i to every vertex 
of V i .

Proof. We prove the lemma by induction on the number of vertices. If G contains only one vertex then the lemma holds 
trivially. Suppose that the lemma is true for all k-partite graphs H on at most n vertices and for all k-partitions (V H

1 , . . . , V H
2 )

with respect to which H is totally k-decomposable. Let G be a graph on n + 1 vertices that is totally k-decomposable with 
respect to a vertex partition (V 1, . . . , Vk). Then, we can partition every set V i into two sets V ′

i and V ′′
i in such a way 

that each set V ′
i is either complete or anti-complete to each set V ′′

j for all i, j ∈ {1, . . . , k} and G ′ = G[V ′
1 ∪ . . . ∪ V ′

k] and 
G ′′ = G[V ′′

1 ∪ . . . ∪ V ′′
k ] are totally k-decomposable with respect to the partitions (V ′

1, . . . , V ′
k) and (V ′′

1 , . . . , V ′′
k ), respectively.

As both G ′ and G ′′ are smaller graphs that G , we can apply the induction hypothesis. Hence, we can find a 2k-expression 
that constructs G ′ such that the vertices in each set V ′

i have label i for i ∈ {1, . . . , k}. Similarly, we can find a 2k-expression 
that constructs G ′′ such that the vertices in each set V ′′

j have label k + j for j ∈ {1, . . . , k}. We take the disjoint union of 
these two constructions. Next, for i, j ∈ {1, . . . , k}, we join the vertices with label i to the vertices with label k + j if and 
only if V ′

i is complete to V ′′
j in G . Finally, for i ∈ {1, . . . , k}, we relabel the vertices with label k + i to have label i. This 

completes the proof of the lemma. �
4. Sufficient conditions for (K3, S1,2,3)-free graphs

We observe that the classes of (K3, P1 + 2P2)-free, (K3, P1 + P2 + P3)-free, (K3, P1 + P5)-free and (K3, S1,2,2)-free 
graphs are all subclasses of the class of (K3, S1,2,3)-free graphs. In order to prove that each of the four subclasses has 
bounded clique-width, we investigate, in this section, sufficient conditions for a subclass of (K3, S1,2,3)-free graphs to be 
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of bounded clique-width. We present these conditions in Corollary 1 and Lemma 9. Corollary 1 follows from a structural 
result (Lemma 8), which we prove first. The proof of Lemma 9 uses the results from the previous section. We will not use 
Corollary 1 and Lemma 9 directly when proving that the class of (diamond, P1 +2P2)-free graphs has bounded clique-width. 
However, our proof of that result does rely on these two results indirectly, as it depends on the (K3, P1 + 2P2)-free case.

Lemma 8. Let G be a connected (K3, C5, S1,2,3)-free graph that does not contain a pair of false twins. Then G is either bipartite or an 
induced cycle.

Proof. Let G be a connected (K3, C5, S1,2,3)-free graph that does not contain a pair of false twins. We may assume that G
is not bipartite, otherwise we are done. We know that G is (C3, C5)-free (since C3 = K3). We may therefore assume that G
contains an induced odd cycle C on k vertices, say v1 − v2 − · · · − vk − v1, where k ≥ 7. Assume that C is an odd cycle of 
minimum length in G .

Suppose that not every vertex of G is in C . Since G is connected, we may assume that there is a vertex v not in C that 
has a neighbour in C . Suppose v is adjacent to precisely one vertex of C . If v is adjacent to v3, but has no other neighbours 
on C then G[v3, v, v2, v1, v4, v5, v6] is an S1,2,3, a contradiction. By symmetry, it follows that v must be adjacent to at 
least two vertices of C . Note that since G is K3-free, no vertex outside of C can be adjacent to two consecutive vertices 
of C .

Suppose that v is adjacent to v1 and vi and non-adjacent to v2, . . . , vi−1 for some even i with i ≤ k − 2. Then 
G[v, v1, v2, . . . , vi] would be an odd cycle on less than k vertices, contradicting the minimality of k. By a parity argu-
ment, since C is an odd cycle, it follows that v must be adjacent to precisely two vertices of C , which must be at distance 2
away from each other on the cycle.

Let V i be the set of vertices outside of C that are adjacent to vi−1 and vi+1 (subscripts interpreted modulo k) and let U
be the set of vertices that have no neighbour in C . Suppose, for contradiction, that U is non-empty. Since G is connected, 
without loss of generality there is a vertex u ∈ U that has a neighbour v ∈ V 1. Then G[v2, v1, v, u, v3, v4, v5] is an S1,2,3, a 
contradiction. We conclude that U must be empty.

Now since G is K3-free, for every i the set V i is anti-complete to the set V i+2. Moreover, if i and j are such that the 
vertices vi and v j are at distance more than 2 on the cycle, then V i and V j must be anti-complete, as otherwise there 
would be a smaller odd cycle than C in G , which would contradict the minimality of k.

Note that every set V i is independent in G , since G is K3-free. If a vertex x1 ∈ V 1 is non-adjacent to a vertex x2 ∈ V 2
then G[v3, x2, v2, x1, v4, v5, v6] is an S1,2,3, a contradiction. Therefore a vertex xi ∈ V i is adjacent to a vertex x j ∈ V j if and 
only if vi and v j are consecutive vertices of C . In other words, for every i, every vertex in V i is a false twin of vi . Therefore 
every set V i must be empty, so G is an induced odd cycle. This completes the proof. �

We immediately get the following corollary, which implies that the four triangle-free cases in our new results hold when 
the graph class under consideration is in addition C5-free.

Corollary 1. The class of (K3, C5, S1,2,3)-free graphs has bounded clique-width.

Proof. Let G be a (K3, C5, S1,2,3)-free graph. If G contains a pair of false twins then by Lemma 2 we may delete one of 
them. By Lemma 8, every component of the resulting graph is either a bipartite graph or an induced cycle. In the first case, 
such a component is an S1,2,3-free bipartite graph, so it has bounded clique-width by Lemma 4. In the second case, the 
component has clique-width at most 4 by Lemma 1. The corollary follows. �

In our second lemma we state a number of sufficient conditions for a subclass of (K3, S1,2,3)-free graphs to be of 
bounded clique-width when C5 is no longer a forbidden induced subgraph. To prove it we will need Lemmas 6 and 7.

Lemma 9. Let G be the subclass of (K3, S1,2,3)-free graphs for which the vertices in each graph G ∈ G can be partitioned into ten 
independent sets V 1, . . . , V 5, W1, . . . , W5 , such that the following seven conditions hold (we interpret subscripts modulo 5):

(i) for all i, V i is anti-complete to V i−2 ∪ V i+2 ∪ W i−1 ∪ W i+1;
(ii) for all i, W i is complete to W i−1 ∪ W i+1;

(iii) for all i, every vertex of V i is trivial to at least one of the sets V i+1 and V i−1;
(iv) for all i, every vertex in V i is trivial to W i ;
(v) for all i, W i is trivial to W i−2 and to W i+2;

(vi) for all i, j, the graphs induced by V i ∪ V j and V i ∪ W j are P7-free;
(vii) for all i, there are no three vertices v ∈ V i , w ∈ V i+1 and x ∈ W i+3 such that v, w and x are pairwise non-adjacent.

Then G has bounded clique-width.

Proof. Let G be a (K3, S1,2,3)-free graph with such a partition that satisfies Conditions (i)–(vii) of the lemma. Note that for 
all i, every vertex v ∈ V i is trivial to V i−2, V i+2, W i−1, W i+1, W i and either trivial to V i−1 or trivial to V i+1. Therefore a 
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vertex v ∈ V i can only be non-trivial to W i−2, W i+2 and at most one of V i−1 and V i+1. Likewise, every vertex w ∈ W i is 
trivial to W i−1, W i+1, W i−2, W i+2, V i−1 and V i+1. Therefore, a vertex w ∈ W i can only be non-trivial to V i, V i−2 and V i+2
(and every vertex in V i is trivial to W i ).

For i ∈ {1, . . . , 5}, let W ′
i be the set of vertices in W i that are non-trivial to both V i−2 and V i+2, let V ′

i be the set of 
vertices in V i that are non-trivial to both V i+1 and W i−2 and let V ′′

i be the set of vertices in V i that are non-trivial to 
both V i−1 and W i+2. Note that V ′

i ∩ V ′′
i = ∅ by Condition (iii).

We say that an edge is irrelevant if one of its end-vertices is in a set V i, V ′
i , V

′′
i , W i or W ′

i , and its other end-vertex 
is complete to this set, otherwise we say that the edge is relevant. We will now show that for i ∈ {1, . . . , 5}, the graph 
G[V ′

i ∪ V ′′
i+1 ∪ W ′

i−2] can be separated from the rest of G by using a bounded number of bipartite complementations. To do 
this, we first prove the following claim.

Claim 1. If u ∈ V ′
i ∪ V ′′

i+1 ∪ W ′
i−2 and v /∈ V ′

i ∪ V ′′
i+1 ∪ W ′

i−2 are adjacent then uv is an irrelevant edge.

We split the proof of Claim 1 into the following cases.

Case 1. u ∈ V ′
i .

Since u is in V i , v must be in V i−1 ∪ V i+1 ∪ W i−2 ∪ W i+2, otherwise uv would be irrelevant by Condition (i) or (iv). We 
consider the possible cases for v .

Case 1a. v ∈ V i−1 .

Since u is in V ′
i , it is non-trivial to V i+1, so by Condition (iii), u is trivial to V i−1. Therefore uv is irrelevant.

Case 1b. v ∈ V i+1 .

Suppose, for contradiction, that v is complete to W i−2. Let w ∈ W i−2 be a neighbour of u (such a vertex w exists, 
since u is non-trivial to W i−2). Then G[u, v, w] is a K3, a contradiction, so v cannot be complete to W i−2. Now suppose, for 
contradiction that v is anti-complete to W i−2. We may assume that v has a non-neighbour u′ ∈ V ′

i , otherwise v would be 
trivial to V ′

i , in which case uv would be irrelevant. Since u′ ∈ V ′
i , u′ is non-trivial to W i−2, so it must have a non-neighbour 

w ∈ W i−2. Then, since v is anti-complete to W i−2, it follows that G[u′, v, w] is a 3P1, contradicting Condition (vii). We 
may therefore assume that v is non-trivial to W i−2. We know that v /∈ V ′′

i+1. Therefore v must be trivial to V i , so uv is 
irrelevant.

