1	Gas-driven filter pressing in magmas: Insights into in situ
2	melt segregation from crystal mushes
3	Mattia Pistone ^{1,2} , Fabio Arzilli ^{3,4} , Katherine J. Dobson ⁵ , Benoît Cordonnier ⁶ ,
4	Eric Reusser ⁷ , Peter Ulmer ⁷ , Federica Marone ⁸ , Alan G. Whittington ⁹ , Lucia
5	Mancini ³ , Julie L. Fife ⁸ , and Jonathan D. Blundy ²
6	¹ Department of Mineral Sciences, National Museum of Natural History, Smithsonian
7	Institution, 10 th Street & Constitution Avenue NW, Washington, D.C. 20560-0119,
8	United States
9	² School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's
10	Road, BS8 1RJ, Bristol, United Kingdom
11	³ Elettra - Sincrotrone Trieste S.C.p.A., SS 14, km 163.5 in Area Science Park, 34149,
12	Basovizza, Italy
13	⁴ Istituto Nazionale di Geofisica e Vulcanologia, sezione di Pisa, Via della Faggiola
14	32, 56126, Pisa, Italy
15	⁵ Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität,
16	Theresienstrasse 41, 80333 Munich, Germany
17	⁶ Berninastrasse 45, CH-8090, Zürich, Switzerland
18	⁷ Department of Earth Sciences, ETH-Zurich, Clausiusstrasse 25, CH-8092, Zürich,
19	Switzerland
20	⁸ Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
21	⁹ Department of Geological Sciences, University of Missouri, 101 Geological
22	Sciences, Columbia, Missouri 65211-1380, United States
23	ABSTRACT

24	Gas-driven filter pressing is the process of melt expulsion from a volatile-
25	saturated crystal mush, induced by the buildup and subsequent release of gas pressure.
26	Filter pressing is inferred to play a major role in magma fractionation at shallow
27	depths (< 10 km) by moving melt and gas relative to the solid, crystalline framework.
28	However, the magmatic conditions at which this process operates remain poorly
29	constrained. We present novel experimental data that illustrate how the crystal content
30	of the mush affects the ability of gas-driven filter pressing. Hydrous haplogranitic (2.1
31	wt.% water in the melt) and dacitic (4.2 wt.% water in the melt) crystal mushes,
32	exhibiting a wide range of crystallinity (34-80 vol.%), were investigated by in situ,
33	high temperature (500-800 $^{\circ}$ C) synchrotron X-ray tomographic microscopy with high
34	spatial (3 μ m/pixel) and temporal resolution (8 sec. per 3D dataset). Our experimental
35	results show that gas-driven filter pressing operates only below the maximum packing
36	of bubbles and crystals (~74 vol.%). Above this threshold, the mush tends to fracture.
37	Therefore, the efficiency of gas-driven filter pressing is promoted close to the
38	percolation threshold and when the mush inflates slowly relative to build-up of
39	pressure and expulsion of melt. Such observations offer a likely explanation for the
40	production of eruptible, crystal-poor magmas within the Earth's crust.
41	INTRODUCTION
42	Magmatic differentiation involves the physical separation of crystals from
43	their viscous coexisting melts. The reIn shallow magma reservoirs relatively slow, yet
44	poorly constrained, processes of compaction processes (at high crystallinities (, \geq 70
45	vol.% crystals; Jackson et al, 2003), and hindered settling at-(intermediate
46	crystallinities-(, 40-50 vol.% crystals; Bachmann and Bergantz, 2004) that drive this
47	separation in shallow magma reservoirs, can be enhanced by the concentration of
48	volatiles in the melt phase and their subsequent exsolution (Sisson and Bacon, 1999).
	Page 2 of 19

49	Volatile exsolution at low solidification pressures causes the magma to expand, while
50	the high viscosity of the crystallising magma (> 10^5 Pa·s) impedes the bulk inflation
51	of the system. In this scenario, gradients in crystallinity, vesiculation and pressure
52	therefore drive the melt towards regions of lower crystallinity and pressure. SiO ₂ -rich
53	melts are saturated with 6-8 wt.% H_2O at the depths of < 10 km (Hui et al., 2009)
54	typical of most silicic magma reservoirs, suggesting that this process may be
55	ubiquitous. This Ggas-driven filter pressing mechanisms may drive segregation of
56	compositionally-variable, crystal-poor melts typically forming heterogeneous large
57	ignimbrite deposits (Lipman et al., 1966). The goal of the present study is to quantify
58	the influence of the crystal fraction (ϕ) on melt permeability in order to define the
59	magmatic conditions where gas-driven filter pressing is an efficient mechanism for
60	melt extraction and generation of eruptible, crystal-poor silicic magmas.
61	METHODS
61 62	METHODS To capture simulated gas-driven filter pressing, high temperature ($T = 500-800$
61 62 63	METHODS To capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated,
61 62 63 64	METHODS To capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated, volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H ₂ O in the glass, $\phi =$
 61 62 63 64 65 	METHODS To capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated, volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H ₂ O in the glass, $\phi =$ 0.34, 0.47 corundum crystals) and less evolved, volatile- and crystal-rich melts
 61 62 63 64 65 66 	METHODS To capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated, volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H ₂ O in the glass, $\phi =$ 0.34, 0.47 corundum crystals) and less evolved, volatile- and crystal-rich melts (dacites, F; 4.2 wt.% H ₂ O in the glass, $\phi = 0.5$, 0.6, 0.7, 0.8 quartz crystals); using the
 61 62 63 64 65 66 67 	METHODS To capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated,volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H ₂ O in the glass, $\phi =$ 0.34, 0.47 corundum crystals) and less evolved, volatile- and crystal-rich melts(dacites, F; 4.2 wt.% H ₂ O in the glass, $\phi = 0.5$, 0.6, 0.7, 0.8 quartz crystals); using thehigh spatial (3 µm/pixel) and temporal resolution (~8 sec. per singlefor each 3D)
 61 62 63 64 65 66 67 68 	METHODS To capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated,volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H2O in the glass, $\phi =$ 0.34, 0.47 corundum crystals) and less evolved, volatile- and crystal-rich melts(dacites, F; 4.2 wt.% H2O in the glass, $\phi = 0.5, 0.6, 0.7, 0.8$ quartz crystals); using thehigh spatial (3 µm/pixel) and temporal resolution (~8 sec. per singlefor each 3Ddataset) of synchrotron X-ray tomographic microscopy at the TOMCAT beamline;
 61 62 63 64 65 66 67 68 69 	METHODSTo capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated,volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H2O in the glass, $\phi =$ 0.34, 0.47 corundum crystals) and less evolved, volatile- and crystal-rich melts(dacites, F; 4.2 wt.% H2O in the glass, $\phi = 0.5, 0.6, 0.7, 0.8$ quartz crystals); using thehigh spatial (3 µm/pixel) and temporal resolution (~8 sec. per singlefor each 3Ddataset) of synchrotron X-ray tomographic microscopy at the TOMCAT beamline;(Swiss Light Source), -coupled to a laser-based heating system (Fife et al. 2012).
 61 62 63 64 65 66 67 68 69 70 	METHODSTo capture simulated gas-driven filter pressing, high temperature ($T = 500-800$ °C) experiments were conducted on a suite of pre-synthesised highly differentiated,volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H2O in the glass, $\phi =$ 0.34, 0.47 corundum crystals) and less evolved, volatile- and crystal-rich melts(dacites, F; 4.2 wt.% H2O in the glass, $\phi = 0.5$, 0.6, 0.7, 0.8 quartz crystals); using thehigh spatial (3 µm/pixel) and temporal resolution (~8 sec. per singlefor each 3Ddataset) of synchrotron X-ray tomographic microscopy at the TOMCAT beamline;(Swiss Light Source), -coupled to a laser-based heating system (Fife et al. 2012).Crystal-free samples of both compositions were also-used as benchmark during
 61 62 63 64 65 66 67 68 69 70 71 	METHODSTo capture simulated gas-driven filter pressing, high temperature (T = 500-800°C) experiments were conducted on a suite of pre-synthesised highly differentiated,volatile- and crystal-poor melts (haplogranites, H5; 2.1 wt.% H2O in the glass, ϕ =0.34, 0.47 corundum crystals) and less evolved, volatile- and crystal-rich melts(dacites, F; 4.2 wt.% H2O in the glass, ϕ = 0.5, 0.6, 0.7, 0.8 quartz crystals); using thehigh spatial (3 µm/pixel) and temporal resolution (~8 sec. per singlefor each 3Ddataset) of synchrotron X-ray tomographic microscopy at the TOMCAT beamline;(Swiss Light Source), -coupled to a laser-based heating system (Fife et al. 2012).Crystal-free samples of both compositions were also-used as benchmark duringexperiments.