Case 1c. v ∈ W i−2 .

Reasoning as in the previous case, we find that v cannot be complete or anti-complete to V i+1. Hence, as v /∈ W ′
i−2, v

must be trivial to V i , so uv is irrelevant.

Case 1d. v ∈ W i+2 .

Since u is non-trivial to W i−2 (by definition of V ′
i ), there is a vertex w ∈ W i−2 that is adjacent to u. By Condition (ii), 

w is adjacent to v . Therefore G[u, v, w] is a K3. This contradiction implies that v /∈ W i+2. This completes Case 1.

Now assume that u /∈ V ′
i . Then, by symmetry, u /∈ V ′′

i+1. This means that the following case holds.

Case 2. u ∈ W ′
i−2 .

We argue similarly to Case 1b. We may assume that v is non-trivial to W ′
i−2, otherwise uv would be irrelevant. By 

Conditions (i), (ii), (iv) and (v), it follows that v ∈ V i ∪ V i+1. Without loss of generality assume that v ∈ V i . Since v /∈ V ′
i

and v is non-trivial to W i−2, it follows that v is trivial to V i+1. If v is complete to V i+1 then since u is non-trivial to V i+1, 
there must be a vertex w ∈ V i+1 adjacent to u, in which case G[u, v, w] is a K3, a contradiction. Therefore v must be 
anti-complete to V i+1. Since v is non-trivial to W ′

i−2, there must be a vertex u′ ∈ W ′
i−2 that is non-adjacent to v . Since 

u′ ∈ W ′
i−2, u′ must have a non-neighbour w ∈ V i+1. Then G[u′, v, w] is a 3P1, contradicting Condition (vii). This completes 

Case 2.

We conclude that, if u ∈ V ′
i ∪ V ′′

i+1 ∪ W ′
i−2 and v /∈ V ′

i ∪ V ′′
i+1 ∪ W ′

i−2 are adjacent, then uv is an irrelevant edge. Hence 
we have proven Claim 1.

By Claim 1 we find that if u ∈ V ′
i ∪ V ′′

i+1 ∪ W ′
i−2 and v /∈ V ′

i ∪ V ′′
i+1 ∪ W ′

i−2 are adjacent then u or v is complete to 
some set V j, V ′ , V ′′, W j or W ′ that contains v or u, respectively. By applying a bounded number of bipartite complements 
j j j
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(which we may do by Fact 3), we can separate G[V ′
i ∪ V ′′

i+1 ∪ W ′
i−2] from the rest of G . By Conditions (vi) and (vii) and the 

fact that G is (K3, S1,2,3)-free, Lemmas 6 and 7 imply that G[V ′
i ∪ V ′′

i+1 ∪ W ′
i−2] has clique-width at most 6. Repeating this 

argument for each i, we may assume that V ′
i ∪ V ′′

i+1 ∪ W ′
i−2 = ∅ for every i.

For i ∈ {1, . . . , 5} let V ∗
i be the set of vertices in V i that are either non-trivial to V i+1 or non-trivial to W i+2 and let V ∗∗

i
be the set of the remaining vertices in V i . For i ∈ {1, . . . , 5}, let W ∗

i be the set of vertices that are non-trivial to V i+2 and 
let W ∗∗

i be the set of the remaining vertices in W i .
We claim that every vertex in V i that is non-trivial to V i−1 or that is non-trivial to W i−2 is in V ∗∗

i . Indeed, if v ∈ V i is 
non-trivial to V i−1 then by Condition (iii), v is trivial to V i+1 and since V ′′

i is empty, v must be trivial to W i+2. If v ∈ V i is 
non-trivial to W i−2 then v must be trivial to V i+1 since V ′

i is empty. Moreover, in this case v must also be trivial to W i+2, 
otherwise, by Condition (ii) the vertex v , together with a neighbour of v in each of W i+2 and W i−2, would induce a K3
in G . It follows that every vertex in V i that is non-trivial to V i−1 or that is non-trivial to W i−2 is indeed in V ∗∗

i . Similarly, 
for all i, since W ′

i is empty, every vertex in W i that is non-trivial to V i−2 is in W ∗∗
i .

We say that an edge uv is insignificant if u or v is in some set V ∗
i , V ∗∗

i , W ∗
i or W ∗∗

i and the other vertex is trivial to 
this set; all other edges are said to be significant. We prove the following claim.

Claim 2. If u ∈ W ∗
i ∪ V ∗∗

i+2 ∪ V ∗
i+1 ∪ W ∗∗

i−2 and v /∈ W ∗
i ∪ V ∗∗

i+2 ∪ V ∗
i+1 ∪ W ∗∗

i−2 are adjacent then the edge uv is insignificant.

To prove this claim suppose, for contradiction, that uv is a significant edge. We split the proof into two cases.

Case 1. u ∈ W i .

We will show that v ∈ V ∗∗
i+2 or v ∈ V ∗

i−2 if u ∈ W ∗
i or u ∈ W ∗∗

i , respectively. By Conditions (i), (ii), (iv) and (v) we know 
that u is trivial to V i−1, V i+1, W i−1, W i+1, W i−2 and W i+2, and that every vertex of V i is trivial to W i . Furthermore, u is 
trivial to W ∗∗

i \ {u} since W i is independent. Therefore v ∈ V i−2 ∪ V i+2. Note that v is non-trivial to W i (by choice of v). If 
u ∈ W ∗

i then u must be trivial to V i−2, since W ′
i is empty. Therefore v ∈ V i+2. Now if v ∈ V ∗

i+2 then v is non-trivial to V i−2
or non-trivial to W i−1. In the first case v is non-trivial to both V i−2 and W i , contradicting the fact that V ′

i+2 is empty. In 
the second case v has a neighbour w ∈ W i−1. By Condition (ii), w is adjacent to u, so G[u, v, w] is a K3. This contradiction 
implies that if u ∈ W ∗

i then v ∈ V ∗∗
i+2, contradicting the choice of v . Now suppose u ∈ W ∗∗

i . Then u is trivial to V i+2, so 
v ∈ V i−2. If v ∈ V ∗∗

i−2 then v is trivial W i (by definition of V ∗∗
i−2). Therefore if u ∈ W ∗∗

i then v ∈ V ∗
i−2, contradicting the 

choice of v .

We conclude that for every i ∈ {1, . . . , 5} the vertex u is not in W i . Similarly, we may assume v /∈ W i . This means that 
the following case holds.

Case 2. u ∈ V i , v ∈ V j for some i, j.

Then i 	= j, since V i is an independent set. By Condition (i), j /∈ {i −2, i +2}. Without loss of generality, we may therefore 
assume that j = i + 1. If u ∈ V ∗∗

i then u is trivial to V i+1, so we may assume that u ∈ V ∗
i . If v ∈ V ∗

i+1 then v is non-trivial 
to V i+2, so by Condition (iii) v is trivial to V i , contradicting the fact that uv is significant. Therefore v ∈ V ∗∗

i+1, contradicting 
the choice of v .

We conclude that if for some i, u ∈ W ∗
i ∪ V ∗∗

i+2 ∪ V ∗
i+1 ∪ W ∗∗

i−2 and v /∈ W ∗
i ∪ V ∗∗

i+2 ∪ V ∗
i+1 ∪ W ∗∗

i−2 are adjacent then the 
edge uv is insignificant. Hence we have proven Claim 2.

Note that W ∗
i , V ∗∗

i+2, V
∗
i+1 and W ∗∗

i−2 are independent sets. By Condition (i), W ∗
i is anti-complete to V ∗

i+1 and V ∗∗
i+2 is 

anti-complete to W ∗∗
i−2. Therefore W ∗

i ∪ V ∗
i+1 and V ∗∗

i+2 ∪ W ∗∗
i−2 are independent sets. Thus G[W ∗

i ∪ V ∗∗
i+2 ∪ V ∗

i+1 ∪ W ∗∗
i−2]

is an S1,2,3-free bipartite graph, which has bounded clique-width by Lemma 4. Applying a bounded number of bipartite 
complementations (which we may do by Fact 3), we can separate G[W ∗

i ∪ V ∗∗
i+2 ∪ V ∗

i+1 ∪ W ∗∗
i−2] from the rest of the graph. 

We may thus assume that W ∗
i ∪ V ∗∗

i+2 ∪ V ∗
i+1 ∪ W ∗∗

i−2 = ∅. Repeating this process for each i we obtain the empty graph. This 
completes the proof. �
5. The four triangle-free cases

We can now give the following result, which also implies the (K3, P1 + 2P2)-free case.

Theorem 3. For H ∈ {P1 + P5, S1,2,2, P1 + P2 + P3}, the class of (K3, H)-free graphs has bounded clique-width.

The proofs for all three cases are broadly similar. We will prove the H = P1 + P2 + P3 case separately, as it is a little 
more involved than the other two cases.
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5.1. Proof of the H = P1 + P5 and H = S1,2,2 cases

Proof. Let H ∈ {P1 + P5, S1,2,2} and consider a (K3, H)-free graph G . We may assume that G is connected.
By Corollary 1, we may assume that G contains an induced cycle on five vertices, say C = v1 − v2 − · · · − v5 − v1. Again, 

we will interpret subscripts on vertices and vertex sets modulo 5.
Since G is K3-free, no vertex v is adjacent to two consecutive vertices of the cycle. Therefore every vertex of G has 

either zero, one or two neighbours on the cycle and if it has two neighbours then they must be non-consecutive vertices of 
the cycle.

We partition the vertices of G that are not on C as follows:

– U : the set of vertices adjacent to no vertices of C ,
– W i : the set of vertices whose unique neighbour in C is vi and
– V i : the set of vertices adjacent to vi−1 and vi+1.