Formatted: Highlight

Comment [A1]: Technically anything with more than 0.2 is not crystal poor...

73heterogeneity in the crystal distribution (mean size of 68 µm); however, neither74crystallisation nor melting of crystals occurred during heating (i.e. ϕ was constant75throughout). We do not simulate Crystallisation-crystallisation-driven gas exsolution76per-se was not simulated in our tests; rather the different ϕ bracketed the crystallinities77occurring in natural gas-saturated mushes. The limited attenuation contrast between78crystals and melt was maximised by edge-enhancement and post-acquisition phase79retrieval. Technical details are reported in the Data Repository.80The haplogranites and dacites have the same initial melt viscosity ($\eta_{melt} < 1.3$ 81Pa-s). Preferential bubble nucleation on the crystal phases is not expected in either82system, as SiO ₂ -rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon,831994). Although both systems should not crystallise during the experiments,84cChemical differences between the samples (e.g. SiO ₂ content, initial H ₂ O content)85eould-may affect the physical behaviour of bubble nucleation and growth during T86increase to 800 °Cr. but wWe do not assume both systems should have the same87physieo-chemical behaviour: rather we test which allows gas-driven filter pressing.	
74crystallisation nor melting of crystals occurred during heating (i.e. ϕ was constant75throughout). We do not simulate Crystallisation_crystallisation-driven gas exsolution76per se was not simulated in our tests; rather the different ϕ bracketed the crystallinities77occurring in natural gas-saturated mushes. The limited attenuation contrast between78crystals and melt was maximised by edge-enhancement and post-acquisition phase79retrieval. Technical details are reported in the Data Repository.80The haplogranites and dacites have the same initial melt viscosity ($\eta_{melt} < 1.3$ 81Pa-s). Preferential bubble nucleation on the crystal phases is not expected in either82system, as SiO ₂ -rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon,831994). Although both systems should not crystallise during the experiments,84cChemical differences between the samples (e.g. SiO ₂ content, initial H ₂ O content)85eould may affect the physical behaviour of bubble nucleation and growth during T86increase to 800 °C _{1.7} but wWe do not assume both systems should have the same87physieo-chemical behaviour: rather we test which allows gas-driven filter pressing.	
75throughout). We do not simulate Crystallisationcrystallisation-driven gas exsolution76per se was not simulated in our tests; rather the different ϕ bracketed the crystallinities77occurring in natural gas-saturated mushes. The limited attenuation contrast between78crystals and melt was maximised by edge-enhancement and post-acquisition phase79retrieval. Technical details are reported in the Data Repository.80The haplogranites and dacites have the same initial melt viscosity ($\eta_{melt} < 1.3$ 81Pa·s). Preferential bubble nucleation on the crystal phases is not expected in either82system, as SiO ₂ -rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon,831994). Although both systems should not crystallise during the experiments.84gChemical differences between the samples (e.g. SiO ₂ content, initial H ₂ O content)85eould-may affect the physical behaviour of bubble nucleation and growth during T86increase to 800 °C., but wWe do not assume both systems should have the same87physieo-chemical behaviour: rather we test which allows gas-driven filter pressing.	
76per se was not simulated in our tests; rather the different ϕ bracketed the crystallinities77occurring in natural gas-saturated mushes. The limited attenuation contrast between78crystals and melt was maximised by edge-enhancement and post-acquisition phase79retrieval. Technical details are reported in the Data Repository.80The haplogranites and dacites have the same initial melt viscosity ($\eta_{melt} < 1.3$ 81Pa·s). Preferential bubble nucleation on the crystal phases is not expected in either82system, as SiO ₂ -rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon,831994). Although both systems should not crystallise during the experiments,84cChemical differences between the samples (e.g. SiO ₂ content, initial H ₂ O content)85eould-may affect the physical behaviour of bubble nucleation and growth during T86increase to 800 °Crbut wWe do not assume both systems should have the same87physieo-chemical behaviour: rather we test which allows gas-driven filter pressing.	
 occurring in <u>natural gas-saturated mushes</u>. The limited attenuation contrast between crystals and melt was maximised by edge-enhancement and post-acquisition phase retrieval. Technical details are reported in the Data Repository. The haplogranites and dacites have the same initial melt viscosity (η_{melt} < 1.3 Pa·s). Preferential bubble nucleation on the crystal phases is not expected in either system, as SiO₂-rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon, 1994). Although both systems should not crystallise during the experiments, cChemical differences between the samples (e.g. SiO₂ content, initial H₂O content) eould may_affect the physical behaviour of bubble nucleation and growth during T increase to 800 °C, <u>, but wW</u>e do not assume both systems should have the same 	
 crystals and melt was maximised by edge-enhancement and post-acquisition phase retrieval. Technical details are reported in the Data Repository. The haplogranites and dacites have the same initial melt viscosity (η_{melt} < 1.3 Pa·s). Preferential bubble nucleation on the crystal phases is not expected in either system, as SiO₂-rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon, 1994). Although both systems should not crystallise during the experiments. cChemical differences between the samples (e.g. SiO₂ content, initial H₂O content) could-may affect the physical behaviour of bubble nucleation and growth during <i>T</i> increase to 800 °C., but wWe do not assume both systems should have the same physieo-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