In the remainder of the proof we will show how to modify the graph using operations that preserve boundedness of 
clique-width, such that in the resulting graph the set U is empty and the partition V 1, . . . , V 5, W1, . . . , W5 satisfies Condi-
tions (i)–(vii) of Lemma 9. In order to do this we prove a number of claims.

The first two claims follow immediately from the fact that G is K3-free.

Claim 1. For all i, V i and W i are independent sets.

Claim 2. For all i, V i is anti-complete to V i−2 ∪ V i+2 ∪ W i−1 ∪ W i+1 .

Claim 3. We may assume that U is empty.

We prove Claim 3 as follows. First consider the case where H = S1,2,2 and suppose, for contradiction, that U is not 
empty. Since G is connected there must be a vertex u ∈ U that is adjacent to a vertex v /∈ U that has a neighbour on the 
cycle C . Without loss of generality, we may assume that v ∈ V 1 ∪ W2, in which case v is adjacent to v2 and non-adjacent 
to v1, v3 and v4. Now G[v2, v1, v3, v4, v, u] is an S1,2,2. This contradiction means that U = ∅ if H = S1,2,2.

Now consider the case where H = P1 + P5 and suppose that U is non-empty. Suppose, for contradiction, that there 
are two vertices u, u′ ∈ U that do not have the same neighbourhood in some set V i or W i . Without loss of generality, 
assume v ∈ V 1 ∪ W2 is adjacent to u, but not u′ . Note that v is adjacent to v2, but non-adjacent to v1, v3 and v4. Then 
G[v4, u′, u, v, v2, v1] is a P1 + P5 if u and u′ are adjacent and G[u′, u, v, v2, v3, v4] is a P1 + P5 if they are not. This 
contradiction means that every vertex in U has the same neighbourhood in every set V i and every set W i . Since G is 
connected there must be a vertex v in some V i or W i that is adjacent to every vertex of U . Since G is K3-free, U must 
therefore be an independent set. Applying a bipartite complementation (which we may do by Fact 3) between U and 
the vertices adjacent to the vertices of U disconnects U from the rest of the graph. Since G[U ] is independent, it has 
clique-width at most 1. We may therefore assume that U is empty.

Claim 4. For all i, W i is complete to W i−1 ∪ W i+1 .

Suppose, for contradiction, that v ∈ W1 has a non-neighbour w ∈ W2. Then G[w, v, v1, v5, v4, v3] is a P1 + P5 and 
G[v1, v, v2, w, v5, v4] is an S1,2,2. This contradiction proves the claim.

See Fig. 3 for an illustration of the graph G .

Claim 5. For all i, every vertex of V i is trivial to at least one of the sets V i+1 and V i−1 .

Suppose, for contradiction that the claim is false. Without loss of generality, there is a vertex v ∈ V 2 with non-
neighbours u ∈ V 1 and w ∈ V 3. By Claim 2, u and w must be non-adjacent. Then G[v5, u, v1, v, v4, w] is an S1,2,2 and 
G[u, v1, v, v3, v4, w] is a P1 + P5. This contradiction completes the proof of the claim.

Claim 6. For all i, every vertex in V i is trivial to W i .

Suppose, for contradiction, that the claim is false. Without loss of generality, we may assume there are vertices 
v ∈ V 1 and w, w ′ ∈ W1 such that v is adjacent to w , but not to w ′ . Then G[v2, v, v1, w ′, v3, v4] is an S1,2,2 and 
G[w ′, w, v, v2, v3, v4] is a P1 + P5. This contradiction completes the proof of the claim.

Claim 7. For all i, W i is trivial to W i−2 and to W i+2 .
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Fig. 3. The graph G . The black points are the vertices of the cycle C . The circles are (possibly empty) independent sets of vertices and the lines are complete 
bipartite graphs. Note that G may contain additional edges that are not represented in this figure.

Suppose, for contradiction, that this does not hold. Without loss of generality, assume v ∈ W1 is adjacent to w ∈ W3 and 
non-adjacent to w ′ ∈ W3. Then G[v1, v2, v5, v4, v, w] is an S1,2,2 and G[w ′, w, v, v1, v5, v4] is a P1 + P5. This contradiction 
proves the claim.

Claim 8. For all i, j, the graphs induced by V i ∪ V j and V i ∪ W j are P7-free.

Note that P1 + P5 is an induced subgraph of P7. Therefore if H = P1 + P5 then the claim follows immediately. Now 
suppose H = S1,2,2. Without loss of generality, we may assume i = 1. Suppose that G[V 1 ∪ V j] or G[V 1 ∪ W j] contains an 
induced P7, for some i, j. By Claims 1, 2 and 6 and symmetry, we may assume that G[V 1 ∪ V 2] or G[V 1 ∪ W3] contains 
this P7. This P7 contains an induced subgraph isomorphic to 2P2, say on vertices v, v ′, w, w ′ . Then G[v5, v4, v, v ′, w, w ′]
is an S1,2,2. This contradiction completes the proof of the claim.

Claim 9. For all i, there are no three vertices v ∈ V i , w ∈ V i+1 and x ∈ W i+3 such that v, w and x are pairwise non-adjacent.

Suppose, for contradiction that such pairwise non-adjacent vertices exist, say with v ∈ V 1, w ∈ V 2 and x ∈ W4. Then 
G[v4, x, v3, w, v5, v] is an S1,2,2 and G[x, v3, w, v1, v5, v] is a P1 + P5. This contradiction completes the proof of the claim.

We now consider the graph obtained G ′ from G by removing the five vertices of C . Claims 1 and 3 show that we 
may assume V 1, . . . , V 5, W1, . . . , W5 are independent sets that form a partition of the vertex set of G ′ . Claims 2 and 4–9
correspond to the seven conditions of Lemma 9. Therefore G ′ has bounded clique-width. By Fact 1, G also has bounded 
clique-width. This completes the proof. �
5.2. Proof of the H = P1 + P2 + P3 case

Proof. Consider a (K3, P1 + P2 + P3)-free graph G . We may assume that G is connected.
By Corollary 1, we may assume that G contains an induced cycle on five vertices, say C = v1 − v2 − · · · − v5 − v1. Again, 

we will interpret subscripts on vertices and vertex sets modulo 5.
Since G is K3-free, no vertex v is adjacent to two consecutive vertices of C . Therefore every vertex of G has either zero, 

one or two neighbours on C and if it has two neighbours then they must be non-consecutive vertices of C .
We partition the vertices of G that are not on C as follows:

– U : the set of vertices adjacent to no vertices of C ,
– W i : the set of vertices whose unique neighbour in C is vi and
– V i : the set of vertices adjacent to vi−1 and vi+1.

In the remainder of the proof we will show how to modify the graph using operations that preserve boundedness of 
clique-width, such that in the resulting graph the set U is empty and the partition V 1, . . . , V 5, W1, . . . , W5 satisfies Condi-
tions (i)–(vii) of Lemma 9.

The first two claims follow immediately from the fact that G is K3-free.

Claim 1. For all i, V i and W i are independent sets.
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Claim 2. For all i, V i is anti-complete to V i−2 ∪ V i+2 ∪ W i−1 ∪ W i+1 .

Claim 3. We may assume that U is empty.

In order to prove Claim 3, we first suppose that there are two adjacent vertices u, u′ ∈ U . Since G is connected, we 
may assume without loss of generality that u is adjacent to some vertex v ∈ V 1 ∪ W2. Then u′ must be non-adjacent to v , 
otherwise G[u, u′, v] would be a K3. Note that v is adjacent to v2, but not to v1, v3 or v4. Now G[v1, v3, v4, u′, u, v] is a 
P1 + P2 + P3. This contradiction implies that U must be an independent set.

Now suppose, for contradiction, that a vertex u ∈ U has two neighbours in some set V i ∪ W i+1. Without loss of generality 
assume that u is adjacent to v, v ′ ∈ V 1 ∪ W2. Note that v and v ′ are adjacent to v2, but not adjacent to v1, v3 and v4. 
Now G[v1, v3, v4, v, u, v ′] is a P1 + P2 + P3. This contradiction implies that every vertex of U has at most one neighbour 
in V i ∪ W i+1 for each i. In particular, this means that every vertex of U has degree at most 5. Therefore, if u ∈ U then we 
delete {u} ∪ N(u) (a set of at most 6 vertices). This gives us a (K3, P2 + P3)-free graph, which has bounded clique-width by 
Lemma 3. By Fact 1, we may therefore assume that U is empty, that is, we have proven Claim 3.

We say that a set V i or W i is large if it contains at least two vertices and small if it contains exactly one vertex. If any 
set V i is not large then by Fact 1 we may assume that it is empty. (Later in the proof, we may delete vertices from some 
sets V i or W i . In doing so, some sets that were previously large may become small. If this happens, we will simply repeat 
the argument. We will only do this a bounded number of times, so boundedness of clique-width will be preserved.)

Claim 4. For all i, W i is complete to W i−1 ∪ W i+1 .

Suppose, for contradiction, that v ∈ W1 has a non-neighbour w ∈ W2. Since W2 is non-empty, it must be large, so it 
must contain a vertex w ′ distinct from w . Then G[w, v3, v4, v1, v, w ′] is a P1 + P2 + P3 if v and w ′ are adjacent and 
G[v, v4, v5, w, v2, w ′] is a P1 + P2 + P3 if they are not. This contradiction completes the proof of Claim 4.

Claim 5. For all i, every vertex of V i is trivial to at least one of the sets V i+1 and V i−1 .

Suppose, for contradiction that the claim is false. Without loss of generality, there is a vertex v ∈ V 2 with non-
neighbours u ∈ V 1 and w ∈ V 3 and neighbour u′ ∈ V 1. By Claim 2, w and must be non-adjacent to both u and u′ . Then 
G[u, v4, w, v1, v, u′] is a P1 + P2 + P3. This contradiction completes the proof of Claim 5.

Claim 6. For all i, every vertex in V i is trivial to W i .