 retrieval. Technical details are reported in the Data Repository. The haplogranites and dacites have the same initial melt viscosity (η_{melt} < 1.3 Pa·s). Preferential bubble nucleation on the crystal phases is not expected in either system, as SiO₂-rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon, 1994). Although both systems should not crystallise during the experiments, cChemical differences between the samples (e.g. SiO₂ content, initial H₂O content) eould-may affect the physical behaviour of bubble nucleation and growth during T increase to 800 °C., but wWe do not assume both systems should have the same physieo-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
80The haplogranites and dacites have the same initial melt viscosity ($\eta_{melt} < 1.3$ 81Pa·s). Preferential bubble nucleation on the crystal phases is not expected in either82system, as SiO ₂ -rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon,831994). Although both systems should not crystallise during the experiments,84cChemical differences between the samples (e.g. SiO ₂ content, initial H ₂ O content)85could-may affect the physical behaviour of bubble nucleation and growth during T86increase to 800 °C., but wWe do not assume both systems should have the same87physieo-chemical behaviour: rather we test which allows gas-driven filter pressing.	
 Pa·s). Preferential bubble nucleation on the crystal phases is not expected in either system, as SiO₂-rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon, 1994). Although both systems should not crystallise during the experiments, cChemical differences between the samples (e.g. SiO₂ content, initial H₂O content) eould-may affect the physical behaviour of bubble nucleation and growth during <i>T</i> increase to 800 °C, <u>, but wW</u>e do not assume both systems should have the same physieo-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
 system, as SiO₂-rich melts are the wetting phase (Laporte, 1994, Hurwitz and Navon, 1994). Although both systems should not crystallise during the experiments, cChemical differences between the samples (e.g. SiO₂ content, initial H₂O content) could-may affect the physical behaviour of bubble nucleation and growth during <i>T</i> increase to 800 °C., but wWe do not assume both systems should have the same physieo-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
 1994). Although both systems should not crystallise during the experiments. <u>c</u>Chemical differences between the samples (e.g. SiO₂ content, initial H₂O content) could_may affect the physical behaviour of bubble nucleation and growth during <i>T</i> increase to 800 °C<u>, but wW</u>e do not assume both systems should have the same physico-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
 84 <u>c</u>Chemical differences between the samples (e.g. SiO₂ content, initial H₂O content) 85 <u>could-may</u> affect the physical behaviour of bubble nucleation and growth during <i>T</i> 86 increase to 800 °C<u>, but wW</u>e do not assume both systems should have the same 87 physico-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
 85 could-may affect the physical behaviour of bubble nucleation and growth during <i>T</i> 86 increase to 800 °C., but wWe do not assume both systems should have the same 87 physico-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
 86 increase to 800 °C., but wWe do not assume both systems should have the same 87 physico-chemical behaviour: rather we test which allows gas-driven filter pressing. 	
87 physico-chemical behaviour: rather we test which allows gas-driven filter pressing.	
88 Sequential 3D images provided a 4D (3D + time) record of bubble growth and	
89 microstructure evolution for each T and ϕ as the samples were heated step-wise (25 °C	
90 steps with a heating rate of 2 °C/s) between 500-475 °C (below the glass transition)	
91 and 800 °C . Heating steps were initiated at 475 °C (below the glass transition);	
92 isothermal, and -conditions were maintained for 3.5 minutes before heating at each	
93 <u>temperature</u> to the next T. Real-time visual inspection showed negligible bubble	
94 growth by the end of each T step . S, but s amples did not achieve perfect textural	
95 equilibrium conditions of vesiculation at a given <u>cach</u> <i>T</i>; <u>however However</u>, gas-	

Formatted: Font: Not Italic

Page 4 of 19

96 driven filter pressing is a process driven by rapid crystallisation and vesiculation 97 (Sisson and Bacon, 1999), and therefore operate during textural and thermal diswhich 98 do not necessarily require equilibrium conditions to occur. 99 Karl-Fischer Titration (KFT; Behrens et al., 1996) method-was used to 100 quantify H₂O outgassing from the dacites over the same T-time path for samples of 101 the same volume to those used in the X-ray tomographic microscopy experiments. 102 **4D MICROSTRUCTURAL EVOLUTION** 103 Time-integrated textural analysis reveals that gas bubbles nucleate and undergo diffusion-limited grow (diffusion-limited growth; Data Repository) 104 105 homogeneously throughout crystal-free haplogranites and dacites, but are found 106 predominantly in melt rich regions within the crystal bearing samples. . Fractures are 107 only generated during vesiculation. No formation or healing of fractures is observed 108 during cooling after experiments. At the spatial resolution of our experiments no heterogeneous bubble 109 110 nucleation is observed. It is expected that a film of melt is always present between 111 bubbles and crystals, since SiO₂ rich melts are a wetting phase (Laporte, 1994), and 112 corundum and quartz crystals are inefficient sites for bubble nucleation (Hurwitz and Navon, 1994). Fractures are generated during vesiculation, and no formation or 113 114 healing of fractures is observed during cooling after experiments. 115 In the haplogranitic samples there is no evidence for gas-driven filter pressing. 116 Bubbles increase their volume with minimal coalescence, and form a polygonal 117 network (Figures 1A-D) similar to that found in natural felsic frothy pumices. Despite significant initial intercrystalline porosity, bubble growth in the crystal bearing 118 119 samples preferentially occurs in melt-rich regions, Within the crystal rich regions 120 bubble distribution is homogenous. Bubble growth sharply reducinges the volume of Page 5 of 19

121	the interstitial melt (local β = 0.9), and generating peripheral compacted crystal
122	clusters (Figures 1A-D). At $T \ge 550$ °C major conchoidal fractures develop (Figures
123	1C-D, arrows), with smaller fractures up to 200 μ m length connecting inflated gas-
124	rich regions (Figure 1D). Fractures are arranged at high angles (70°_{-} to 90°) relative to
125	the vertical sample axis along which sample expansion occurs. The fractures radiate
126	out from the inflating gas-rich, crystal-poor regions, passing through both crystals and
127	residual melt (Figures 1C-D, arrows).
128	
129	In contrast, the dacitic samples show gas-driven filter pressing. The individual
130	bubbles are generally much larger than those generated in the haplogranitic samples
131	(Figures 1E-H). At <u>all temperatures - at $\phi \le 0.5$</u> , bubbles form <u>and grow</u> by extensive
132	coalescence, (predominantly through melt-film attenuation) and no fracture is
133	<u>observed</u> -between expanding bubbles. At $\phi = 0.6-0.7$, bubbles deform around
134	crystals during growth (Figure 1H), and melt concentrates into narrow (20-80 μm -
135	wide) channels within the crystal framework due to the pressure exerted by gas
136	bubbles (Figure 1H, grey arrows from stretched bubbles). At $T \ge 675$ °C, curved
137	fractures form between large bubbles in the melt phase, and jagged fractures are found
138	in the crystal-rich regions (Figure 1H, white arrows). At $\phi = 0.8$, no significant bubble
139	nucleation and growth was observed at any temperature (see insets in Figure 2).
140	From these behaviours we Here we define a the "ductile regime": -when the
141	sample undergoes inflation during vesiculation, and a the "brittle regime": when the
142	sample fractures during vesiculation (with or without inflation). The mechanical
143	evolution of both regimes during vesiculation can be described as a function of ϕ and
144	β . At $\phi = 0.5-0.7$ (the target crystallinities of this study), with the ductile to brittle

145	transition clearly occur s ring at a residual melt fraction ($\mu = 1 - \phi - \beta$) of about 0.25	
146	(Figure 2).	
147	GAS EXTRACTION EFFICIENCY AND MELT VISCOSITY	
148	The KFT analysis performed on the dacite samples -that showed gas-driven	
149	filter pressing, supports the microstructural observations. In this system, The-H ₂ O	
150	exsolution, and therefore η_{melt} in all samples should be the same is constant for a	
151	given at each-temperature. Comparison of the extraction profiles and bubble and	
152	expansion rates profiles therefore reveal s how differences in bulk viscosity and	
153	microstructure effect evolving permeability and the filter pressing process. The In the	
154	crystal free sample, exsolution of isolate bubbles degasses the melt before the	
155	formation of a permeable network (-shows a rapid increase in bubble volume (25%)	
156	vol.%) from 575 °C followed shortly (at about 15 vol.%) by the rapid release of the	
157	majority of H2O at 600°C (Figure 3A) in the dacitic samples, suggesting a as bubble	
158	volume increase allows interaction and the formation of a permeable network. At	
159	After network formation the temperature of network formation (625-650°C) gas	
160	exsolution is nearly complete, and bubble volume increases become appear to be	
161	thermally controlled.	
162	ccelerated H ₂ O extraction at higher T and with decreasing ϕ (Figure 3A). H ₂ O	
163	extraction begins between 500 °C (high ϕ) and 625 °C (low ϕ) (Figure 3A). The	
164	crystal bearing samples show more variable behaviour. At $\phi = 0.5$, a first phase of	Formatted: Not Highlight
165	bubble growth results in the formation of a permeable network and gas release. After	
166	a short two pulses of bubble growth (or ~20 vol.%) are observed at 575 °C and 625	
167	<u>°C between which period of no growth, a second phase of bubble expansion -occurs,</u>	
168	but accompanied by constant . The early growth is accompanied by extraction of	

169	1wt.% H2O, implying a period of coalescence and permeability development.
170	Throughout the hiatus in growth, the second volume expansion and a second hiatus
171	(650 °C and 675 -725°C), gas extraction at a -is-lower than seen in the first release,
172	and the rate; increases gradually with temperature. This suggestsing that no highly
173	efficient pathway is accessible, and the extraction is diffusion controlled until - Above
174	725 °C, increases in extraction rate occur as fracture is initiated and propagates.
175	(tapping unconnected over-pressured pores).
176	At higher ϕ , $-(0.6, 0.7)$ -falling total extraction efficiency highlights the effect
177	of crystals in reducing the ability of the sample to outgas. The begins to fall. $\phi = 0.6$
178	sample shows near constant bubble growth (40 vol.%) for the majority of the heating
179	schedule, whereas from 575-675 °C, which spans spanning out-gasssing only occurs
180	at the the only period of measureable extraction (~1 vol.%) at 625 °C and the onset of
181	brittle behaviour. While the The total bubble tomography data show volume
182	expansion is efficient, close to that predicted for the melt volume, supporting the
183	microstructural observation that fracture is a minor component of the permeable
184	network and brittle failure is localised with continued bubble growth elsewhere in the
185	sample. The KFT data suggest that the majority of the remaining exsolved gas (~65%)
186	remains trapped in unconnected porosity. The total bubble volume expansion is close
187	to that predicted for the melt volume, supporting the microstructural observation that
188	fracture is a minor component of the permeable network and brittle failure is localised
189	with continued bubble growth elsewhere in the sample. The At $\phi = 0.7$ overall
190	extraction efficiency remains similar, but sample shows a significant reduction in
191	overall-bubble volume growth is now reduced (~20% of that possible in the crystal
192	free sample), and pore over-pressures in the unconnected pores will be higher-despite