In fact we will prove a stronger statement, namely that for all i, V i is trivial to W i . Suppose, for contradiction, that this 
is not the case. Without loss of generality, assume that V 1 is not trivial to W1. First suppose that there are vertices w ∈ W1
and v, v ′ ∈ V 1 such that w is adjacent to v , but not to v ′ . Then G[v ′, v3, v4, v1, w, v] is a P1 + P2 + P3. Therefore every 
vertex in W1 must be trivial to V 1. Since we assumed that V 1 is not trivial to W1, there must therefore be vertices v ∈ V 1
and w, w ′ ∈ W1 such that v is adjacent to w , but not to w ′ . Since V 1 is non-empty, it must be large, so there must be 
another vertex v ′ ∈ V 1. Since every vertex of W1 is trivial to V 1, v ′ must be adjacent to w and non-adjacent to w ′ . Then 
G[w ′, v3, v4, v, w, v ′] is a P1 + P2 + P3. This contradiction completes the proof of Claim 6.

Claim 7. We may assume that for all i, W i is anti-complete to W i−2 and to W i+2 .

We start by showing that the edges between W i and W i+2 form a matching. Indeed, suppose for contradiction that 
there is a vertex v ∈ W1 with two neighbours w, w ′ ∈ W3. Then G[v2, v4, v5, w, v, w ′] is a P1 + P2 + P3, a contradiction. 
By symmetry, no vertex of W3 has two neighbours in W1. We conclude that the edges between W i and W i+2 form a 
matching.

Let W ′
1 be the set of vertices in W1 that have a neighbour in W3. Similarly, let W ′′

3 be the set of vertices in W3 that 
have a neighbour in W1. Note that |W ′

1| = |W ′′
3 | since the edges between W ′

1 and W ′′
3 form a perfect matching. We will 

show that every vertex of G \ (W ′
1 ∪ W ′′

3 ) is trivial to W ′
1 and W ′′

3 . This follows immediately if |W ′
1| = |W ′′

3 | = 1.
Assume |W ′

1| = |W ′′
3 | ≥ 2. Suppose there is a vertex w ∈ V (G) \ (W ′

1 ∪ W ′′
3 ) that is non-trivial to W ′

1. Then we may 
choose u, u′ ∈ W ′

1 and v, v ′ ∈ W ′′
3 such that u is adjacent to v and w , but non-adjacent to v ′ while u′ is adjacent to v ′ , but 

non-adjacent to v and w . Since w is non-trivial to W1, it cannot be in W1 (by Claim 1), V 2 ∪ V 5 (by Claim 2), W2 ∪ W5
(by Claim 4), V 1 (by Claim 6) or W3 (since we assumed w /∈ W ′′

3 ). Furthermore, w /∈ C by definition of W1. Therefore 
w ∈ V 4 ∪ W4 ∪ V 3. By Claims 2, 4 and 6 respectively, we conclude that w is trivial to W3. Since u is adjacent to v and w , 
it follows that w must be non-adjacent to v , otherwise G[u, v, w] would be a K3, a contradiction. Therefore w must be 
anti-complete to W3. If w ∈ V 3 ∪ W4, let z = v5 and otherwise (if w ∈ V 4) let z = v4. Then z is non-adjacent to u, u′, v, v ′
and w . Now G[z, u′, v ′, v, u, w] is a P1 + P2 + P3, a contradiction. Therefore every vertex in V (G) \ (W ′

1 ∪ W ′′
3 ) is trivial 

to W ′ . By symmetry, every vertex in V (G) \ (W ′ ∪ W ′′) is trivial to W ′′ .
1 1 3 3
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Therefore, by applying a bipartite complementation (which we may do by Fact 3) between W ′
1 and the vertices in 

V (G) \ W ′′
3 that are complete to W ′

1 and another bipartite complementation between W ′′
3 and the vertices in V (G) \ W ′

1
that are complete to W ′′

3 , we separate G[W ′
1 ∪ W ′′

3 ] from the rest of the graph. Since G[W ′
1 ∪ W ′′

3 ] is a perfect matching, 
it has clique-width at most 2. We may therefore assume that W ′

1 ∪ W ′′
3 is empty i.e. that W1 is anti-complete to W3. 

Repeating this argument for each i ∈ {1, . . . , 5}, we show that we may assume that W i is anti-complete to W i−2 for every i. 
This completes the proof of Claim 7.

Note that when applying Claim 7 we may delete vertices in some sets W i , which may cause some large sets to become 
small. In this case, as stated earlier, we may simply delete the small sets as before. Thus we may assume that every set W i
is either large or empty.

Claim 8. For all i, j, the graphs induced by V i ∪ V j and V i ∪ W j are P7-free.

Suppose, for contradiction, that the claim is false. Then there is an i and a j such that G[V i ∪ V j] or G[V i ∪ W j] contains 
an induced P7, say on vertices u1, . . . , u7. There must be a vertex vk ∈ C that is non-adjacent to every vertex of V i ∪ V j
or V i ∪ W j , respectively (since every vertex not in C has at most two neighbours in C ). Then G[vk, u1, u2, u4, u5, u6] is a 
P1 + P2 + P3, a contradiction. This completes the proof of Claim 8.

Claim 9. For all i, if there are vertices v ∈ V i , w ∈ V i+1 and x ∈ W i+3 such that v, w and x are pairwise non-adjacent then G has 
bounded clique-width.

Suppose that such pairwise non-adjacent vertices exist, say with v ∈ V 1, w ∈ V 2 and x ∈ W4. We start by showing that 
V 3 ∪ V 4 ∪ V 5 ∪ W1 ∪ W2 ∪ W3 ∪ W5 is empty.

First suppose there is a vertex y ∈ V 3. Then y is non-adjacent to v and x by Claim 2. Then G[x, v, v5, v3, w, y] or 
G[v, v1, w, x, v4, y] is a P1 + P2 + P3 if y is adjacent or non-adjacent to w , respectively. This contradiction implies that V 3
is empty. By symmetry V 5 is also empty.

Next, suppose there is a vertex y ∈ V 4. Then y is non-adjacent to v and w by Claim 2. Then G[v, v1, w, v4, x, y] or 
G[y, v4, x, v2, v1, w] is a P1 + P2 + P3 if y is adjacent or non-adjacent to x, respectively. This contradiction implies that V 4
is empty.

Next, suppose there is a vertex y ∈ W1. Then y is non-adjacent to w and x by Claims 2 and 7, respectively. Then 
G[w, x, v4, v2, v, y] or G[v, x, v4, w, v1, y] is a P1 + P2 + P3 if y is adjacent or non-adjacent to v , respectively. This contra-
diction implies that W1 is empty. By symmetry W2 is also empty.

Finally, suppose that W3 is not empty. Then W3 must be large, so it contains two vertices, say y and y′ . Then y
and y′ are each non-adjacent to w and adjacent to x by Claims 2 and 4, respectively. If y is non-adjacent to v then 
G[v, v1, w, v4, x, y] would be a P1 + P2 + P3, a contradiction. Therefore y is adjacent to v , and similarly y′ is adjacent to v . 
Now G[v4, v1, w, y, v, y′] is a P1 + P2 + P3. This contradiction implies that W3 is empty. By symmetry, we may assume 
that W5 is also empty.

The above means that V 3 ∪ V 4 ∪ V 5 ∪ W1 ∪ W2 ∪ W3 ∪ W5 is indeed empty, so V (G) = V 1 ∪ V 2 ∪ W4 ∪ V (C).
Let V ′

1 and V ′′
1 be the set of vertices in V 1 that are anti-complete or complete to {w, x}, respectively. Let V ′

2 and V ′′
2 be 

the set of vertices in V 2 that are anti-complete or complete to {v, x}, respectively. Let W ′
4 and W ′′

4 be the set of vertices 
in W4 that are anti-complete or complete to {v, w}, respectively. Observe that v ∈ V ′

1, w ∈ V ′
2 and x ∈ W ′

4. We will show 
that V ′

1, V
′′
1 , V ′

2, V
′′
2 , W ′

4 and W ′′
4 form a partition of V (G) \ V (C).

Suppose, for contradiction, that there is a vertex v ′ ∈ V 1 with exactly one neighbour in {w, x}. Then G[v, v4, x, v ′, w, v1]
or G[v, v1, w, v4, x, v ′] is a P1 + P2 + P3 if this neighbour is w or x, respectively. Therefore every vertex of V 1 is in V ′

1 ∪ V ′′
1 . 

Similarly, every vertex of V 2 is in V ′
2 ∪ V ′′

2 .
Suppose, for contradiction, that there is a vertex x′ ∈ W4 with exactly one neighbour in {v, w}. Without loss of generality, 

suppose that x′ is adjacent to v , but not to w . Then G[x, w, v3, v5, v, x′] is a P1 + P2 + P3. Therefore every vertex of W4 is 
in W ′

4 ∪ W ′′
4 . Thus every vertex of V (G) \ V (C) is in V ′

1 ∪ V ′′
1 ∪ V ′

2 ∪ V ′′
2 ∪ V ′

4 ∪ V ′′
4 .

Observe that the remarks made above for v, w and x also hold if one of these is replaced by a vertex of V ′
1, V ′

2 or W ′
4, 

respectively. Indeed, suppose v ′ ∈ V ′
1 \ {v}, then every vertex of W4 must be either complete or anti-complete to {v ′, w}. 

Since the vertices of W ′
4 are non-adjacent to w , but the vertices of W ′′

4 are adjacent to w , it follows that W ′
4 is anti-

complete to {v ′, w} and that W ′′
4 is complete to {v ′, w}. Therefore W ′

4 is anti-complete to V ′
1, and W ′′

4 is complete to V ′
1. 

Since G is K3-free and every vertex of V ′′
1 ∪ V ′′

2 is adjacent to x, it follows that V ′′
1 is anti-complete to V ′′

2 . Similarly, we 
conclude that V ′

1, V
′
2 and W ′

4 are pairwise anti-complete, V ′′
1 , V ′′

2 and W ′′
4 are pairwise anti-complete and for every pair 

of sets S ∈ {V ′
1, V

′
2, W

′
4} and T ∈ {V ′′

1 , V ′′
2 , W ′′

4 } such that (S, T ) /∈ {(V ′
1, V

′′
1 ), (V ′

2, V
′′
2 ), (W ′

4, W
′′
4 )}, S and T are complete to 

each-other.
Now if we delete the vertices of C (which we may do by Fact 1) and apply bipartite complementations between V ′

1&V ′′
2 , 

V ′
1&W ′′

4 , V ′
2&V ′′

1 , V ′
2&W ′′

4 , W ′
4&V ′′

1 and W ′
4&V ′′

2 , we obtain an edgeless graph, which therefore has clique-width at most 1. 
By Fact 3, it follows that G has bounded clique-width. This completes the proof of Claim 9.