Formatted: Subscript

193	having a similar extraction profile and overall extraction efficiency and the onset of	
194	brittle behaviour at a lower temperature. Assuming a similar distribution to that	
195	observed in the tomography data, the limited porosity will have significant over	
196	pressure after failure. For $\phi = 0.8$, entirely in the brittle regime, the an absence of	
197	lack of both bubble growth growth and gas extraction implies significant pore	
198	overpressure with volume expansion prevented by the bulk viscosity of the sample. At	
199	$\frac{\phi = 0.8, \text{ no H}_2O}{\text{ extraction is detected across the entire T range (Figure 3A), meaning}}$	
200	that the exsolved H ₂ O must remain trapped in a non-permeable bubble network.	
201	and/or be released as low-volume "silent" emission. At high <i>ø</i> , low permeability is	
202	maintained, whereas bubble coalescence allows gas loss at $\phi \leq 0.5$.	
203	At $\phi = 0.6 \cdot 0.7$, H ₂ O extraction occurs across a restricted <i>T</i> range ($\leq 75 \circ C$),	
204	and after the onset of brittle behaviour H ₂ O extraction is below the limit of detection	
205	(~0.02 wt.%) at all temperatures. The onset of brittle behaviour is accompanied by an	
206	increase in the KFT uncertainty, which suggests that fracture enhanced permeability is	
207	permitting continuous low volume "silent" emission of gas (see Data Repository). At	
208	$\phi = 0.8$, no H ₂ O extraction is detected across the entire <i>T</i> range (Figure 3A), meaning	
209	that the exsolved H ₂ O-must remain trapped in a non-permeable bubble network,	
210	and/or be released as low-volume "silent" emission. These two processes may be	
211	operating simultaneously.	
212	DISCUSSION AND CONCLUSIONS	
213	Our in situ X ray tomographic microscopy data reveal that gas driven filter	
214	pressing operates only when bulk sample expansion occurs without fracturing or the	
215	development of gas permeable pore networks. The gas-driven filter pressing -process	
216	appears to be most efficient in crystal mushes ($0.5 \le \phi \le 0.7$), a minimum of ~ 3 wt.%	\langle

Formatted: Highlight

Formatted: Not Highlight
Formatted: Not Highlight

217	<u>H₂O (Figure 3B), and over a limited window of crystallinity $0.6 \le \phi \le 0.7$ and when</u>		Comment [A2]: Are we certain we are not seeing it at 0,5 as well. Trapped
218	bulk sample expansion occurs without fracturing or the development of gas permeable		bubbles mean some pore pressure, and therefore I would suspect the processes is occurring, just maybe not as efficiently
219	<u>networks</u> . In addition it appear to require $\mu > 0.25$ (Figure 2), i.e. close to the		as in the 0.6 sample where the instantaneous increase in trapped gas at $\sim 1\%$ extraction causes failure? Is it just much slower at 0.5?
220	percolation threshold ($\mu = 0.22$ -0.29) or maximum packing fraction ($\phi_{max} = 0.66$ -0.74		Formatted: Highlight
221	for monodispersed suspensions) (Seer and Mange 2002). The heplographic (2.1		Formatted: Highlight
221	for monodispersed suspensions) (saar and Manga, 2002). The haplogramme (2.1		Formatted: Highlight
222	<u>wt.%) sample achieve brittle failure at $\phi \leq 0.47$ without substantial gas-driven filter</u>		
223	pressing.		
224	During these experiments		
225	Gas exsolution appears to begin shortly after <u><i>Tg</i></u> , with the initiation of	_	Formatted: Font: Italic
226	permeable networks		
227	<u>ــــــــــــــــــــــــــــــــــــ</u>		Formatted: Font: Bold
228	<u>At s When $\phi \leq 0.5$, permeability via bubble coalescence prevents gas driven</u>		
229	filter pressing. At $\phi = 0.6 \ 0.7$ we see bubble growth driving filter pressing, until μ is		
230	driven below the percolation threshold and exsolution only drives pore pressure		
231	increase until brittle failure occurs. A wide range of igneous rocks reveals		
232	achievement of the critical packing density of bubbles + crystals ($\phi_{max} \sim 0.65 \cdot 0.75$ in		
233	basalts; Marsh, 1981; $\mu \sim 0.3$ in granites; Wickham, 1987), which provides the last		
234	"snapshot" of a jammed system below the minimum volumetric proportion of melt to		
235	enable flow.		
236	$\eta_{melf bulk}$ is controlled by evolves as a function of $T_{,}$ and the residual dissolved H ₂ O,		Formatted: Indent: First line: 0 cm
237	bubble volume fraction and crystal volume fraction-(Giordano et al., 2008), and will		
238	strongly control the effectiveness of gas driven filter pressing. The bulk viscosity of		
239	the sample will also depend on the local crystal and bubble volume fractions (Pistone		
240	et al., 2012). As H ₂ O exsolves from the melt, η_{melt} increases slowly at while H ₂ O		

241	<u>remains</u> contents > 2 wt.%, and more rapidly but more rapidly at H_2O contents at < 2
242	wt.% (Giordano et al., 2008), and can be estimated using the KFT and tomography
243	data (Pistone et al., 2012) (Figure 3B), up the point of (Giordano et al., 2008). Where
244	bubbles coalescence is the dominant mechanism ($\phi \leq 0.5$), the increase of η_{melt} due to
245	H ₂ O loss is more important than its decrease due to higher T (Figure 3B). Indeed, η_{melt}
246	increases more distinctly when the residual H_2O dissolved in the melt is < 2 wt.%.
247	The same η_{mele} is expected to occur at $\phi \ge 0.6$; however, the bulk H ₂ O (i.e. dissolved)
248	H_2O in the melt + exsolved gas bubbles) in the system remains in excess of 2 wt.%
249	due to the incapacity of the system to outgas in presence of a continuous crystal
250	network. After the brittle onset <u>failure when the</u> , samples enter into the Mohr-
251	Coulomb regime where η_{melt} is meaningless (Figure 3B). The equation:
252	Due to their initial low H ₂ O content in the melt (2.1 wt.%), the haplogranitic systems
253	reach failure even at $\phi \leq 0.47$ without experiencing substantial gas driven filter
254	pressing, although it may be possible that with slower heating rates gas-driven filter
255	pressing can be achieved. Conversely, the H_2O rich (4.2 wt.%) dacitic systems have
256	η_{mele} that allows gas driven filter pressing. This suggests that, at equivalent rates of
257	volatile exsolution (i.e. relatively last 1-t paths simulating rapid crystallisation and
250	$\frac{1}{2}$
2.60	prevent fracturing of the mush during gas exsolution but nonetheless maintains a
261	sufficiently high η_{mal} to allow for gas pressure build up and to expel melt from the
262	erystal framework. Based on our results, the minimum H ₂ O content in the silicic melt
263	that allows gas-driven filter pressing to be effective in crystal mushes ($\phi \ge 0.5$) is ~ 3
264	wt.% (Figure 3B). In addition, elevated pressure (< 1.5 GPa) leads to a reduction in

Page 11 of 19

285 $v = \frac{\kappa}{\eta_{melt}} \times \frac{\nabla P}{\mu}$ (2)

Page 12 of 19

286	where ∇P is the gas pressure gradient. To maintain <u>a gas pressure gradient (</u> ∇P) at a	
287	value necessary sufficient to expel melt, the region of magma undergoing gas	
288	exsolution must-inflateion must be slower than ly relative to the rates at which it	
289	crystallises-crystallisation and and exsolves-gas exsolution (Sisson and Bacon, 1999).	
290	From the bubble sizesFollowing the approach of Anderson et al. (1984), and	
291	considering that bubbles_of 100-200 µm diameter push-driving melt the melt-through	
292	20-80 µm wide channels within-in the crystal framework-mush (Figure 1H) and a with	
293	a-mean gas expansion (~melt expulsion) rate of 0.07 μ m ³ /s <u>of during</u> -our experiments	
294	we find (~ 45 minutes), the resulting ∇P is on-in the order of 0.1-1 MPa/m (after	
295	<u>Anderson et al. 1984</u>). Therefore, in a H ₂ O- (3 wt.%) and SiO ₂ -rich $\eta_{melt} \sim 10^3$ Pa-s at	
296	800 °C, (including the effect of pressure on η_{meli} ; Pistone et al., 2012) in the range	
297	$0.25 \le \mu \le 0.4$, gas-driven filter pressing could therefore expel melt at v of between	
298	0.03-0.3 m/year $\frac{\text{at-(}\mu = 0.25)}{\text{-and } 0.05-0.5}$ m/year $\frac{\text{at-(}\mu = 0.4)}{\text{-at-(}\mu = 0.4)}$.	
299	In natural silicic systems the mean size of the dominant phenocrysts (feldspar,	
300	hornblende, biotite, quartz) is ~ 3 mm (Bachmann and Bergantz, 2004); so for ∇P	
301	=0.1-1 PMa, expulsion velocities of 0.6-6 m/year (μ = 0.25) and 1.1-11 m/year (μ =	Formatted: Fon
302	0.4) are expected. This implies the segregation of crystal-poor melt bodies hundreds	
303	of meters thick can occur within a century, and could act as an efficient method of	
304	enhancing segregation compared to the Compared to the longevitiesy of crystal	
305	mushes (10 ⁴ -10 ⁵ years; Bachmann and Bergantz, 2004), provided gas-driven filter	
306	pressing could operate efficiently in shallow felsic mushes with ϕ of 0.6-0.7 (Figure	
307	2) resulting in melt segregation and formation of overlying crystal-poor silicic melt	
308	caps. However, gas driven filter pressing in a mush can only be effective where	
309	crystallisation and volatile exsolution occur sufficiently rapidly to establish-maintain a	
I		

Page 13 of 19

nt: Not Italic

310	large enough VP without between gas bubble pressure and ambient pressure before
311	the reaching the percolation threshold close packing of phases (~74 vol.%)-impedes
312	melt segregation. Despite the complexity of gas exsolution and crystallisation rates,
313	bubble nucleation and growth kinetics, bulk viscosity changes, and build up of
314	internal pressure (Costa et al., 2006), the results of this study serves as a general guide
315	for the effectiveness of gas-driven filter pressing in particular situations. Compared to
316	the longevities of erystal mushes (10 ⁴ -10 ⁵ -years; Bachmann and Bergantz, 2004), gas-
317	driven filter pressing could operate efficiently in shallow felsic mushes with ϕ of 0.6-
318	0.7 (Figure 2) resulting in melt segregation and formation of overlying crystal poor
319	silicie melt caps. However, gas-driven filter pressing in a mush can only be effective
320	where crystallisation and volatile exsolution occur sufficiently rapidly to establish a
321	large enough 7P between gas bubble pressure and ambient pressure before the close-
322	packing of phases (-74 vol.%) impedes melt segregation.
322 323	packing of phases (-74 vol.%) impedes melt segregation. In natural felsic plutons the mean size of the dominant phenocrysts (feldspar,
322323324	 packing of phases (-74 vol.%) impedes melt segregation. In natural felsic plutons the mean size of the dominant phenocrysts (feldspar, hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, at
322323324325	packing of phases (-74 vol.%) impedes melt segregation.In natural felsic plutons the mean size of the dominant phenocrysts (feldspar,hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, atidentical ∇P , the v are expected to be 0.6 6 m/year at μ = 0.25 and 1.1 11 m/year at μ
 322 323 324 325 326 	packing of phases (-74 vol.%) impedes melt segregation.In natural felsic plutons the mean size of the dominant phenocrysts (feldspar,hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, atidentical ∇P , the ν are expected to be 0.6 6 m/year at $\mu = 0.25$ and 1.1 11 m/year at μ $= 0.4$, with segregation of tens to hundreds meter thick crystal-poor melts within a
 322 323 324 325 326 327 	packing of phases (-74 vol.%) impedes melt segregation.In natural felsic plutons the mean size of the dominant phenocrysts (feldspar,hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, atidentical ∇P , the v are expected to be 0.6 6 m/year at μ = 0.25 and 1.1 11 m/year at μ = 0.4, with segregation of tens to hundreds meter-thick crystal-poor melts within acentury. However, there is little evidence for the presence of large crystal-poor bodies
 322 323 324 325 326 327 328 	packing of phases (-74 vol.%) impedes melt segregation.In natural felsic plutons the mean size of the dominant phenocrysts (feldspar,hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, atidentical ∇P , the v are expected to be 0.6 6 m/year at $\mu = 0.25$ and 1.1 11 m/year at μ $= 0.4$, with segregation of tens to hundreds meter-thick crystal poor melts within acentury. However, there is little evidence for the presence of large crystal poor bodiesin the present-day crust $(10^2 - 10^3 \text{ km}^3; \text{ Bachmann and Bergantz, 2004})$. Thus, the
 322 323 324 325 326 327 328 329 	packing of phases (-74 vol.%) impedes melt segregation.In natural felsic plutons the mean size of the dominant phenocrysts (feldspar,hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, atidentical ∇P , the ν are expected to be 0.6 6 m/year at $\mu = 0.25$ and 1.1 11 m/year at μ $= 0.4$, with segregation of tens to hundreds meter thick crystal poor melts within acentury. However, there is little evidence for the presence of large crystal poor bodiesin the present day crust $(10^2 - 10^3 \text{ km}^3;$ Bachmann and Bergantz, 2004). Thus, theexpected volumes of silicic melt extracted from a mush via gas driven filter pressing
 322 323 324 325 326 327 328 329 330 	packing of phases (-74 vol.%) impedes melt segregation.In natural felsic plutons the mean size of the dominant phenocrysts (feldspar,hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, atidentical ∇P , the v are expected to be 0.6 6 m/year at $\mu = 0.25$ and 1.1 11 m/year at μ = 0.4, with segregation of tens to hundreds meter-thick crystal poor melts within acentury. However, there is little evidence for the presence of large crystal poor bodiesin the present-day crust $(10^2 - 10^3 \text{ km}^3;$ Bachmann and Bergantz, 2004). Thus, theexpected volumes of silicic melt extracted from a mush via gas driven filter pressingmust be $<< 10^2 \text{ km}^3$, i.e. not detectable by high resolution local seismic tomography
 322 323 324 325 326 327 328 329 330 331 	packing of phases (-74 vol.%) impedes melt segregation. In natural felsic plutons the mean size of the dominant phenocrysts (feldspar, hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, at identical ∇P , the ν are expected to be 0.6 6 m/year at μ = 0.25 and 1.1 11 m/year at μ = 0.4, with segregation of tens to hundreds meter thick crystal poor melts within a century. However, there is little evidence for the presence of large crystal poor bodies in the present day crust ($10^2 - 10^3$ km ³ ; Bachmann and Bergantz, 2004). Thus, the expected volumes of silicic melt extracted from a mush via gas driven filter pressing must be << 10^2 km ³ , i.e. not detectable by high resolution local seismic tomography (cell volume of 125 km ³ ; e.g. Miller and Smith, 1999). If extracted from stagnant
 322 323 324 325 326 327 328 329 330 331 332 	packing of phases (-74 vol.%) impedes melt segregation. In natural felsic plutons the mean size of the dominant phenocrysts (feldspar, hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, at identical ∇P , the ν are expected to be 0.6 6 m/year at μ = 0.25 and 1.1 11 m/year at μ = 0.4, with segregation of tens to hundreds meter-thick crystal-poor melts within a century. However, there is little evidence for the presence of large crystal poor bodies in the present-day crust ($10^2 - 10^3 \text{ km}^3$; Bachmann and Bergantz, 2004). Thus, the expected volumes of silicic melt extracted from a mush via gas driven filter pressing must be << 10^2 km^3 , i.e. not detectable by high resolution local seismic tomography (cell volume of 125 km ³ ; e.g. Miller and Smith, 1999). If extracted from stagnant mushes, such small volumes of silicic melts may become highly hazardous due to
 322 323 324 325 326 327 328 329 330 331 332 333 	packing of phases (-74 vol.%) impedes melt segregation. In natural felsic plutons the mean size of the dominant phenocrysts (feldspar, hornblende, biotite, quartz) is about 3 mm (Bachmann and Bergantz, 2004); thus, at identical ∇P , the v are expected to be 0.6 6 m/year at μ = 0.25 and 1.1 11 m/year at μ = 0.4, with segregation of tens to hundreds meter thick crystal poor melts within a century. However, there is little evidence for the presence of large crystal poor bodies in the present day crust (10^2 - 10^3 km ³ ; Bachmann and Bergantz, 2004). Thus, the expected volumes of silicic melt extracted from a mush via gas driven filter pressing must be << 10^2 km ³ , i.e. not detectable by high resolution local seismic tomography (cell volume of 125 km ³ ; e.g. Miller and Smith, 1999). If extracted from stagnant mushes, such small volumes of silicic melts may become highly hazardous due to their large volatile content (i.e. H ₂ O dissolved in the melt + exsolved gas) and low ϕ .