We now consider the graph G ′ obtained from G by removing the five vertices of C . Claims 1 and 3 show that we 
may assume V 1, . . . , V 5, W1, . . . , W5 are independent sets that form a partition of the vertex set of G ′ . Claims 2 and 4–9
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correspond to the seven conditions of Lemma 9. Therefore G ′ has bounded clique-width. By Fact 1, G also has bounded 
clique-width. This completes the proof. �
6. The diamond-free case

In this section, we prove that (diamond, P1 + 2P2)-free graphs have bounded clique-width. In order to do this, we first 
need to prove the following two lemmas.

Lemma 10. The class of disconnected (diamond, P1 + 2P2)-free graphs has bounded clique-width.

Proof. If G is a disconnected (diamond, P1 + 2P2)-free graph then it contains at least two components. Therefore every 
component of G must be (diamond, 2P2)-free and thus has bounded clique-width by Lemma 3. We conclude that G has 
bounded clique-width. �
Lemma 11. The class of (diamond, P1 + 2P2)-free graphs that contain a K4 has bounded clique-width.

Proof. Let G be a (diamond, P1 + 2P2)-free graph containing an induced K4. By Lemma 10, we may assume that G is 
connected. Let K be a maximum clique of G and note that |K | ≥ 4. We may assume that G contains vertices outside K , 
otherwise G is a clique on at least four vertices, in which case it has clique-width 2.

Suppose there is a vertex v in G that is not in K , but has at least two neighbours x, y ∈ K . By maximality of K , there 
must be a vertex z ∈ K that is not adjacent to v . However this means that G[x, y, v, z] is a diamond, a contradiction. 
Therefore every vertex not in K has at most one neighbour in K .

Choose v1, v2, v3, v4 ∈ K arbitrarily. For i ∈ {1, 2, 3, 4}, let V i be the set of vertices not in K whose unique neighbour 
in K is vi . Let U be the set of vertices not in K that do not have a neighbour in {v1, v2, v3, v4}. Note that vertices of U
may have neighbours in K \ {v1, v2, v3, v4}.

Claim 1. For i, j ∈ {1, 2, 3, 4}, G[U ∪ V i ∪ V j] must be (P1 + P2)-free.

Indeed, if G[U ∪ V 1 ∪ V 2] contains an induced P1 + P2 on vertices y1, y2, y3, say, then G[y1, y2, y3, v3, v4] is a P1 +2P2, 
a contradiction. The claim follows by symmetry.

Claim 2. For i ∈ {1, 2, 3, 4}, we may assume G[V i] is either a clique on at most two vertices or an independent set.

If G[V 1] contains an induced P3 on vertices y1, y2, y3, say, then G[v1, y2, y1, y3] is a diamond, a contradiction. There-
fore G[V 1] is a disjoint union of cliques. Claim 1 implies that G[V 1] is either a clique, or else every clique in G[V 1] contains 
at most one vertex i.e. V 1 is an independent set.

Suppose, for contradiction, that V 1 is a clique on at least three vertices. We will show that the clique-width of G is 
bounded in this case. First suppose, for contradiction, that there is a vertex u ∈ U ∪ V 2 ∪ V 3 ∪ V 4. Since G[{u} ∪ V 1] is 
(P1 + P2)-free by Claim 1, u must be adjacent to all but at most one vertex of V 1. Let x, y ∈ V 1 be neighbours of u. Then 
G[x, y, u, v1] is a diamond, a contradiction. We conclude that U ∪ V 2 ∪ V 3 ∪ V 4 = ∅, so V (G) = K ∪ V 1. Deleting v1 we 
obtain a disconnected (diamond, P1 + 2P2)-free graph, which has bounded clique-width by Lemma 10. Therefore G has 
bounded clique-width by Fact 1. Therefore if V 1 is a clique then it contains at most two vertices. The claim follows by 
symmetry.

Claim 3. For distinct i, j ∈ {1, 2, 3, 4}, if V i is an independent set then every vertex of V j is either complete or anti-complete to V i .

Indeed, this follows directly from Claim 1, which states that G[V i ∪ V j] is (P1 + P2)-free. (Note that if V j is a clique then 
it may contain a vertex that is complete to V i and another that is anti-complete to V i .)

Claim 4. We may assume U contains at least three vertices.

Suppose that U has at most two vertices. By Fact 1 and Claim 2, we may remove every vertex of U and every vertex of V i
for those V i that are cliques. After this, by Claim 2, every set V i will either be empty or an independent set. Furthermore, 
for distinct i, j ∈ {1, 2, 3, 4}, by Claim 3, every vertex of V i is trivial to V j and vice versa, so V i is complete or anti-complete 
to V j . By Fact 3, we may apply a bipartite complementation between V i and V j if they are complete. By Fact 1, we may 
delete v1, v2, v3, v4. We obtain a graph that is the disjoint union of a clique and at most four independent sets and therefore 
has clique-width at most 2. It follows that the graph G must also have had bounded clique-width. We may therefore assume 
that U contains at least three vertices. This completes the proof of the claim.
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We now consider a number of cases:

Case 1. Every vertex of K has at most one neighbour outside of K .

By Fact 2, we may remove all the edges connecting pairs of vertices in K . Let G ′ be the resulting graph and note 
that in G ′ , every vertex of K has at most one neighbour. Then cw(G ′) ≤ cw(G ′ \ K ) + 1. (Given a k-expression for G ′ \ K , 
whenever we create a vertex v that has a neighbour w in K , we immediately create w with a special new label ∗, take 
the disjoint union and join v to w by an edge. For any vertices in K with no neighbours outside of K , we simply add them 
with label ∗ at the end of the process. This will give a (k + 1)-expression for G ′ .) Now G ′ \ K = G \ K . Since V 1 contains 
at most one vertex, by Fact 1, it is sufficient to show that G \ (V 1 ∪ K ) has bounded clique-width. However, G \ (V 1 ∪ K )

is (diamond, 2P2)-free, since if it contained an induced 2P2 then this, together with v1 would induce a P1 + 2P2 in G . 
Therefore G \(V 1 ∪ K ) has bounded clique-width by Lemma 3 and therefore G also has bounded clique-width. This completes 
the proof of this case.

We may now assume that at least one vertex of K has at least two neighbours outside of K .

Case 2. Exactly one vertex of K has neighbours outside K .

Suppose that v1 is the only vertex of K that has neighbours outside of K (at least one vertex of K has a neighbour 
outside of K since G is connected and not a clique). Now G \ {v1} is a disconnected (diamond, P1 + 2P2)-free graph, so it 
has bounded clique-width by Lemma 10. By Fact 1, G also has bounded clique-width. This completes the proof of this case.

We may now assume that at least two vertices of K have neighbours outside of K . Without loss of generality, we may 
therefore assume that the following case holds.

Case 3. V 1 contains at least two vertices and V 2 contains at least one vertex.

Fix x, y, z ∈ V 1 ∪ V 2, with two of these vertices in V 1 and one in V 2. If these vertices are pairwise adjacent then 
G[x, y, v1, z] would be a diamond, a contradiction. We may therefore assume that x and y are non-adjacent. Now every 
vertex of v ∈ U is either complete or anti-complete to {x, y}, otherwise G[v, x, y] would be a P1 + P2 in G[U ∪ V 1 ∪ V 2], 
which would contradict Claim 1.

Suppose u, v ∈ U . If u and v are adjacent then they cannot both be complete to {x, y}, otherwise G[u, v, x, y] would 
be a diamond and they cannot both be anti-complete to {x, y}, otherwise G[x, u, v] would be a P1 + P2 in G[U ∪ V 1 ∪
V 2], which would contradict Claim 1. Therefore if u and v are adjacent then one of them is complete to {x, y} and the 
other is anti-complete to {x, y}. If u and v are non-adjacent then they must either both be complete to {x, y} or both be 
anti-complete to {x, y}. Indeed, suppose for contradiction that u is complete to {x, y} and v is anti-complete to {x, y}. Then 
G[v, u, x] would be an induced P1 + P2 in G[U ∪ V 1 ∪ V 2], which would contradict Claim 1. The above holds for every pair 
of vertices u, v ∈ U . This implies that G[U ] is a complete bipartite graph with one of the sets in the bipartition consisting 
of the vertices complete to {x, y} and the other consisting of the vertices anti-complete to {x, y}. (Note that one of the parts 
of the complete bipartite graph G[U ] may be empty, as we allow the case where U is an independent set.)

Note that the arguments in the above paragraph only used the facts that G[U ∪ V 1 ∪ V 2] is (P1 + P2, diamond)-free and 
that V 1 ∪ V 2 contains two non-adjacent vertices. Let U1 and U2 be the independent sets that form the bipartition of U . 
Note that since U contains at least three vertices (by Claim 4), we may assume without loss of generality that U1 contains 
at least two vertices. If U2 contains exactly one vertex, by Fact 1, we may delete it. (Note that this may cause U to contain 
only two vertices, rather than at least three, however this does not affect our later arguments.) We may therefore assume 
that U2 is either empty or contains at least two vertices. Repeating the argument in the previous paragraph with the roles 
of U and V 1 ∪ V 2 reversed, we find that G[V 1 ∪ V 2] is a complete bipartite graph, with one side of the bipartition complete 
to U1 and the other anti-complete to U1 and if U2 is non-empty then one side of the bipartition is complete to U2 and the 
other is anti-complete to U2. Similarly, for each pair of distinct i, j ∈ {1, 2, 3, 4}, the same argument shows that G[V i ∪ V j]
is also a complete bipartite graph with a similar bipartition.