334	In conclusion, in situ observations of magmatic microstructural evolution have
335	shown that gas driven filter pressing can operate efficiently in shallow felsic crystal
336	mushes with crystal volume fractions of 0.6-0.7 (Figure 2) provided crystallisation
337	and volatile exsolution are rapid enough to establish a gas pressure gradient before the
338	maximum packing fraction of bubbles and crystals is reached (~74 vol.%). Above this
339	threshold, the crystal mush is likely to fracture, restricting melt segregation and
340	hindering the generation of eruptible, crystal poor magmas. Gas-driven filter pressing
341	is therefore a viable, but highly limited mechanism to rapidly extract large volumes of
342	hazardous gas-rich crystal-poor magmas within the Earth's crust.
343	ACKNOWLEDGMENTS
344	CALIPSO Grant (Nr. 312284; FP7/2007-2013) and ERC Advanced Grant
345	CRITMAG supported this research. EXTREMA COST Action MP1207 provided
346	networking support. We acknowledge: C. Clapham, D. Hawley, U. Graber, G.
347	Mikuljan for technical support; G. Robert for assisting with calorimetry; D. Baker, M.
348	Polacci, L. Caricchi, D. Giordano for earlier discussions. Constructive comments by
349	D. Floess and two anonymous reviewers helped improving this manuscript. R.
350	Holdsworth is acknowledged for his editorial handling.
351	REFERENCES CITED
352	Anderson, A.T., Jr., <mark>Swihart</mark> , G.H., <mark>Artioli</mark> , G., and <mark>Geiger</mark> , C.A., <mark>1984</mark> , Segregation
353	vesicles, gas filter-pressing, and igneous differentiation: The Journal of Geology,
354	v. <mark>92</mark> , p. 55–72, doi:10.1086/628834.
355	Bachmann, O., and Bergantz, G.W., 2004, On the origin of crystal-poor rhyolites:

- Extracted from batholitic crystal mushes: Journal of Petrology, v. 45, p. 1565–
- 357 1582, doi:10.1093/petrology/egh019.

Page 15 of 19

- 358 Behrens, H., Romano, C., Nowak, M., Holtz, F., and Dingwell, D.B., 1996, Near-
- 359 infrared spectroscopic determination of water species in glasses of system
- 360 MAISi₃O₈ (M = Li, Na, K): An interlaboratory study: Chemical Geology, v. 128,
- 361 p. 41–63, doi:10.1016/0009-2541(95)00162-X.
- 362 Costa, A., Blake, S., and Self, S., 2006, Segregation processes in vesiculating
- 363 crystallizing magmas: Journal of Volcanology and Geothermal Research, v. 153,
- 364 p. 287–300, doi:10.1016/j.jvolgeores.2005.12.006.
- 365 Fife, J.L., Rappaz, M., Pistone, M., Celcer, T., Mikuljan, G., and Stampanoni, M.,
- 366 2012, Development of a laser-based heating system for in-situ synchrotron-based
- 367 X-ray tomographic microscopy: Journal of Synchrotron Radiation, v. 19, p. 352–
- 368 358, doi:10.1107/S0909049512003287.
- 369 Giordano, D., Russell, J.K., and Dingwell, D.B., 2008, Viscosity of magmatic liquids:
- A model: Earth and Planetary Science Letters, v. 271, p. 123–134,
- doi:10.1016/j.epsl.2008.03.038.
- 372 Hui, H.J., Zhang, Y.X., Xu, Z.J., Del Gaudio, P., and Behrens, H., 2009, Pressure
- dependence of viscosity of rhyolitic melts: Geochimica et Cosmochimica Acta,
- 374 v. 73, p. 3680–3693, doi:10.1016/j.gca.2009.03.035.
- 375 Hurwitz, S., and Navon, O., 1994, Bubble nucleation in rhyolitic melts: Experiments
- at high pressure, temperature, and water content: Earth and Planetary Science

377 Letters, v. 122, p. 267–280, doi:10.1016/0012-821X(94)90001-9.

- 378 Jackson, M.D., Cheadle, M.J., and Atherton, M.P., 2003, Quantitative modeling of
- 379 granitic melt generation and segregation in the continental crust: Journal of
- 380 Geophysical Research, v. 108, doi:10.1029/2001JB001050.
- 381 Laporte, D., 1994, Wetting behavior of partial melts during crustal anatexis: The
- 382 distribution of hydrous silicic melts in polycrystalline aggregates of quartz:

Page 16 of 19

- Contributions to Mineralogy and Petrology, v. **116**, p. 486–499,
- doi:10.1007/BF00310914.
- 385 Lipman P.W., Christiansen, R.L., O'Connor, J.T., 1966, A compositionally zoned
- 386 ash-flow sheet in southern Nevada: US Geological Survey Professional Paper, v.
- 387 524-F.
- 388 Marsh, B.D., 1981, On the crystallinity, probability of occurrence, and rheology of
- lava and magma: Contributions to Mineralogy and Petrology, v. 78, p. 85–98,
- doi:10.1007/BF00371146.
- 391 McKenzie, D.P., 1984, The generation and compaction of partially molten rock:
- 392 Journal of Petrology, v. 25, p. 713–765, doi:10.1093/petrology/25.3.713.
- 393 Miller, D.S., and Smith, R.B., 1999, P and S velocity structure of the Yellowstone
- 394 volcanic field from local earthquake and controlled source tomography: Journal
- 395 of Geophysical Research, v. 104, p. 15105–15121, doi:10.1029/1998JB900095.
- 396 Pistone, M., Caricchi, L., Ulmer, P., Burlini, L., Ardia, P., Reusser, E., Marone, F.,
- 397 and Arbaret, L., 2012, Deformation experiments of bubble- and crystal-bearing
- 398 magmas: rheological and microstructural analysis: Journal of Geophysical
- 399 Research, v. 117, doi:10.1029/2011JB008986.
- 400 Pistone, M., Caricchi, L., Ulmer, P., Burlini, L., Reusser, E., and Ardia, P., 2013,
- 401 Rheology of volatile-bearing crystal mushes: mobilization vs. viscous death:
- 402 Chemical Geology, v. 345, p. 16–39, doi:10.1016/j.chemgeo.2013.02.007.
- 403 Saar, M.O., and Manga, M., 2002, Continuum percolation threshold for randomly
- 404 oriented soft-core prisms: Physical Review E: Statistical, Nonlinear, and Soft
- 405 Matter Physics, v. 65, doi:10.1103/PhysRevE.65.056131.
- 406 Sisson, T.W., and Bacon, C.R., 1999, Gas-driven filter pressing in magmas: Geology,
- 407 v. 27, p. 613–616, doi:10.1130/0091-7613(1999)027<0613:GDFPIM>2.3.CO;2.

Wickham, S.M., 1987, The segregation and emplacement of granitic magmas:

408

409 Geological Society of London v. 144, p. 281–297. **FIGURE CAPTIONS** 410 411 Figure 1. Synchrotron X-ray tomographic microscopy 3D renderings of two representative 412 haplogranitic (H5, A-D) and dacitic samples (F, E-H) with different crystal (ϕ) and bubble fractions 413 (β) at representative temperatures (T) and experimental times (t, in minutes). Black objects = bubbles 414 and fractures; dark grey field = silicic glass; light grey objects = corundum crystals in H5 glass and 415 quartz in F glass. White and dark grey arrows indicate representative fractures and directions of melt 416 expulsion during vesiculation respectively. During experiments gas exsolution mainly consists in: 1) 417 bubble nucleation and growth (white circles), and 2) crystal clustering/compaction (white rectangles). 418 Figure 2. Crystal fraction ($\boldsymbol{\Phi}$) vs. bubble fraction ($\boldsymbol{\beta}$) diagram reporting all experiments conducted in 419 this study. Squares and circles indicate haplogranitic and dacitic samples respectively. Black and grey 420 colours indicate ductile and brittle regime respectively. Dashed grey lines denote trends of constant 421 melt fraction (μ). Grey field indicates impossible physical conditions. 2D reconstructed slices of 422 representative samples display the increase of β with T and the increase of sample fracturing with 423 increasing $\boldsymbol{\Phi}$. Each side of the reconstructed slice is 5 mm. White areas in H5 samples are corundum 424 crystals; dark grey areas in F samples are quartz crystals. In all samples black objects are gas bubbles, 425 and light grey matrix is silicic glass. Values reported in each slice are T in °C. Figure 3. A) KFT-measured amounts of H₂O extracted from the melt of dacitic samples ($\boldsymbol{\Phi} = 0.0.8$) at 426 427 different T. H₂O uncertainties are ± 0.07 wt.% in the ductile (solid line) and ± 0.14 wt.% in the brittle 428 regime (dashed line). **B**) Melt viscosity (η_{melt}) as a function of extracted H₂O, with η_{melt} estimated using 429 the model of Giordano et al. (2008), taking into account the difference between the total H_2O in the 430 melt phase, measured in crystal-free F0 sample in A, and the extracted H₂O at a specific T. At identical 431 exsolution rates (i.e. heating rates applied during KFT measurements), η_{mett} is expected to evolve in the 432 same manner in all dacitic samples; the $\boldsymbol{\Phi}$ increases the incapacity of H₂O extraction from the sample 433 (i.e. the higher $\boldsymbol{\Phi}$, the lower the H₂O extraction). $\boldsymbol{\eta}_{melt}$ uncertainties are: < 0.4 log units at dissolved 434 H_2O contents < 2 wt.%, and < 0.2 log units at dissolved H_2O contents > 2 wt.%. Further η_{melt} deviations 435 of 0.2 log units must be considered due to limited content of H_2O (< 0.2 wt.%) trapped in the F samples 436 during vesiculation and not measured by KFT.

Page 18 of 19

- 437 1 GSA Data Repository item 2015xxx, xxxxxxx, is available online at
- 438 www.geosociety.org/pubs/ft2015.htm, or on request from editing@geosociety.org or Documents
- 439 Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.