We now proceed as follows: if V i is a clique for some i then it contains at most two vertices, in which case we delete 
them and make V i empty. For every pair of distinct i, j ∈ {1, 2, 3, 4} (V i or V j may be empty) G[V i ∪ V j] must then be an 
independent set, in which case we do nothing, or a complete bipartite graph with bipartition (V i, V j), in which case we 
apply a bipartite complementation between V i and V j . Now every set V i is either complete or anti-complete to U1 and 
complete or anti-complete to U2. Applying at most 4 × 2 = 8 bipartite complementations, we can remove all edges between 
V 1 ∪ · · · ∪ V 4 and U . Next, we apply a bipartite complementation between U1 and U2. Finally, we apply a complementation 
to the clique K . Let G ′ be the resulting graph and note that G ′[V 1 ∪ · · · ∪ V 4 ∪ U ] and G ′[K ] are independent sets and that 
in G ′ every vertex in V 1 ∪ · · · ∪ V 4 ∪ U has at most one neighbour in K . Therefore G ′ is a disjoint union of stars, and so has 
clique-width at most 2. By Facts 1, 2 and 3, it follows that G also has bounded clique-width. This completes proof for this 
case and therefore completes the proof of the lemma. �
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To prove the main result of this section, we will need an additional notion. Let G be a graph. For each set T that induces 
a triangle in G , let U T be the set of vertices in G that have no neighbour in T . Let U = {u ∈ U T | T induces a triangle in G}. 
We say that the graph G is basic if we can partition the vertices of G \ U into three sets V 1, V 2, V 3 and also into sets 
T 1, W1, T 2, W2, . . . , T p, W p for some p such that the following properties hold:

(i) No triangle in G contains a vertex of U .
(ii) For every triangle T , the set U T is independent and there is a vertex x ∈ V (T ) such that N(x) = N(u) ∪ (V (T ) \ {x})

for all u ∈ U T .
(iii) V 1, V 2 and V 3 are independent.
(iv) {G[T 1], . . . , G[T p]} is the set of all induced triangles in G and each of them has exactly one vertex in each of V 1, V 2

and V 3.
(v) G[W i] is (P1 + 2P2)-free and does not contain an induced 3P1 with one vertex in each of V 1, V 2 and V 3.

(vi) If i < j and k + 1 	≡ � ( mod 3) then:
1. T i ∩ Vk is anti-complete to T j ∩ V� ,
2. T i ∩ Vk is anti-complete to W j ∩ V� ,
3. W i ∩ Vk is anti-complete to T j ∩ V� and
4. W i ∩ Vk is anti-complete to W j ∩ V� ,

(vii) If i < j and k + 1 ≡ � ( mod 3) then:
1. T i ∩ Vk is complete to T j ∩ V� ,
2. T i ∩ Vk is complete to W j ∩ V� and
3. W i ∩ Vk is complete to T j ∩ V� .

(viii) If i + 1 < j and k + 1 ≡ � ( mod 3) then:
1. W i ∩ Vk is complete to W j ∩ V� .

(ix) If i + 1 = j and k + 1 ≡ � ( mod 3) then:
1. W i ∩ Vk is either complete or anti-complete to W j ∩ V� .

(x) If i = j and k + 1 ≡ � ( mod 3) then:
1. T i ∩ Vk is complete to W j ∩ V� .

(xi) If i = j and k + 1 	≡ � ( mod 3) then:
1. T i ∩ Vk is anti-complete to W j ∩ V� .

Next, we show that basic graphs have bounded clique-width.

Lemma 12. If G is a basic graph then it has clique-width at most 9.

Proof. Let G be a graph with vertices partitioned into sets as above. This means that we have sets of vertices 
T 1, W1, T 2, W2, . . . , T p, W p in order, such that if X and Y are sets in this order with X coming before Y then X ∩ Vk
is complete to Y ∩ V� if k + 1 ≡ � ( mod 3) and anti-complete otherwise in all cases except where X = W i, Y = W i+1 for 
some i, in which case X ∩ Vk may either be complete or anti-complete to Y ∩ Vk+1. Also recall that U T i

is an independent 
set for every i and there is a vertex x ∈ T i such that every vertex of U T i

has the same neighbourhood in G \ T i as x.
Note that W i ⊆ V 1 ∪ V 2 ∪ V 3. Then G[W i] is a 3-partite graph with 3-partition (W i ∩ V 1, W i ∩ V 2, W i ∩ V 3). Furthermore, 

G[W i] is K3-free, and contains no induced 3P1 with exactly one vertex in each V j . Since G[W i] is (P1 + 2P2)-free it 
must therefore be (P7, S1,2,3)-free. Therefore, by Lemma 6, the graph G[W i] is totally 3-decomposable with respect to this 
partition. By Lemma 7, we can construct G[W i] using at most six labels such that the resulting labelled graph has all 
vertices in W i labelled with label i for i ∈ {1, 2, 3}.

We are now ready to describe how to construct G . We do this by constructing G[T i ∪ U T i ] then G[W i] for each i ∈
{1, . . . , p} in turn and adding it to the graph. More formally, we start with the empty graph, then for i = 1, . . . , p in turn, 
we do the following:

1. Let {xi
1, x

i
2, x

i
3} = T i , where xi

j ∈ V j for j ∈ {1, 2, 3}. Add vertices xi
1, x

i
2 and xi

3 with labels 4, 5 and 6, respectively, then 
add edges between vertices labelled 4&5, 5&6 and 4&6.

2. If U T i
is non-empty then the vertices in this set have the same neighbourhood in G \ T i as xi

1, x
i
2 or xi

3. Add the vertices 
of U T i

with label 4, 5 or 6, respectively.
3. Add edges between vertices labelled 1&5, 2&6 and 3&4.
4. Relabel vertices labelled 4, 5 or 6 to have labels 1, 2 or 3, respectively.
5. Construct G[W i] with vertices labelled 4, 5 or 6, if they are in V 1, V 2 or V 3, respectively.
6. Add edges between vertices labelled 1&5, 2&6 and 3&4.
7. If i > 1 then add edges between vertices labelled 4&9, 5&7 and 6&8 if Vk ∩W i is complete to Vk−1 ∩W i−1 for k = 1, 2, 3, 

respectively.
8. Relabel vertices labelled 7, 8 or 9 to have labels 1, 2 or 3, respectively.
9. Relabel vertices labelled 4, 5 or 6 to have labels 7, 8 or 9, respectively.
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Note that at the end of any iteration of the above procedure, the vertices of W i will have labels in {7, 8, 9} and all other 
constructed vertices will have labels in {1, 2, 3}.

This construction builds a copy of G using at most nine labels. Thus G has clique-width at most 9. This concludes the 
proof of the lemma. �

We are now ready to prove our main theorem of this section. To do so, we show that if a graph G is (diamond, P1 +2P2)-
free then either we can show that G has bounded clique-width directly (possibly by applying some graph operations that 
do not change the clique-width the graph by “too much”) or else the (unmodified) graph G is itself basic (in which case it 
has clique-width at most 9).

Theorem 4. The class of (diamond, P1 + 2P2)-free graphs has bounded clique-width.

Proof. Let G be a (diamond, P1 + 2P2)-free graph. By Lemma 10, we may assume that G is connected. By Theorem 3, we 
may assume that G contains an induced K3. By Lemma 11, we may assume that G is K4-free.

Let T be an arbitrary induced triangle (i.e. K3) in G with vertices v T
1 , v T

2 and v T
3 . Since G is (diamond, K4)-free, every 

vertex not in T has at most one neighbour in T . For i ∈ {1, 2, 3} let V T
i be the set of vertices not in T whose unique 

neighbour in T is v T
i and let U T be the set of vertices that have no neighbour in T . We will now prove a series of 

claims. More formally, we will show that if the conditions of any of these claims are not satisfied, then either we obtain a 
contradiction or we can directly prove that G has bounded clique-width, in which case we are done.

Claim 1. For every triangle T , the sets V T
1 , V T

2 and V T
3 each contain at least three vertices.

If for some i the set V T
i contains at most two vertices then v T

i has at most four neighbours in G . If we delete every 
vertex in N(v T

i ), then v T
i has no neighbours in the resulting graph. Therefore either G has at most five vertices (in which 

case it has clique-width at most 5), or G \ N(v T
i ) is a disconnected (diamond, P1 + 2P2)-free graph, so it has bounded 

clique-width by Lemma 10. By Fact 1, it follows that G has bounded clique-width. This completes the proof of the claim.

Claim 2. For every triangle T , the sets V T
1 , V T

2 and V T
3 are independent.

Suppose, for contradiction, that V T
1 is not an independent set. Since G is K4-free and every vertex of V T

1 is adjacent 
to v T

1 , it follows that G[V T
1 ] is K3-free. Since V T

1 contains at least three vertices by Claim 1, there must be vertices x, y, z ∈
V T

1 such that x is adjacent to y, but not to z. Then G[v T
1 , y, x, z] is a diamond if y and z are adjacent and G[z, x, y, v T

2 , v T
3 ]

is a P1 + 2P2 if they are not. This contradiction implies that V T
1 is an independent set. The claim follows by symmetry.

Claim 3. Every pair of triangles in G is vertex-disjoint.

Consider a triangle T with vertex v T
1 . The neighbourhood of v T

1 is V T
1 ∪ {v T

2 , v T
3 }. Now V T

1 is independent by Claim 2
and anti-complete to {v T

2 , v T
3 } by definition. Therefore, if a triangle in G contains v T

1 then it must also contain v T
2 and v T

3 . 
In other words, v T

1 is contained in only one triangle in G , namely T . The claim follows by symmetry.

Claim 4. For every triangle T , the set U T is independent.

By Claim 1, we can choose x, y ∈ V T
1 and by Claim 2, x must be non-adjacent to y. If a vertex u ∈ U T is adjacent 

to x, but not to y then G[y, u, x, v T
2 , v T

3 ] is a P1 + 2P2, a contradiction. Therefore every vertex of U T is either complete or 
anti-complete to {x, y}. Suppose u, v ∈ U T . First suppose u and v are non-adjacent. If x is adjacent to u but v is not, then 
G[v, u, x, v T

2 , v T
3 ] is a P1 + 2P2, a contradiction. Therefore if u, v ∈ U T are non-adjacent, then {u, v} is either complete or 

anti-complete to {x, y}. Now suppose u and v are adjacent. Then G[u, v, x, y] is a diamond if {u, v} is complete to {x, y}
and G[x, u, v, v T

2 , v T
3 ] is a P1 + 2P2 if {u, v} is anti-complete to {x, y}. Therefore if u, v ∈ U T are adjacent then exactly 

one of them is complete to {x, y} and the other is anti-complete to {x, y}. This means that G[U T ] is a complete bipartite 
graph, with partition classes U T

1 and U T
2 , say, and furthermore, one of U T

1 and U T
2 is complete to V T

1 and the other is 
anti-complete to V T

1 . Similarly, this holds with the same partition (U T
1 , U T

2 ) if we replace V T
1 by V T

2 or V T
3 . Thus every 

vertex of U T
1 (respectively U T

2 ) has the same neighbourhood in V T
1 ∪ V T

2 ∪ V T
3 .

Suppose that V T
i and V T

j are both complete to U T
k for some i, j ∈ {1, 2, 3} with i 	= j and some k ∈ {1, 2} and that U T

k

contains at least two vertices, say u and v . If x ∈ V T
i and y ∈ V T

j are adjacent, then G[x, y, u, v] is a diamond, a contradic-

tion. Therefore V T
i is anti-complete to V T

j .

Suppose that U T
1 and U T

2 each contain at least one vertex, say u and v , respectively. We will show that in this case 
the clique-width of G is bounded. Suppose, for contradiction, that G \ (T ∪ {u, v}) contains an induced K3, say with vertex 
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set T ′ . Since G[U T ] is a complete bipartite graph with bipartition (U T
1 , U T

2 ) and no vertex of a set V T
i can have neighbours 

in both U T
1 and U T

2 , at most one vertex of T ′ can be in U T . Suppose that U T
1 contains at least two vertices (so U T

1 \ {u}
is non-empty) and that U T

1 is complete to V T
i and V T

j for some i 	= j (in which case U T
2 is anti-complete to V T

i and V T
j ). 

Then V T
i and V T

j must be anti-complete. We conclude that in this case no vertex of U T
1 can belong to T ′ . No vertex 

of U T
2 can belong to T ′ either, since vertices in U T

2 can only have neighbours in U T
1 and in V T

k where k /∈ {i, j} (if U T
1 is 

anti-complete to V T
k ). Furthermore, since V T

i is anti-complete to V T
j , and V T

1 , V T
2 , V T

3 are independent (by Claim 2), there 
is no induced K3 in G[V T

1 ∪ V T
2 ∪ V T

3 ]. Thus T ′ cannot exist, a contradiction.
The above means that if such a triangle T ′ does exist and a set U T

i contains at least two vertices, then U T
i must be 

anti-complete to at least two distinct sets V T
j and V T

k (in which case U T
i cannot contain a vertex of T ′). Since T ′ consists of 

vertices of G \ (T ∪ {u, v}), this means that no vertex of U T is in T ′ (if U T
i contains a single vertex for some i then by defi-

nition T ′ does not include it). By Claim 2, it follows that T ′ must consist of vertices x ∈ V T
1 , y ∈ V T

2 and z ∈ V T
3 . Since each 

set V T
i is anti-complete to exactly one of U T

1 and U T
2 , we may assume without loss of generality that U T

1 (and therefore u) 
is complete to both V T

1 and V T
2 . Now G[x, y, z, u] is a K4 or diamond if u and z are adjacent or non-adjacent, respectively. 

This contradiction means that G \ (T ∪{u, v}) must in fact be K3-free. Since G \ (T ∪{u, v}) is a (K3, P1 + 2P2)-free graph, it 
has bounded clique-width by Theorem 3. By Fact 1, we conclude that G also has bounded clique-width. We may therefore 
assume that either U T

1 or U T
2 is empty. It follows that U T is an independent set. This completes the proof of the claim.

Claim 5. For every triangle T , there is a vertex x ∈ V (T ) such that N(x) = N(u) ∪ (V (T ) \ {x}) for all u ∈ U T .

By the previous claim, we may assume that U T is independent. Note that by the same arguments as for the previous 
claim, for all i ∈ {1, 2, 3}, U T is trivial to V T

i . Suppose u ∈ U T . By the same arguments as for the previous claim, U T must be 
anti-complete to at least two distinct sets V T

i and V T
j , otherwise G \ (T ∪ {u}) would be K3-free and the clique-width of G

would be bounded as before. Since G is connected, it follows that U T must be complete to at least one set V T
i . Therefore U T

must be complete to exactly one set V T
i . It follows that N(v T

i ) = V T
i ∪ (V (T ) \ {v T

i }) = N(u) ∪ (V (T ) \ {v T
i }) for all u ∈ U T . 

This completes the proof of the claim.

Claim 6. No triangle in G contains a vertex of U .

If u ∈ U then u ∈ U T for some triangle T . By the previous claim, the neighbourhood of every vertex of U T is V T
i , for 

some i. Since V T
i is an independent set, the claim follows immediately.

Claim 7. If T and T ′ are distinct triangles in G then the edges between them form an induced matching.

Suppose T and T ′ are distinct triangles in G . By Claim 3, T and T ′ must be vertex-disjoint. By Claim 6, it follows that 
every vertex of T ′ is in V T

1 ∪ V T
2 ∪ V T

3 , so every vertex of T ′ has exactly one neighbour in T . By Claim 2, for i ∈ {1, 2, 3}, the 
set V T

i is an independent set, so it can contain at most one vertex of T ′ . Therefore T ′ has exactly one vertex in each of V T
1 , 

V T
2 and V T

3 . By definition of V T
i , this means that every vertex of T ′ has a different neighbour in T . The claim follows.

Claim 8. For every triangle T and for every pair of distinct i, j ∈ {1, 2, 3}, G[V T
i ∪ V T

j ] is 2P2-free.

Suppose, for contradiction, that G[V T
1 ∪ V T

2 ] contains an induced 2P2. Then this 2P2, together with the vertex v T
3 would 

induce a P1 + 2P2 in G . The claim follows by symmetry.

Claim 9. For every triangle T , there is no induced 3P1 in G with one vertex in each of V T
1 , V T

2 and V T
3 .

Suppose that there are three vertices x ∈ V T
1 , y ∈ V T

2 and z ∈ V T
3 that are pairwise non-adjacent. We will show that in 

this case G has bounded clique-width. Suppose u ∈ U T . By Claim 5, u has exactly one neighbour in {x, y, z}. Without loss 
of generality, assume that u is adjacent to x. Then G[z, u, x, y, v T

2 ] is a P1 + 2P2, a contradiction. We may therefore assume 
that U T is empty. If there is a vertex x′ ∈ V T

1 \ {x} that is adjacent to y, but not to z then G[x, x′, y, v T
3 , z] is a P1 + 2P2

in G . This contradiction means that every vertex of V T
1 is either complete or anti-complete to {y, z}. Similarly, every vertex 

of V T
2 is either complete or anti-complete to {x, z} and every vertex of V T

3 is either complete or anti-complete to {x, y}. 
Note that the above holds for any three pairwise non-adjacent vertices in V T

1 , V T
2 and V T

3 , respectively.
Let V ′ T

1 and V ′′ T
1 be the sets of vertices in V T

1 that are anti-complete or complete to {y, z}, respectively. Let V ′ T
2

and V ′′ T
2 be the sets of vertices in V T

2 that are anti-complete or complete to {x, z}, respectively. Let V ′ T
3 and V ′′ T

3 be the 
sets of vertices in V T that are anti-complete or complete to {x, y}, respectively. Note that x ∈ V ′ T , y ∈ V ′ T and z ∈ V ′ T .
3 1 2 3
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Suppose x′ ∈ V ′ T
1 and y′ ∈ V ′ T

2 . Since x′ is non-adjacent to y and to z, it follows that G[x′, y, z] is a 3P1. Since y′ is 
non-adjacent to z, it must therefore be anti-complete to {x′, z}. In particular, this means that if i, j ∈ {1, 2, 3} are distinct 
then V ′ T

i is anti-complete to V ′ T
j .

Suppose x′ ∈ V ′ T
1 and y′ ∈ V ′′ T

2 . Since x′ is non-adjacent to y and to z, it follows that G[x′, y, z] is a 3P1. Since y′ is 
adjacent to z, it must therefore be complete to {x′, z}. In particular, this means that if i, j ∈ {1, 2, 3} are distinct then V ′ T

i is 
complete to V ′′ T

j .

Note that for all i ∈ {1, 2, 3}, V ′ T
i is anti-complete to V ′′ T

i , since V T
i is an independent set.

Suppose x′ ∈ V ′′ T
1 and y′ ∈ V ′′ T

2 . If x′ and y′ are non-adjacent then G[x′, y, x, y′] is a 2P2 in G[V T
1 ∪ V T

2 ], which would 
contradict Claim 8. This means that if i, j ∈ {1, 2, 3} are distinct then V ′′ T

i is complete to V ′′ T
j .

We now proceed as follows: from G , we delete the three vertices of T . We then apply a bipartite complementation 
between every pair of sets V ′ T

i and V ′′ T
j and every pair of distinct sets V ′′ T

i and V ′′ T
j (a total of nine bipartite comple-

mentations). After doing this, we obtain an edge-less graph, which therefore has clique-width at most 1. By Facts 1 and 3, 
it follows that G must also have bounded clique-width. This completes the proof of the claim.

Claim 10. G contains at least three vertex-disjoint triangles.

Suppose, for contradiction, that the claim is false. Then G contains at most two vertex-disjoint triangles, in which case, 
we can delete at most six vertices to obtain a (K3, P1 + 2P2)-free graph, which has bounded clique-width by Theorem 3. 
By Fact 1, G also has bounded clique-width. This completes the proof of the claim.

We will now assume that the above claims are satisfied and show that this implies that G is basic. We arbitrarily fix a 
triangle T 1 with vertices v T 1

1 , v T 1

2 and v T 1

3 . To simplify notation, set vi = v T 1

i for i ∈ {1, 2, 3}. Recall that by Claim 6, no K3

in G has a vertex in U . By Claim 2, it follows that every K3 in G apart from T 1 has exactly one vertex in each of V T 1

1 \ U , 
V T 1

2 \U and V T 1

3 \U . We now set V 1 = (V T 1

1 ∪ {v2}) \U , V 2 = (V T 1

2 ∪ {v3}) \U and V 3 = (V T 1

3 ∪ {v1}) \U .

Claim 11. V 1, V 2 and V 3 are independent.

The vertices in V T 1

i are exactly the vertices outside T 1 whose unique neighbour in T 1 is vi . The claim follows by Claim 2.

By Claim 3 any two triangles in G must be vertex-disjoint. By Claim 7, the edges between any two triangles in G form 
a perfect matching. Let T x = {x1, x2, x3} and T y = {y1, y2, y3} be two distinct triangles in G with xi, yi ∈ V i for i ∈ {1, 2, 3}. 
By Claim 11, xi is non-adjacent to yi for i ∈ {1, 2, 3}. This means that the set of edges between T x and T y is either 
{x1 y2, x2 y3, x3 y1} or {x1 y3, x2 y1, x3 y2}. We say that T x < T y holds in the first case and T y < T x holds in the second. Note 
that exactly one of these statements holds for any two distinct triangles in G . Furthermore, note that if T x is a triangle 
other than T 1 then the definition of the sets V i implies that T 1 < T x .

We show that the relation < is transitive. Suppose, for contradiction, that this is not the case. Then there must be 
three pairwise distinct triangles in G , say T x = {x1, x2, x3}, T y = {y1, y2, y3} and T z = {z1, z2, z3}, where xi, yi, zi ∈ V T

i for 
i ∈ {1, 2, 3}, with T x < T y , T y < T z and T z < T x . Then x1 is adjacent to y2, y2 is adjacent to z3 and z3 is adjacent to x1. 
Therefore G[x1, y2, z3] is a K3 which shares exactly one vertex with T x , which would contradict Claim 3. Therefore < is a 
transitive, anti-symmetric relation on the triangles in G . We may now order the triangles in G , say T 1 < T 2 < · · · < T p for 
some p. By Claim 10, it follows that p ≥ 3. We now conclude the following:

Claim 12. {G[T 1], . . . , G[T p]} is the set of all induced triangles in G and each of them has exactly one vertex in each of V 1, V 2 and V 3 .

Claim 13. If i < j and k + 1 	≡ � ( mod 3) then T i ∩ Vk is anti-complete to T j ∩ V� .

Claim 14. If i < j and k + 1 ≡ � ( mod 3) then T i ∩ Vk is complete to T j ∩ V� .

Consider a vertex x that is not in any induced triangle in G . If x /∈ U then x ∈ V 1 ∪ V 2 ∪ V 3 and x must have exactly 
one neighbour in every triangle in G . Let W be the set of vertices that are not in any triangle in G and have exactly one 
neighbour in every induced triangle in G .

We extend the relation < as follows: suppose T = {x1, x2, x3} is an induced triangle in G with x1 ∈ V 1, x2 ∈ V 2 and 
x3 ∈ V 3 and suppose w ∈ W . Then w is a vertex in V i for some i ∈ {1, 2, 3}. By Claim 11, w is not adjacent to xi . Since 
w ∈ W , w must be adjacent to exactly one vertex of T . We say that x < T holds if x is adjacent to xi+1 and T < x if x is 
adjacent to xi−1 (we interpret indices modulo 3).

Let w ∈ W and let T and T ′ be triangles in G such that w < T and T < T ′ . We will show that w < T ′ . Say T = {x1, x2, x3}
and T ′ = {y1, y2, y3}, where xi, yi ∈ V i for i ∈ {1, 2, 3}. Without loss of generality, assume w ∈ V 1. Since w < T , w is 
adjacent to x2. Since T < T ′ , x2 is adjacent to y3. Since w ∈ V 1, w is non-adjacent to y1. Now w cannot be adjacent 
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to y3, otherwise G[w, x2, y3] would be a triangle that is not vertex-disjoint from T , which would contradict Claim 3. Since 
w ∈ W , it must have a neighbour in T ′ , so w must therefore be adjacent to y2. It follows that w < T ′ . Similarly, if T < T ′
and T ′ < w then T < w and if T < w and w < T ′ then T < T ′ .

This means that we can now partition W into sets W1, . . . , W p where W i contains the vertices x ∈ W such that T j < x
for j ≤ i and x < T j for j > i. (Note that T 1 < w for all w ∈ W , by construction.) We immediately conclude the following:

Claim 15. If i < j and k + 1 	≡ � ( mod 3) then T i ∩ Vk is anti-complete to W j ∩ V� .

Claim 16. If i = j and k + 1 	≡ � ( mod 3) then T i ∩ Vk is anti-complete to W j ∩ V� .

Claim 17. If i < j and k + 1 	≡ � ( mod 3) then W i ∩ Vk is anti-complete to T j ∩ V� .

Claim 18. If i < j and k + 1 ≡ � ( mod 3) then T i ∩ Vk is complete to W j ∩ V� .

Claim 19. If i = j and k + 1 ≡ � ( mod 3) then T i ∩ Vk is complete to W j ∩ V� .

Claim 20. If i < j and k + 1 ≡ � ( mod 3) then W i ∩ Vk is complete to T j ∩ V� .

We also prove the following claim:

Claim 21. G[W i] is (P1 + 2P2)-free and does not contain an induced 3P1 with one vertex in each of V 1, V 2 and V 3 .

Since G is (P1 + 2P2)-free, it follows that G[W i] is also (P1 + 2P2)-free. Since the vertices of W i do not belong to any 
triangle of G and do not belong to U , it follows that W i ⊆ V T 1

1 ∪ V T 1

2 ∪ V T 1

3 . The claim then follows by Claim 9.

It remains to analyse the edges between the sets W1, . . . , W p .

Claim 22. If i < j and k + 1 	≡ � ( mod 3) then W i ∩ Vk is anti-complete to W j ∩ V� .

Let i, j ∈ {1, . . . , p} be such that i < j. Let T j = {x1, x2, x3} with xk ∈ Vk for k ∈ {1, 2, 3}. Note that if x ∈ W i and y ∈ W j

then x < T j and T j < y. Now W i ∩ Vk is anti-complete to W j ∩ Vk for k ∈ {1, 2, 3}, since Vk is an independent set by 
Claim 11. Suppose x ∈ W i ∩ V 1 and y ∈ W j ∩ V 3. Then x and y are both adjacent to x2. Therefore x and y cannot be 
adjacent, otherwise G[x2, x, y] would be a triangle which is not vertex-disjoint from T j , which would contradict Claim 3. 
By symmetry we conclude that W i ∩ Vk is anti-complete to W j ∩ Vk+2 for k ∈ {1, 2, 3} (interpreting subscripts modulo 3). 
This completes the proof of the claim.

The edges between W i ∩ Vk and W j ∩ Vk+1 for k ∈ {1, 2, 3} are more complicated, as shown in the following two claims:

Claim 23. If i + 1 < j and k + 1 ≡ � ( mod 3) then W i ∩ Vk is complete to W j ∩ V� .

Let i, j ∈ {1, . . . , p} be such that i + 1 < j. Suppose, for contradiction, that x ∈ W i ∩ V 1 and y ∈ W j ∩ V 2 are non-adjacent. 
Since i + 2 ≤ j we find that x < T j−1, x < T j, T j−1 < y and T j < y. Let T j = {x1, x2, x3} with xk ∈ Vk for k ∈ {1, 2, 3}. Let 
T j−1 = {y1, y2, y3}, where yk ∈ Vk for k ∈ {1, 2, 3}. Then x is adjacent to y2, but non-adjacent to x1, while y is adjacent 
to x1, but non-adjacent to y2. Since T j−1 < T j it follows that y2 is non-adjacent to x1. Since T 1 < x, y, the vertex v3 must 
be non-adjacent to x and y (recall that v3 = v T 1

3 and that this vertex has no neighbours in V 1 or V 2 apart from v1 and v2). 
Now G[v3, x, y2, x1, y] is a P1 + 2P2, a contradiction. By symmetry this completes the proof of the claim.

Claim 24. If i + 1 = j and k + 1 ≡ � ( mod 3) then W i ∩ Vk is either complete or anti-complete to W j ∩ V� .

Let i, j ∈ {1, . . . , p} with i + 1 = j. Let T j = {x1, x2, x3} with xk ∈ Vk for k ∈ {1, 2, 3}. Assume, for contradiction, that the 
vertex sets W i ∩ Vk and W j ∩ Vk+1 are not trivial to each-other for some k ∈ {1, 2, 3}. Without loss of generality, we may 
assume that there is a vertex x with a neighbour y and a non-neighbour y′ such that either x ∈ W i ∩ V 1 and y, y′ ∈ W j ∩ V 2

or y, y′ ∈ W i ∩ V 1 and x ∈ W j ∩ V 2. Note that x3 is non-adjacent to x, y and y′ . Since T 1 < x, y, y′ , the vertex v3 must be 
non-adjacent to x and y (recall that v3 = v T

3 and that this vertex has no neighbours in V 1 or V 2 apart from v1 and v2). 
Now G[y′, x, y, v3, x3] is a P1 + 2P2, a contradiction. By symmetry this completes the proof of the claim.

The claims proved above imply all the necessary properties for G to be basic. Indeed, Claim 6 implies Property (i) and 
Claims 4 and 5 imply Property (ii). Claims 11, 12, 21, 13, 15, 17, 22, 14, 18, 20, 23, 24, 19 and 16 imply Properties (iii), (iv), 
(v), (vi).1, (vi).2, (vi).3, (vi).4, (vii).1, (vii).2, (vii).3, (viii).1, (ix).1, (x).1, (xi).1 and respectively. Therefore G is basic, so it has 
bounded clique-width by Lemma 12. This completes the proof. �
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[31] M. Kamiński, V.V. Lozin, M. Milanič, Recent developments on graphs of bounded clique-width, Discrete Appl. Math. 157 (12) (2009) 2747–2761.
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